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Abstract

We consider three bivariate polynomial invariants P , A, and S for rooted trees,
as well as a trivariate polynomial invariant M . These invariants are motivated by
random destruction processes such as the random cutting model or site percolation
on rooted trees. We exhibit recursion formulas for the invariants and identities
relating P , S, and M . The main result states that the invariants P and S are
complete, that is they distinguish rooted trees (in fact, even rooted forests) up to
isomorphism. The proof method relies on the obtained recursion formulas and on
irreducibility of the polynomials in suitable unique factorization domains. For A,
we provide counterexamples showing that it is not complete, although that question
remains open for the trivariate invariant M .

Mathematics Subject Classifications: 05C31, 05C05, 60C05

1 Introduction and preliminaries

The study of polynomial invariants in graph theory is of considerable tradition, with
perhaps the best-known invariant being the Tutte polynomial [24, 25]. For trees on n
vertices, it is well-known that the Tutte polynomial evaluates to xn−1 and is thus of little
use when investigating trees. To overcome this issue, Chaudhary, Gordon and McMahon
in [10] and [8] defined specific Tutte polynomials for (rooted) trees by replacing the usual
rank of a subgraph in the corank-nullity definition of the Tutte polynomial by different
notions of tree rank. In these papers, several of the obtained (modified) Tutte polynomials
introduced for rooted trees were shown to be complete invariants, that is, no two non-
isomorphic rooted trees are assigned the same polynomial.

Since then, more complete polynomial invariants for rooted trees were found, such as
polychromatic polynomials [5] and the rooted multivariable chromatic polynomial [17] –
both invariants require a large number of variables. The bivariate Ising polynomial [2]
and the Negami polynomial [21], originally defined for unrooted trees, were later shown
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to have versions for rooted trees that are complete invariants, see [15]. More recently, Liu
[16] found a complete bivariate polynomial as a generating function for a certain class of
subtrees, and [23] considers an extension of Liu’s polynomial to three variables.

In this paper, we define several polynomial invariants for rooted trees that are de-
fined combinatorially, but can be motivated by two models for the random destruction
of trees, namely Bernoulli site percolation and the random cutting model. Among these
polynomials, two bivariate invariants are proven to be complete using an approach via ir-
reducibility of polynomials and a suitable recursion, and for two more invariants examples
are provided showing that they are not complete. These results suggest in a non-rigorous
way that complete knowledge about the behaviour of a tree under random destruction
should uniquely determine the tree, but it is still open if this holds rigorously (see e.g. the
discussion below Conjecture 20). However, all polynomial invariants considered here are
closely related, leading to several identities that might be interesting in their own right,
or for the purpose of explicit computations relating to phenomena around the random
cutting model or site percolation, like the recursions in Lemmas 5, 6, 7.

Structure of the paper

After fixing the necessary notation and terminology concerning trees below, Section 2
is dedicated to the combinatorial definitions of our polynomial invariants. Section 3
delivers the probabilistic background on random destruction of trees, and may serve as a
motivation for the polynomial invariants, but the material presented there is not necessary
for the main results or the proofs thereof in earlier sections. Accordingly, a reader not
interested in the relation between random tree destruction and the polynomial invariants
may safely skip this section. Section 4 returns to the combinatorial setting, and features
several technical results like recursion identities for all polynomials. In Section 5 we
formulate and prove the main theorem of the paper, Theorem 9, and employ it to derive a
reconstruction result for leaf-induced subtrees. Finally, Section 6 contains several remarks,
examples, and an open conjecture.

Preliminaries

For the purpose of this paper, a rooted tree T is a finite tree with one distinguished vertex,
called the root of T . It will be convenient to also consider rooted forests, by which we
understand a finite (but possibly empty) disjoint union of rooted trees. By this convention,
every component in a rooted forest is a rooted tree. A vertex is a leaf of a rooted forest
if it does not have any children (thus an isolated vertex is simultaneously a root and a
leaf).

An isomorphism of rooted forests is a graph isomorphism that additionally maps roots
to roots.

Given a rooted tree T , denote by r the number of children of the root node v0. We can
construct a rooted forest from T by removing v0, thus creating a forest with r components,
and declaring the unique child of v0 in each component to be the root node in that
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component. We will denote the resulting forest by T − v0. The components of T − v0 are
also called the branches of T .

Conversely, given a rooted forest F with r  0 components, let v0 be a vertex not in
F and draw an edge from v0 to each of the r roots in F . Upon declaring v0 to be the root
of the so-constructed tree, we have obtained a rooted tree. We will denote the resulting
tree by ∧(F ) or ∧(T1, . . . , Tr) if F is given by its components T1, . . . , Tr.

Since our definition allows for empty rooted forests (containing no vertices whatso-
ever), it follows immediately that ∧(F )− v0 ∼= F and ∧(T − v0) ∼= T for all rooted forests
F and all rooted trees T . In particular, removing the root of a tree and adding a joint
root to a forest are inverse bijections between isomorphism classes of rooted trees and
isomorphism classes of rooted forests.

For convenience, • will denote the rooted tree on one vertex.

2 Setting the stage: Defining polynomials

Leaf-induced subforests

Let F be a rooted forest. By a leaf-induced subforest F ′ we understand a rooted forest F ′

that is a (possibly empty) union of paths connecting roots of F to leaves of F . In other
words, any leaf of F ′ must also be a leaf of F . It follows that F ′ is completely determined
by choosing a subset of the leaves of F , and connecting each of the chosen leaves to
the root of its component. In particular, if F has ℓ leaves, then it has 2ℓ leaf-induced
subforests.

Definition 1. For a rooted forest F , denote by PF (x, y) the bivariate generating function
for leaf-induced subforests of F according to their number of vertices and leaves. That is,

PF (x, y) =


F ′⊆F leaf-induced

x|V (F ′)|y|L(F
′)|, (1)

where V (F ′) and L(F ′) denote the sets of vertices and leaves of F ′, respectively.

As an example, if T is the path on n vertices with the root situated on one end,
then PT (x, y) = 1 + xny, since the only leaf-induced subforests are the empty one and
T itself. For T being the star on n + 1 vertices, with the root being the central vertex,
we have PT (x, y) = 1 +

n
k=1


n
k


xk+1yk, which can be seen directly from a combinatorial

argument, or computed recursively as will be established in the next section.
For a rooted tree T , it will also be useful to introduce the shorthand notation

pT (q) := 1− PT (q,−1) (2)

for the univariate generating function of non-empty leaf-induced subtrees with a sign
according to the parity of the number of leaves.

It should be mentioned that Razanajatovo Misanantenaina and Wagner, in [23], con-
sidered a trivariate polynomial invariant PT (x, y, z) defined recursively by P•(x, y, z) = x
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and

PT (x, y, z) = yz|T |−1 +
r

i=1

PTi
(x, y, z)

for a tree T = ∧(T1, . . . , Tr). Their Propositions 2.16 and 2.17 and the comment thereafter
establish a connection between PT and PT , given by

PT (x, y) = x|T |P

y +

1

x
,
1

x
− 1,

1

x


.

We also mention that pT (q) was previously investigated in [9, 7] in the context of
transversals in trees, where a is a set of vertices intersecting all paths from the root to
the leaves.

Admissible subtrees

By a subtree of a rooted tree T we mean either the empty subgraph of T or any connected
subgraph of T that contains the root (though we will break with this convention in the
context of fringe subtrees which generally do not contain the root node of T , see the
paragraph above Definition 3). Since a subtree T ′ of T is uniquely determined by its
vertex set, we will not distinguish between T ′ and its vertex set.

We say that a subtree T ′ is admissible if and only if it is empty, or if T ′ contains the
root of T but none of the leaves of T . We write A (T ) for the set of all admissible subtrees
of T .

Given a set S of vertices in a rooted tree T , we denote by ∂S the boundary of S, i.e.
the set of all vertices that are adjacent to S but not themselves in S. For our purposes,
it is convenient to define ∂∅ = {root}.
Definition 2. For a rooted tree T , denote by ST (x, y) (resp. AT (x, y)) the bivariate
generating function for subtrees (resp. admissible subtrees) of T according to their number
of vertices and boundary vertices. That is,

ST (x, y) =


T ′⊆T

x|T ′|y|∂T
′| (3)

and
AT (x, y) =



T ′∈A (T )

x|T ′|y|∂T
′|. (4)

If F is a rooted forest having components T1, . . . , Tr, then define

SF (x, y) :=
r

i=1

STi
(x, y) and AF (x, y) :=

r

i=1

ATi
(x, y). (5)

For example, if T is the path on n vertices, again with the root located at one of the
endpoints, then any shorter path starting at the root is a non-empty admissible subtree,
and thus AT (x, y) = y(1 + x+ · · ·+ xn−1). Additionally, the entire path itself is the only
non-admissible subtree (with n vertices and empty boundary), so ST (x, y) = AT (x, y)+xn.
On the other hand, for T being the centrally-rooted star on n+ 1 vertices, we have only
two admissible subtrees and obtain AT (x, y) = y + xyn, but ST (x, y) = y + x(x+ y)n.
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The graph at separation

The fringe subtree Tv of a rooted tree T is the induced subgraph of T consisting of the
vertex v (which is designated the root of Tv) and all descendants of v. The following
definition can be thought of as a weighted version of AT , where each monomial summand
stemming from an admissible subtree T ′ gets a weight depending on the fringe subtrees
rooted at ∂T ′. The particular choice of the weighing stems from the probabilistic inter-
pretation of this polynomial, which will be elaborated upon in Section 3 below, and in
particular from equation (7).

Definition 3. For a rooted tree T , denote byMT (x, y, z) the trivariate polynomial defined
by

MT (x, y, z) =


T ′∈A (T )

x|T ′|y|∂T
′|−1



v∈∂T ′

1

z
pv(z), (6)

where pv(z) := pTv(z) = 1− PTv(z,−1).

It follows from either Lemma 4 below or from the probabilistic interpretation of pv
that pv(0) = 0, so 1

z
pv(z) is indeed a polynomial in z.

3 The probabilistic viewpoint: Random destruction of trees

We use this section to explain how the polynomials introduced in Section 2 relate to, and
are inspired by, probabilistic considerations.

Random destruction of trees

Two popular models for randomly destroying graphs are percolation and the cutting
model. We use this section to give a very brief introduction to key notions for both of
these models, in order to provide a probabilistic motivation for studying the polynomial
invariants of this paper in the section below.

In Ber(q)-site percolation, a probability q ∈ [0, 1] is fixed, and every vertex in a fixed
underlying graph is deleted with probability 1 − q and otherwise kept, independently
from all other vertices. The connected components of the induced subgraph of all the
vertices that are being kept are called clusters. Bernoulli site percolation can be seen as
a continuous-time process in q ∈ [0, 1], by virtue of the following coupling: Equip every
vertex v with an independent random variable Xv having the uniform distribution on
[0, 1]. At time q, a vertex v is deleted if and only if Xv > q, and otherwise kept. It fol-
lows immediately that through this coupling, we may assume that Ber(q)-site percolation
produces a subgraph of Ber(q′)-site percolation whenever q < q′. Percolation has been
extensively studied, and we refer to [11] as a general reference.

In the cutting model on a rooted tree T , vertices are deleted (i.e. cut) randomly one
at a time, and all components not containing the root node are immediately discarded.
This process necessarily stops once the root node is cut. Equivalently, one can equip
each vertex v in T with an independent alarm clock ringing at a uniformly random time
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Xv ∈ [0, 1], at which the vertex v is cut. It is easy to see that this continuous-time cutting
model, as t increases from 0 to 1, is exactly the evolution of the cluster containing the
root node in the coupling described above for Ber(1 − t)-site percolation. The cutting
model has first been considered by Meir and Moon in [18], but has received significant
attention in the last two decades through works such as [22, 13, 3, 1], just to name a few.

For the cutting model on rooted trees, we say that separation occurs at the first time
when the remaining tree does not contain any original leaf of T anymore. The remaining
tree at this point in time will be denoted by TS (cf. [6]). Note that TS does not depend on
whether we are working in discrete or continuous time. The admissible subtrees introduced
in Section 2 are precisely those subtrees T ′ of T such thatP[TS = T ′] > 0, whereP denotes
the probability measure stemming from the random cutting model on T .

Interpretation of the polynomials

Using the connection described above between percolation and continuous-time cuttings,
we note that the probability that Ber(q)-site percolation for q ∈ [0, 1] contains a path
from the root to a leaf equals the probability that separation has not occurred by time
1− q in the continuous-time cutting model. By virtue of Propositions 6 and 7 in [6], this
probability is given by pT (q) which is a polynomial in q whose coefficients are given as

[qk]pT (q) =


T ′⊆T leaf-induced

|T ′|=k

(−1)|L(T
′)|+1.

The polynomial PT is then obtained through a bivariate extension, such that the second
variable replaces the sign and we obtain a generating function as in Definition 1.

In the setting of Ber(q)-site percolation on a rooted tree T , the term q|T
′|(1 − q)|∂T

′|

gives the probability that a subgraph T ′ of T is the root cluster of the percolation. The
restriction to admissible subgraphs in (4) leads to connections between AT and the poly-
nomials pT and MT , see Lemma 8, and is more relevant to the study of the random cutting
model. While the change from the ST (q, 1 − q) to the bivariate invariant ST (x, y) (and
analogously for AT ) might seem like an ad-hoc generalization, it has its motivation in
enabling the recursions in Lemma 6.

In the case where S and A are applied to rooted forests, defined in (5), it is still
possible to relate these polynomials to the random destruction of rooted forests in a
matter analogous to the case of trees, but we will omit the details here.

Assume that the continuous-time cutting model separates T at some time q0 ∈ [0, 1],
and leaves behind an admissible graph T ′. Then immediately before separation, all but
one of the vertices in ∂T ′ must have been cut already, with the exceptional vertex v ∈ ∂T ′

being such that there still is a path connecting the root to a leaf through v present.
Moreover, none of the vertices in T ′ can have been cut before q0. In particular, at time q0,
the fringe subtree Tv has not yet been separated itself. Employing this idea, it is possible
to show that

P[TS = T ′] =

 1

0

u|T ′|−1(1− u)|∂T
′|−1



v∈∂T ′

pv(u) du

the electronic journal of combinatorics 31(4) (2024), #P4.37 6



(cf. Proposition 5 in [6]). From this, it follows immediately that the probability generating
function of |TS| is given by



n0

P[|TS| = n]xn =

 1

0

MT (xu, 1− u, u) du (7)

It might therefore seem more useful to directly investigate the polynomial on the right-
hand side of (7); however, a possible advantage of MT lies in the recursion (13).

4 Some identities

The purpose of this section is to exhibit recursion formulas for all relevant polynomials,
as well as identities relating the polynomials to one another. The following first lemma
will prove useful throughout:

Lemma 4. Let F be a rooted forest. Then:

(a) The number of vertices of F equals degx(PF ).

(b) The number ℓ of leaves of F equals degy(PF ).

(c) Specializing to x = 1 gives PF (1, y) = (1 + y)ℓ. In particular, we have PF (1,−1) = 0
unless F is the empty forest, in which case PF ≡ 1.

Proof. Parts (a) and (b) are immediate from Definition 1. For part (c), note that
PF (1, y) is the generating function for leaf-induced subforests with a given number of
leaves. Since subsets of leaves are in bijection with leaf-induced subforests, we have
PF (1, y) =

ℓ
k=0


ℓ
k


yk = (1 + y)ℓ.

Lemma 5. We have P•(x, y) = 1+xy and p•(x) = x. Let F be a non-empty rooted forest
with rooted trees T1, . . . , Tr (r  1) as its components.

(a) We then have

PF (x, y) =
r

i=1

PTi
(x, y). (8)

(b) For T = ∧(F ), that is, for a tree having branches T1, . . . , Tr, we have

PT (x, y) = 1− x+ xPF (x, y). (9)

(c) As a consequence,

pT (x) = x


1−

r

i=1

(1− pTi
(x))


. (10)
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Proof. For part (a), let F ′ be any leaf-induced subforest of F . Then the intersections
F ′ ∩ T1, . . . , F

′ ∩ Tr are (possibly empty) leaf-induced subtrees of T1, . . . , Tr, respectively.
In this way, we can identify F ′ with the r-tuple (F ′∩T1, . . . , F

′∩Tr), and both the number
of vertices and the number of leaves in these components add up to the respective numbers
of F ′. Thus the bivariate generating function PF equals the product

r
i=1 PTi

.
For part (b), observe that there is a bijection between non-empty leaf-induced sub-

forests of F and leaf-induced subtrees of ∧(F ), simply by adding the root node of ∧(F ) to
the subforest of F . Since this increases the number of vertices by 1, the generating func-
tion for those subtrees is given by x (PF (x, y)− 1). Accounting for the empty subforest
of ∧(F ) as well yields the result.

Finally, part (c) follows from (a) and (b) after recalling the definition pT (x) = 1 −
PT (x,−1).

Lemma 6. We have S•(x, y) = y+x and A•(x, y) = y. If T is a rooted tree with branches
T1, . . . , Tr, then

ST (x, y) = y + x

r

i=1

STi
(x, y) (11)

and

AT (x, y) = y + x
r

i=1

ATi
(x, y). (12)

Proof. The claims for the tree on one vertex are easily verified from the definitions.
Consider a subtree T ′ of T . Then T ′ is either empty, or it consists of the root together

with the parts belonging to individual branches, T ′
i = T ′ ∩ Ti, for i = 1, . . . , r. In the

non-empty case, T ′ is uniquely determined by the T ′
i , and we have |T ′| = 1+


i |T ′

i | and
|∂T ′| =


i |∂T ′

i |. Thus,

ST (x, y) =


T ′⊆T

x|T ′|y|∂T
′| = y + x



T ′
1⊆T1

· · ·


T ′
r⊆Tr

x


ℓ |T ′
ℓ |y


ℓ |∂T ′

ℓ |

= y + x
r

i=1



T ′
i⊆Ti

x|T ′
i |y|∂T

′
i | = y + x

r

i=1

STi
(x, y),

which proves (11).
Note that if T ′ is an admissible subtree of T , then the corresponding T ′

i will be admis-
sible subtrees of Ti, for each i. Conversely, any non-empty T ′ is again uniquely determined
by the T ′

i . Hence, the computations for equation (12) are identical to the ones above.

Lemma 7. We have M•(x, y, z) = 1. If T is a rooted tree with branches T1, . . . , Tr then

MT (x, y, z) =
1

z
pT (z) + x

r

i=1

MTi
(x, y, z)



j ∕=i

ATj
(x, y) (13)
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Proof. We use the same approach and notation as in the proof of Lemma 6. So, any
T ′ ∈ A (T ) is either empty, or contains the root together with parts T ′

i ∈ A (Ti) for each
branch T1, . . . , Tr. Thus, we obtain

MT (x, y, z) =


T ′∈A (T )

x|T ′|y|∂T
′|−1



v∈∂T ′

pv(z)

z

=
pT (z)

z
+



T ′
1∈A (T1)

· · ·


T ′
r∈A (Tr)

x1+


ℓ |T ′
ℓ |y


ℓ ∂|T ′

ℓ |−1


v∈


i ∂T
′
i

pv(z)

z

=
pT (z)

z
+

x

yz

r

i=1



T ′
1∈A (T1)

· · ·


T ′
r∈A (Tr)

x


ℓ |T ′
ℓ |y


ℓ ∂|T ′

ℓ |


v∈∂T ′
i

pv(z)

=
pT (z)

z
+

x

yz

r

i=1






j ∕=i



T ′
j∈A (Tj)

x|T ′
j |y|∂T

′
j |






T ′
i∈A (Ti)

x|T ′
i |y|∂T

′
i |



v∈∂T ′
i

pv(z).

By comparing the final expression to Definitions 2 and 3, we obtain (13).

Lemma 8. For any rooted tree T , we have the following three identities:

MT (x, y, 1) =
∂

∂y
AT (x, y) (14)

AT (x, 1− x) = 1− pT (x) (15)

MT (x, 1− x, x) =
d

dx
pT (x). (16)

Proof. For the proof of (14), consider a vertex v ∈ V (T ). Then pv(1) = 1−PTv(1,−1) = 1
by Lemma 4(c), and we thus have

x|T ′|y|∂T
′|−1



v∈∂T ′

pv(z)

z


z=1

= |∂T ′|x|T ′|y|∂T
′|−1

for any fixed T ′ ∈ A (T ). Hence

MT (x, y, 1) =


T ′∈A (T )

|∂T ′|x|T ′|y|∂T
′|−1 =

∂

∂y
AT (x, y),

as required.
The identity (15) follows immediately from comparing the recursions (12) and (10).
Equality (16) is trivially true for T = •, and we will now use an inductive argument:

Assuming that the identity holds for any trees T1, . . . , Tr, we will show that it is also true

the electronic journal of combinatorics 31(4) (2024), #P4.37 9



for T = ∧(T1, . . . , Tr). To do this, consider the recursion (10) and take the derivative:

dpT (x)

dx
= 1−

r

i=1

(1− pTi
(x)) + x

r

i=1

dpTi
(x)

dx



j ∕=i

(1− pTj
(x))

=
pT (x)

x
+ x

r

i=1

MTi
(x, 1− x, x)



j ∕=i

ATj
(x, 1− x)

= MT (x, 1− x, x).

For the second equality, we used (10), (15), and the induction hypothesis; and the final
equality follows from (13), the recursion for M .

Observe that by (14), AT is uniquely determined by MT , since (12) implies that
AT (x, 0) = 0. Moreover, pT is uniquely determined by AT according to (15).

5 Two complete invariants

As an immediate consequence of Definitions 1,2, and 3, we get that two isomorphic rooted
trees T1

∼= T2 have the same polynomials. The aim of this section is to show that the
converse is true as well for the polynomials P and S. Specifically, we will prove the
following theorem:

Theorem 9. The polynomials P and S as defined in Definition 1 are complete invariants
for rooted forests. In other words, for rooted forests F1, F2 we have PF1 = PF2 or SF1 = SF2

if and only if F1
∼= F2.

As pointed out above, it only remains to show that either of the two equalities is
sufficient for F1

∼= F2, and we devote the rest of the section to this proof.
A key ingredient for the proof will be that in a unique factorization domain (UFD),

polynomials can – by definition – be factored uniquely into irreducibles; and we will
employ the fact that both Z[x, y] and C[x, y] are UFDs.

By the stem of a rooted tree, we understand the set of vertices constructed in the
following iterative way: Start by including the root node of T . If the last included vertex
has a unique child, include that child as well. Otherwise stop. In other words, the stem
consists of all those vertices between the root and the first “branching” of the tree (the
two endpoints included). For convenience, we declare the stem of a rooted forest on zero
or at least two components to be the empty set.

Lemma 10. Let F be a rooted forest. Then, the number s of vertices in the stem of F
equals p′F (1) = − ∂PF

∂x


(1,−1)

, with the partial derivative being zero if F is not a tree.

Proof. The claim is obviously true for the empty rooted forest. In all other cases, we use
induction on s, beginning with s = 0 (i.e. F has at least two components).
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For s = 0, denote by T1, . . . , Tr for r  2 the components of F . Then PTi
(1,−1) = 0

for all i = 1, . . . , r by Lemma 4(c), so the polynomial

PF (x,−1) =
r

i=1

PTi
(x,−1)

has an r-fold zero at x = 1. In particular, ∂PF

∂x


(1,−1)

= 0.

Assume that we have already shown the statement for some s  0. Let F be any
rooted tree with s + 1 vertices in its stem. Then F = ∧(F ′) where F ′ is the forest
obtained by removing the root of F , and F ′ is a rooted forest with s stem vertices. In the
special case where F ′ is the empty forest, F is the rooted tree on a single vertex, and we

can check directly that − ∂(1+xy)
∂x


(1,−1)

= 1. In any other case, we employ Lemma 5(b)

and the induction hypothesis to obtain

∂PF

∂x


(1,−1)

= −1 + PF ′(1,−1) +
∂PF ′

∂x


(1,−1)

= −1− s,

since PF ′(1,−1) = 0.

Proposition 11. Let F be a non-empty rooted forest. Then, PF is irreducible in C[x, y]
if and only if F is a tree.

Proof. If F is not a tree, then it consists of at least 2 components, each containing at least
one vertex. Thus by part (a) in Lemma 5, PF factors into non-constant polynomials.

Now assume that F is a tree on n  1 vertices with s  1 vertices in its stem, having
ℓ  1 leaves. Assume PF = fg for f, g ∈ C[x, y]. Specializing to x = 1, we obtain
f(1, y) = (1 + y)k1 and g(1, y) = (1 + y)k2 for k1, k2  0 with k1 + k2 = ℓ, according to
Lemma 4(c) and because the factors 1 + y are irreducible. If both k1, k2 > 0 then the
product rule dictates

−s =
∂PF

∂x


(1,−1)

= f(1,−1) · ∂g
∂x


(1,−1)

+ g(1,−1) · ∂f
∂x


(1,−1)

= 0,

a contradiction. Hence, without loss of generality k1 = 0, k2 = ℓ, and so degy(PF ) = ℓ =
degy(g), which implies degy(f) = 0. In other words, f can be considered as a univariate
polynomial in x.

Now write
PF (x, y) = aℓ(x)y

ℓ + · · ·+ a1(x)y + a0(x)

for suitable polynomials a0, a1, . . . , aℓ ∈ C[x]. If f(x) is a divisor of PF , it must therefore
be a common divisor of a0, . . . , aℓ. However, from Definition 1 we infer that a0(x) = 1.
Thus f(x) is a constant.

Proposition 12. Let F be a non-empty rooted forest. Then SF is irreducible in Z[x, y]
if and only if F is a tree.
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Proof. If F is not a tree, the reducibility of SF follows from the definition in (5).
To show irreducibility in the case where F is a rooted tree, we use Eisenstein’s criterion

(cf. [19, Proposition A.5.3]) on the integral domain D := Z[y]. Since Z[x, y] ∼= D[x], we
can consider the prime ideal p = 〈y〉 in D. Writing SF as

SF (x, y) = a0(y) + a1(y)x+ · · ·+ an(y)x
n (17)

with a0, a1, . . . , an ∈ D, we note that an = 1 since the highest x-degree term in SF stems
from the subgraph that is the entire tree, which contains n = |V (F )| vertices, and no
boundary vertices. Hence an /∈ p. Moreover, any smaller subtree T ′ ⊆ F omits a vertex
in F , and therefore has a vertex adjacent to, but not in T ′ (in the special case where
T ′ = ∅, this vertex is the root of F ). Thus, the strict subtrees all contribute monomials
divisible by y, and hence a0, . . . , an−1 ∈ p. Finally, for T ′ = ∅ we have ∂T ′ = {root},
thus a0(y) = y /∈ p2 (and this is only correct if F is a tree). Therefore SF cannot be
factored into non-constant polynomials in D[x] according to Eisenstein’s criterion, and
since an = 1 it is even irreducible in Z[x, y].

We now have all the tools assembled to prove Theorem 9.

Proof of Theorem 9. Assume first PF1 = PF2 . Since the polynomial determines the num-
ber of vertices and the number of vertices in the stem, those characteristics of F1 and F2

coincide, and we denote them by n and s, respectively, as in the proof of Proposition 11.
Suppose the claim is false. Then there exist non-isomorphic F1, F2 with PF1 = PF2 ,

and we can consider such a pair with n minimal. If s  1, then Fi is a tree with root ρi (for
i = 1, 2), and we can consider F1−ρ1 and F2−ρ2 instead. As noted in the previous section,
we have Fi

∼= ∧(Fi−ρi) for i = 1, 2, so by Lemma 5(b) we obtain PF1−ρ1 = PF2−ρ2 . By the
minimality of F1, F2, it follows that F1−ρ1 ∼= F2−ρ2, and hence F1

∼= F2, a contradiction.
Therefore, the minimal counterexamples F1, F2 have to be either empty (which is trivially
not a counterexample) or forests with at least 2 components each.

So, denote by T1, . . . , Tr and T ′
1, . . . , T

′
r′ the components of F1 and F2, respectively.

Lemma 5 yields
r

i=1

PTi
= PF1 = PF2 =

r′

j=1

PT ′
j
.

As we are working in the UFD C[x, y] and the factors PTi
and PT ′

j
are monic irreducibles

by Proposition 11, it follows that r = r′ and that there is a permutation π ∈ Sr with
PTi

= PT ′
π(i)

for i = 1, . . . , r. Invoking again the minimality of F1, F2, we conclude

Ti
∼= T ′

π(i), and these isomorphisms can be glued together to an isomorphism F1
∼= F2,

which is the desired contradiction.

Assume now SF1 = SF2 instead. Observe that S again determines the number n of
vertices, and the number s of vertices in the stem. Indeed, n is given as the x-degree, and
s = max(j, n), where j is the lowest index such that degy aj(y) > 1 when we represent
S as in equation (17) (this is because the last vertex in the stem is the closest vertex to
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the root that has more than one descendant, so the subtree induced by the stem is the
smallest subtree to have a boundary with more than one vertex, unless s = n). Observe
moreover that for a rooted tree T , we have ST−root = 1

x
(ST − y), which follows from

comparing the recursion (11) with (5).
With these observations in place, the rest of the argument works entirely analogously

to the previous case, except that we work in the UFD Z[x, y] (rather than C[x, y]), due
to Proposition 12.

An application to the reconstruction of rooted trees

The reconstruction conjecture, going back to Ulam [26] and Kelly [14], asks whether
every simple graph G = (V,E) on at least 3 vertices is uniquely (i.e. up to isomorphism)
determined by the multiset, called deck, of its vertex-deleted subgraphs G−v for v ∈ V . It
has been widely investigated since these initial papers. In the case of trees, it was already
shown in [14] that they are reconstructible, with stronger results (using fewer subgraphs)
obtained in [12] and [4]. Moreover, Nešetřil [20] considered a version of tree reconstruction
where the deck was instead of the collection of asymmetric maximal proper subtrees. In
the same line, we will show in this section that Theorem 9 implies that rooted trees are
uniquely determined by their inclusion-maximal leaf-induced proper subtrees:

Proposition 13. Let F be a rooted forest with ℓ  3 leaves. Then F can be uniquely
reconstructed from its deck D(F ) of maximal leaf-induced proper subforests.

Proof. We will show that we can reconstruct PF from D(F ), the claim then follows from
Theorem 9. The maximal leaf-induced proper subforests each contain ℓ− 1 leaves, hence
the number ℓ is reconstructible from the deck. Observe that a leaf-induced subtree with
k leaves is contained in ℓ− k trees in D(F ), and that thus by Definition 1, we have

[yk]PF (x, y) =
1

ℓ− k



F ′∈D(F )

[yk]PF ′(x, y)

for all 0  k  ℓ− 1. Note that the right-hand side is computable given D(F ), and hence
the same holds true for

P̃F (x, y) := PF (x, y)− x|F |yℓ =
ℓ−1

k=0

yk

[yk]PF (x, y)


.

Denote by sF and sF ′ the number of vertices in the stem of F and F ′ ∈ D(F ), re-
spectively. Since we assume ℓ  3, there exists an F ′ such that sF ′ = sF , and hence
sF = minF ′∈D(F ) sF ′ . (This is no longer true for ℓ = 2: The graphs in D(F ) would then
be two paths, each connecting a root to a leaf, and there is no way for us to determine
how large the intersection of the two paths in F is.) Accordingly, sF is reconstructible
from D(F ), and using Lemma 10 we obtain

|F | = (−1)ℓ
∂x|F |yℓ

∂x


(1,−1)

= (−1)ℓ+1



sF +
∂P̃F (x, y)

∂x


(1,−1)



 .
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Figure 1: Non-isomorphic rooted trees T1, T2, T3, T4 (from left to right).

The right-hand side is again reconstructible, which implies that PF is reconstructible,
concluding the proof.

Remark 14. The author is unaware of a proof that rooted trees are reconstructible from
their deck of ℓ maximal rooted proper subtrees which – analogously to the previous
Proposition – makes use of the completeness of S. Indeed, given a rooted subtree of
some rooted tree T , it is not clear which of the leaves are also leaves of T , and thus
reconstructing S directly from the deck seems difficult.

6 Remarks, examples, and open problems

We begin by making a number of remarks, combined with examples and non-examples,
concerning the results of Sections 4 and 5.

Remark 15. Unlike P , the univariate polynomial p is not a complete invariant for rooted
trees: As S. Wagner pointed out ([27]), the trees T1, T2 and T3, T4 in Figure 1 form two
pairs of non-isomorphic trees that share the same polynomial, namely

pT1(x) = pT2(x) = 2x3 + x5 − 3x6 − x7 + 3x8 − x9, and

pT3(x) = pT4(x) = x3 + x4 − x7 − x8 + x9.

In fact, it can be verified by a computer search that these are the smallest such pairs. To
exemplify Theorem 9, the corresponding bivariate polynomials are given by

PT1 = 1 + 2x3y + 2x5y + x5y2 + 3x6y2 + 2x7y2 + x7y3 + 3x8y3 + x9y4

PT2 = 1 + 2x3y + x4y + x4y2 + x5y + 3x6y2 + 2x7y2 + x7y3 + 3x8y3 + x9y4

PT3 = 1 + x3y + x4y + x6y + x6y2 + x7y2 + x8y2 + x9y3

PT4 = 1 + x3y + x4y + x5y + x5y2 + x7y2 + x8y2 + x9y3,

which are pairwise different.

Remark 16. Lemma 8 implies that M is a stronger invariant (in the sense that it distin-
guishes more trees) than A, and A is a stronger invariant than p. In fact, these relations

the electronic journal of combinatorics 31(4) (2024), #P4.37 14



k �

k � �

2k

s� 1

k + � �

2k � 2�

k

s� 1

Figure 2: The structure of non-isomorphic rooted trees T (left) and T̃ (right) with 3
leaves with pT (x) = pT̃ (x) = xs(xk + x2k−β − x3k − x4k−β + x4k). An edge labelled by w
indicates a path on w edges. Here, s denotes the number of vertices in the stem, k  2,
and β ∈ {1, . . . , k − 1}.

are strict: The trees T3 and T4 from Figure 1 are distinguished by A but not by p, and
the trees T1 and T2 are distinguished by M but not by A. Indeed, we have

AT1 = AT2 = y + xy2 + x2y2 + x2y3 + 2x3y3 + x4y3 + x4y4 + x5y4

AT3 = y +xy2 +2x2y2 +x3y2 +x3y3+2x4y3+2x5y3+x6y3

AT4 = y +xy2 +x2y2 +x2y3 +x3y2 +2x3y3 +x4y2 +2x4y3 +2x5y3 +x6y3

and

MT1 =
pT1(z)

z
+ xy(2z + 2z3 − 3z4 + z5) + x2y(1 + z + 2z3 − 3z4 + z5)

+ x2y2(1 + z + 2z2 − z3) + 2x3y2(3 + 3z + z2 − z3)

+ x4y2(2 + 2z − z2) + x4y3(3 + z) + 4x5y3

MT2 =
pT2(z)

z
+ xy(2z + z3 − z4) + x2y(3z − z3) + x2y2(2 + z2 + z3 − z4)

+ 2x3y2(3 + 4z − z3) + x4y2(2 + 2z − z2) + x4y3(3 + z) + 4x5y3.

In light of these examples, it is worth noting that it is possible to fully describe all trees
with 3 leaves that share the same pT with a different tree. In fact, they are of the structure
depicted in Figure 2 (but we omit the proof in the interest of brevity). It is then easy to
see that these trees will always be distinguished by A, since T has an admissible subgraph
with s + 3k − β − 2 vertices, and 2 boundary vertices; whereas the largest admissible
subgraph in T̃ with 2 boundary vertices contains only s + 3k − 2β − 2 vertices, hence
degx[y

2]AT > degx[y
2]AT̃ .

In full generality, it appears to be a difficult problem to give a graph-theoretic descrip-
tion for the rooted trees T that have a “cousin” T ′ such that pT = pT ′ (or AT = AT ′).

Remark 17. It is worth emphasizing that despite satisfying the same recursion formula –
compare (11) and (12) – and only differing in their initial values, the polynomial S is a
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complete invariant, whereas the polynomial A is not. In particular, it follows from the
proof of Theorem 9 that AT is reducible for some trees T . This is obvious at first glance,
since y is a divisor of AT for every T , but this cannot be the only obstacle since otherwise
1
y
A could be a complete invariant, and therefore also A. Indeed, the branches of the trees

T1 and T2 from the previous remarks have a more interesting factorization, namely

y(1 + xy)(1 + x2y) and y(1 + x)

for the two branches of T1, and

y(1 + x)(1 + x2y) and y(1 + xy)

for the two branches of T2.

Remark 18. Theorem 3.2 in [16] gives a method to obtain a complete invariant for un-
rooted trees from a complete polynomial invariant for rooted trees that is irreducible in a
suitable polynomial ring. The idea is to replace the unrooted tree by a rooted forest that
determines the tree up to isomorphism, and then assign to the forest the product of the
polynomials of its connected components. While the same idea works for the polynomials
of Theorem 9, we prefer to formulate the statement in terms of complete invariants for
rooted trees instead.

Remark 19. As an anonymous reviewer pointed out, many other polynomial invariants
for rooted trees are defined by considering characteristics of either arbitrary edge sets (as
in [10, 8]) or for special classes of subtrees (as in [16, 23]). The invariant S is special in the
sense that it encodes characteristics (the number of vertices and boundary vertices) for all
rooted subtrees. This raises the following open question: For which pairs of non-negative,
integer characteristics α(T ′), β(T ′), defined for all subtrees T ′ of a rooted tree T , is the
invariant FT (x, y) =


T ′⊆T xα(T ′)yβ(T

′) complete for rooted trees? In a similar vein, one

might also ask for which kinds of subtrees the polynomial


T ′ x|T ′|y|L(T
′)| is complete.

We also state the following conjecture:

Conjecture 20. The polynomial M defines a complete invariant for rooted trees.

This has been verified using Mathematica for all rooted trees up to 20 vertices, by
evaluating M with Lemma 7 for all the trees that are not already distinguished by A.
However, we at present do not have a proof or counterexample for this conjecture. More-
over, since the recursion formula (13) for M does not involve a product of the MTi

it
seems likely that any proof of the conjecture would require an approach different from the
one via irreducibility of polynomials used in the proof of Theorem 9. On a related note,
we also do not know if the probability generating function obtained from M in (7) is a
complete invariant in Q[x]. Using Mathematica and employing similar considerations as
above, this has been checked for all rooted trees on up to 15 vertices.

In this context, it should be pointed out that each of the polynomials we considered
in this paper are either complete invariants of rooted trees; or asymptotically almost all
trees on n vertices have a cousin with the same associated polynomial. Indeed, assume
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one of the invariants p, P, S, A,M is not complete, then there exist rooted trees T ′ ≇ T ′′

such that both T ′ and T ′′ are assigned the same value of the invariant. If T is any tree
that has a copy of T ′ as fringe subtree, one can replace that copy by a copy of T ′′ instead.
This produces a tree that is indistinguishable from T via the invariant, according to the
recursive formulas in Lemmas 5,6, and 7. But since asymptotically almost all rooted
trees contain a given tree T ′ as a fringe subtree (this follows e.g. from Theorem 3.1 in
[28], where the additive functional is the number of fringe subtrees isomorphic to T ′), the
proportion of rooted trees with such a cousin will tend to 1.

In particular, either Conjecture 20 holds true, or

P [{There are rooted trees T ′ ≇ T ′′ on n vertices s.t. MT ′ = MT ′′}] → 1

as n → ∞ where P is the uniform probability measure on the set of non-isomorphic rooted
trees on n vertices.
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