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Abstract

Inspired by the notion of r-removed P -orderings introduced in the setting of
Dedekind domains by Bhargava we generalize it to the framework of arbitrary ul-
trametric spaces. We show that sets of maximal ”r-removed perimeter” can be
constructed by a greedy algorithm and form a strong greedoid. This gives a simpli-
fied proof of several theorems previously obtained by Bhargava, as well as generalises
some results of Grinberg and Petrov who considered the case r = 0 corresponding,
in turn, to simple P -orderings.

Mathematics Subject Classifications: 05B35, 13F05

1 Introduction

Motivated by questions in polynomial function theory, Bhargava [2] introduced the notion
of P -orderings for a subset X of a Dedekind domain D. The construction is as follows.
Given a prime ideal P ⊂ D, let a0 be an arbitrary element of X and for k = 1, 2, . . .
choose ak ∈ X to minimize

νP ((ak − a0)(ak − a1) . . . (ak − ak−1)) ,

where νP denotes the P -adic valuation on D. One of the results of [2] is the surprising
fact that, despite the fact that typically the choice of each ak is non-unique, the sequence
of the resulting valuations does not depend on the specific choice of {ai} but only on
X and P . Later, to study bases of the ring of polynomials with integer-valued divided
differences, Bhargava [3] generalised this construction to r-removed P -orderings. For an
r-removed P -ordering one again chooses a sequence {ai} of elements from X but now the
first r+1 elements a0, . . . , ar are chosen arbitrary and then each new element ak minimizes

min
A⊂{a0,...,ak−1}

|A|=k−r

󰁛

a∈A

νP (ak − a).
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Again, one of the results of [3] is that the resulting sequence of minimum valuations does
not depend on the choice of {ai}.

Recently, Grinberg and Petrov [5] generalised the notion of P -orderings to the context
of ultra triples, which is a certain extension of ultrametric spaces, obtaining new proofs of
several results of [2] and showing that all (prefixes of) P -orderings form a strong greedoid.
A natural question which has been asked by Bhargava [1] is then

Do r-removed P -orderings also fit in the framework of [5]?

We resolve the question in the affirmative by showing that virtually all theorems of
[5] can be indeed generalised to cover the case of r-removed P -orderings. This also gives
a new proof of [3, Theorems 3, 4, 30], see Corollary 15 and Remark 16.

Let us now introduce the objects we work with. An ultra triple (E,w, d) is given
by a ground set E, an arbitrary weight function w : E → R, and a distance function
d : {(e, f) ∈ E × E | e ∕= f} → R, which is symmetric, d(e, f) = d(f, e), and satisfying
the ultrametric triangle inequality d(a, b) 󰃑 max{d(a, c), d(b, c)}. Note that unlike in the
case of an ultrametric space we do not require distances to be non-negative.

We consider an r-removed distance from a point v ∈ E to a finite subset C ⊂ E
defined by

distr(C, v) :=

󰀻
󰀿

󰀽
max

A⊂C, |A|=|C|−r

󰁓
x∈A d(v, x) |C| > r;

0 |C| 󰃑 r.

In words, distr(C, v) is the maximum among sums of distances from v to the points of
C except for some r of them. Given this notion of a distance from a point to a set, we
then define a greedy r-removed m-permutation of a finite subset C ⊆ E to be an ordered
subset (c1, . . . , cm) of C which is defined greedily by choosing elements c1, c2, . . . one by
one in such a way that for each n ∈ {1, 2, . . . ,m} the element cn maximizes

w(c) + distr({c1, . . . , cn−1}, c)

over all possible c ∈ C \ {c1, . . . , cn−1}, c1 maximizes only w(c). A related concept is that
of an r-removed perimeter of a finite ordered set A = (a1, . . . , an) which is defined to be

PERr(A) :=
󰁛

a∈A

w(a) +
n󰁛

i=1

distr({a1, a2, . . . , ai−1}, ai).

We prove that the r-removed perimeter does not depend on the ordering of a given
set, see Lemma 10, allowing us to naturally extend the notion of an r-removed perimeter
to finite (non-ordered) sets. Then, in Theorem 13 we show that any greedy r-removed
m-permutation of a finite set C has maximal r-removed perimeter among all subsets
of C of size m, and as a corollary we show that, in fact, the sequence of numbers
w(cj)+distr({c1, c2, . . . , cj−1}, cj) does not depend on the choice of a greedy r-removed m-
permutations. Then in Theorem 19 we show that all sets of maximal r-removed perimeter
form a strong greedoid. At the end of the paper we also discuss some other notions of
perimeter that fit into our framework.
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The rest of the paper is organised as follows. In Section 2 we formally define the
objects we study and introduce a device we call a projection which is later frequently
used. Then, in Section 3 we prove that r-removed perimeter of a set is well-defined and
that the construction of a greedy r-removed m-permutation gives the maximal r-removed
perimeter among all subsets of size m. In Section 4 we prove that subsets of maximal r-
removed perimeter form a strong greedoid. Finally, Section 5 is devoted to the discussion
of a more general concept of a perimeter of a set, covered by our approach.

2 Basic definitions and constructions

We largely follow the notation used in [5], which we now briefly recall. Throughout the
paper, we consider a set E as our ground set, and refer to the elements of E as points.
For a non-negative integer m, an m-set means a subset A of E with |A| = m, and an
m-permutation means an ordered set A = (a1, . . . , am) formed by distinct elements of E.
Analogously, if B ⊆ E is a subset and m is a non-negative integer, an m-subset of B
means an m-element subset of B and an m-permutation of B means an ordered set A
formed by m distinct elements of B. The following definition already appeared in [5].

Definition 1. An ultra triple is a triple (E,w, d), where E is a set, w : E → R is an
arbitrary weight function, and d : {(e, f) ∈ E × E | e ∕= f} → R is a distance function1

satisfying

• d(a, b) = d(b, a) for any two distinct a, b ∈ E.

• d(a, b) 󰃑 max{d(a, c), d(b, c)} for any three distinct a, b, c ∈ E.

The inequality above is commonly known as the ultrametric triangle inequality; but
unlike the distance function of an ultrametric space, we allow d to take negative values.
We refer to d(a, b) as the distance between a and b.

The following are formal definitions of the objects already mentioned in the introduc-
tion, namely, r-removed distance, r-removed perimeter, and an r-removedm-permutation.

Definition 2. Let (E,w, d) be an ultra triple, C ⊆ E be a finite subset, and v be any point
in E \ C. We define distr(C, v) to be the maximum among all possible sums of distances
from v to some |C|− r distinct points of the set C. If |C| 󰃑 r, we set distr(C, v) := 0.

Definition 3. Let (E,w, d) be an ultra triple. For a k-permutation (a1, a2, . . . , ak) of a
finite subset A ⊆ E, we define its r-removed perimeter by

PERr((a1, a2, . . . , ak)) :=
󰁛

a∈A

w(a) +
k󰁛

i=1

distr({a1, a2, . . . , ai−1}, ai).

1One could also extend the domain of d to the whole of E × E by setting d(a, a) := −∞ for all a ∈ E.
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Definition 4. For an ultra triple (E,w, d) let C ⊆ E be a finite set, and m be a non-
negative integer. A greedy r-removed m-permutation of C is a list (c1, c2, . . . , cm) of m
distinct elements of C such that for each i ∈ {1, . . . ,m} and each x ∈ C \{c1, c2, . . . , ci−1},
we have

PERr((c1, c2, . . . , ci)) 󰃍 PERr((c1, c2, . . . , ci−1, x)). (1)

We now define a useful construction that we are going to use in the proofs, it earlier
implicitly appeared in [5]. We first recall the following definition from [5].

Definition 5. Let (E,w, d) be an ultra triple, A ⊆ E be a finite non-empty subset and
c ∈ E be any point. We define a subset projA(c) of A as follows:

• If c ∈ A, then projA(c) := {c};

• If c /∈ A, then projA(c) is the set of all a ∈ A that minimize the distance d(c, a).

Later in the paper projA(c) is called a projection of c onto A. We extend this definition
by the following construction which already appeared in [5, proof of Theorem 21].

Definition 6. Let (E,w, d) be an ultra triple, C = (c1, c2, . . . , ck) ⊆ E be a finite
ordered set and A be any n-subset of E, where n 󰃍 k. We define a k-permutation
(v1, v2, . . . , vk) of A recursively as follows: each vi is an element of the projection of ci onto
A \ {v1, v2, . . . , vi−1} for each i = 1, 2, . . . , k. We denote (v1, v2, . . . , vk) by proj(C → A).
If projA\{v1,v2,...,vi−1}(ci) contains more than one element, an arbitrary element of the set
is selected.

There are three important observations about these constructions that we now make.
The first proposition already appeared in [5, Lemma 13(c)] and we give its short proof
for completeness.

Proposition 7. Let (E,w, d) be an ultra triple and A ⊆ E be a non-empty finite set. Then
for a point c ∈ E, its projection b ∈ projA(c) and any x ∈ A\{b} we have d(b, x) 󰃑 d(c, x).

Proof. If c ∈ A then b = c and we trivially have an equality. Otherwise, since x ∈ A, by
the definition of the projection we have d(c, x) 󰃍 d(c, b) and so by the ultrametric triangle
inequality we have

d(b, x) 󰃑 max {d(c, b), d(c, x)} = d(c, x).

Proposition 8. Let (E,w, d) be an ultra triple, C = (c1, c2, . . . , ck) ⊆ E be a finite ordered
set and A be an n-subset of E, with n 󰃍 k. Denote proj(C → A) by (v1, v2, . . . , vk). Then
for each j ∈ {1, 2, . . . , k} one has

(A \ {v1, . . . , vj}) ∩ {c1, c2, . . . , cj} = ∅.

Proof. Arguing by contradiction we assume for some i 󰃑 j 󰃑 k that ci ∈ A \ {v1, . . . , vj}.
In particular, this implies that ci ∈ A\{v1, v2, . . . , vi−1}. By definition this means that vi ∈
projA\{v1,v2,...,vi−1}(ci) = {ci}. Hence, vi = ci ∈ A \ {v1, . . . , vj} which is impossible.
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Proposition 9. Let (E,w, d) be an ultra triple, C = (c1, c2, . . . , ck) ⊆ E be a finite ordered
set and A be an n-subset of E, with n > k. Then for each v ∈ A \ proj(C → A)

distr(proj(C → A), v) 󰃑 distr(C, v).

Proof. Denote proj(C → A) by (v1, v2, . . . , vk). The statement of the proposition would
follow from the inequality d(vi, v) 󰃑 d(ci, v) for each i ∈ {1, 2, . . . , k}. But since v ∈
A \ {v1, v2, . . . , vi−1} this inequality is given by Proposition 7 applied to the set A \
{v1, v2, . . . , vi−1} and points ci, vi ∈ projA\{v1,v2,...,vi−1}(ci) and v.

3 Perimeter and greedy r-removed m-permutations

We first prove that any two orderings of a given set have the same r-removed perimeter.

Lemma 10. Any two orderings of a finite set A ⊆ E have the same r-removed perimeter.

Proof. It suffices to prove the statement for pairs of orderings which differ by one trans-
position. The general case is then reduced to it by consecutive transpositions.

Let us prove the statement for (a1, . . . , at, at+1, . . . , ak) and (a1, . . . , at+1, at, . . . , ak).
Denote by C the set {a1, a2, . . . , at−1}. Many summands from the definition of r-removed
perimeter coincide; all that remains to prove is

distr(C, at) + distr(C ∪ {at}, at+1) = distr(C, at+1) + distr(C ∪ {at+1}, at). (2)

If t 󰃑 r, both sides are 0. Otherwise, we let z = d(at, at+1), xj = d(at, aj) and
yj = d(at+1, aj), where j = 1, . . . , t− 1. In what follows we only consider triangles of the
form atat+1aj for some j = 1, 2, . . . , t − 1 and use the ultrametric triangle inequality for
them.

We colour triangles with two sides strictly greater than z in red, in which case xj =
yj by the ultrametric inequality. Triangles coloured in red correspond to some largest
distances from points at and at+1 to the set C which coincide. In any other triangle we
must have xi = z 󰃍 yi or yi = z 󰃍 xi.

If the number of red triangles is at least t − r, then distr(C, at) = distr(C, at+1),
distr(C ∪ {at}, at+1) = distr(C ∪ {at+1}, at) and (2) is true.

If there are less than t− r red triangles, then distr(C ∪ {at}, at+1) = distr(C, at+1) + z
and distr(C ∪ {at+1}, at) = distr(C, at)+ z. By substituting these expressions into (2), we
again get an equality.

In light of this lemma we have the following definition.

Definition 11. For a finite subset A ⊆ E, we define its r-removed perimeter PERr(A)
to be the common r-removed perimeter of all orderings of A.

Remark 12. For the case r = 0, the r-removed perimeter is the sum of the distances
between all unordered pairs of points plus the sum of the weight function of all points.
This case was considered in [5].
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Theorem 13. Let (E,w, d) be an ultra triple and C ⊆ E be a finite subset, and m and
r be non-negative integers. Let (c1, c2, . . . , cm) be any greedy r-removed m-permutation
of C. Then, for each k ∈ {0, 1, . . . ,m}, the set {c1, c2, . . . , ck} has maximum r-removed
perimeter among all k-subsets of C.

Proof. Given a greedy r-removed m-permutation (c1, c2, . . . , cm), we want to prove that
for any k-subset A ⊆ C, PERr(A) 󰃑 PERr({c1, c2, . . . , ck}). We induct on k.

For k = 0 both perimeters are 0, and so the inequality is trivially true. For the
induction step from k − 1 to k, let (v1, v2, . . . , vk) := proj((c1, c2, . . . , ck) → A), which is
an ordering of A. Then by Proposition 8 and the fact that vk ∈ A \ {v1, . . . , vk−1}, we
have:

vk /∈ {c1, c2, . . . , ck−1}.

By induction hypothesis we know that

PERr({v1, v2, . . . , vk−1}) 󰃑 PERr({c1, c2, . . . , ck−1}),

and so to complete the induction step it suffices to show that

PERr(A)− PERr({v1, v2, . . . , vk−1}) 󰃑 PERr({c1, c2, . . . , ck})− PERr({c1, c2, . . . , ck−1}),

which, implicitly using Lemma 10, can be equivalently written as

w (vk) + distr({v1, v2, . . . , vk−1}, vk) 󰃑 w (ck) + distr({c1, c2, . . . , ck−1}, ck). (3)

We now turn to proving (3). Since vk ∈ A \ {c1, c2, . . . , ck−1} ⊆ C \ {c1, c2, . . . , ck−1}
(recall that A ⊆ C), we have PERr{c1, c2, . . . , ck−1, vk} 󰃑 PERr{c1, c2, . . . , ck} by the
definition of a greedy r-removed m-permutation. Subtracting PERr({c1, c2, . . . , ck−1})
from both sides we arrive at

w (vk) + distr({c1, c2, . . . , ck−1}, vk) 󰃑 w (ck) + distr({c1, c2, . . . , ck−1}, ck).

And so to deduce (3) it remains to show that

distr({v1, v2, . . . , vk−1}, vk) 󰃑 distr({c1, c2, . . . , ck−1}, vk).

Which is nothing else but the statement of Proposition 9 for the point v = vk and
(v1, v2, . . . , vk−1) = proj((c1, c2, . . . , ck−1) → A).

Remark 14. It follows from the proof that if the equality

PERr({v1, v2, . . . , vk}) = PERr({c1, c2, . . . , ck})

holds for (v1, v2, . . . , vk) := proj({c1, c2, . . . , ck} → A), then for each j < k one also has
an equality PERr({v1, v2, . . . , vj}) = PERr({c1, c2, . . . , cj}).
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Corollary 15. Let C ⊆ E be a set, m and r be non-negative integers, j ∈ {1, 2, . . . ,m}.
If (c1, c2, . . . , cm) is a greedy r-removed m-permutation of C, then the number

w (cj) + distr({c1, c2, . . . , cj−1}, cj)

does not depend on the choice of this greedy r-removed m-permutation but only depends
on C, r and j.

Proof. By Theorem 13, for each k 󰃑 m the set {c1, c2, . . . , ck} has maximum r-removed
perimeter among all k-subsets of C, which implies that PERr({c1, c2, . . . , ck}) does not
depend on the choice of the greedy r-removed m-permutation of C. It remains to note
that

w(cj) + distr({c1, c2, . . . , cj−1}, cj) = PERr({c1, c2, . . . , cj})− PERr({c1, c2, . . . , cj−1}).

Remark 16. As a special case of this corollary we obtain the results of [3, Theorems 3, 4,
30]. Indeed, for a Dedekind domain D, a prime ideal P ⊂ D, and h ∈ Z󰃍0, the distance
function dP,h(a, b) := −max(h, νP (a− b)) satisfies the ultrametric triangle inequality and
so the result follows from Corollary 15 applied to an ultra triple (S,w ≡ 0, dP,h).

We now prove the converse of Theorem 13, namely, that any set of maximal r-removed
perimeter is a prefix of some greedy r-removed m-permutation.

Theorem 17. Let (E,w, d) be an ultra triple, C ⊆ E be a finite set, and m be a non-
negative integer such that |C| 󰃍 m. Let k ∈ {0, 1, . . . ,m} and A be a k-subset of C having
maximum r-removed perimeter (among all k-subsets of C). Then, there exists a greedy
r-removed m-permutation of C for which A is a prefix of this permutation.

Proof. Choose an arbitrary greedy r-removedm-permutation (c1, c2, . . . , cm) of C by start-
ing with any point and continuing the sequence greedily choosing elements from the re-
maining points. By Theorem 13, the set (c1, c2, . . . , ck) has maximum perimeter among
all k-subsets of C. Hence, PERr(A) = PERr({c1, c2, . . . , ck}) since the set A also has
maximum r-removed perimeter among them.

Let (v1, v2, . . . , vk) := proj((c1, c2, . . . , ck) → A). What we want to prove is that there
exists a greedy r-removed m-permutation of C which starts from (v1, v2, . . . , vk), which is
equivalent to checking that for each p 󰃑 k the point vp maximizes

w(x) + distr({v1, . . . , vp−1}, x)

over all x ∈ C \ {v1, . . . , vp−1}.
As mentioned in Remark 14, the fact that

PERr({v1, v2, . . . , vk}) = PER(A) = PERr({c1, c2, . . . , ck})
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implies that for each j 󰃑 k we have PERr({v1, v2, . . . , vj}) = PERr({c1, c2, . . . , cj}). In
particular, this holds for j = p. Now, arguing by contradiction we assume that there
exists x ∈ C \ {v1, . . . , vp−1} such that

w(x) + distr({v1, . . . , vp−1}, x) > w(vp) + distr({v1, . . . , vp−1}, vp).

This would mean that

PERr({v1, . . . , vp−1, x}) > PERr({v1, . . . , vp−1, vp}) = PERr({c1, . . . , cp−1, cp}),

contradicting the fact that {c1, . . . , cp−1, cp} has the largest r-removed perimeter among
all subsets of C of size p.

4 Strong greedoid of maximum perimeter sets

In [5] it was shown that sets maximizing the perimeter (i.e. r-removed perimeter with
r = 0) form a strong greedoid. In this section we generalize this statement to all r 󰃍 0.
We start by recalling the relevant definitions from the theory of greedoids.

Definition 18. A collection F ⊆ 2E of subsets of a finite set E is called a greedoid (on
the ground set E) if it satisfies the following three axioms:

(i) ∅ ∈ F .

(ii) If A ∈ F satisfies |A| > 0, then there exists a ∈ A such that A \ {a} ∈ F .

(iii) If A,B ∈ F satisfy |A| = |B|+1, then there exists a ∈ A\B such that B∪{a} ∈ F .

A greedoid F on a ground set E is called a strong greedoid (also known as “Gauss
greedoid”) if it additionally satisfies the following axiom:

(iv) If A,B ∈ F satisfy |A| = |B|+1, then there exists a ∈ A\B such that B∪{a} ∈ F
and A \ {a} ∈ F .

There are several equivalent definitions of a greedoid in the literature, ours is taken
from [6, Section IV.1]. Specifically, our axioms (i) and (iii) align with conditions (1.4)
and (1.6) in [6, Section IV.1], while axioms (i) and (ii) establish (E,F) as an accessible
set system. The definition of a strong greedoid can be found in [4].

Now we assume that the set E is finite. The following theorem shows that sets with
maximal r-removed perimeter form a strong greedoid.

Theorem 19. Let (E,w, d) be an ultra triple on a finite ground set and Fr denote the
collection of subsets A ⊆ E that have maximum r-removed perimeter among all |A|-sets:

Fr := {A ⊆ E | PERr(A) 󰃍 PERr(B) for all B ⊆ E satisfying |B| = |A|}.

Then Fr is a strong greedoid on the ground set E.
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We start by proving the following lemma.

Lemma 20. Let A and B be two subsets of E such that |A| = |B|+1. Then, there exists
u ∈ A \B satisfying

PERr(A \ {u}) + PERr(B ∪ {u}) 󰃍 PERr(A) + PERr(B). (4)

Proof. Let k = |B| and so |A| = k+1. With a slight abuse of notation we denote by B an
arbitrary ordering of B, which we fix from now on. Define (v1, v2, . . . , vk) := proj(B → A)
and let u be the unique element of A\{v1, v2, . . . , vk}. By Proposition 8 we have u /∈ B. We
now want to prove (4) for this choice of u. Subtracting PERr(A\{u})+PERr(B)+w(u)
from both sides we arrive at an equivalent inequality

distr(B, u) 󰃍 distr(A \ {u}, u),

which is simply the result of Proposition 9 applied to u and A \ {u} = proj(B → A).

Proof of Theorem 19. First note that property (i) is trivial, and (iii) immediately follows
from (iv). Furthermore, since E is finite, for any s 󰃑 |E| there exists B ∈ Fr with |B| = s,
and so by choosing arbitrary B ∈ Fr with |B| = |A|− 1 we can deduce (ii) from (iv).

To prove (iv) we use Lemma 20 to construct u ∈ A \ B satisfying (4). Since A ∈ Fr

we must have PERr(B ∪ {u}) 󰃑 PERr(A). Similarly, B ∈ Fr implies PERr(A \ {u}) 󰃑
PERr(B). Together with (4) these two inequalities immediately imply that

PERr(A \ {u}) = PERr(B), PERr(B ∪ {u}) = PERr(A),

which means that both A \ {u} and B ∪ {u} are in Fr. This shows that Fr is a strong
greedoid.

5 Other perimeters

In this section we consider more general notions of perimeter PER(A) which fit into our
framework. Lemma 24 provides a large class of perimeters for which theorems of previous
sections still hold true, Lemma 25 then shows that for the ultra triple (Z, w,−νp) the
perimeters we construct are the only ones.

Instead of the r-removed distance distr(C, v) we could start from some other notion of a
distance from a point to a set, call it dist(C, v), and define PER((a1, . . . , an)) of an ordered
set A := (a1, . . . , an) by setting PER(A) :=

󰁓
a∈A w(a) +

󰁓n
i=1 dist({a1, a2, . . . , ai−1}, ai).

Tracking the proofs of Theorems 13, 17 and 19 we see that the only two properties of the
dist function that we use are given by the following

Definition 21. We say that a real-valued function dist satisfies property S if for any set
{c1, c2, . . . , cn} =: C ⊆ E and distinct x, y ∈ E \ C one has

(S1) dist(C, x) + dist(C ∪ {x}, y) = dist(C, y) + dist(C ∪ {y}, x);
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(S2) If d(ci, x) 󰃑 d(ci, y) for each i ∈ {1, 2, . . . , n}, then

dist({c1, c2, . . . , cn}, x) 󰃑 dist({c1, c2, . . . , cn}, y).

Remark 22. Indeed, property S1 is used in Lemma 10 to prove that the perimeter of a
set is well-defined, and is, in fact, equivalent to this lemma. Property S2 is first used in
the proof of Proposition 9, and through it, indirectly in Theorems 13, 17, 19, and Lemma
20.

We now give a large family of distances satisfying property S.

Lemma 23. Let (E,w, d) be an ultra triple and f = (fj)
∞
j=1 be a sequence of functions

fj : R → R. For a set {c1, . . . , cn} = C ⊆ E and x ∈ E \ C, let

distf (C, x) :=
n󰁛

j=1

fj(dj),

where (d1, d2, . . . , dn) is the ordered set of values d(c1, x), . . . , d(cn, x) arranged in non-
decreasing order. Then distf satisfies property S1.

Proof. We will prove that

distf (C, x) + distf (C ∪ {x}, y) = distf (C, y) + distf (C ∪ {y}, x) (5)

for fixed C and x, y ∈ E \ C, with |C| = n and x ∕= y. Essentially, we can focus on the
set of points E = C ∪ {x, y}, |E| = n + 2. Since (5) depends only on the values of fj at
finitely many points, we can restrict each fj to the finite set of distances that appear in
it.

Then, since the property (5) is linear in f = (fj)
n+1
j=1 , it suffices to check it for distf

with

fj :=

󰀫
0 j 󰃑 r;

g j > r.

Where g : R → R is some fixed non-decreasing function. Indeed, any sequence f = (fj)
n+1
j=1

of functions defined on a finite set can be written as a linear combination of sequences of
the form (0, 0, . . . , 0, g, g, . . . , g), and any such function g can be written as a difference of
two non-decreasing functions on this finite set.

But for this specific choice of f , the distance distf is nothing else but the r-removed
distance for the ultra triple (E,w, dg) in which the distance function dg is given by2

dg(a, b) := g(d(a, b)) and so the equality S1 is given by (2) from the proof of Lemma
10.

Lemma 24. In the setting of Lemma 23, if one additionally requires that each function
fj is non-decreasing, then distf satisfies property S.

2One easily sees that dg satisfies the ultrametric inequality for any non-decreasing g.
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Proof. Property S1 is checked in Lemma 23. To check S2 it suffices to note that if one
n-tuple is entry-wise smaller than another, then the same remains true after each of the
n-tuples is sorted from the smallest value to the largest, and then use the fact that each
fj is non-decreasing.

For sufficiently large spaces and under certain natural conditions on the distance func-
tion dist from a point to a set we manage to prove the reverse of Lemma 24. To avoid
stating technical conditions we prove the result for the space (Z, w,−νp) in which distance
between points a, b ∈ Z is given by −νp(a − b), where νp stands for the p-adic valuation
and we further assume that p > 2.

Lemma 25. Consider an ultra triple (Z, w,−νp) with arbitrary weight function w and
p > 2. Assume that the value of the distance function dist(C, x) from a point x to a set C
depends only on the multiset of distances from x to the points of C and that dist satisfies
property S. Then dist ≡ distf for some sequence of non-decreasing functions f = (fn)

∞
n=1.

Proof. By assumption there exists a sequence of symmetric functions gn : Zn
󰃑0 → R

indexed by n 󰃍 1, such that for any point x and any set {c1, . . . , cn} not containing x we
have

dist(x, {c1, . . . , cn}) = gn(d(c1, x), . . . , d(cn, x)).

We want to prove the existence of a sequence of non-decreasing functions (fn)
∞
n=1 such

that for any non-positive integers d1 󰃑 d2 󰃑 . . . 󰃑 dn

gn(d1, d2, . . . dn) =
n󰁛

j=1

fj(dj). (6)

We prove the existence of functions fj by induction on j, and for the base case we set
f1 := g1 which is non-decreasing by the second condition of property S.

Now assume that f1, . . . , fm−1 are already defined in such a way that (6) is satisfied
for all n < m and we want to define fm. For each d ∈ Z󰃑0 we set

fm(d) := gm(d, d, . . . , d)− gm−1(d, d, . . . , d),

where we have m arguments equal to d in the first case and m− 1 arguments equal to d
in the second.

First, we check that (6) is satisfied for n = m. For this, given non-positive integers
d1 󰃑 d2 󰃑 . . . 󰃑 dn we consider two points x, y ∈ Z with d(x, y) = dn and a set of
points C := {c1, . . . , cn−1} such that for each j = 1, . . . , n − 1 we have dj := d(cj, x)
and d(cj, y) = dn. The existence of such a set follows from the property of Z with the
p-adic distance (where p > 2) which guarantees that for any two points a, b ∈ Z and any
ℓ 󰃑 d(a, b) there exists c ∈ Z such that d(a, c) = ℓ and d(b, c) = d(a, b). Using S1 we
write

g(d1, . . . , dn) = dist(C ∪ {y}, x) = dist(C, x) + (dist(C ∪ {x}, y)− dist(C, y)) ,
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and it remains to observe that the difference in parentheses is equal to fn(dn) by the
definition of fn and

dist(C, x) =
n−1󰁛

j=1

fj(dj)

by induction hypothesis.
Second, we show that fm is non-decreasing. Let ℓ1, ℓ2 ∈ Z󰃑0 satisfy ℓ1 󰃑 ℓ2. By (6)

we have
fm(ℓ2)− fm(ℓ1) = gm(ℓ1, . . . , ℓ1, ℓ2)− gm(ℓ1, . . . , ℓ1, ℓ1)

and so fm(ℓ2) 󰃍 fm(ℓ1) directly follows from S2.
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