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Abstract

We obtain a new presentation for Specht modules whose conjugate shapes have
strictly decreasing parts by introducing a linear operator on the space generated by
column tabloids. The generators of the presentation are column tabloids and the
relations form a proper subset of the Garnir relations of Fulton. The results in this
paper generalize earlier results of the authors and Stanley on Specht modules of
staircase shape.

Mathematics Subject Classifications: 05E10, 20C30

1 Introduction

The Specht modules Sλ, where λ is a partition of n, give a complete set of irreducible
representations of the symmetric group Sn over a field of characteristic 0, say C. They
can be constructed as subspaces of the regular representation CSn or as presentations
given in terms of generators and relations, known as Garnir relations. This paper deals
primarily with the latter type of construction.

Let λ = (λ1 ⩾ . . . ⩾ λl) be a partition of n. A Young tableaux of shape λ is a filling of
the Young diagram of shape λ with distinct entries from the set [n] := {1, 2, . . . , n}. Let
Tλ be the set of Young tableaux of shape λ.

To construct the Specht module as a submodule of the regular representation, one can
use Young symmetrizers. For t ∈ Tλ, the Young symmetrizer is defined by

et :=
∑
α∈Rt

α
∑
β∈Ct

sgn(β)β, (1)

where Ct is the column stabilizer of t and Rt is the row stabilizer. The Specht module Sλ

is the submodule of the regular representation CSn spanned by {τet : τ ∈ Sn}.
aDepartment of Mathematics, Colby College, Maine, USA (tfriedma@colby.edu).
bDepartment of Mathematics, Dartmouth College, New Hampshire, USA
(philip.j.hanlon@dartmouth.edu).

cDepartment of Mathematics, University of Miami, Florida, USA (wachs@math.miami.edu).

the electronic journal of combinatorics 31(4) (2024), #P4.41 https://doi.org/10.37236/12554

https://doi.org/10.37236/12554


To construct the Specht module as a presentation, one can use column tabloids and
Garnir relations. Let Mλ be the vector space (over C) generated by Tλ subject only to
column relations, which are of the form t + s, where s ∈ Tλ is obtained from t ∈ Tλ by
switching two entries in the same column. Given t ∈ Tλ, let t̄ denote the coset of t in
Mλ. These cosets, which are called column tabloids, generate Mλ. A Young tableau is
column strict if the entries of each of its columns increase from top to bottom. Clearly,
{t̄ : t is a column strict Young tableau of shape λ} is a basis for Mλ.

Example:
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There are various different presentations of the Specht module Sλ in the literature that
involve column tabloids and Garnir relations, see e.g. [Fu, Sa]. Here we are interested in
a presentation of Sλ discussed in Fulton [Fu, Section 7.4]. The generators are the column
tabloids t̄, where t ∈ Tλ. The Garnir relations are of the form t̄−

∑
s̄, where the sum is

over all s ∈ Tλ obtained from t ∈ Tλ by exchanging any k entries of a fixed column with
the top k entries of the next column, while maintaining the vertical order of each of the
exchanged sets. There is a Garnir relation gtc,k for every t ∈ Tλ, every column c ∈ [λ1−1],
and every k from 1 to the length lc+1 of column c+ 1.

Example: For

t = 1 5 7
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,

we have

gt1,1 = 1 5 7
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gt1,2 = 1 5 7
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Let Gλ be the subspace of Mλ generated by the Garnir relations in

{gtc,k : c ∈ [λ1 − 1], k ∈ [lc+1], t ∈ Tλ}. (2)

The symmetric group Sn acts on Tλ by replacing each entry of a tableau by its image
under the permutation in Sn. This induces a representation of Sn on Mλ. Clearly Gλ is
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invariant under the action of Sn. The presentation of Sλ obtained in Section 7.4 of [Fu]
is given by

Mλ/Gλ ∼=Sn Sλ. (3)

On page 102 (before Ex. 16) of [Fu], a presentation of Sλ with a smaller set of relations
is given. In this presentation, the index k in gtc,k of (2) is restricted to a single value:
k = min[lc+1] = 1. More precisely, the presentation is

Mλ/Gλ,min ∼=Sn Sλ, (4)

where Gλ,min is the subspace of Gλ generated by the subset of Garnir relations,

{gtc,1 : c ∈ [λ1 − 1], t ∈ Tλ}.

In this paper we obtain an analogous presentation of Sλ, also with a smaller set of
relations, when the conjugate λ∗ has distinct parts. The index k in gtc,k of (2) is again
restricted to a single value, but now that value is the maximum value: k = max[lc+1] =
lc+1. The presentation is given in our main result:

Theorem 1. Let λ be a partition whose conjugate has distinct parts. Then as Sn-modules,

Mλ/Gλ,max ∼= Sλ, (5)

where Gλ,max is the subspace of Gλ generated by

{gtc,lc+1
: c ∈ [λ1 − 1], t ∈ Tλ}.

Moreover, we can further reduce this set of relations by restricting t to the set of column
strict tableaux.

Theorem 1 is obtained as a consequence of Corollary 8 below, which gives all of the
eigenspaces of a certain linear operator on Mλ, where λ is any two-column shape 2a1b.
This eigenspace result improves an earlier result of the authors and Stanley [FHSW2]
(see also [FHSW1]), in the special case that b = 1. The earlier result was presented in
the setting of an n-ary generalization of Lie algebra called a LAnKe or Filippov algebra,
where only the b = 1 case was relevant. An observation in [FHSW2] that the n-ary Jacobi
relations correspond to the restricted class of Garnir relations Gλ,max for λ = 2n−111

provided a special case of Theorem 1 for staircase shapes and motivated the work in the
current paper. Our proof in this paper of the eigenspace result corrects an error in the
proof for the special case given in [FHSW2].

The method of introducing a linear operator on the space of column tabloids was
subsequently used in [BF] to obtain a different presentation of Sλ with a reduced number
of relations. This presentation works for all shapes, but rather than using a subset of
the Garnir relations, it uses a set consisting of sums of the Garnir relations that generate
Gλ,min.

In the next section we prove our eigenspace result and use it to prove Theorem 1.
Actually, we obtain a slightly more general version of Theorem 1 along with a converse.
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2 The proof of Theorem 1: reduction to the two-column case

Theorem 1 holds more generally when we allow the conjugate λ∗ to have multiple parts
equal to 1, while still requiring the parts greater than 1 to be distinct. Note that a
partition λ = (λ1 ⩾ λ2 ⩾ . . . ⩾ λl) meets this requirement if and only if λi − λi+1 ⩽ 1
for all i = 2, . . . l − 1 and λl = 1. For example, λ = (5, 4, 2, 1, 1, 1)∗ = (6, 3, 2, 2, 1) meets
this requirement, but λ = (4, 3, 2, 2)∗ = (4, 4, 2, 1) does not. The following result implies
Theorem 1.

Theorem 2. Let λ = (λ1 ⩾ λ2 ⩾ · · · ⩾ λℓ) be a partition of n. If λi − λi+1 ⩽ 1 for each
i = 2, . . . , l − 1 and λl = 1 then as Sn-modules,

Mλ/Gλ,max ∼= Sλ, (6)

where Gλ,max is the subspace of Gλ generated by

{gtc,lc+1
: c ∈ [λ1 − 1], t ∈ Tλ}.

Moreover, we can further reduce this set of relations by restricting t to the set of column
strict tableaux. Conversely, if (6) holds then λi − λi+1 ⩽ 1 for each i = 2, . . . , l − 1 and
λl = 1.

It follows from Fulton’s presentation given in (3) that we need only prove Theorem 2 for
shapes with just two columns. Indeed, let λ be a partition of n. By (3) Mλ/Gλ,max = Sλ

if and only if Gλ,max = Gλ. Since Gλ,max equals the direct sum over all columns c of the
subspaces spanned by {gtc,lc+1

: t ∈ Tλ}, and Gλ equals the direct sum over all columns
c of the subspaces spanned by the larger set {gtc,k : k ∈ [lc+1], t ∈ Tλ}, we have that

Gλ,max = Gλ if and only if

⟨gtc,lc+1
: t ∈ Tλ⟩ = ⟨gtc,k : k ∈ [lc+1], t ∈ Tλ⟩ (7)

for all columns c. By applying (3) to the conjugate of (lc, lc+1) we have that (7) holds if
and only if

M (lc,lc+1)∗/G(lc,lc+1)∗,max = M (lc,lc+1)∗/⟨gtc,lc+1
: t ∈ T(lc,lc+1)∗⟩ = S(lc,lc+1)∗ .

Putting all this together yields Mλ/Gλ,max = Sλ if and only if

M (lc,lc+1)∗/G(lc,lc+1)∗,max = S(lc,lc+1)∗

for all columns c of λ. Hence our claim that we need only consider two-column shapes
holds.

For the remainder of this section we consider only two-column shapes 2m1n−m. For
n ⩾ m, let Vn,m := M2m1n−m

. For each n-element subset S of [n+m], let tS be the column
strict Young tableau of shape 2m1n−m whose first column consists of the elements of S
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and second column consists of the elements of [n +m] \ S, and write vS for the column
tabloid t̄S indexed by S. Clearly,{

vS : S ∈
(
[n+m]

n

)}
(8)

is a basis for Vn,m. Thus Vn,m has dimension
(
n+m
n

)
.

For each S ∈
(
[n+m]

n

)
, let gS denote the Garnir relation gtS1,m, that is

gS := vS −
∑

t̄,

where the sum is over all tableaux t obtained from tS by choosing an m-subset S ′ of S and
for each i = 1, 2, . . . ,m, exchanging the ith smallest element of S ′ (which is in column 1
of tS) with the ith element of column 2 of tS. For example, if n = 3 and m = 2 then

g{2,4,5} = 2 1

4 3

5

− 1 2

3 4

5

− 1 2

4 5

3

− 2 4

1 5

3

.

= v{2,4,5} − v{1,3,5} + v{1,3,4} + v{1,2,3}.

Lemma 3. For all v ∈ Vn,m and S ∈
(
[n+m]

n

)
, let ⟨v, vS⟩ denote the coefficient of vS in the

expansion of v in the basis given in (8). Also let p := n−m. Then for all S, T ∈
(
[n+m]

n

)
,

⟨gS, vT ⟩ =


1 if S = T

(−1)d1+···+dp+(p+1
2 )+1 if S ∩ T = {d1, . . . , dp}

0 if S ̸= T but |S ∩ T | > p.

Proof. It is easy to see that the only possible cases are: S = T , |S∩T | = p and |S∩T | > p.
It is straightforward that the result for the first and third cases holds. For the second
case, let S = {a1, a2, . . . , an} and [n+m] \ S = {b1, b2, . . . , bm}, where the a’s and b’s are
listed in increasing order. Then the terms of gS other than vS are of the form −t̄, where
t is a tableau whose first column listed from top to bottom is

b1, . . . , bi1−1, ai1 , bi1 , . . . , bi2−2, ai2 , bi2−1, . . . , bip−p, aip , bip−p+1, . . . , bm

with 1 ⩽ i1 < i2 < · · · < ip ⩽ n, and whose second column is [n+m]\T listed in increasing

order, where T = {ai1 , . . . , aip , b1, . . . , bm}. Clearly t̄ is equal to (−1)i1+···+ip−(p+1
2 ) times

the tabloid whose first column from top to bottom is

ai1 , . . . , aip , b1, . . . , bm
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and whose second column is [n +m] \ T listed in increasing order. This tabloid is equal
to (−1)j1+j2+···+jpvT , where each jk is the number of b’s that are less than aik . Since
ik + jk = aik for each k, we have

⟨gS, vT ⟩ = (−1)ai1+ai2+···+aip−(p+1
2 )+1.

Now note that {ai1 , ai2 , . . . , aip} = S ∩ T .

Let Gn,m be the subspace of Vn,m generated by {gS : S ∈
(
[n+m]

n

)
}. It is not difficult

to see that Gn,m is invariant under the action of Sn+m on Vn,m. The two-column case of
Theorem 2 can now be stated as follows.

Theorem 4. Let m ⩽ n. Then as Sn+m-modules,

Vn,m/Gn,m
∼= S2m1n−m

if and only if m < n or m = n = 1.

We will introduce a linear operator that will enable us to prove this result (and thereby
prove Theorems 2 and 1). First we note that due to the column relations, as an Sn+m–
module, Vn,m is isomorphic to the representation of Sn+m induced from the sign repre-
sentation of the Young subgroup Sn ×Sm:

Vn,m
∼=Sn+m (sgnn× sgnm) ↑

Sn+m

Sn×Sm
.

Hence by Pieri’s rule,

Vn,m
∼=Sn+m

m⊕
i=0

S2i1n+m−2i

. (9)

Now consider the linear operator φ : Vn,m → Vn,m defined on basis elements by

φ(vS) = gS.

It is not difficult to see that φ is an Sn+m-module homomorphism whose image is Gn,m.

Lemma 5. Let m ⩽ n. The operator φ acts as multiplication by a scalar on each irre-
ducible submodule of Vn,m. Moreover, as Sn+m–modules,

kerφ ∼= Vn,m/Gn,m. (10)

Proof. This follows from the fact that Vn,m is multiplicity-free, as indicated in (9), and
Schur’s Lemma.

It follows from (10) that to prove Theorem 4, we need only show that the kernel of
φ is isomorphic to S2m1n−m

if and only if m < n or m = n = 1. This is handled by the
following theorem and its corollaries.
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Theorem 6. Let m ⩽ n. The operator φ : Vn,m → Vn,m acts as multiplication by the
scalar

wi := 1−
(
n− i

m− i

)
(−1)m−i, (11)

on the irreducible submodule isomorphic to S2i1(n+m)−2i
for i = 0, 1, . . . ,m.

Remark 7. In the case that m = n− 1, Theorem 6 reduces to Theorem 2.4 of [FHSW2],
which was given in the setting of n-ary Jacobi relations, where only the m = n − 1 case
arises.

Corollary 8. For m < n, the operator φ has m + 1 distinct eigenvalues w0, w1, . . . , wm.
Moreover, if Ei is the eigenspace corresponding to wi then as Sn+m-modules,

Ei
∼= S2i1(n+m)−2i

for each i = 0, 1, . . . ,m. Consequently,

kerφ ∼=Sn+m S2m1n−m

. (12)

Corollary 9. For m = n the operator φ has the eigenvalues 0 and 2, with

wi =

{
0 if n− i is even,

2 if n− i is odd,

for each i = 0, . . . , n. Consequently,

kerφ ∼=S2n

n⊕
i=0

n−i even

S2i12n−2i

, (13)

and the eigenspace with eigenvalue 2 is given by

n⊕
i=0

n−i odd

S2i12n−2i

.

Proof of Theorem 6. The proof follows (and at the same time corrects) the argument for
the m = n− 1 case given in [FHSW2, Theorem 2.4]. Indeed, if we set m = n− 1 in the
following proof, we get a corrected version of the proof in [FHSW2], which was given in
the language of n-ary Jacobi relations, where only the m = n− 1 case was relevant. On
occasion, we will refer back to the arguments in the proof of [FHSW2, Theorem 2.4].

By Lemma 5, φ acts as a scalar on each irreducible submodule. To compute the scalar,
we start by letting t be the standard Young tableau of shape 2i1n+m−2i whose first column
is the concatenation of the sequences 1, 2, . . . , n and n + i + 1, n + i + 2, . . . , n +m and
whose second column is the sequence n + 1, n + 2, . . . , n + i. Now set rt :=

∑
α∈Rt

α
and ct :=

∑
β∈Ct

sgn(β)β, where Rt and Ct denote the row and column stabilizer of t,
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respectively. Recall from (1) that et = rtct and that the Specht module S2i1n+m−2i
is the

submodule of the regular representation CSn+m spanned by {τet : τ ∈ Sn+m}.
Now let Ft be the set of permutations σ in Ct that fix the elements of {n + 1, n +

2, . . . , n+ i} and satisfy

σ(1) < · · · < σ(n), σ(n+ i+ 1) < · · · < σ(n+m),

and let
ft :=

∑
σ∈Ft

sgn(σ)σ.

Also let T := {1, 2, . . . , n}. We claim1 that

ctvT = n!(m− i)!i!ftvT . (14)

Indeed,

ct =
∑
σ∈Ft

sgn(σ)σ
∑

τ∈SA×SB×SC

sgn(τ)τ,

where A = {1, . . . , n}, B = {n+ i+ 1, . . . , n+m}, and C = {n+ 1, . . . , n+ i}. It follows
from the antisymmetry of the columns of τvT that

ctvT = n!(m− i)!i!
∑
σ∈Ft

sgn(σ)σvT = n!(m− i)!i!ftvT ,

as claimed.
It follows from (14) that rtftvT is a scalar multiple of etvT . Since the coefficient of vT

in the expansion of rtftvT is 1, we have etvT ̸= 0. Now following the proof of [FHSW2,
Theorem 2.4], we can show that the subspace spanned by {πetvT : π ∈ Sn+m} is the

unique submodule of Vn,m isomorphic to S2i1(n+m)−2i
. This allows us to abuse notation by

letting S2i1(n+m)−2i
denote this submodule of Vn,m.

Since rtftvT is a scalar multiple of etvT , it is in S2i1(n+m)−2i
. It follows that

φ(rtftvT ) = crtftvT ,

for some scalar c, which we want to show equals wi. Similarly to the proof of [FHSW2,
Theorem 2.4], we can use Lemma 3 to show that

c = ⟨φ(rtftvT ), vT ⟩ = 1 +
∑

S∈([n+m]
n )\{T}

S∩T=p

⟨rtftvT , vS⟩⟨φ(vS), vT ⟩.

Let S ∩ T = {d1, d2, . . . , dp}, in which case ⟨φ(vS), vT ⟩ = (−1)d1+···+dp+(p+1
2 )+1. Hence

c = 1 +
∑

D∈([n]
p )

(−1)(
∑

d∈D d)+(p+1
2 )+1⟨rtftvT , vS(D)⟩, (15)

1In the proof of [FHSW2, Theorem 2.4], the same claim was made erroneously for ft :=
∑

σ∈Ft
sgn(σ)σ−1

in the case m = n−1. Here we provide a proof of the correct claim and then proceed with an argument
analogous to what is given in [FHSW2].
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where
S(D) = D ∪ {n+ 1, n+ 2, . . . , n+m}.

To compute ⟨rtftvT , vS(D)⟩, we must consider how we get vS(D) from the action on
vT of a permutation ασ, where α ∈ Rt and σ ∈ Ft. In order to get S(D) for some
D := {d1 < d2 < · · · < dp} ∈

(
[n]
p

)
, we must have that D ∈

({i+1,...,n}
p

)
and that σ fixes the

elements of {n+1, . . . , n+i} and interchanges {n+i+1, . . . , n+m} with {i+1, . . . , n}\D
putting D in positions i + 1, . . . , i + p. More precisely, in one line notation, σ restricted
to the first column of t is the concatenation of the sequences

1, . . . , i

d1, . . . , dp

n+ i+ 1, . . . , n+m

i+ 1, . . . , d1 − 1, d1 + 1, . . . , d2 − 1, d2 + 1, . . . , dp − 1, dp + 1, . . . , n.

In one line notation, σ restricted to the second column is n+ 1, . . . , n+ i. We must also
have

α = (1, n+ 1)(2, n+ 2) · · · (i, n+ i),

giving us S(D) in the first n entries of the first column of ασt.
The number of inversions in σ restricted to the first column of t is

p∑
k=1

(dk − k − i) + (m− i)(n− i− p) =

p∑
k=1

dk −
(
p+ 1

2

)
− ip+ (m− i)2,

and σ restricted to the second column of t has no inversions. It follows that

sgn(σ) = (−1)(
∑p

k=1 dk)−(
p+1
2 )−ip+(m−i). (16)

In terms of our basis, the first column of ασvT (written horizontally) is

n+ 1, . . . , n+ i, d1, . . . , dp, n+ i+ 1, . . . , n+m

and the second column is

1, . . . , i, i+ 1, . . . , d1 − 1, d1 + 1, . . . , dp − 1, dp + 1, . . . , n.

To put this basis in canonical form, we need to put the first column in increasing order by
moving all the dk’s all the way to the top of the column. That requires i transpositions
for each dk, resulting in the sign (−1)ip. The second column is already in increasing order.
This yields ασvT = (−1)ipvS(d1,d2,...,dp). Hence by (16),

sgn(σ)ασvT = (−1)(
∑p

k=1 dk)−(
p+1
2 )+(m−i)vS(d1,d2,...,dp).
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We can now conclude that for all D ∈
(
[n]
p

)
,

⟨rtftvT , vS(D)⟩ =

{
(−1)(

∑
d∈D d)−(p+1

2 )+(m−i) if D ∈
({i+1,...,n}

p

)
0 otherwise.

By substituting this into (15), we get the eigenvalue,

c = 1−
∑

D∈({i+1,...,n}
p )

(−1)m−i = 1−
(
n− i

n−m

)
(−1)m−i = wi,

which is all that is needed to complete the proof of the theorem.

Proof of Theorem 4. We can now use (10), (12), and the n = 1 case of (13) to conclude
that the “if” direction of Theorem 4 holds. The “only if” direction also follows from (10),
(12), and (13).

Final Remarks. Corollary 9 has another interesting consequence. Indeed, the decompo-
sition of kerφ given in (13) yields a decomposition of Vn,n/Gn,n into irreducibles. Since
Vn,n/Gn,n is clearly isomorphic to the composition product (see [Mac, (6.2) on p. 158])
of the trivial representation of S2 with the sign representation of Sn, we recover a well-
known result on the decomposition of this composition product into irreducibles; see e.g.
[Mac, p. 140].

One may ask what happens if the k in the Garnir relations (2) is restricted to a single
value other than the minimum 1 and the maximum lc+1. For which partitions λ do such
Garnir relations generate the entire set of Garnir relations? Is there a generalization of
Theorem 2 that answers this question? We leave these questions open.2
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