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Abstract

In evolutionary biology, phylogenetic trees are commonly inferred from a set of
characters (partitions) of a collection of biological entities (e.g., species or individ-
uals in a population). Such characters naturally arise from molecular sequences or
morphological data. Interestingly, it has been known for some time that any binary
phylogenetic tree can be (convexly) defined by a set of at most four characters, and
that there are binary phylogenetic trees for which three characters are not enough.
Thus, it is of interest to characterise those phylogenetic trees that are defined by a
set of at most three characters. In this paper, we provide such a characterisation, in
particular proving that a binary phylogenetic tree T is defined by a set of at most
three characters precisely if T has no internal subtree isomorphic to a certain tree.

Mathematics Subject Classifications: 05C05, 92D15

1 Introduction

In evolutionary biology, phylogenetic trees are typically inferred from alignments of molec-
ular sequence data like DNA or protein sequences [7]. Each row of such an alignment
represents a biological entity (e.g., a species or an individual in a population) and each
column is referred to as a character. In mathematical terms, each character is simply
a partition of the set of the biological entities in question. If a character has only two
states that, for example, indicate the presence or absence of a biological feature, then the
character is called binary and corresponds to a bipartition. More frequently, however,
biologists analyse data sets that consist of multistate characters, where a character can
take on two or more states.
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Figure 1: (a) A phylogenetic tree T with leaf set X = {1, 2, . . . , 12} that is not defined
by any set of at most three characters. (b) The snowflake. (c) The 3-star. The snowflake
is isomorphic (in the usual graphical sense) to the maximal internal subtree of T .

A fundamental question in the study of character evolution is whether or not a collec-
tion C of characters is compatible [12, Chapter 4]. Biologically speaking, compatibility of
C indicates that there exists a phylogenetic tree T (i.e., an unrooted tree without degree-
two vertices whose set X of leaves corresponds to the biological entities) on which each
character χ in C evolves without any so-called parallel or reverse transitions. This implies
that each character state of χ only evolves once on T , in which case C is convex on T .
Stated another way, for each χ in C the subtrees of T spanned by the elements in each of
the parts of χ are pairwise vertex disjoint.

If C is a collection of binary characters, the Splits Equivalence Theorem [4] can be used
to decide if C is compatible. Moreover, an elegant graph-theoretic result that is based on
chordalisations of the so-called partition intersection graph Int(C) of C (formally defined in
Section 2) characterises when collections of multistate characters are compatible [5, 8, 13].
Based on this characterisation, it was further shown in [10] that there exists a certain type
of chordalisation of Int(C) that is unique precisely if C defines a phylogenetic tree T , that
is, C is convex on T and any other phylogenetic tree on which C is convex is isomorphic
to T .

This last result begs the following question: How many characters are needed to define
a given binary phylogenetic tree (i.e., a phylogenetic tree in which every vertex has degree
one or three), when the number of character states is unbounded? Surprisingly, Semple
and Steel [11] showed that five characters suffice, a bound that was subsequently sharpened
to four by Huber et al. [6]. Moreover, as shown in [11], four is a tight upper bound since
there exist binary phylogenetic trees that are not defined by three characters. Indeed, it
turns out that the smallest such tree has twelve leaves and is shown in Figure 1(a) (see
Lemma 7). Since the collection of binary phylogenetic trees defined by two characters is
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well understood (see, for example, [12, Chapter 4.8, Exercise 10] and below), in this paper
we provide an answer to the following problem: Characterise those binary phylogenetic
trees that are defined by a set of at most three characters.

The main result of this paper (Theorem 1) gives a solution to this problem in terms of
forbidden subtrees in the form of the 6-leaf tree in Figure 1(b) which is sometimes called
the snowflake. To state it, an internal edge of a tree T is a non-pendant edge and an
internal subtree of T is a subtree whose edges are all internal.

Theorem 1. Let T be a binary phylogenetic tree. Then T is defined by a set of at most
three characters if and only if T has no internal subtree isomorphic to the snowflake.

The analogous result for binary phylogenetic trees defined by a set of at most two
characters is given by the following theorem, an immediate consequence of a result stated
in [12] (see Theorem 6). Up to isomorphism, we refer to the unique tree with four vertices,
three of which are leaves, as the 3-star. An illustration of the 3-star is shown in Figure 1(c).

Theorem 2. Let T be a binary phylogenetic tree. Then T is defined by a set of at most
two characters if and only if T has no internal subtree isomorphic to the 3-star.

Consisting of two main ingredients, the proof of Theorem 1 essentially works as follows.
First, we define three operations. Two of these operations, which we collectively call
cherry modifications, extend a binary phylogenetic tree by attaching either one or two
new leaves to a cherry, where a cherry refers to two leaves that are adjacent to the same
internal vertex. The third operation, which we call a cherry union, amalgamates two
binary phylogenetic trees across two cherries with a leaf in common. Second, we analyse
sets of three characters that arise from certain edge-colourings of binary phylogenetic
trees called internal 3-colourings. Using these concepts and extending the concept of the
partition intersection graph of a set of characters to the partition intersection graph of
an internal 3-colouring, we consider how the partition intersection graph arising from an
internal 3-colouring behaves relative to the aforementioned operations. In particular, for
proving the necessary direction of Theorem 1, we show that if a binary phylogenetic tree
T has an internal subtree isomorphic to the snowflake, then, up to isomorphism, T can be
obtained from the binary phylogenetic tree shown in Figure 1(a) by applying a sequence
of cherry modifications, where each modification results in a binary phylogenetic tree
not defined by a set of at most three characters (see Theorem 15). Conversely, for the
sufficient direction of Theorem 1 (see Theorem 19), we inductively show that if a binary
phylogenetic tree T does not have an internal subtree isomorphic to the snowflake, then
either it is a special type of binary phylogenetic tree or it is the cherry union of two binary
phylogenetic trees each of which is defined by a set of at most three characters. In both
cases, it will follow that T is defined by a set of at most three characters.

The rest of this paper is organised as follows. In the next section, we consider sets of
characters that define a binary phylogenetic tree, and state some useful results concerning
such sets and their relationship with partition intersection graphs from [11] and [13]. In
Section 3, we show how to define binary phylogenetic trees using internal edge-colourings.
In particular, we essentially show that any binary phylogenetic tree with at least six

the electronic journal of combinatorics 31(4) (2024), #P4.24 3



1 n

2 3 4 n− 2 n− 1

Figure 2: A caterpillar with leaf set [n], where n 󰃍 3.

leaves is defined by a set of three characters if and only if it can be defined by an internal
3-colouring (Proposition 12). In Section 4, we establish the necessary direction of The-
orem 1. This relies on the two types of cherry modifications. The sufficient direction of
Theorem 1 is established in Section 5 and relies on the cherry union of two phylogenetic
trees. The paper concludes with a brief discussion in Section 6.

2 Preliminaries

Throughout the paper, X denotes a finite set with |X| 󰃍 3 and, for any positive integer
k, we set [k] = {1, 2, . . . , k}. Furthermore, for a graph G, the vertex and edge sets of G
are denoted by V (G) and E(G), respectively. For concepts from phylogenetics, we shall
mainly use the terminology given in [12].
Phylogenetic trees. A phylogenetic (X-)tree T is a tree with leaf set X and no vertices
of degree two. In addition, T is binary if every internal vertex (i.e., non-leaf vertex) of
T has degree three. A binary phylogenetic tree is a caterpillar if every internal vertex
is adjacent to a leaf. Such a phylogenetic tree is shown in Figure 2. Note that any
binary phylogenetic X-tree with 3 󰃑 |X| 󰃑 5 is a caterpillar. A phylogenetic X-tree T ′

is a refinement of a phylogenetic X-tree T if T can be obtained from T ′ by contracting
non-pendant edges of T ′.

For a binary phylogenetic X-tree T , a pair (x, y) of distinct leaves x, y ∈ X is a cherry
of T if x and y are adjacent to a common vertex. Note that the order of x and y in (x, y)
does not matter. Also, note that every binary phylogenetic tree has at least one cherry
(see, for example, [12, Proposition 1.2.5]). In Figure 3(a), (3, 4) is a cherry. Furthermore,
for a non-empty subset A ⊆ X, we let T (A) denote the minimal subtree of T connecting
the leaves in A.
Characters. A character on X is a partition of X, that is, a collection of non-empty
subsets of X (or parts) whose pairwise intersections are empty and whose union is X.
We say that a character χ on X is convex on a phylogenetic X-tree T if T (A) and T (B)
are vertex disjoint for every distinct A,B ∈ χ, and that a set C of characters is convex
on T if every character in C is convex on T . Furthermore, C is compatible if there is a
phylogenetic tree on which C is convex. A set C of characters on X defines T if C is convex
on T and any phylogenetic X-tree T ′ that shares this property with T is isomorphic to
T (that is, there is a graph isomorphism ϕ between T and T ′ such that ϕ restricted to X
is the identity). Note that if C defines T , then T is necessarily binary as, otherwise, C is
convex on any refinement of T .

Given a set C of characters that is convex on a binary phylogenetic tree T , we say
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Figure 3: (a) A binary phylogenetic X-tree, where X = [8]. (b) The partition inter-
section graph Int(C) of C = {χ1,χ2,χ3} (solid edges) and a restricted chordal com-
pletion of Int(C) (solid and dashed edges), where χ1 = {{1, 2}, {3, 4, 5, 6}, {7, 8}},
χ2 = {{1, 2, 3, 4}, {5, 6, 7, 8}}, and χ3 = {{1, 2, 7, 8}, {3, 4}, {5, 6}}.

that χ ∈ C distinguishes an internal edge e = {u, v} of T if there exist distinct A,B ∈ χ
and distinct elements x, y ∈ A and w, z ∈ B, such that u but not v lies on the path in T
between x and y, and v but not u lies on the path in T between w and z. In addition,
we say that T is distinguished by C if every internal edge of T is distinguished by some
character in C. To illustrate, consider the collection C = {χ1,χ2,χ3} of characters on
X = [8], where χ1 = {{1, 2}, {3, 4, 5, 6}, {7, 8}}, χ2 = {{1, 2, 3, 4}, {5, 6, 7, 8}}, and χ3 =
{{1, 2, 7, 8}, {3, 4}, {5, 6}}. It is easily seen that C is convex on the binary phylogenetic
X-tree T shown in Figure 3(a). Furthermore, C distinguishes T . For example, the edge
{u, v} is distinguished by χ1. Note that if C defines T , then C distinguishes T , but the
converse does not necessarily hold (see Theorem 5).

The next lemma is well known but never explicitly stated.

Lemma 3. Let T be a binary phylogenetic X-tree, and let C be a set of characters on X
that distinguishes T . Then no two incident internal edges of T are distinguished by the
same character in C.

Proof. Let e = {u, v} and f = {v, w} be internal edges of T . Since e is distinguished by
C, there is a character χ in C and states A and B in χ such that T (A) contains u but not
v and T (B) contains v but not u. But then T (B) contains f and, in particular w, and so
f is distinguished by a character in C that is not χ.

Partition intersection graphs. Given a set C of characters, we let Int(C) denote the
partition intersection graph of C, that is, the graph with vertex set

{(χ, A) : χ ∈ C and A ∈ χ}

and edge set
{{(χ, A), (χ′, B)} : A ∩B ∕= ∅}.

Note that, necessarily, if (χ, A) and (χ′, B) are joined by an edge, then χ ∕= χ′.
A graph is chordal if every cycle with at least four vertices has an edge connecting two

nonconsecutive vertices. Such an edge is called a chord. A restricted chordal completion
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G of Int(C) is a chordal graph that is obtained from Int(C) by adding only edges that
join vertices whose first components are distinct. We refer to the edges of G not in Int(C)
as completion edges. Furthermore, G is minimal if the deletion of any completion edge
of G results in a graph that is not chordal. Continuing the example above, the partition
intersection graph Int(C) of C = {χ1,χ2,χ3} is shown in Figure 3(b) (solid edges), and
a restricted chordal completion of Int(C) is shown in the same figure (solid and dashed
edges).

The next two results, established in [13, Proposition 3] and [10, Theorem 1.2], respec-
tively, will be key in what follows. More specifically, they characterise sets of characters
that are convex on a phylogenetic tree and sets that define a phylogenetic tree.

Theorem 4. Let C be a set of characters on X. Then C is convex on a phylogenetic
X-tree if and only if Int(C) has a restricted chordal completion.

Theorem 5. Let T be a binary phylogenetic X-tree, and let C be a set of characters on
X. Then C defines T if and only if

(i) C is convex on T and C distinguishes T , and

(ii) Int(C) has a unique minimal restricted chordal completion.

Because of their frequency of use, Theorems 4 and 5 will be often used without reference
in Sections 4 and 5.

Theorem 2 is an immediate consequence of the next theorem. It follows from [12,
Chapter 4.8, Exercise 10]. However, for completeness, we include a proof.

Theorem 6. Let T be a binary phylogenetic tree. Then T is defined by a set of at most
two characters if and only if T is a caterpillar.

Proof. Let X denote the leaf set of T . By Lemma 3, T is defined by a set of at most
one character if and only if T has at most one internal edge. The latter holds if and
only if |X| ∈ {3, 4}. Thus we may assume that |X| 󰃍 5. If T is defined by a set of two
characters, then, by Lemma 3, T has no internal vertex incident with three internal edges.
Thus every internal vertex of T is adjacent to a leaf, and so T is a caterpillar.

Conversely, suppose that T is a caterpillar. Without loss of generality, we may assume
that the leaf set of T is [n] and that its leaves are labelled as shown in Figure 2. Say n is
even, and consider the set {χ1,χ2} of characters where

χ1 = {{1, 2}, {3, 4}, {5, 6}, . . . , {n− 1, n}}

and
χ2 = {{1, 2, 3}, {4, 5}, {6, 7}, . . . , {n− 2, n− 1, n}}.

Now {χ1,χ2} is convex on T and distinguishes T . Furthermore, Int({χ1,χ2}) is a path,
and so Int({χ1,χ2}) is chordal. In particular, Int({χ1,χ2}) has a unique restricted chordal
completion, namely itself. Hence, by Theorem 5, {χ1,χ2} defines T . A similar argument
holds if n is odd. Thus if T is a caterpillar, then T is defined by two characters, completing
the proof of the theorem.
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We end this section with three lemmas. The first is mentioned in [11, p. 182], and
established in [3, Section 5].

Lemma 7. The binary phylogenetic tree shown in Figure 1(a) is not defined by a set of
at most three characters.

Let G be a graph and let S be a subset of the vertex set V of G. We say that S
is an a, b-separator of G if there are vertices a, b ∈ V such that a and b are in different
components of G\S, that is, the graph obtained from G by deleting each vertex in S. An
a, b-separator S is minimal if no proper subset of S is an a, b-separator. The proof of the
next lemma makes explicit use of the results in [9].

Lemma 8. Let C be a compatible collection of characters on X, and let G be a minimal
restricted chordal completion of Int(C). If e is a completion edge of G, then e joins two
vertices of the same vertex-induced cycle of Int(C) with at least four vertices.

Proof. Let e = {u, v} be a completion edge ofG. Then, by Lemma 4.5 and Theorem 4.6(2)
in [9], {u, v} is a subset of a minimal a, b-separator S of Int(C) for some vertices a and b of
Int(C). LetHa andHb denote the components of Int(C)\S containing a and b, respectively.
By [9, Lemma 4.1], each of u and v is adjacent to at least one vertex of Ha, and each of
u and v is adjacent to at least one vertex of Hb. Thus there is a path from a to u, and
a path from a to v consisting of vertices in V (Ha) ∪ {u} and V (Ha) ∪ {v}, respectively.
Similarly, there is a path from b to u, and a path from b to v consisting of vertices in
V (Hb)∪ {u} and V (Hb)∪ {v}, respectively. Therefore Int(C) has a cycle C containing (in
order) a, u, b, and v. Without loss of generality, we may assume that the length of C is
minimised with respect to containing u and v, and a vertex in Ha and a vertex in Hb. If
C is not a vertex-induced cycle of Int(C), then there is an edge, say e′ = {w, z}, in Int(C),
where w and z are non-adjacent vertices of C. Note that e ∕= e′ as e is a completion edge
of G. Furthermore, e′ does not have one end-vertex in Ha and the other end-vertex in
Hb; otherwise, S is not an a, b-separator. Thus exactly one of |{w, z} ∩ V (Ha)| 󰃍 1 and
|{w, z} ∩ V (Hb)| 󰃍 1 holds. Hence, using e′ there is a cycle in Int(C) containing u and v,
and a vertex in Ha and a vertex in Hb that is shorter in length than C, a contradiction.
We conclude that C is a vertex-induced cycle of Int(C) with at least four vertices, thereby
completing the proof of the lemma.

The third lemma shows that a set of characters that defines a binary phylogenetic tree
T and contains a character such that one of its parts is a singleton (i.e., has cardinality
one) can be slightly modified so that the resulting set of characters still defines T , but
has one less singleton.

Lemma 9. Let C be a set of characters on X, and suppose that C defines a binary
phylogenetic X-tree T . Let χ be a character in C, and suppose that A ∈ χ with |A| = 1.
Then there exists some B ∈ χ− {A} such that C ′ = (C − {χ}) ∪ {χ′} defines T , where

χ′ = (χ− {A,B}) ∪ {A ∪B}.
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Proof. Let χ = {A1, A2, . . . , Ak} where k 󰃍 2, and suppose that A = Ai for some i ∈ [k].
Since C defines T , it follows that χ is convex on T . Therefore there exists some j ∈ [k]−{i}
and a path in T from the leaf in Ai to a vertex in T (Aj) whose edges are all contained in
the set

E(T )−
󰀃
E(T (A1)) ∪ E(T (A2)) ∪ · · · ∪ E(T (Aj)) ∪ · · ·∪E(T (Ak))

󰀄
.

Let χ′ = (χ − {Ai, Aj}) ∪ {Ai ∪ Aj} and C ′ = (C − {χ}) ∪ {χ′}. By construction, χ′ is
convex on T , and so C ′ is convex on T . We next show that C ′ defines T .

If C ′ does not define T , then there is a binary phylogenetic X-tree T ′ on which C ′ is
convex and T ′ is not isomorphic to T . But then, as C ′ is convex on T ′, it follows that C
is also convex on T ′, contradicting the fact that C defines T . Thus C ′ defines T , and so
setting B = Aj completes the proof of the lemma.

3 Internal k-Colourings

Let k be a positive integer, and let T be a phylogenetic X-tree. A k-assignment γ is a map
γ : E0(T ) → [k], where E0(T ) is the set of internal edges of T . An internal k-colouring of
T is a k-assignment γ with γ(E0(T )) = [k] such that every pair of adjacent internal edges
in T are assigned different elements in [k]. For convenience, we view the elements in [k]
as colours. For an internal k-colouring γ and c ∈ [k], we let π(γ, c) denote the character
on X that is obtained by removing all internal edges from T that are assigned colour c
under γ and taking the collection of subsets of X that are contained within each of the
resulting connected components. In addition, we set

Π(γ) = {π(γ, c) : c ∈ [k]}

and let Int(γ) denote the partition intersection graph of Π(γ). Clearly, Π(γ) is convex
on T and T is distinguished by Π(γ). We shall say that a binary phylogenetic X-tree is
defined by an internal k-colouring γ if it is defined by Π(γ). Note that a character on X
can contain a singleton whereas a character induced by an internal k-colouring, for some
k, cannot.

The purpose of the next lemma is to clarify under which conditions a collection C
of characters that defines a binary phylogenetic tree T equates to a collection Π(γ) of
characters that is induced by an internal k-colouring γ of T .

Lemma 10. Let T be a binary phylogenetic X-tree, where |X| 󰃍 4, and let C be a set of
characters on X with |C| = k, where k ∈ [3], that is convex on T and also distinguishes
T . Suppose that no character in C contains a singleton, that every internal edge in T is
distinguished by exactly one character in C, and that every character in C distinguishes at
least one internal edge of T . Then there exists an internal k-colouring γ : E0(T ) → [k]
such that C = Π(γ).

Proof. Let C = {χ1, . . . ,χk}, where k ∈ [3]. Consider the k-assignment γ : E0(T ) → [k]
that takes each internal edge of T to colour i if χi distinguishes that edge. Note that
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γ is well-defined since |X| 󰃍 4 implies that E0(T ) ∕= ∅, and every element of E0(T )
is distinguished by exactly one character in C. Since C distinguishes T , it follows by
Lemma 3 that any two internal edges in T that are incident with the same vertex are
assigned different colours under γ. Moreover, since every character in C distinguishes
at least one internal edge of T , it follows that γ(E0(T )) = [k]. Hence γ is an internal
k-colouring of T . To complete the proof of the lemma, we show that C = Π(γ).

For all i, let πi denote π(γ, ci). Suppose that C ∕= Π(γ). Since, for all i, we have that πi

is obtained by deleting all internal edges of T that are distinguished by χi, the definition
of Π(γ) implies that there must exist some πj ∈ Π(γ) such that χj refines πj (i.e., there is
some A ∈ χj and some B ∈ πj such that A ⊊ B). Let A1 and A2 be distinct non-empty
subsets of B such that A1, A2 ∈ χj, and let P be the shortest path in T connecting T (A1)
and T (A2). Since |A1|, |A2| 󰃍 2, the path P consists of internal edges of T . Furthermore,
as A1 and A2 are subsets of B, no edge in P is distinguished by χj. To see this, if there is
such an edge, then, by construction, A1 and A2 are in different parts of πj, in which case
either A1 ∕⊆ B or A2 ∕⊆ B, a contradiction. Thus P has at least two edges; otherwise, P
consists of a single edge distinguished by χj. Let u be the vertex of P that is adjacent
to a vertex in T (A1) but is not in T (A1), and let {u, v} be the edge of T incident with
u but not in P . If u is incident with three internal edges of T , then, as no edge in P is
distinguished by χj, the edge {u, v} is distinguished by χj. But then χj is not convex on
T , a contradiction. It follows that v is a leaf, in which case v appears as a singleton in
χj; otherwise, the edge of P incident with u and a vertex in T (A1) is distinguished by χj.
This last contradiction implies that C = Π(γ).

Clearly, a binary phylogenetic X-tree T is defined by an internal 1-colouring if and
only if |X| = 4. The next proposition is an immediate consequence of Theorem 6 and
Lemma 10.

Proposition 11. Let T be a binary phylogenetic X-tree, where |X| 󰃍 5. Then T is
defined by an internal 2-colouring if and only if T is a caterpillar.

We now turn our attention to internal 3-colourings and establish the main result of
this section. In view of Proposition 11, we focus on binary phylogenetic trees that are not
caterpillars, that is, binary phylogenetic trees that have an internal subtree isomorphic to
the 3-star. The next proposition is used several times in Sections 4 and 5.

Proposition 12. Let T be a binary phylogenetic X-tree, where |X| 󰃍 6, and suppose that
T is not a caterpillar. Then T is defined by a set of three characters on X if and only if
T is defined by an internal 3-colouring of T .

Proof. If T is defined by an internal 3-colouring γ of T , then T is defined by the set Π(γ)
of characters on X and this set has size three. To prove the converse, that is, if T is
defined by a set C of three characters on X, then T is defined by an internal 3-colouring
of T , we shall freely use Theorem 5.

Let C be a set of three characters on X that defines T . Note that, by repeated
application of Lemma 9, we may assume that C contains no character that contains a
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singleton. Furthermore, since C defines T , every internal edge of T is distinguished by
some character in C and, since T is not a caterpillar, every character in C must distinguish
at least one internal edge of T . Let E2 denote the set of internal edges of T distinguished
by exactly two characters. Observe that, as |C| = 3 and T has at least two internal edges,
no internal edge of T is distinguished by exactly three characters in C.

If E2 = ∅, then, by Lemma 10, the characters in C induce an internal 3-colouring of T ,
and so the converse holds in this case. Therefore assume that E2 ∕= ∅ and let e = {u, v}
be an edge in E2. If either u or v is not adjacent to a leaf of T , then, as |C| = 3, we have
that e is distinguished by exactly one character in C, a contradiction. So assume that u
and v are adjacent to leaves x and y, respectively. We next construct from C a set C ′ of
three characters that defines T such that e is distinguished by exactly one character in
C ′, the number of internal edges distinguished by exactly two characters in C ′ is |E2|− 1,
and no character in C ′ contains a singleton. This will complete the proof of the converse
since, by repeatedly applying this construction to reduce the number of internal edges
distinguished by exactly two characters, we eventually obtain a set C∗ of three characters
on X such that each internal edge of T is distinguished by exactly one character in C∗, no
character in C∗ contains a singleton, and each character in C∗ distinguishes some internal
edge of T .

Let C = {χ1,χ2,χ3}, and suppose that e is distinguished by χ1 and χ2. Let e1 denote
the edge incident with u that is neither e nor {u, x}, and let e2 denote the edge incident
with v that is neither e nor {v, y}. There are two cases to consider depending on whether
(i) either e1 or e2 is pendant, and (ii) neither e1 nor e2 is pendant. In what follows, we
prove (ii). The proof for (i) is similar, but more straightforward, and is omitted. Now
consider (ii). Since C distinguishes every internal edge of T , it follows by Lemma 3 that
e1, as well as e2, is distinguished by exactly one character, namely χ3. Let A1 and A2 be
the parts in χ1 so that x ∈ A1 and y ∈ A2. Let χ

′
1 = (χ1 − {A1, A2})∪ {A1 ∪A2} and let

C ′ = (C − {χ1}) ∪ {χ′
1}. We now show that C ′ defines T .

As C is convex on T and distinguishes every internal edge of T , it follows that C ′ is also
convex on T and distinguishes every internal edge of T . Consider the partition intersection
graph Int(C) of C, and let G be the unique minimal restricted chordal completion of Int(C).
The partition intersection graph Int(C) is shown in Figure 4(a). By [10, Proposition
4.1], Int(C) is connected and so, as V (Int(C)) = V (G), we have that G is connected.
Furthermore, (χ3, {x, y}) is a cut-vertex of Int(C). To see this, observe that (χ1, A1),
(χ1, A2), (χ2, B1), and (χ2, B2) are the neighbours of (χ3, {x, y}) in Int(C), where x ∈ B1

and y ∈ B2. Also, if A and B are parts of χ1 and χ2, respectively, then neither T (A)
nor T (B) contain {u, v}. Since {x, y} is the only part of χ3 such that T ({x, y}) contains
{u, v}, it follows that (χ3, {x, y}) is a cut-vertex of Int(C). Since (χ3, {x, y}) is a cut-vertex
of Int(C), Lemma 8 implies that (χ3, {x, y}) is a cut-vertex of G.

Now, consider the partition intersection graph Int(C ′) of C ′. An illustration of Int(C ′)
is shown in Figure 4(b). This graph is obtained from Int(C) by identifying the vertices
(χ1, A1) and (χ1, A2), labelling the identified vertex as (χ′

1, A1 ∪ A2), deleting one of the
two resulting parallel edges joining (χ3, {x, y}) and (χ′

1, A1∪A2), and relabelling all other
vertices of the form (χ1, Ai), where i ∕∈ {1, 2} with (χ′

1, Ai). Observe that, as (χ3, {x, y})
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H2

(a)

(χ3, {x, y})

(χ1, A2)(χ1, A1)

(χ3, {x, y})

H ′
2H ′

1

(χ′
1, A1 ∪A2)

(χ2, B1) (χ2, B2)(χ2, B2)(χ2, B1)

(b)

H1

Figure 4: Illustrations of (a) Int(C) and (b) Int(C ′) in the proof of Proposition 12, where
x ∈ A1, x ∈ B1, y ∈ A2, y ∈ B2, and H1, H2, and H ′

1, H
′
2 represent the parts of Int(C)

and Int(C ′), respectively, not explicitly shown.

is a cut-vertex of Int(C),
{(χ3, {x, y}), (χ′

1, A1 ∪ A2)}

is a vertex cut of Int(C ′). Moreover, as Int(C) is connected, Int(C ′) is connected.
Let Vx (respectively, Vy) be the subset of V (Int(C))− {(χ3, {x, y})} with the property

that a vertex v is in Vx (respectively, Vy) if there is a path from v to (χ1, A1) (respectively,
(χ1, A2)) in Int(C) avoiding (χ3, {x, y}). Note that Vx ∕= ∅ because (χ1, A1) ∈ Vx, and
that Vy ∕= ∅ because (χ1, A2) ∈ Vy. Similarly, let V ′

x (respectively, V ′
y) denote the subset of

V (Int(C ′)) obtained from Vx (respectively, Vy) by deleting (χ1, A1) (respectively, (χ1, A2))
and replacing (χ1, Ai), where i ∕∈ {1, 2}, with (χ′

1, Ai).
Let G′ denote the graph obtained from Int(C ′) by joining two vertices in V (Int(C ′))

with an edge precisely if the corresponding vertices of Int(C) are joined by a completion
edge in G. More precisely, G′ is constructed from Int(C ′) as follows:

(1) if vertices of the form (χ2, B) and (χ3, C) are joined by a completion edge in G, then
the same vertices are joined by an edge in G′;

(2) if a vertex of the form (χ1, Ai) and a vertex t are joined by a completion edge in G,
where i ∕∈ {1, 2}, then (χ′

1, Ai) and t are joined by an edge in G′; and

(3) if a vertex of the form (χ1, Ai) and a vertex t are joined by a completion edge in G,
where i ∈ {1, 2}, then (χ′

1, A1 ∪ A2) and t are joined by an edge in G′.

Note that, as (χ3, {x, y}) is a cut-vertex of G, it follows from the construction of G′ that

{(χ3, {x, y}), (χ′
1, A1 ∪ A2)}

is a vertex cut of G′.
We now show that G′ is a minimal restricted chordal completion of Int(C ′). Assume

that C ′ is a vertex-induced cycle of G′ with at least four vertices. Then, as G is a restricted
chordal completion of Int(C), and {(χ3, {x, y})} and {(χ3, {x, y}), (χ′

1, A1∪A2)} are vertex
cuts of G and G′, respectively, it follows that (χ3, {x, y}) and (χ′

1, A1 ∪ A2) as well as a
vertex in V ′

x and a vertex in V ′
y are vertices in C ′. But, since {(χ3, {x, y}), (χ′

1, A1∪A2)} is
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an edge in Int(C ′) and thus in G′, this implies that {(χ3, {x, y}), (χ′
1, A1 ∪A2)} is a chord

of C ′, a contradiction. It follows that G′ is a restricted chordal completion of Int(C ′).
Furthermore, if G′ is not a minimal restricted chordal completion of Int(C ′), then there
is a completion edge, e′ say, in G′ such that G′\e′ is a restricted chordal completion of
Int(C ′). But then, by the construction of G′, the edge in G corresponding to e′ can be
deleted from G resulting in a restricted chordal completion of Int(C), a contradiction.
Thus G′ is a minimal restricted chordal completion of Int(C ′).

To see that G′ is the unique minimal restricted chordal completion of Int(C ′),
suppose that G′

1 is also a minimal restricted chordal completion of Int(C ′). Since
{(χ3, {x, y}), (χ′

1, A1 ∪ A2)} is a vertex cut of Int(C ′) and the two vertices in this ver-
tex cut are joined by an edge, it follows by Lemma 8 that no completion edge in G′

1 joins
a vertex in V ′

x to a vertex in V ′
y . Now let G1 be the graph obtained from G′

1 by reversing
the construction described in (1)–(3) above. That is, G1 is obtained from G′

1 as follows:

(1)′ if vertices of the form (χ2, B) and (χ3, C) are joined by a completion edge in G′
1, then

the same vertices are joined by an edge in G1;

(2)′ if a vertex of the form (χ′
1, Ai) and a vertex t are joined by a completion edge in G′

1,
where i ∕∈ {1, 2}, then (χ1, Ai) and t are joined by an edge in G1; and

(3)′ if (χ′
1, A1∪A2) and a vertex t in V ′

x (resp. V ′
y) are joined by a completion edge in G′

1,
then (χ1, A1) (resp. (χ1, A2)) and t are joined by an edge in G1.

By reversing the argument in the previous paragraph, G1 is a minimal restricted chordal
completion of Int(C). Therefore, by the uniqueness of G, it follows that G1 is isomorphic
to G. Since the constructions given by (1)–(3) and (1)′–(3)′ undo each other, this implies
that G′

1 is isomorphic to G′. It follows that G′ is the unique minimal restricted chordal
completion of Int(C ′). Hence C ′ defines T and C ′ has the desired properties, in particular,
the number of internal edges distinguished by exactly two characters in C ′ is |E2|− 1 and
no character in C ′ contains a singleton.

4 Proof of Theorem 1: Necessary Direction

We begin the necessary direction of the proof of Theorem 1 by describing two operations
that extend a binary phylogenetic tree. Let T be a binary phylogenetic X-tree, where
|X| 󰃍 3, and let (x, y) be a cherry of T . The first operation, called a fork modification,
adds a new leaf z ∕∈ X to (x, y) as shown in Figure 5(a) to obtain a binary phylogenetic
(X ∪ {z})-tree T ′. Formally, T ′ is obtained from T by subdividing the pendant edge
incident with either x or y, say x, and then adjoining a new leaf z ∕∈ X to T by adding
an edge joining z and the subdivision vertex. The second operation, called a balanced
modification, adds two new leaves w, z ∕∈ X to (x, y) as shown in Figure 5(b) to obtain
a binary phylogenetic (X ∪ {w, z})-tree T ′′. More precisely, T ′′ is obtained from T by
subdividing each of the pendant edges incident with x and y, and then adjoining new
leaves w, z ∕∈ X to T by adding an edge joining one of the leaves, say z, to the subdivision
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P Q P Q

(a) (b)

Figure 5: An illustration of (a) a fork modification and (b) a balanced modification, where
P and Q denote the leaf sets of the corresponding subtrees.

vertex on the pendant edge incident with x and an edge joining w to the subdivision
vertex on the pendant edge incident with y. Collectively, we refer to fork and balanced
modifications as cherry modifications. Although not explicitly needed for the paper, it is
straightforward to show that if T is a binary phylogenetic X-tree, where |X| 󰃍 3, then,
up to isomorphism, T can be obtained from a binary phylogenetic tree on three leaves by
a sequence of cherry modifications.

The next lemma shows that a fork modification preserves the property of being defined
by at most three characters. For ease of reading, if γ is an internal k-colouring of a binary
phylogenetic tree, we write the vertices of Int(γ) in the form (c, A) instead of (π(γ, c), A).

Lemma 13. Let T be a binary phylogenetic X-tree, where |X| 󰃍 3, and let T ′ be a binary
phylogenetic tree obtained from T by a fork modification. Then T is defined by a set of at
most three characters if and only if T ′ is defined by a set of at most three characters.

Proof. Let (x, y) be a cherry of T . We may assume that T ′ is obtained from T as shown in
Figure 5(a). Thus (x, z) is a cherry of T ′ and the leaf set of T ′ is X ∪{z}. By Theorem 6,
the lemma holds if T is a caterpillar as T ′ is also a caterpillar. So we may assume that
T has an internal vertex incident with three internal edges and |X| 󰃍 6. Let P and Q
denote the leaf sets of the subtrees as shown in Figure 5(a). Note that |P |, |Q| 󰃍 1. There
are two cases to consider depending on whether (i) exactly one of P and Q has size one
and (ii) |P |, |Q| 󰃍 2. We will establish the lemma for (ii). The proof for (i) is similar and
omitted.

Suppose that |P |, |Q| 󰃍 2, and T is defined by three characters. Then, by Proposi-
tion 12, T is defined by an internal 3-colouring γ. Let {c1, c2, c3} be the codomain of γ
and let γ′ be an internal 3-colouring of T ′ that extends γ, that is, γ′ has the property
that if e ∈ E0(T ), then γ′(e) = γ(e). Since |P |, |Q| 󰃍 2, we may assume without loss of
generality that

(c1, {x, y}), (c2, {x, y} ∪ P ′), (c3, {x, y} ∪Q′)

are vertices of Int(γ), where P ′ and Q′ are non-empty subsets of P and Q, respectively,
while

(c1, {x, y, z}), (c2, {x, z}), (c2, {y} ∪ P ′), (c3, {x, y, z} ∪Q′)
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(c2, {x, y} ∪ P ′)

(a)

(c2, {y} ∪ P ′)

(b)

(c2, {x, z})
(c1, {x, y}) (c1, {x, y, z})

(c3, {x, y, z} ∪Q′)(c3, {x, y} ∪Q′)

H H ′

Figure 6: Illustrations of (a) Int(γ) and (b) Int(γ′) in the proof of Lemma 13, where H
and H ′ represent the parts of Int(γ) and Int(γ′) not explicitly shown.

are vertices of Int(γ′). The partition intersection graphs of Π(γ) and Π(γ′) are illustrated
in Figure 6. Observe that Int(γ′) can be constructed from Int(γ) by relabelling (c1, {x, y})
as (c1, {x, y, z}), (c2, {x, y}∪P ′) as (c2, {y}∪P ′), and (c3, {x, y}∪Q′) as (c3, {x, y, z}∪Q′),
and adding a new vertex (c2, {x, z}) adjacent to precisely (c1, {x, y, z}) and (c3, {x, y, z}∪
Q′).

Since Π(γ′) is convex on T ′, the partition intersection graph Int(γ′) has a restricted
chordal completion by Theorem 4. If G′ is a minimal restricted chordal completion of
Int(γ′), then, by Lemma 8, no completion edge of G′ is incident with (c2, {x, z}). There-
fore if Int(γ′) has two distinct minimal restricted chordal completions, then, by the above
construction, Int(γ) has two distinct minimal restricted chordal completions, a contradic-
tion as Π(γ) defines T . Thus Int(γ′) has a unique minimal restricted chordal completion.
Since Π(γ′) distinguishes T ′, it follows that γ′ defines T ′, and so T ′ is defined by three
characters. The proof that if T ′ is defined by three characters, then T is defined by
three characters is the same argument but in reverse. This completes the proof of the
lemma.

In contrast to a fork modification, a balanced modification does not necessarily pre-
serve the property of being defined by a set of at most three characters. However, it does
preserve the property of not being defined by a set of at most three characters.

Lemma 14. Let T be a binary phylogenetic X-tree, where |X| 󰃍 3, and let T ′ be a binary
phylogenetic tree obtained from T by a balanced modification. If T is not defined by a set
of at most three characters, then T ′ is not defined by a set of at most three characters.

Proof. Suppose that T is not defined by at most three characters. Then T is not a
caterpillar and so T , and therefore T ′, has an internal vertex incident with three internal
edges and |X| 󰃍 6. Let (x, y) be a cherry of T . We may assume that T ′ is obtained from
T as shown in Figure 5(b). Let P and Q denote the leaf sets of the subtrees as shown in
Figure 5(b), and note that |P |, |Q| 󰃍 1. Thus (x, z) and (w, y) are cherries of T ′ and the
leaf set of T ′ is X ∪ {w, z} and, as |X| 󰃍 6, either |P | 󰃍 2 or |Q| 󰃍 2. There are two
cases: (i) exactly one of P and Q has size one and (ii) |P |, |Q| 󰃍 2. We will establish the
lemma for (ii). The proof of (i) is similar and omitted.
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(c1, {w, x, y, z})

(c3, {w, y})

(c2, {w, y} ∪ P ′)(c3, {x, z} ∪Q′)

(c2, {x, z})

(c1, {x, y})

(c2, {x, y} ∪ P ′)(c3, {x, y} ∪Q′)

(a) (b)

H ′ H

Figure 7: Illustrations of (a) Int(γ′) and (b) Int(γ) in the proof of Lemma 14, where H ′

and H represent the parts of Int(γ′) and Int(γ) not explicitly shown.

Suppose that |P |, |Q| 󰃍 2 and, for the purpose of obtaining a contradiction, that T ′ is
defined by three characters. By Proposition 12, T ′ is defined by an internal 3-colouring
γ′. Let {c1, c2, c3} be the codomain of γ′ and let γ be the restriction of γ′ to the edges of
T . That is, for each e ∈ E0(T ), we have γ(e) = γ′(e). Since |P |, |Q| 󰃍 2, we may assume
without loss of generality that

(c1, {w, x, y, z}), (c2, {x, z}), (c2, {w, y} ∪ P ′), (c3, {w, y}), (c3, {x, z} ∪Q′)

are vertices of Int(γ′), where P ′ and Q′ are non-empty subsets of P and Q, respectively,
while

(c1, {x, y}), (c2, {x, y} ∪ P ′), (c3, {x, y} ∪Q′)

are vertices of Int(γ). The partition intersection graphs of Π(γ′) and Π(γ) are illustrated
in Figure 7. A routine check shows that Int(γ) can be constructed from Int(γ′) by deleting
(c2, {x, z}) and (c3, {w, y}), relabelling (c2, {w, y}∪P ′) as (c2, {x, y}∪P ′) and (c3, {x, z}∪
Q′) as (c3, {x, y} ∪Q′), and joining (c2, {x, y} ∪ P ′) and (c3, {x, y} ∪Q′) with an edge.

We next show that

14.1. (c1, {w, x, y, z}) is not a cut-vertex of Int(γ′). In particular, there is a path in Int(γ′)
from (c3, {x, z} ∪Q′) to (c2, {w, y} ∪ P ′) avoiding (c1, {w, x, y, z}).

Note that Int(γ′) is connected as γ′ defines T ′ ([10, Proposition 4.1]). Assume that
(c1, {w, x, y, z}) is a cut-vertex of Int(γ′). For some non-empty subsets P ′′ and Q′′ of P
and Q, respectively, Int(γ′) has a vertex of the form (c1, P

′′ ∪Q′′). Since (c1, {w, x, y, z})
is a cut-vertex of Int(γ′), we may assume without loss of generality that there is a path in
Int(γ′) from (c1, P

′′∪Q′′) to (c2, {w, y}∪P ′) avoiding (c1, {w, x, y, z}), but there is no path
from (c1, P

′′ ∪Q′′) to (c3, {x, z} ∪Q′) avoiding (c1, {w, x, y, z}). Observe that, except for
(c3, {x, z}∪Q′) and (c1, P

′′∪Q′′), the second coordinates of each of the vertices of Int(γ′)
that have a non-empty intersection with Q are, in fact, subsets of Q. Let Q1 denote the
union of Q′ and the second coordinates of vertices that are subsets of Q and in the same
component as (c3, {x, z} ∪Q′) of Int(γ′)\(c1, {w, x, y, z}). Let Q2 denote the union of Q′′

and the second coordinates of vertices that are subsets of Q and in the same component
as (c1, P

′′∪Q′′) of Int(γ′)\(c1, {w, x, y, z}). Since (c1, {w, x, y, z}) is a cut-vertex, Q is the
disjoint union of non-empty sets Q1 and Q2.
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Say T ′(Q1) and T ′(Q2) have no edge in common. Then there is an edge g of T ′ such
that, for some j ∈ {1, 2}, we have that Qj is the leaf set of a component of T ′\g. Now
γ′(g) = ci for some i ∈ {1, 2, 3}, and so there is a vertex in Int(γ′) whose first coordinate
is not ci and whose second coordinate has a non-empty intersection with both Q1 and Q2,
a contradiction. Thus T (Q1) and T (Q2) have an edge, h say, in common. Since Q1 and
Q2 are disjoint, we may assume that h is adjacent to edges h1 and h2 such that h1 and
h2 are edges in T (Q1) and T (Q2), respectively, but h1 and h2 are not edges in T (Q2) and
T (Q1), respectively. For some i ∈ {1, 2, 3}, we have γ′(h) = ci. But then there is a vertex
whose first coordinate is ci and whose second coordinate has a non-empty intersection
with both Q1 and Q2, a contradiction. Therefore (c1, {w, x, y, z}) is not a cut-vertex of
Int(γ′), competing the proof of (14.1).

Since γ′ defines T ′, the partition intersection graph Int(γ′) has a unique minimal
restricted chordal completion G′. As Int(γ′) has no vertex-induced cycles of size at least
four containing either (c2, {x, z}) or (c3, {w, y}), it follows by Lemma 8 that no completion
edge of G′ is incident with these vertices. Furthermore,

14.2. {(c2, {w, y} ∪ P ′), (c3, {x, z} ∪Q′)} is a completion edge of G′.

To see that (14.2) holds, let G be a minimal restricted chordal completion of Int(γ).
Since γ is convex on T , such a graph exists. Let E1 denote the set of completion edges of
G and let E ′

1 denote the collection of 2-element subsets of V (Int(γ′)) obtained from E1 by
replacing (c2, {x, y}∪P ′) with (c2, {w, y}∪P ′) and (c3, {x, y}∪Q′) with (c3, {x, z}∪Q′).
LetG′

1 be the graph obtained from Int(γ′) by adding the edge {(c2, {w, y}∪P ′), (c3, {x, z}∪
Q′)} as well as the edges in E ′

1. Since G is a restricted chordal completion of Int(γ), it
follows by reversing the above construction of Int(γ) from Int(γ′) that G′

1 is a restricted
chordal completion of Int(γ′). Furthermore, G′

1 is a minimal restricted chordal completion
of Int(γ′); otherwise, there is an edge e′1 ∈ E ′

1 such that G′
1\e′1 is a restricted chordal

completion of Int(γ′). But this implies that deleting the corresponding edge in E1 from
G results in a restricted chordal completion of Int(γ), a contradiction. Note that if we
delete

{(c2, {w, y} ∪ P ′), (c3, {x, z} ∪Q′)}

from G′
1, then it follows by (14.1) that the resulting graph has a vertex-induced cycle

containing the two end-vertices of this edge as well as (c1, {w, x, y, z}) and at least one
other vertex. We conclude that if {(c2, {w, y} ∪ P ′), (c3, {x, z} ∪Q′)} is not a completion
edge of G′, then, as this edge is a completion edge of G′

1, we have that G
′ is not isomorphic

to G′
1, and so Int(γ′) has two distinct minimal restricted chordal completions. This is a

contradiction as γ′ defines T ′. Hence {(c2, {w, y} ∪ P ′), (c3, {x, z} ∪ Q′)} is a completion
edge of G′, completing the proof of (14.2).

By the way in which Int(γ′) and Int(γ) can be constructed from each other, it now
follows that, as Int(γ′) has a unique minimal restricted chordal completion, Int(γ) has
a unique minimal restricted chordal completion. Since Π(γ) is convex on T and distin-
guishes T , we deduce that γ defines T , and so T is defined by three characters. This last
contradiction completes the proof of the lemma.

The next theorem is the necessary direction of Theorem 1.
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Theorem 15. Let T be a binary phylogenetic X-tree, and suppose that T has an internal
subtree isomorphic to the snowflake. Then, up to isomorphism, T can be obtained from
the phylogenetic tree in Figure 1(a) by a sequence of cherry modifications. In particular,
T is not defined by a set of at most three characters.

Proof. Since T has an internal subtree isomorphic to the snowflake, |X| 󰃍 12. The proof
is by induction on n = |X|. If n = 12, then T is isomorphic to the phylogenetic tree
shown in Figure 1(a) and so, by Lemma 7, the theorem holds.

Now suppose that the theorem holds for all binary phylogenetic trees with at most
n− 1 󰃍 12 leaves. Let S be an internal subtree of T isomorphic to the snowflake, and let
v be the unique vertex of S that is at distance two from each of its leaves. Now let u1 be
an internal vertex of T at maximum distance from v. Observe that u1 is adjacent to two
leaves, say x and z. Let u denote the unique internal vertex of T adjacent to u1, and let
u2 denote the vertex of T adjacent to u, that is not u1, but at the same distance from v
as u1. If u2 is a leaf, label this vertex y. Otherwise, u2 is adjacent to two leaves, say y
and w.

Let T ′ be the binary phylogenetic tree such that T is obtained from T ′ by applying
either a fork modification to the cherry (x, y) or a balanced modification to the cherry
(x, y). Since n 󰃍 13, it follows by the choice of u1 that neither u1 nor u2 are vertices in
S. Thus T ′ has an internal subtree isomorphic to the snowflake. Therefore, by induction,
T ′ can be obtained from the binary phylogenetic tree shown in Figure 1(a) by a sequence
of cherry modifications and, moreover, T ′ is not defined by three characters. Theorem 15
now follows by Lemmas 13 and 14.

5 Proof of Theorem 1: Sufficient Direction

In this section, we complete the proof of Theorem 1 by proving the sufficient direction.
To do this, we first introduce the operation of cherry union. Let T1 and T2 be two binary
phylogenetic trees with leaf sets X1 and X2, respectively, such that |X1|, |X2| 󰃍 4 and
X1 ∩ X2 = {x}. In addition, suppose that T1 has a cherry (x, y1) and T2 has a cherry
(x, y2). Let T be the binary phylogenetic tree with leaf set (X1 ∪ X2) − {y1, y2} that is
obtained from T1 and T2 by deleting the leaf x in exactly one of T1 and T2, identifying
the vertices y1 and y2, and suppressing the two resulting degree-2 vertices. We say that
T is the cherry union of T1 and T2, and denote T by T1□T2. An illustration of a cherry
union is shown in Figure 8.

The next lemma shows that a cherry union preserves the property of being defined by
a set of at most three characters. As in the last section, if γ is an internal k-colouring
of a binary phylogenetic tree, we write the vertices of Int(γ) in the form (c, A) instead of
(π(γ, c), A).

Lemma 16. Let T1 and T2 be two binary phylogenetic trees with leaf sets X1 and X2,
respectively, where |X1|, |X2| 󰃍 4. Suppose that X1 ∩ X2 = {x}, and (x, y1) and (x, y2)
are cherries in T1 and T2, respectively. If T1 and T2 are each defined by a set of at most
three characters, then T1□T2 is defined by a set of at most three characters.
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Figure 8: The cherry union T of two binary phylogenetic trees T1 and T2, where the leaf
set of T1 is P1 ∪Q1 ∪ {x, y1}, the leaf set of T2 is P2 ∪Q2 ∪ {x, y2}, and the leaf set of T
is P1 ∪Q1 ∪ P2 ∪Q2 ∪ {x}.

Proof. We may assume that T1, T2, and T1□T2 are as shown in Figure 8. Suppose that T1

and T2 are each defined by a set of at most three characters. If one of T1 and T2, say T2

is a caterpillar, then, up to leaf labels, T1□T2 is obtained from T1 by a sequence of fork
modifications and so, by Lemma 13, T1□T2 is defined by most three characters. Thus
we may assume that neither T1 nor T2 is a caterpillar. By Proposition 12, T1 and T2 are
defined by internal 3-colourings γ1 and γ2, respectively. Without loss of generality, we
may assume that the codomain of γ1 and the codomain of γ2 is {c1, c2, c3}. Moreover, by
recolouring if necessary, we may assume that if u1 and u2 denote the vertices of T1 and T2

adjacent to x and y1, and adjacent to x and y2, respectively, then the (unique) internal
edges of T1 and T2 incident with u1 and u2 are assigned different colours.

Since neither T1 nor T2 is a caterpillar, |P1|, |P2| 󰃍 2. There are three cases to consider:
(i) |Q1| = 1 = |Q2|, (ii) exactly one of Q1 and Q2 has size one, and (iii) |Q1|, |Q2| 󰃍 2.
We establish the lemma for (iii). The proofs of (i) and (ii) are similar and omitted.

Suppose that (iii) holds. Then, without loss of generality, we may assume that
(c1, {x, y1}), (c2, {x, y1}∪P ′

1), and (c3, {x, y1}∪Q′
1) are vertices of Int(γ1), where P

′
1 and Q′

1

are non-empty subsets of P1 and Q1, respectively. Similarly, (c2, {x, y2}), (c1, {x, y2}∪P ′
2),

and (c3, {x, y2} ∪ Q′
2) are vertices of Int(γ2), where P ′

2 and Q′
2 are non-empty subsets of

P2 and Q2, respectively. Illustrations of Int(γ1) and Int(γ2) are shown in Figure 9. Let
γ be the internal 3-colouring of T = T1□T2 induced by γ1 and γ2. Thus, in reference to
Figure 8, {u, v1} and {u′′

2, v2} are coloured c1, {u′′
1, v1} and {u, v2} are coloured c2, and

{u′
1, v1} and {u′

2, v2} are coloured c3. Since γ is an internal 3-colouring of T , it follows
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(c3, {x} ∪Q′
1 ∪Q′

2)

(c1, {x, y1})

(c2, {x, y1} ∪ P ′
1)

(a)

(c2, {x, y2})

(c1, {x, y2} ∪ P ′
2)

(c3, {x, y1} ∪Q′
1)

(c3, {x, y2} ∪Q′
2)

H1

H2

(b)

(c2, {x} ∪ P ′
1)

(c1, {x} ∪ P ′
2)

H2

H1

(c)

Figure 9: Illustrations of (a) Int(γ1), (b) Int(γ2), and (c) Int(γ) in the proof of Lemma 16,
where H1 and H2 represent the parts of Int(γ1) and Int(γ2) not explicitly shown.

that Π(γ) is convex on T and distinguishes T .
Now consider Int(γ), and observe that (c1, {x} ∪ P ′

2), (c2, {x} ∪ P ′
1), and (c3, {x} ∪

Q′
1 ∪ Q′

2) are vertices of Int(γ). Also, as Π(γ) is convex on T , we have in addition to
these three vertices, for all i ∈ {1, 2, 3}, that (ci, D) is a vertex of Int(γ) if and only
if either (ci, D) is a vertex of Int(γ1) or (ci, D) is a vertex of Int(γ2). It is now easily
checked that Int(γ) can be constructed from Int(γ1) and Int(γ2) by identifying the vertices
(c1, {x, y1}) and (c1, {x, y2}∪P ′

2), (c2, {x, y1}∪P ′
1) and (c2, {x, y2}), and (c3, {x, y1}∪Q′

1)
and (c3, {x, y2} ∪ Q′

2) together with the corresponding edges, and then relabelling the
identified vertices as (c1, {x} ∪ P ′

2), (c2, {x} ∪ P ′
1), and (c3, {x} ∪ Q′

1 ∪ Q′
2), respectively.

An illustration of Int(γ) is shown in Figure 9.
Let G be a minimal restricted chordal completion of Int(γ). Since (c1, {x} ∪ P ′

2),
(c2, {x} ∪ P ′

1), and (c3, {x} ∪ Q′
1 ∪ Q′

2) is a 3-clique of Int(γ), it follows by the above
construction that if C is a vertex-induced cycle of Int(γ) with at least four vertices,
then, modulo replacing (c2, {x} ∪ P ′

1) with (c2, {x, y1} ∪ P ′
1) and (c3, {x} ∪Q′

1 ∪Q′
2) with

(c3, {x, y1} ∪ Q′
1), or (c1, {x} ∪ P ′

2) with (c1, {x, y2} ∪ P ′
2) and (c3, {x} ∪ Q′

1 ∪ Q′
2) with

(c3, {x, y2} ∪ Q′
2), the cycle C is a vertex-induced cycle of either Int(γ1) or Int(γ2) with

at least four vertices. Thus, by Lemma 8 we deduce that if Int(γ) has two minimal
restricted chordal completions, then either Int(γ1) or Int(γ2) has two minimal restricted
chordal completions, contradicting that γ1 and γ2 define T1 and T2, respectively. Hence
G is the unique minimal restricted chordal completion of Int(γ). Since γ is convex on T
and distinguishes T , the internal 3-colouring γ defines T . This completes the proof of the
lemma.

A binary phylogenetic X-tree T is a cherried caterpillar if either |X| = 4 or T can
be obtained from a caterpillar by replacing each leaf with a pair of leaves in a cherry,
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Figure 10: A cherried caterpillar with leaf set [n], where n 󰃍 4.

that is, for each pendant edge of a caterpillar, subdividing it and adjoining a new leaf by
adding an edge joining the new leaf and the subdivision vertex. A cherried caterpillar is
illustrated in Figure 10.

Lemma 17. Let T be a cherried caterpillar. Then T is defined by a set of at most three
characters.

Proof. Without loss of generality, we may assume that the leaf set of T is [n] and that
its leaves are labelled as shown in Figure 10. If n = 4, then the lemma trivially holds.
So assume that |X| 󰃍 6. Let u and u′ be the internal vertices of T adjacent to the
leaves 1 and 2, and adjacent to the leaves n − 1 and n, respectively. Now consider an
internal 3-colouring γ of T that assigns each edge on the path joining u and u′ one of two
colours, say c1 and c2, and assigns all remaining internal edges the third colour, say c3.
Let {χ1,χ2,χ3} denote the set of characters on [n] induced by γ, where χi is the character
induced by ci for all i ∈ {1, 2, 3}. If |X| = 6, then Int(C) is chordal, and so it has a unique
minimal restricted chordal completion. Furthermore, if |X| 󰃍 8, then Int(C) has a unique
vertex-induced cycle C with at least four vertices. In particular, C consists (in order) of
the vertex (χ3, {1, 2, n− 1, n}) and the vertices

(χ1, {1, 2}), (χ2, {1, 2, 3, 4}), (χ1, {3, 4, 5, 6}), (χ2, {5, 6, 7, 8}), . . . , (χi, {n− 1, n}),

where i ∈ {1, 2}. Note that C has a unique vertex whose first coordinate is χ3, namely,
(χ3, {1, 2, n− 1, n}).

Let G be a minimal restricted chordal completion of Int(C). If there is a completion
edge of G joining a vertex in C whose first coordinate is χ1 and a vertex in C whose
first coordinate is χ2, then G contains a cycle C ′ with at least four vertices all of which
are vertices of C whose first coordinates are either χ1 or χ2. But C ′ has no restricted
chordal completion as each of its first coordinates is one of only two types, a contradiction.
Therefore all of the completion edges of G are incident with the unique vertex in C
whose first coordinate is χ3. It now follows that Int(γ) has a unique minimal restricted
chordal completion. Since C is convex on T and C distinguishes T , the lemma follows by
Theorem 5.

Lemma 18. Let T be a binary phylogenetic X-tree, where |X| 󰃍 4, and suppose that T has
no internal subtree isomorphic to the snowflake. Then either T is a cherried caterpillar
or T has a leaf not in a cherry.
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Proof. If T has a leaf not in a cherry, then the lemma holds, so suppose that every leaf of T
is in a cherry. If |X| = 4, then T is a cherried caterpillar, so we may assume that |X| 󰃍 6.
Let u and u′ be internal vertices of T such that, amongst all pairs of internal vertices,
the length of the path P connecting u and u′ is maximised. Let P = u, v1, v2, . . . , vk, u

′,
where k 󰃍 1 as |X| 󰃍 6. By maximality, u is adjacent to two leaves and u′ is adjacent to
two leaves. For all i ∈ {1, 2, . . . , k}, let wi denote the vertex of T adjacent to vi that is
not on P . Since every leaf of T is in a cherry, wi is not a leaf, and so wi is an internal
vertex of T for all i. Consider w1. Since the length of the path connecting w1 and u′ is
the same as the length of P , it follows by the maximality of P that w1 adjacent to two
leaves. Similarly, wk is also adjacent to two leaves. If k ∈ {1, 2}, this implies that T is a
cherried caterpillar. So assume that k 󰃍 3. Now consider wj, where j ∈ {2, 3, . . . , k− 1}.
If wj is not adjacent to two leaves, then, as every leaf of T is in a cherry, wj is adjacent
to two internal vertices w′

j and w′′
j , neither of which is vj. But then the internal subtree

of T induced by the vertices in

{w′
j, w

′′
j , wj, vj, vj−1, wj−1, vj−2, vj+1, wj+1, vj+2},

where vj−2 = u if j = 2 and vj+2 = u′ if j = k − 1, is isomorphic to the snowflake, a
contradiction. Thus, for all j, we have that wj is adjacent to two leaves. In particular, T
is a cherried caterpillar. This completes the proof of the lemma.

The next theorem proves the sufficient direction of Theorem 1, thereby completing its
proof.

Theorem 19. Let T be a binary phylogenetic X-tree, where |X| 󰃍 4, and suppose that
T has no internal subtree isomorphic to the snowflake. Then T is defined by a set of at
most three characters.

Proof. The proof is by induction on n = |X|. If n = 4, the theorem trivially holds.
Suppose that n 󰃍 5, and that the theorem holds for all binary phylogenetic trees whose
leaf sets have size at most n − 1 󰃍 4. If T is a cherried caterpillar, then, by Lemma 17,
T is defined by a set of at most three characters. Therefore assume that T is not a
cherried caterpillar. Then, by Lemma 18, T has a leaf, x say, not in a cherry. Let v
be the internal vertex of T adjacent to x, and let u1 and u2 be the internal vertices of
T adjacent to v. Let F1 denote the forest obtained from T by deleting the two edges
incident with u2 that are not {v, u2}, and let T1 denote the binary phylogenetic X1-tree
obtained from the component of F1 containing u1 by relabelling u2, now a leaf, as z1,
where z1 ∕∈ X. Similarly, let F2 denote the forest obtained from T by deleting the two
edges incident with u1 that are not {v, u1}, and let T2 denote the binary phylogenetic
X2-tree obtained from the component of F2 containing u2 by relabelling u1, now a leaf,
as z2, where z2 ∕∈ X ∪ {z1}. Observe that 4 󰃑 |X1|, |X2| 󰃑 n − 1, X1 ∩ X2 = {x} and,
more particularly, T is isomorphic to T1□T2.

Since T has no internal subtree isomorphic to the snowflake, T1 has no internal subtree
isomorphic to the snowflake. Thus, by the induction assumption, T1 is defined by three
characters. Similarly, T2 is also defined by three characters. As T is isomorphic to T1□T2,
Theorem 19 now follows by Lemma 16.
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6 Discussion

Since each binary phylogenetic tree is defined by at most four characters [6], the results
presented in this paper partitions the set of all binary phylogeneticX-trees, where |X| 󰃍 5,
into three classes. In particular, those binary phylogenetic X-trees that are defined by a
set of exactly two, those defined by a set of three but no less than three, and those defined
by a set of four but no less than four characters. Moreover, given a binary phylogenetic
X-tree T , we can decide which class T is contained in in time that is linear in |X|. To
see this, let C2(X), C3(X), and C4(X) denote these three classes of binary phylogenetic
trees, respectively, and note that a binary phylogenetic X-tree has 2|X|− 2 vertices [12,
Proposition 2.1.3]. Now, as T is contained in C2(X) if and only if T is a caterpillar tree
by Theorem 6, it is clear that containment in C2(X) can be checked in O(|X|) time.
Furthermore, if T is not a caterpillar, then we can again check in O(|X|) time if T is
contained in C3(X) or C4(X) using Theorem 1 by simply considering, for each internal
vertex u, the internal vertices of T at distance at most two from u, and checking whether
or not they induce a snowflake.

There remain some interesting questions and investigations. For example, given a
binary phylogenetic X-tree T in C3(X) or C4(X), can we determine (up to the natural no-
tion of equivalence) the number of ways that T can be defined by three or four characters,
respectively? Also, it would be interesting to compute1

lim
|X|→∞

|C2(X) ∪ C3(X)|
|C4(X)| .

This could be of practical interest since, if this limit is 0, it would imply that, as the size
of X grows, almost all binary phylogenetic X-trees are in C4(X).

Finally, the notion of defining a binary phylogenetic tree can be generalised to the
weaker notion of “identifiability” [2]. In particular, an X-tree is an ordered pair (T ;φ)
consisting of a tree T with vertex set, V say, and a map φ : X → V such that if v ∈ V
has degree at most two, then v ∈ φ(X). A phylogenetic X-tree is an X-tree in which φ
is a bijection from X to the set of leaves of T . Intuitively, an X-tree can be obtained by
contracting some edges of a binary phylogenetic X-tree [12]. A collection of characters C
on X identifies an X-tree (T ;φ) if C is convex on T (analogous to that described in this
paper) and all other X-trees on which C is convex are refinements of T .

In [3], it is proven that if d is the maximum degree of any vertex in an X-tree (T ;φ)
and k is a positive integer, then, in case

k = 4⌈log2(d− 2)⌉+ 4,

there is a collection of k characters that identifies (T ;φ) and, in case k < log2 d, there is no
collection of k characters that identifies T . Bearing this in mind, it would be interesting
to investigate whether the results in the present paper for binary phylogenetic trees can
be extended in some way to X-trees.

1Since this paper was submitted to the Electronic Journal of Combinatorics, this question has been
resolved in [1].
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