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Abstract

Gerstenhaber proved in 1961 that the unital algebra generated by a pair of com-
muting d× d matrices over a field has dimension at most d. It is an open problem
whether the analogous statement is true for triples of matrices which pairwise com-
mute. We answer this question for special classes of triples of matrices arising from
combinatorial data.

Mathematics Subject Classifications: 05E40, 15A27

1 Introduction

Given a field k, the well-known Cayley–Hamilton theorem asserts that every matrix
A ∈ Md(k) is a root of its characteristic polynomial. In particular, the (unital) alge-
bra generated by A is a k-vector space of dimension at most d. It follows from a result
of Motzkin and Taussky [MT55] (shown independently by Gerstenhaber [Ger61]) that if
A,B ∈ Md(k) are commuting d× d matrices, then the algebra they generate has dimen-
sion at most d. In contrast, it is known that for all n 󰃍 4, there exists d and pairwise
commuting matrices A1, . . . , An ∈ Md(k) such that the algebra generated by the Ai has
dimension strictly larger than d, see Example 1. It has been a longstanding open question
(referred to, e.g. in [O’M20], as the Gerstenhaber problem) to determine whether pairwise
commuting matrices A,B,C ∈ Md(k) generate an algebra of dimension at most d.

Let us begin by discussing some of the known cases of the Gerstenhaber problem.
To begin, the results in [MT55, Ger61] are algebro-geometric, showing irreducibility of
the algebraic variety C(2, d) parameterizing pairs (A,B) of commuting d × d matrices.
From this, one reduce to the case of generic pairs (A,B) of commuting matrices, which
are simultaneously diagonalizable; hence, the result follows from Cayley–Hamilton. In
fact, this technique of reducing to simultaneously diagonalizable matrices works whenever
we have irreducibility of the variety C(n, d), parameterizing pairwise commuting d × d
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matrices (A1, . . . , An). Unfortunately, for n 󰃍 3, C(n, d) is notoriously complicated. For
n 󰃍 4 and d 󰃍 4, C(n, d) has multiple irreducible components, see [Ger61, Gur92]. For
n = 3, much less is known: the variety C(n, d) is irreducible for d 󰃑 10 [Š12] and reducible
for d 󰃍 29 [HO01, NŠ14]. See also [JŠ22] for further results on the structure of components
of C(n, d). In general, the Gerstenhaber problem is reduced to checking at the generic
points of every irreducible component of C(n, d); however such an approach is essentially
intractable.

The aforementioned results are geometric and concern the structure of C(n, d). Other
commutative algebraic and linear algebraic proofs that commuting pairs of d×d matrices
generate an algebra of dimension at most d were later discovered [BH90, LL91, NS99,
Ber13]. In addition to the case d 󰃑 10 mentioned above, several other cases of the
Gerstenhaber problem are known when one imposes linear algebraic constraints. For
example, if one of the three d × d matrices A1, A2, A3 has nullity at most 3, then it was
shown in [GS00, Š12] that the algebra the matrices generate has dimension at most d.
The Gerstenhaber problem is also known if one of the matrices has index at most 2, i.e.,
some A2

i = 0, see [HO01]. We refer to [Set11, HO15] for a survey of further results.

In this paper, the viewpoint we take is to break up the Gerstenhaber problem based
on the minimal number of generating vectors required. Given pairwise commuting d× d
matrices (A1, . . . , An), let A be the algebra they generate. We say v1, . . . , vr ∈ kd are
generating vectors if

Span{Avj | A ∈ A, j 󰃑 r} = kd.

When r = 1, it is straightforward to check that dimk A 󰃑 d. On the other hand, for
r = 2, the Gerstenhaber problem is still open and highly non-trivial. Indeed, the simplest
subcase when r = 2 is when Aiv2 ∈ Span{Av1 | A ∈ A, j 󰃑 r} for all i; this case was
only recently resolved by Rajchgot and the second author [RS18, Theorem 1.5], showing
dimk A 󰃑 d.

Following [RSS20], our current paper considers a broad class of combinatorially mo-
tivated examples when r = 2. Before giving the formal definition, we begin with an
example.

Example 1. As mentioned above, there exist choices of pairwise commuting matrices
A1, . . . , A4 ∈ Md(k) such that the algebra A generated by the Ai has dimk A > d. The
standard such example is given by taking d = 4 and letting the four pairwise commuting
matrices be E13, E23, E14, and E24. Then A has a basis given by these matrices as well
as the identity matrix I, hence dimk A = 5 > 4 = d.

This example can be understood combinatorially as follows. Let S = k[x1, . . . , x4] and
consider the monomial ideals

I = (x1, x2)
2 + (x3, x4) and J = (x3, x4)

2 + (x1, x2).

We consider the S-module M obtained from S/I ⊕ S/J by gluing (x1, 0) to (0, x3), and
gluing (x2, 0) to (0, x4), i.e.,

M = (S/I ⊕ S/J)/〈(x1, 0)− (0, x3), (x2, 0)− (0, x4)〉.
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Then M is a vector space of dimension d = 4 with basis (1, 0), (0, 1), (x1, 0), and (x2, 0).
Multiplication by xi on M yields n = 4 commuting matrices. These matrices are precisely
the same as the standard example given in the previous paragraph. ⋄

With this as motivation, we now define our combinatorial matrices, cf. [RSS20, §4.2].

Definition 2. Let S = k[x1, . . . , xn]. Let I ⊂ K ⊂ S and J ⊂ L ⊂ S be monomial

ideals with dimk S/I < ∞ and dimk S/J < ∞. Given an isomorphism φ : K/I
≃−→ L/J of

S-modules sending monomials to monomials, we obtain an S-module

M = (S/I ⊕ S/J)/〈 (f,−φ(f)) | f ∈ K/I 〉

equipped with the natural monomial basis. Letting d = dimM and Ai be the d×d matrix
given by the linear map M

·xi−→ M , we say (A1, . . . , An) are associated to (I, J,K, L,φ).

Remark 3. With notation as in Definition 2, by construction (A1, . . . , An) pairwise com-
mute and require at most two generating vectors, namely (1, 0), (0, 1) ∈ M . In Section
2, we review how to think of such (A1, . . . , An) as coming from n-dimensional partition
shapes.

Remark 4. The n-tuples of commuting d×d matrices (A1, . . . , An) arising from Definition
2 have the following equivalent formulation. They are those tuples for which there are
generating vectors v1 and v2 such that for each j ∈ {1, 2}, we have: (i) the annihilator
AnnA(vj) := {A ∈ A | Avj = 0} is generated by monomials

󰁔
i A

ki
i , and (ii) if

󰁔
i A

ℓi
i vj ∈

Av3−j, then there are mi with
󰁔

i A
ℓi
i vj =

󰁔
i A

mi
i v3−j.

Example 5. In Example 1, we have K = (x1, x2) and L = (x3, x4). The isomorphism

φ : K/I
≃−→ L/J is given by φ(ax1 + bx2) = ax3 + bx4 for a, b ∈ k.

We wish to emphasize that, despite the simplicity of Definition 2, this case is already
non-trivial. Indeed, letting m := (x1, . . . , xn), note that in Example 1, we have K/I ≃
(S/m)⊕2. Thus, even if one restricts attention to examples where K/I is as simple as
possible, namely (S/m)⊕c, we already obtain a broad enough class to encompass the
standard example of four pairwise commuting d×dmatrices (A1, . . . , A4) with dimk A > d.

Definition 6. Let S = k[x1, . . . , xn] and N be an S-module. We say the combinatorial
Gerstenhaber problem holds when gluing along N if for all (I, J,K, L,φ) as in Definition
2 with K/I ≃ N , we have

dimk A 󰃑 dimM,

where (A1, . . . , An) is associated to (I, J,K, L,φ) and A is the algebra generated by
(A1, . . . , An).

In this paper, we prove:

Theorem 7. If S = k[x1, x2, x3] and N =
󰁏

i S/(x1, x2, x
ni
3 ), then the combinatorial

Gerstenhaber problem holds when gluing along N .
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Remark 8. Theorem 7 has the following matrix-theoretic description. It proves dimk A 󰃑
d for all triples of commuting d× d matrices (A1, A2, A3) with generating vectors v1 and
v2 satisfying conditions (i)–(ii) of Remark 4 and the additional constraint that whenever
w ∈ Av1 ∩Av2, we have A1w = A2w = 0.

Theorem 7 generalizes [RSS20, Theorem 4], where the result was shown when all
ni = 1; in terms of triples of matrices, [RSS20, Theorem 4] handled those (A1, A2, A3) as
in Remark 8 but where the condition A1w = A2w = 0 was replaced with A1w = A2w =
A3w = 0; note Theorem 7 is a marked improvement. The proof given in [RSS20] does
not lend itself to generalization and a new idea was required. Our proof of Theorem 7
uses a series of reductions to turn this three-dimensional problem into a two-dimensional
one using objects that we call floor plans. We ultimately prove the main theorem by
constraining the shape that such floor plans can assume.

Conventions. We let N be the set of non-negative integers.

2 Combinatorial Gerstenhaber problem and Young diagrams

In this section, we reduce Theorem 7 to a problem in combinatorics. Much of the material
in this section is based on [RSS20, §4.1–4.2].

To begin, the monomials in S := k[x1, . . . , xn] are in bijection with elements of Nn by
identifying a = (a1, . . . , an) ∈ Nn with xa := xa1

1 · · · xan
n . Recall that an n-dimensional

Young diagram (also known as a standard set or staircase diagram) is a finite subset
λ ⊂ Nn such that for all v, w ∈ Nn with v 󰃑 w (in the standard partial order on Nn), if
w ∈ λ then v ∈ λ. Throughout the paper we fix a convention for drawing Young diagrams.
On the left are the axes for 2-dimensional young diagrams, and on the right are the axes
for 3-dimensional young diagrams

x

y

x y

z

Given a monomial ideal I ⊂ S with dimk S/I < ∞, we obtain an n-dimensional
Young diagram λ ⊂ Nn given by the set of a ∈ Nn with xa /∈ I; moreover, this yields
an inclusion-reversing bijection between such monomial ideals and n-dimensional Young
diagrams, see, e.g., [MS05, Chapter 3] for further details.

Next, if I is as above and I ⊂ K with K a monomial ideal, then let ν ⊂ Nn be the set
of a ∈ Nn with xa ∈ K/I. We see ν = λ󰄀λ′ where λ (resp. λ′) is the n-dimensional Young
diagram associated to I (resp. K). Sets obtained as the difference of two n-dimensional
Young diagrams are referred to as skew shapes. Let em := (0, . . . , 0, 1, 0, . . . , 0) ∈ Nn with
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1 in the m-th entry. We define an equivalence relation ∼󰂃 as follows: given a, b ∈ 󰂃, we
write a ∼󰂃 b if there exist sequences a0, . . . , aℓ ∈ 󰂃 and j0, . . . , jℓ−1 ∈ {1, . . . , n} such that
a0 = a, aℓ = b, and ai+1 = ai±eji . The equivalence classes are referred to as the connected
components of 󰂃; we say 󰂃 is connected if it is a single equivalence class.

Lemma 9. Let S = k[x1, . . . , xn]. Let I ⊂ K ⊂ S and J ⊂ L ⊂ S be monomial ideals
with dimk S/I < ∞ and dimk S/J < ∞. Let ν (resp. 󰂃) be the skew shape associated with
K/I (resp. L/J). Let ν = ν1 ∐ · · · ∐ νm and 󰂃 = 󰂃1 ∐ · · · ∐ 󰂃ℓ be the decompositions into
connected components.

Every isomorphism φ : K/I
≃−→ L/J of S-modules sending monomials to monomials is

given as follows. We have a bijection σ : {1, . . . ,m} → {1, . . . , ℓ} and an element ci ∈ Zn

such that νi + ci = 󰂃σ(i). The map φ is then given by φ(xa) = xa+ci for all a ∈ νi.

Proof. Since φ is an S-module isomorphism and induces a bijection from monomials of
K/I to monomials of L/J , we see φ(xa) = xψ(a), where ψ : ν → 󰂃 is an isomorphism of
posets.

Thus, we need only to prove that if a and b are in the same connected component of
ν, then ψ(a) and ψ(b) are in the same connected component of 󰂃. To see this, suppose
a ∼ν b; we must show ψ(a) ∼󰂃 ψ(b). By definition of the equivalence relation ∼ν , it
suffices to assume b = a+ em. Then

xψ(b) = φ(xb) = φ(xmx
a) = xmφ(x

a) = xmx
ψ(a) = xψ(a)+em

in L/J . Since φ is an isomorphism and b ∈ ν, we see φ(xb) ∕= 0, i.e., both sides of the
equation are non-zero. Hence, ψ(b) = ψ(a) + em, showing ψ(a) ∼󰂃 ψ(b).

In light of Lemma 9, we say two skew shapes ν, 󰂃 ⊂ Nn are translationally equivalent
if there exists w ∈ Zn such that ν +w = 󰂃. Note that this defines an equivalence relation
on skew shapes. Note further that each skew shape ν has a unique lex-smallest point
ℓν . We may therefore normalize our skew shapes by considering ν − ℓν ; we refer to this
translated skew shape as an abstract skew shape. Thus, every skew shape is of the form
α + w where α is an abstract skew shape, w ∈ Zn, and α + w ⊂ Nn. We have natural
notions of connectedness and connected components for abstract skew shapes.

We can now reinterpret the data in Definition 2 purely combinatorially.

Corollary 10. Let S = k[x1, . . . , xn]. Giving (I, J,K, L,φ) as in Definition 2 is equivalent
to giving

1. n-dimensional Young diagrams λ and µ,

2. connected abstract skew shapes ν1, . . . , νr, and

3. lattice points b1, . . . , br, c1, . . . , cr ∈ Zn

such that

the electronic journal of combinatorics 31(4) (2024), #P4.43 5



(a) ν1 + b1, . . . , νr + br are disjoint and contained in λ,

(b) for all w ∈ Nn and all vi ∈ νi such that vi + bi + w ∈ λ, we have vi + w ∈ νi,

(c) ν1 + c1, . . . , νr + cr are disjoint and contained in µ, and

(d) for all w ∈ Nn and all vi ∈ νi such that vi + ci + w ∈ µ, we have vi + w ∈ νi.

Moreover, under this equivalence, λ (resp. µ) is the n-dimensional Young diagram corre-
sponding to I (resp. J), and νi + bi (resp. νi + ci) are the connected components of the
skew shape associated to K/I (resp. L/J).

Proof. If (I, J,K, L,φ) are as in Definition 2, let λ (resp. µ) be the n-dimensional Young
diagram corresponding to I (resp. J). Let β (resp. γ) be the skew shape corresponding
to K/I (resp. L/J). By Lemma 9, we may order the connected components β1, . . . , βr of
β and γ1, . . . , γr of γ such that βi and γi are translationally equivalent. Letting νi be the
abstract skew shape associated to βi, we then see there are b1, . . . , br, c1, . . . , cr ∈ Zn such
that βi = νi+ bi and γi = νi+ ci. Lastly, note that if vi ∈ νi, w ∈ Nn, and vi+ bi+w ∈ λ,
then xvi+bi+w is not in I hence also not in K, i.e., vi + bi + w /∈ νi + bi, so vi + w /∈ νi.

Conversely, given data in (1)–(3) satisfying properties (a)–(d), let I (resp. J) be the
monomial ideal corresponding to λ (resp. µ). Let K ′ be the set of monomials xa such
that a ∈ νi + bi for some i; let K ′′ be linear combinations of the monomials in K ′. Then
K := K ′′ + I is a monomial ideal containing I, and property (b) shows that K ′ forms a
monomial basis for K/I. Thus,

󰁣
i(νi + bi) is the skew shape corresponding to K/I with

connected components νi + bi. Similarly, we obtain a monomial ideal L ⊃ J whose such
that the skew shape corresponding to L/J has connected components νi + ci. The lattice

points ci − bi ∈ Zn then yield an S-module isomorphism φ : K/I
≃−→ L/J as in Lemma

9.

Example 11. Consider the following example (a variant on [RSS20, Example 4]). We
have 2-dimensional Young diagrams (i.e., partitions) λ and µ corresponding respectively
to the ideals I = (x5, x4y, x2y3, xy4, y5), on the left, and J = (x7, x6y, x3y3, x2y4, y5), on
the right.

λ = µ =

The grey regions represent the connected skew shapes ν1, ν2, ν3. These abstract skew
shapes are depicted as follows.

ν1, ν2, ν3 = , ,
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Explicitly,

ν1 = {(0, 0), (1, 0), (0, 1)}, ν2 = {(1, 0), (0, 1), (1, 1)}, ν3 = {(0, 0)},
b1 = (0, 3), b2 = (2, 1), b3 = (4, 0),

c1 = (1, 3), c2 = (4, 1), c3 = (6, 0).

Here K = (y3, x2y2, x3y, x4) and L = (xy3, x4y2, x5y, x6). ⋄

Having now understood Definition 2 combinatorially, the next result gives a combina-
torial reinterpretation of the Gerstenhaber problem, cf. [RSS20, Equation (6)].

Proposition 12. Keep the notation of Definition 2 and let A be the algebra generated
by (A1, . . . , An). Let λ (resp. µ) be the n-dimensional Young diagram corresponding to I
(resp. J). Let ν be the skew shape associated to K/I. Then

dimk A 󰃑 dimk M ⇐⇒ |ν| 󰃑 |λ ∩ µ|.

Proof. By [RSS20, Proposition 1], dimk A 󰃑 dimk M if and only if dimk S/Ann(M) 󰃑
dimk M . Lemma 8 and the paragraph afterwards in (loc. cit) shows that

dimk S/Ann(M) = |λ ∪ µ|.

Thus,

dimk M − dimk S/Ann(M) = dimk(M)− |λ ∪ µ|
= |λ|+ |µ|− |ν|− |λ ∪ µ| = |λ ∩ µ|− |ν|.

This proves the equivalence of |ν| 󰃑 |λ ∩ µ| and dimk S/Ann(M) 󰃑 dimk M , hence also
the equivalence of these inequalities with dimk A 󰃑 dimk M .

Remark 13. Whether or not the inequality dimk A 󰃑 dimk M holds is independent of the
choice of φ, as Proposition 12 shows. Correspondingly, via Corollary 10, whether or not
the inequality holds is independent of the choice of the bi and ci.

We end this section by specializing to our case of interest.

Definition 14. We say (λ, ν, b) is a tower if λ is a 3-dimensional Young diagram, ν =
(ν1, . . . , νr) where each νi is an abstract skew shape of the form {(0, 0, z) | 0 󰃑 z < ni, z ∈
N}, and bi ∈ Zn satisfies properties (a) and (b) of Corollary 10. We say (λ, µ, ν, b, c)
is a compatible tower if (λ, ν, b) and (µ, ν, c) are towers. We define |ν| :=

󰁓r
i=1 |νi| and

frequently refer to νi as a 1× 1× ni shape.

Example 15. Throughout this paper, we will consider the following running example.
Below, we have a compatible tower (λ, µ, ν, b, c) where

b = ((4, 1, 0), (1, 0, 4), (0, 1, 5), (1, 3, 0), (2, 3, 0), (0, 4, 0))

c = ((3, 0, 4), (2, 0, 8), (0, 0, 9), (2, 1, 5), (4, 0, 0), (2, 2, 0))
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and νi is 1× 1× ni with
(n1, . . . , n6) = (1, 1, 2, 3, 4, 5) ;

λ is on the left and µ is on the right, with νi’s highlighted in red:

By Corollary 10 and Proposition 12, we see Theorem 7 is equivalent to

Theorem 16. If (λ, µ, ν, b, c) is a compatible tower, then

|ν| 󰃑 |λ ∩ µ|.

The remainder of this paper is devoted to proving Theorem 16.

Remark 17. It is often useful to think of a three-dimensional Young diagram λ in terms of
two-dimensional data. Let π : N3 → N2 be the projection onto the first two coordinates.
Then specifying λ is equivalent giving a function Hλ : N2 → N with the property that
Hλ(v) 󰃍 Hλ(w) whenever v 󰃑 w in the poset partial order. Specifically, this equivalence
is given by letting Hλ(v) = |λ ∩ π−1(v)|. We sometimes refer to Hλ(v) as the height of λ
over v.

3 Restricting the shape of counter-examples: scaffolded towers

We introduce the following partial order which will play a crucial role in our paper.

Definition 18. We define a partial order on compatible towers as follows: (λ, µ, ν, b, c) 󰃑
(λ′, µ′, ν ′, b′, c′) if the following hold:

1. λ ⊆ λ′ and µ ⊆ µ′,

2. letting ν = (νi | i ∈ I) and ν ′ = (ν ′
i | i ∈ J) there exists an injection ι : I ↩→ J such

that νi ⊆ ν ′
ι(i),
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3. |λ ∩ µ|− |ν| 󰃑 |λ′ ∩ µ′|− |ν ′|.

Remark 19. By (3) and Proposition 12, if (λ, µ, ν, b, c) 󰃑 (λ′, µ′, ν ′, b′, c′) and
(λ′, µ′, ν ′, b′, c′) is a counter-example to the Gerstenhaber problem, then (λ, µ, ν, b, c) is
as well.

Using Remark 19, we will reduce the study of potential counter-examples to certain
compatible towers, which we call scaffolded pairs. We introduce this definition after first
recalling the notion of order ideals.

Definition 20. For T ⊆ Nd, we define the order ideal generated by T to be

〈T 〉 = {w ∈ Nd : w 󰃑 u for some u ∈ T},

where 󰃑 is the entrywise partial order: w = (w1, . . . , wd) 󰃑 u = (u1, . . . , ud) if and only if
wi 󰃑 ui for all i.

Definition 21. We say a tower (λ, ν, b) is scaffolded if

λ =

󰀭
r󰁞

i=1

(νi + bi)

󰀮

where ν = (ν1, . . . , νr). We say (λ, µ, ν, b, c) is a compatible tower that is scaffolded (or a
compatible scaffolded tower) if both (λ, ν, b) and (µ, ν, c) are scaffolded.

Example 22. Let ei denote the i-th standard basis vector of Zn. Let ν1 = ν2 = ν3 =
{(0, 0, 0)} and bi = 2ei. Then the tower (λ, ν, b) depicted below on the left is not scaffolded,
whereas the tower (λ′, ν, b) on the right is scaffolded.

λ = λ′ =

Example 23. Our running example (λ, µ, ν, b, c) introduced in Example 15 is a compatible
scaffolded tower. ⋄

The following lemma shows that it suffices to consider compatible scaffolded towers.

Lemma 24. Let (λ, µ, ν, b, c) be a compatible tower with ν = (ν1, . . . , νr). Letting

λ′ =

󰀭
r󰁞

i=1

(νi + bi)

󰀮
and µ′ =

󰀭
r󰁞

i=1

(νi + ci)

󰀮
,

we see (λ′, µ′, ν, b, c) is scaffolded, and (λ′, µ′, ν, b, c) 󰃑 (λ, µ, ν, b, c).

Proof. We see (λ′, µ′, ν, b, c) is a scaffolded by definition. Since λ is a three-dimensional
Young diagram, if p, q ∈ N3 and p ∈ λ, then q ∈ λ. Since νi + bi ⊂ λ, it follows
that the order ideal generated by νi + bi is contained in λ, and similarly for µ. Thus,
(λ′, µ′, ν, b, c) 󰃑 (λ, µ, ν, b, c).
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4 Reducing to two-dimensional data: floor plans

Due to Remark 19 and Lemma 24, we have reduced Theorem 16 to the case of compatible
scaffolded towers. In this section, we further reduce to two-dimensional data. For this,
we introduce the following definition.

Definition 25. A floor plan is a pair (P, h) of sequences P = (p1, . . . , pr), h = (h1, . . . , hr)
with pi ∈ N2 and hi ∈ Z+. A compatible floor plan is a triple (P,Q, h) where (P, h) and
(Q, h) are floor plans.

We have a function

F : {scaffolded towers} → {floor plans}

defined as follows. If (λ, ν, b) is a scaffolded tower with ν = (ν1, . . . , νr) and π : N3 → N2 is
given by π(x, y, z) = (x, y), then F(λ, ν, b) = ((pi)i, (hi)i), where hi = |νi| and pi = π(bi).
Similarly, we have an induced function

F : {compatible scaffolded towers} → {compatible floor plans}

which we also denote by F . The notation (P, h) is chosen since one should think of P as
the positions of the νi and h as the associated heights.

Example 26. Letting (λ, µ, ν, b, c) be as in Example 15, we have (P,Q, h) = F(λ, µ, ν, b, c)
with

P = ((4, 1), (1, 0), (0, 1), (1, 3), (3, 2), (0, 4))

Q = ((3, 0), (2, 0), (0, 0), (2, 1), (4, 0), (2, 2))

h = (1, 1, 2, 3, 4, 5).

We depict such floor plans below with (P, h) on the left and (Q, h) on the right, where
each pi ∈ P and qi ∈ Q is represented with a box at its place with the numbers in each
box being hi

x

y

5

2

3

1

4
1

x

y

2

5
3
1 1 4

Our next goal is to construct suitable sections of the maps denoted by F . For this, we
need some preliminary definitions. A North-East path is a sequence γ := (q1, q2, . . . , qm)
with qi ∈ N2 and qi+1 − qi ∈ {(1, 0), (0, 1)}. Note that we do not require q1 = (0, 0). We
say γ originates at q1.
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Definition 27. Given a floor plan (P, h) with P = (p1, . . . , pr) and h = (h1, . . . , hr), the
score of a North-East path γ = (q1, . . . , qm) is

score(P,h)(γ) :=
󰁛

pi∈{q1,...,qm}

hi.

The max score of a lattice point q ∈ N2 is

max score(P,h)(q) := max{score(P,h)(γ) | γ originates at q}.

Any North-East path γ originating at q for which max score(P,h)(q) = score(γ) is referred
to as a winning path for q. When (P, h) is understood from context, we suppress it in the
notation for score and max score.

Definition 28. Given a floor plan (P, h), its minimal realization T (P, h) is the tower
(λ, ν, b) defined as follows. Let νi be a 1× 1×hi shape and let λ be the three-dimensional
Young diagram whose corresponding function Hλ : N2 → N is given by
Hλ(q) := max score(P,h)(q), see Remark 17. Letting P = (pi)i, we let bi be the lattice
point whose (x, y)-coordinates are given by pi and whose z-coordinate is Hλ(pi)− hi, i.e.,
bi = pi + (0, 0, Hλ(pi)− hi).

Similarly, given a compatible floor plan (P,Q, h), its minimal realization T (P,Q, h) is
(λ, µ, ν, b, c) where (λ, ν, b) = T (P, h) and (µ, ν, c) = T (Q, h).

Example 29. Let (P,Q, h) be the compatible floor plan given in Example 26. Its minimal
realization T (P,Q, h) is precisely given by our running example (λ, µ, ν, b, c) from Example
15. ⋄

Proposition 30. The minimal realizations T yield sections of the two maps denoted by
F . Furthermore, if (λ, µ, ν, b, c) is scaffolded, then

T (F(λ, µ, ν, b, c)) 󰃑 (λ, µ, ν, b, c)

with respect to the partial order in Definition 18.

Remark 31. In fact, the proof of Proposition 30 below shows the stronger statement that
if (λ, ν, b) is a scaffolded tower, then (λ′, ν, b′) = T (F(λ, ν, b)) satisfies λ′ ⊆ λ.

Proof of Proposition 30. Let (P, h) be a floor plan with P = (pi)i. We first show that
(λ, ν, b) := T (P, h) is scaffolded. Let q ∈ N2 with m := max score(P,h)(q) > 0. We must
show q + (0, 0,m) is in the order ideal generated by the (0, 0, hi) + bi.

For this, let γ = (q1, q2, . . . , qs) be a winning path originating at q1 := q. Since m > 0,
there exists qℓ ∈ P . Without loss of generality, qℓ = p1 and qi /∈ P for i < ℓ. Then
(qℓ, qℓ+1, . . . , qs) is a winning path originating at qℓ; indeed, if γ

′ is a path originating at qℓ
with a strictly larger score, then (q1, . . . , qℓ−1) concatenated with γ′ would yield a strictly
larger score than γ. Thus, q + (0, 0,m) is in the order ideal generated by qℓ + (0, 0,m).
Now qℓ = p1 and m = Hλ(p1), so qℓ + (0, 0,m) = b1 + (0, 0, h1). We have therefore shown
T (P, h) is scaffolded.
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Next, let (λ, ν, b) be a scaffolded tower, (P, h) := F(λ, ν, b) the associated floor plan,
and (λ′, ν, b′) = T (P, h). Note that ν remains unchanged under the operation T ◦ F .
Thus, to finish the proof, it suffices to show λ′ ⊆ λ, i.e., for all q ∈ N2 and any North-East
path γ originating at q, Hλ(q) 󰃍 score(P,h)(γ). Let γ = (q1, . . . , qs) and assume without
loss of generality that qij = pj for i1 < · · · < iℓ, and for t ∕= ij we have qt /∈ P . We know
νj + bj ⊂ λ and by property (b) of Corollary 10, w + bj /∈ λ for all w ∈ N3 with w ∕∈ νj.
Therefore,

Hλ(qij) 󰃍 |νj|+Hλ(qij+1) = hj +Hλ(q1+ij) 󰃍 hj +Hλ(qij+1
).

Thus,

Hλ(q) 󰃍 Hλ(qi1) 󰃍 h1 +Hλ(qi2) 󰃍 h1 + h2 +Hλ(qi3) 󰃍 . . . 󰃍
󰁛

j

hj = score(P,h)(γ),

as desired.

5 Constraints on the border of a floor plan

In this section, we further reduce Theorem 16 to the study of floor plans whose borders are
highly constrained. Throughout this section, we use the following notation. Let e1, e2, e3
be the standard basis vectors of Z3. For any p ∈ N3, we let x(p), y(p), and z(p) denote
the x, y, and z coordinates of p. If (P, h) is a floor plan with P = (pi)i, we will sometimes
write p ∈ P to mean p = pi for some i.

Definition 32. Let (P, h) and (P ′, h) be floor plans1 and let (λ, ν, b) = T (P, h) and
(λ′, ν, b′) = T (P ′, h). We write

(P ′, h) 󰃑 (P, h) if λ′ ⊂ λ.2

Similarly, given compatible floor plans (P,Q, h) and (P ′, Q′, h), we write

(P,Q, h) 󰃑 (P ′, Q′, h) if T (P,Q, h) 󰃑 T (P ′, Q′, h)

with respect to the partial ordering in Definition 18. We say (P, h), respectively (P,Q, h),
is minimal if it is minimal with respect to these partial orders.

Definition 33. Let (P, h) be a floor plan. We define the support of (P, h) to be

supp(P, h) := {q ∈ N2 | max score(P,h)(q) > 0}.

The border B(P, h) is then defined as all q ∈ supp(P, h) such that q + e1 or q + e2 is not
in supp(P, h).

1Note that the second coordinates of these floor plans are the same.
2This is equivalent to T (P ′, h) 󰃑 T (P, h) with respect to the partial ordering in Definition 18.
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Remark 34. Note that that supp(P, h) = 〈P 〉, which we will make use of in Proposition
41.

Remark 35. Note that supp(P, h) is the projection of T (P, h) onto the xy-plane.

Example 36. The support and border in Example 26 are illustrated below for each floor
plan. The support is the region enclosed by a bold line and the border is indicated by
shaded grey boxes.
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y
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3

1

4
1

x

y

2

5
3
1 1 4

Our first goal is to prove:

Proposition 37. Let (P, h) be a minimal floor plan. Then

B(P, h) ⊆ P.

In particular, if (P,Q, h) is a minimal compatible floor plan, then B(P, h) ⊆ P and
B(Q, h) ⊆ Q.

We prove this proposition after a preliminary result.

Lemma 38. Let (P, h) be a floor plan. Suppose there exists i such that

1. x(pi) > 0 and

2. for all j with x(pj) = x(pi)− 1, we have y(pj) < y(pi).

Then letting p′i = pi − e1 and p′k = pk for all k ∕= i, we have (P ′, h) < (P, h) where
P ′ = (p′j)j.

Proof. Note that max score(P ′,h)(pi) = max score(P,h)(pi)−hi < max score(P,h)(pi) and that
for all p with p ∕󰃑 pi, we have max score(P ′,h)(p) = max score(P,h)(p). Further note that
max score(P ′,h)(p) 󰃑 max score(P,h)(p) if p < pi with x(p) = x(pi); indeed, letting γ be a
North-East path originating at p, if γ contains pi then score(P ′,h)(γ) = score(P,h)(γ)− hi,
and if γ does not contain pi then score(P ′,h)(γ) = score(P,h)(γ).

Thus, to prove (P ′, h) < (P, h), it suffices to show max score(P ′,h)(v)󰃑max score(P,h)(v)
for all v 󰃑 pi − e1. For this, consider a North-East path γ which contains p′i. Let
γ = (q1, . . . , qs) with qℓ = p′i. Say x(qj) = x(p′i) for ℓ 󰃑 j 󰃑 m and that x(qm+1) > x(p′i);
this implies qm+1 = qm + e1. Let

γ′ = (q1, . . . , qℓ, qℓ + e1, . . . , qm + e1, qm+2, . . . , qs).
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By hypothesis, qj /∈ P for ℓ 󰃑 j 󰃑 m, so

score(P ′,h)(γ) 󰃑 score(P ′,h)(γ
′) = score(P,h)(γ

′)

which proves the result.

Proof of Proposition 37. Let v ∈ B(P, h)󰄀P . Note that we cannot have v+e1 /∈ supp(P )
and v + e2 /∈ supp(P ) since this implies then max score(P,h)(v) = score(P,h)(γ) = 0, where
γ is the singleton path (v). Thus, without loss of generality, v + e1 ∈ supp(P ) and
v + e2 /∈ supp(P ). As a result, max score(P,h)(v) is the sum of the hi for all i with
y(pi) = y(v). Since this quantity is non-zero, we may assume without loss of generality
that y(v) = y(p1), x(v) < x(p1), and there are no p ∈ P such that y(v) = y(p) and
x(v) < x(p) < x(p1). Let P ′ = (p′i)i where p′1 = p1 − e1 and p′i = pi for i ∕= 1. Then by
Lemma 38, (P ′, h) < (P, h), showing that (P, h) is not minimal.

Example 39. Here is a demonstration of the proof of Proposition 37. We use (P, h) from
Example 36, which is

x

y
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3

1

4
1

P = ((4, 1),(1, 0),(0, 1),(1, 3),(3, 2),(0, 4)),

h = ( 1, 1, 2, 3, 4, 5).

We observe that p4 = (3, 2) satisfies the premise of Lemma 38, as x(p4) = 3 > 0 and
there is no j such that x(pj) = x(p4)−1. Therefore, we let p′4 = p4−e1 = (2, 2) to update
our floor plan to be

x
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4
1

P = ((4, 1),(1, 0),(0, 1),(1, 3),(2, 2),(0, 4)),

h = ( 1, 1, 2, 3, 4, 5).

For simplicity, we will call the updated floor plan (P, h) as before. Note that the
border B(P, h) is still not contained in P and that p1 = (4, 1) is such that there is no
x(pj) = x(p1)− 1. Hence we let p′1 = p1 − e1 = (3, 1).
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P = ((3, 1),(1, 0),(0, 1),(1, 3),(2, 2),(0, 3)),

h = ( 1, 1, 2, 3, 4, 5).
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By symmetry, we apply Lemma 38 in the y-direction, which gives us

x

y

5

2
3

1
4

1

P = ((2, 1),(1, 0),(0, 1),(0, 3),(1, 2),(0, 3)),

h = ( 1, 1, 2, 3, 4, 5).

Applying the same algorithm on (Q, h) gives

x

y

5
3
2 1 1 4

Q = ((2, 0),(1, 0),(0, 0),(0, 1),(3, 0),(0, 2)),

h = ( 1, 1, 2, 3, 4, 5).

Proposition 37 gives a structure result for minimal floor plans. Our next goal in this
section is to prove a further structure result for minimal compatible floor plans.

Recall the notation for H󰂃(v) for the height of a three-dimensional Young diagram 󰂃
over a point v ∈ N2 in Remark 17. We observe that for three-dimensional Young diagrams
λ and µ we have

|λ ∩ µ| =
󰁛

v∈N2

Hλ∩µ(v).

If we also have compatible floor plans (P,Q, h) such that (λ, µ, ν, b, c) = T (P,Q, h), then
we get

Hλ∩µ(v) = min(max score(P,h)(v),max score(Q,h)(v)).

Lemma 40. If (P,Q, h) is a minimal compatible floor plan, then P ∩Q = ∅.

Proof. Let P = (pi)i and Q = (qi)i. Let (λ, µ, ν, b, c) = T (P,Q, h). We show that if P ∩Q
is non-empty, then (λ, µ, ν, b, c) is not minimal. Without loss of generality, w := pi = qj
and max score(P,h)(pi) 󰃍 max score(Q,h)(qj). Let h′

j = hj − 1 and h′
m = hm for all m ∕= j.

Let (λ′, µ′, ν ′, b′, c′) = T (P,Q, h′). Then we see

max score(P,h′)(p) 󰃑 max score(P,h)(p) and max score(Q,h′)(q) 󰃑 max score(Q,h)(q)

for all p ∈ P and q ∈ Q. Furthermore,

max score(Q,h′)(qj)=max score(Q,h)(qj)− 1 and max score(P,h′)(pi)󰃍max score(P,h)(pi)− 1.

Therefore

Hλ′∩µ′(w) = min(max score(P,h′)(pi),max score(Q,h′)(qj))

= max score(Q,h)(qj)− 1 = Hλ∩µ(w)− 1
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and so
|λ′ ∩ µ′| =

󰁛

v∈N2

Hλ′∩µ′(v) 󰃑
󰁛

v∈N2

Hλ∩µ(v)− 1 = |λ ∩ µ|− 1.

Since λ′ ⊂ λ and µ′ ⊊ µ, we see (λ′, µ′, ν ′, b′, c′) < (λ, µ, ν, b, c).

Proposition 41. If (P,Q, h) is a minimal compatible floor plan, then

supp(P ) ⊂ supp(Q) or supp(Q) ⊂ supp(P ).

Proof. Let M(P ),M(Q) denote the sets of maximal elements of P,Q, respectively.
We first note that, given any subset S ⊆ N2, the order ideal 〈S〉 generated by S

is completely determined by the maximal elements of S: that is, if M(S) is the set of
maximal elements of S, then 〈S〉 = 〈M(S)〉. Also note that supp(P ) = 〈P 〉, supp(Q) =
〈Q〉 by definition, so that one has

supp(P ) = 〈M(P )〉, supp(Q) = 〈M(Q)〉.
By maximality of elements of M(P ), every two distinct elements of M(P ) are not

comparable, so we may order M(P ) as

M(P ) = {pk}Kk=1

such that x(pk) < x(pk
′
), y(pk) > y(pk

′
) for each k < k′. We use superscript notation

so as not to conflict with our running subscript notation pi. We can similarly order
M(Q) = {ql}Ll=1.

Now observe that the ordering onM(P ),M(Q) is chosen in a way to allow a convenient
expression of B(P ), B(Q). That is, we have

B(P ) =
L󰁞

l=1

󰀃
{x(pl−1) + 1, . . . , x(pl)}× {y(pl)}

󰀄
∪

L󰁞

l=1

󰀃
{x(pl)}× {y(pl), . . . , y(pl+1) + 1}

󰀄
,

(5.1)
where we simply define x(p0) = 0 = y(pL+1). One has similar formula for B(Q).

We are going to show that M(P ) ⊆ Q or M(Q) ⊆ P , thereby proving the result.
To that end, suppose by symmetry y(p1) 󰃑 y(q1), and we claim that every pk ∈ Q. We
induct on k.

The base case k = 1 is given as follows. Let l1 be the maximum index such that
y(p1) 󰃑 y(ql1). Such an index exists since l1 = 1 satisfies the inequality. Suppose for
contradiction x(p1) > x(ql1). Then note (5.1) provides that (x(ql1), y(p1)) ∈ B(P )∩B(Q),
which is a contradiction to Proposition 37 and Proposition 40.

The inductive step is essentially the same. Suppose the inductive argument is true for
k− 1, where k > 1. Then note that we can guarantee the existence of maximum index lk
such that y(pk) 󰃑 y(qlk). If we assume x(pk) > x(qlk), then (x(qlk), y(pk)) ∈ B(P )∩B(Q),
so we run into a contradiction.

Hence every pk have some qlk with pk 󰃑 qlk , meaning that

supp(P ) = 〈M(P )〉 ⊆ 〈M(Q)〉 = supp(Q).

Now we finally invoke Lemma 40 again to conclude that the above inclusion is strict, since
otherwise M(P ) = M(Q) which implies P ∩Q ∕= ∅.
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6 Proof of Theorem 7

We turn now to proving Theorem 7. As shown in §2, this is equivalent to proving Theorem
16.

Proof of Theorem 16. Assume there exists a counter-example to the theorem. By Re-
mark 19, Lemma 24, and Proposition 30, we may assume (λ, µ, ν, b, c) = T (P,Q, h) with
(P,Q, h) a minimal compatible floor plan. By Proposition 41, we may assume without
loss of generality that supp(P ) ⊂ supp(Q).

Let P = (p1, . . . , pr) and Q = (q1, . . . , qr). Reindexing, we may assume there exists
N1 such that hi = 1 and qi ∈ supp(Q) is maximal (in the partial ordering on N2) if and
only if i > N1. We may further assume there exists N0 󰃑 N1 such that qi ∈ supp(Q) is
maximal if and only if i > N0. Let

P ′ = (pi | i 󰃑 N1), Q′ = (qi | i 󰃑 N1), andh
′ = (h1, . . . , hN0 , hN0+1 − 1, . . . , hN1 − 1);

in other words, h′ decreases the value of h at all maximal elements of supp(Q) and
deletes any indices which now have value 0. Let (λ′, µ′, ν ′, b′, c′) = T (P ′, Q′, h′). We claim
(λ′, µ′, ν ′, b′, c′) < (λ, µ, ν, b, c), contradicting minimality of (λ, µ, ν, b, c).

To see this, first note that

max score(P ′,h′)(p) 󰃑 max score(P,h)(p)

for all p ∈ supp(P ) and that

max score(P ′,h′)(pi) 󰃑 max score(P,h)(pi)− 1

for all N0 < i 󰃑 N1. Thus, λ′ ⊆ λ. Furthermore, B(Q, h) ⊂ Q by Proposition 37; it
follows that for all q ∈ supp(Q), any winning path γ for (Q, h) originating at q must
contain a (necessarily unique) maximal element of supp(Q). Since the value of h′ is one
less than the value of h at all maximal elements of supp(Q), we see

max score(Q′,h′)(q) 󰃑 max score(Q,h)(q)− 1

for all q ∈ supp(Q). In particular, µ′ ⊊ µ.
To show (λ′, µ′, ν ′, b′, c′) < (λ, µ, ν, b, c), it therefore remains to prove

|λ′ ∩ µ′|−
󰁛

j

|ν ′
j| 󰃑 |λ ∩ µ|−

󰁛

i

|νi|. (6.2)

For i > N0, we see

Hλ′∩µ′(pi) = min(max score(P ′,h′)(pi),max score(Q′,h′)(pi))

󰃑 min(max score(P,h)(pi),max score(Q,h)(pi))− 1 = Hλ∩µ(pi)− 1.

Thus,

|λ′ ∩ µ′| =
󰁛

v∈N2

Hλ′∩µ′(v) 󰃑
󰁛

v∈N2

Hλ∩µ(v)− (r −N0) 󰃑 |λ ∩ µ|− (r −N0).

Observing that
󰁓

i |νi|−
󰁓

j |ν ′
j| = r −N0, we see (6.2) holds.
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Example 42. Lastly, we compute the basic matrix invariants for the triple (A1, A2, A3)
corresponding to our running example (Example 15). Several results to date on Gersten-
haber’s problem are proved using matrix-theoretic properties. For example, in [Š12, NS99]
the Gerstenhaber problem is proved whenever one of the matrices Ai has nullity at most
3, and in [HO01] it is solved if some Ai has index at most 2; recall the index of a matrix
A is the minimum positive integer k such that Ak = 0.

Our matrices (A1, A2, A3) from Example 15 have size 132× 132 since |λ|+ |µ|− |ν| =
71 + 77− 16 = 132.

One can easily read off the indices of our matrices from the combinatorial description.
Recall that A1, A2, A3 correspond respectively to multiplication by x, y, z. In terms of our
diagram pictured in Example 15, this corresponds to taking a box and shifting in the x,
y, or z directions. Thus, the index of A3 is the maximum of the z-height of λ and the
z-height of µ, i.e., the index of A3 is 11 = max(7, 11). Similarly, the index of A1 is the
maximum of the x-lengths of λ and µ, which is 5 = max(5, 5). Similarly, we compute the
index of A2 to be 5 = max(5, 3).

One can also easily read off the nullity of our matrices from the combinatorial descrip-
tion. The kernel of A3 corresponds to the boxes at on top layers of λ and µ after taking
into that red boxes are glued. Note that there are 17 boxes on the top layer of λ, 11 on
the top layer of µ, and 6 of these are glued, so we see the nullity of A3 is 17+11−6 = 22.
Similarly, we compute that the nullities of A1 and A2 are 37 and 43. Note that the number
of boxes on the top layer of λ is simply the number of boxes in the projection of λ to
the xy-plane. Thus, the nullity of A3 can be computed as the number of boxes in the
projection of λ plus the number of boxes in the projection of µ minus the number of total
ν shapes. The nullity of A1 (resp. A2) is similarly computed as the number of boxes in
the projection of λ to the yz (resp. xz) plane plus the number of boxes in the projection
of µ minus |ν|.

Similarly, it is straightforward to compute the Weyr form of the matrices. Recall that
the Weyr form [OCV11] of a matrix A is given by the tuple3 whose i-th entry is the
dimension of the annihilator of Ai minus the dimension of the annihilator of Ai−1. For
example, the first entry of the tuple is the nullity of A. It is easy to check that if λi

(resp. µi) denotes the boxes in λ (resp. µ) whose x-coordinate is i, then the Weyr form
of A1 is given by

(|λ0|+ |µ0|− |ν|, |λ1|+ |µ1|, |λ2|+ |µ2|, . . . ).

In our running example, the Weyr form for A1 is (37, 38, 34, 17, 6).
We see from these combinatorial descriptions that Theorem 7 applies to triples of

matrices with arbitrarily large index and nullity, and one has great flexibility in choosing
the Weyr form of A1. ⋄
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