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Abstract

Let G be a finite abelian group of order n and MG the Cayley table of G. Let
P(G) be the number of formally different monomials occurring in per(MG), the
permanent of MG. In this paper, for any finite abelian groups G and H, we prove
the following characterization

P(G) = P(H) ⇔ G ∼= H.

It follows that the group permanent determines the finite abelian group, which
partially answers an open question of Donovan, Johnson and Wanless. In fact, P(G)
is closely related to zero-sum sequences over finite abelian groups and we shall prove
the above characterization by studying a reciprocity of zero-sum sequences over finite
abelian groups. As an application of our method, we show that P(G) > P(Cn) for
any non-cyclic abelian group G of order n and thereby answer an open problem of
Panyushev.

Mathematics Subject Classifications: 05A10, 11B13, 15A72

1 Introduction

Let G = ({x0, · · · , xn−1}, +̇) be a finite group of order n. Let MG = (mij)n×n (where
mij = xi+̇xj, 0 󰃑 i, j 󰃑 n− 1) be the Cayley table of G. Recall that the determinant of
MG and the permanent of MG, denoted by det(MG) and per(MG), are the homogeneous
polynomials of degree n in C[x0, · · · , xn−1]:

det(MG) =
󰁛

τ∈Sn

(−1)sgn(τ)
n−1󰁜

i=0

mi,τ(i) =
󰁛

τ∈Sn

(−1)sgn(τ)
n−1󰁜

i=0

(xi+̇xτ(i))
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and

per(MG) =
󰁛

τ∈Sn

n−1󰁜

i=0

mi,τ(i) =
󰁛

τ∈Sn

n−1󰁜

i=0

(xi+̇xτ(i)).

We call det(MG) (resp. per(MG)) the group determinant (resp. group permanent) of G.
The study of det(MG) can be traced back to pioneering works of Dedekind and Frobenius,
which led to the development of representation theory; see [23]. Let P(G) be the number
of formally different monomials occurring in per(MG). For example, let x0, · · · , xn−1 be
the natural ordering of Cn, we have

MC3 =

󰀳

󰁃
x0 x1 x2

x1 x2 x0

x2 x0 x1

󰀴

󰁄 ,

per(MC3) = x3
0 + x3

1 + x3
2 + 3x0x1x2, and P(C3) = 4. There are several interesting results

and problems on P(G). To state these results and problems, we first introduce the notion
of zero-sum sequences over finite abelian groups.

Now, we focus on the case when G is abelian and |G| = n. Let k be a positive integer,
we call S = g1 · . . . · gk a sequence over G if S is a collection of elements g1, . . . , gk from
G where repetition is allowed but the ordering of the elements is disregarded. Here, k
is called the length of S and we denote it by |S| = k. We define σ(S) = g1+̇ · · · +̇gk
and call S a zero-sum sequence if σ(S) equals 0G, the identity of G. The studies of zero-
sum sequences over finite abelian groups can be traced back to classical works of Erdős,
Ginzburg and Ziv [9] and Olson [28, 29]; we refer to [12] for a survey on zero-sum theory.
We denote

M(G, k) = {S is a sequence over G | σ(S) = 0 and |S| = k}.

For any monomial
󰁔n−1

i=0 mi,τ(i) =
󰁔n−1

i=0 (xi+̇xτ(i)) in per(MG), it is easy to see that the
sum of the n elements in this monomial is 0G. Therefore, we have the relation P(G) 󰃑
|M(G, |G|)|. In 1952, with an elegant constructive approach, Hall [19] proved that P(G) =
|M(G, |G|)|. In this paper, we show that P(G) is a characterization for finite abelian
groups.

Theorem 1. Let G and H be finite abelian groups. We have

P(G) = P(H) ⇔ G ∼= H.

Let f ∈ C[x1, · · · , xn] and g ∈ C[y1, · · · , yn], we say that f and g are similar (de-
noted by f ≈ g) if there is a bijection ϕ : {x1, · · · , xn} → {y1, · · · , yn} such that
f(ϕ(x1), · · · ,ϕ(xn)) = g(y1, · · · , yn). In 1991, based on classical results of Frobenius
and Dieudonné on group determinants, Formanek and Sibley [10] proved that, for any
finite groups G and H, det(MG) ≈ det(MH) if and only if G ∼= H; also see [22, 25]. Later
in 2014, Donovan, Johnson and Wanless [5] showed that, for any finite groups G and H,
if there is a bijection

ψ : {xg | g ∈ G} → {xh | h ∈ H} (with x0G 󰀁→ x0H )
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such that per(MG) is similar to per(MH) via the bijection ψ, then G ∼= H. Moreover, they
proposed an open question that whether the above result holds without the assumption
that x0G maps to x0H .

Problem 2. ([5, Section 8]) Let G and H be finite groups. Is it true that

per(MG) ≈ per(MH) ⇔ G ∼= H?

It is easy to see that Theorem 1 answers Problem 2 in the abelian case.
Note that, based on Hall’s result, Theorem 1 is equivalent to the statement that, for

any abelian groups G and H, |M(G, |G|)| = |M(H, |H|)| if and only if G ∼= H. Therefore,
we obtain a characterization of finite abelian groups in terms of number of zero-sum
sequences. We remark that, there is also a long-standing and fascinating problem of
characterizing finite abelian groups in terms of certain factorization property of zero-sum
sequences, we refer to [13, 14, 15, 16] for detailed discussions and some recent progress.

To prove Theorem 1, it is natural to consider a counting formula for P(G) (equivalently,
for |M(G, |G|)|). In fact, Theorem 1 is essentially a consequence in our study of the
following combinatorial problem on |M(G, k)|.

Let Cn be a cyclic group with n elements. In 1975, Fredman [11] observed the following
very interesting reciprocity

|M(Cn,m)| = |M(Cm, n)| (1)

using generating functions as well as a necklace interpretation. Later in 1999, Elashvili,
Jibladze and Pataraia [7, 8] rediscovered the same result with different method from in-
variant theory. It was remarked in [8, Introduction] that N. Alon also independently
proved (1) when (n,m) = 1. Meanwhile, G. Andrews, N. Alon and R. Stanley inde-
pendently obtained the counting formula for M(Cn,m); see [8, Introduction and Section
3]. In 2011, Panyushev [30] provided an extension of Fredman’s reciprocity in terms of
symmetric tensor exterior algebras.

Assume that G ∼= Cn1 ⊕ · · ·⊕ Cnr , where 1 < n1| · · · |nr ∈ N. For any positive integer
m, recall the following counting formula

|M(G,m)| = 1

n+m

󰁛

d|(n,m)

ϕG(d)

󰀕
n/d+m/d

n/d

󰀖
, (2)

where

ϕG(d) =
󰁛

ℓ|d

µ(
d

ℓ
)

r󰁜

i=1

(ni, ℓ)

is the number of elements in G of order d; see [21, 26] for proofs. It follows immediately
from (2) that, if

ϕG(d) = ϕH(d) for any d|(|G|, |H|), (3)

then we have
|M(G, |H|)| = |M(H, |G|)|. (4)
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In particular, if (|G|, |H|) = 1, then

|M(G, |H|)| = |M(H, |G|)| = 1

|G|+ |H|

󰀕
|G|+ |H|
|G|, |H|

󰀖
, (5)

which are called the rational Catalan numbers. Recently, Han and the second author
[21] provided a combinatorial interpretation of (5) using rational Catalan combinatorics,
based on a correspondence between zero-sum sequences and rational Dyck paths.

In this paper, we prove that (3) is not only a sufficient condition but also a necessary
condition for the reciprocity (4) to hold. This answers the Problem 5.2 in [21].

Theorem 3. Let G and H be two finite abelian groups. Then we have

|M(G, |H|)| = |M(H, |G|)|

if and only if ϕG(d) = ϕH(d) for any d|(|G|, |H|).

We will see that Theorem 1 is essentially a consequence of Theorem 3. It is possible
to extend Theorem 3 to the non-abelian setting in terms of invariant theory and we shall
provide some results in Section 4.

In [30], Panyushev observed that P(C2⊕C2) > P(C4), and he speculated that P(G) 󰃍
P(Cn) when |G| = n. More generally, Panyushev proposed the following interesting
problem (using our notation).

Problem 4. ([30, Problem 3]) Let G be a finite abelian group of order n and Cn a cyclic
group of order n. For any integer m 󰃍 2, is it true that

|M(G,m)| 󰃍 |M(Cn,m)|?

As an application of our method, we answer Problem 4 affirmatively (see Proposition
11). In particular, Proposition 11 implies that P(G) > P(Cn) for any non-cyclic abelian
group G of order n. This result is also related a more general open question of Donovan,
Johnson and Wanless [5, Section 8] concerning the latin squares of a given order n.

The rest of this paper is organized as follows. In Section 2, we introduce some def-
initions as well as some auxiliary lemmas. In Section 3, we prove our main results. In
Section 4, we consider an extension of Theorem 3 to the non-abelian setting in terms of
invariant theory. In Section 5, we provide some further discussions.

2 Preliminaries

In this section, we introduce some definitions and notation, as well as some auxiliary
results.

Let C be the field of complex numbers. Denote by N the set of positive integers and
let N0 = N ∪ {0}. Let G be a finite abelian group. By the fundamental theorem of finite
abelian groups we have

G ∼= Cn1 ⊕ · · ·⊕ Cnr

the electronic journal of combinatorics 31(4) (2024), #P4.44 4



where 1 < n1| · · · |nr ∈ N are positive integers. Moreover, n1, . . . , nr are uniquely deter-
mined by G. We denote by ord(g) the order of an element g in a group. For any prime p,
we denote by Sylp(G) the Sylow p-subgroup of G.

Now, we prove some auxiliary lemmas, which will be repeatedly used in the subse-
quent proofs. The first two technical lemmas are some inequalities involving binomial
coefficients.

Lemma 5. Let m,n, a, b 󰃍 2 be integers and a, b|(m,n).

(i) If b > a, we have
󰀕

m+n
a

m
a
, n
a

󰀖󰀱󰀕
m+n
b

m
b
, n
b

󰀖
󰃍 (1 +

m

n
)n(

1
a
− 1

b
)(1 +

a

b

n

m
)m( 1

a
− 1

b
).

Consequently,
󰀃m+n

a
m
a
,n
a

󰀄
>

󰀃m+n
b

m
b
,n
b

󰀄
.

(ii) If b 󰃍 2a, we have

a

󰀕
m+n
a

m
a
, n
a

󰀖
> max{m,n}

󰀕
m+n
b

m
b
, n
b

󰀖
.

Proof. (i) Since b > a, we have

󰀕
m+n
a

m
a
, n
a

󰀖
=

(m+n
a

)!
m
a
!n
a
!

=

󰁔m+n
a

i=m+n
b

+1
i

󰁔m
a

j=m
b
+1 j

󰁔n
a

k=n
b
+1 k

󰀕
m+n
b

m
b
, n
b

󰀖

=

m
a󰁜

j=m
b
+1

n
b
+ j

j

n
a󰁜

k=n
b
+1

m
a
+ k

k

󰀕
m+n
b

m
b
, n
b

󰀖

󰃍
m
a󰁜

j=m
b
+1

n
b
+ m

a
m
a

n
a󰁜

k=n
b
+1

m
a
+ n

a
n
a

󰀕
m+n
b

m
b
, n
b

󰀖

= (1 +
m

n
)n(

1
a
− 1

b
)(1 +

a

b

n

m
)m( 1

a
− 1

b
)

󰀕
m+n
b

m
b
, n
b

󰀖
,

as desired.
(ii) Without loss of generality, we assume that m 󰃍 n. Note that

a

󰀕
m+n
a

m
a
, n
a

󰀖
= a

m+n
a

· · · (m
a
+ 2)(m

a
+ 1)

n
a
(n
a
− 1) · · · 2 · 1 󰃍 (m+ a)

n
a󰁜

j=2

m
a
+ j

j
.

Using the fact that n
a
− 1 󰃍 n

b
and that b

a
󰃍 2 󰃍 j+1

j
(which implies

m
a
+j+1

j+1
󰃍

m
b
+j

j
) for all

j 󰃍 1, we have

n
a󰁜

j=2

m
a
+ j

j
=

n
a
−1󰁜

j=1

m
a
+ j + 1

j + 1
󰃍

n
b󰁜

j=1

m
a
+ j + 1

j + 1
󰃍

n
b󰁜

j=1

m
b
+ j

j
=

󰀕
m+n
b

m
b
, n
b

󰀖
.
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It follows that

a

󰀕
m+n
a

m
a
, n
a

󰀖
󰃍 (m+ a)

n
a󰁜

j=2

m
a
+ j

j
> m

󰀕
m+n
b

m
b
, n
b

󰀖
.

This completes the proof.

Lemma 6. Let n = pαqβn′,m = pγqδm′ be positive integers, where p and q are distinct
primes, (n′, pq) = (m′, pq) = 1, and α, β, γ, δ ∈ N. Suppose that a = ps, b = qt (s, t 󰃍 1)
satisfy b < 2a and a, b|(m,n). Denote

∆m,n(a, b) := pα+γ−2s−1qβ−tm′n′.

(i) If n( 1
a
− 1

b
) 󰃍 3 and {a, b} ∕= {2, 3}, then

a

󰀕
m+n
a

m
a
, n
a

󰀖󰀱󰀕
m+n
b

m
b
, n
b

󰀖
> 2∆m,n(a, b)q

δ.

Consequently, if ∆m,n(a, b) 󰃍 1, then we have

a

󰀕
m+n
a

m
a
, n
a

󰀖
− (qδ − qt)

󰀕
m+n
b

m
b
, n
b

󰀖
> 2b

󰀕
m+n
b

m
b
, n
b

󰀖
. (6)

Moreover, (6) always holds when {a, b} = {2, 3}.

(ii) If n( 1
a
− 1

b
) = 2, and {a, b} ∕= {2, 3}, then

a

󰀕
m+n
a

m
a
, n
a

󰀖󰀱󰀕
m+n
b

m
b
, n
b

󰀖
> ∆m,n(a, b)q

δ.

Consequently, if ∆m,n(a, b) 󰃍 1, then we have

a

󰀕
m+n
a

m
a
, n
a

󰀖
− (qδ − qt)

󰀕
m+n
b

m
b
, n
b

󰀖
> b

󰀕
m+n
b

m
b
, n
b

󰀖
. (7)

Proof. Without loss of generality, we assume that m 󰃍 n.
(i) As n( 1

a
− 1

b
) 󰃍 3, by Lemma 5, we have

a

󰀕
m+n
a

m
a
, n
a

󰀖󰀱󰀕
m+n
b

m
b
, n
b

󰀖
󰃍 a(1 + m

n
)n(

1
a
− 1

b
)(1 + a

b
n
m
)m( 1

a
− 1

b
)

> a
󰀓

m
n
n( 1

a
− 1

b
) + m2

n2 n(
1
a
− 1

b
)
󰀔
n( 1

a
− 1

b
)a
b

󰃍 2amn( 1
a
− 1

b
)2 a

b

= 2
mn

pa2bqδ
qδ

󰀕
(b− a)2

pa2

b2

󰀖

= 2∆m,n(a, b)q
δ
󰀓
(b− a)2 pa

2

b2

󰀔
.
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It suffices to prove that (b−a)2 pa
2

b2
󰃍 1. If b−a 󰃍 2, as b < 2a, then we have (b−a)2 pa

2

b2
󰃍

4a2

b2
p > p. Therefore, we may assume that b = a+1. In this setting, as {a, b} ∕= {2, 3}, we

have a 󰃍 3 and (b− a)2 pa
2

b2
= pa2

(a+1)2
= p

(1+1/a)2
󰃍 9

16
p > 1.

Now, we consider the case {a, b} = {2, 3}. In this case, we have (b−a)2 pa
2

b2
= 8

9
, where

p = 2. As n(1
2
− 1

3
) 󰃍 3, we have n 󰃍 18. Now, it is easy to check that ∆m,n(a, b) 󰃍 2 and

therefore ∆m,n(a, b)(b− a)2 pa
2

b2
> 1. Consequently, we have

a

󰀕
m+n
a

m
a
, n
a

󰀖
> 2∆m,n(a, b)q

δ

󰀕
(b− a)2

pa2

b2

󰀖󰀕
m+n
b

m
b
, n
b

󰀖
> 2qδ

󰀕
m+n
b

m
b
, n
b

󰀖
,

and (6) follows.
(ii) In this case, by Lemma 5, we have

a

󰀕
m+n
a

m
a
, n
a

󰀖󰀱󰀕
m+n
b

m
b
, n
b

󰀖
󰃍 a(1 + m

n
)n(

1
a
− 1

b
)(1 + a

b
n
m
)m( 1

a
− 1

b
)

> am( 1
a
− 1

b
)n( 1

a
− 1

b
)a
b

= amn( 1
a
− 1

b
)2 a

b

= ∆m,n(a, b)q
δ
󰀓
(b− a)2 pa

2

b2

󰀔
.

Similar to the above, we have (b− a)2 pa
2

b2
󰃍 1 and the desired result follows.

The following three lemmas, whose proofs are based on the structure of finite abelian
groups, are very useful in our subsequent proofs.

Lemma 7. Let G (resp. H) be a finite abelian group of order n (resp. m). Denote

EG := {d ∈ N | ϕG(d) > ϕH(d) for d|(|G|, |H|)},
EH := {d ∈ N | ϕG(d) < ϕH(d) for d|(|G|, |H|)}.

If EG (resp. EH) is nonempty, then min EG (resp. min EH) is a prime power.

Proof. Let

n =
ℓ󰁜

i=1

pni
i , m =

ℓ󰁜

i=1

pmi
i ,

where ni,mi 󰃍 0 for 1 󰃑 i 󰃑 ℓ. First, we assume that EG is nonempty.
For any d|(n,m), let d =

󰁔ℓ
i=1 p

di
i , where di 󰃍 0 and di 󰃑 min{mi, ni} for 1 󰃑 i 󰃑 ℓ.

Note that,
G = Sylp1(G)⊕ · · ·⊕ Sylpℓ(G).

Therefore, g = (g1, g2, · · · , gℓ) ∈ G (where gi ∈ Sylpi(G)) has order d if and only if

ord(gi) = pdii . It follows that

ϕG(d) =
ℓ󰁜

i=1

ϕSylpi (G)(p
ni
i ).

the electronic journal of combinatorics 31(4) (2024), #P4.44 7



Consequently, if ϕG(d) > ϕH(d), we must have

ϕG(p
di
i ) = ϕSylpi (G)(p

di
i ) > ϕSylpi (H)(p

di
i ) = ϕH(p

di
i )

for some i ∈ {1, · · · , ℓ}. The desired result follows immediately. It is easy to see that the
proof is similar when EH is nonempty.

Lemma 8. Let G be a finite abelian group of order n and H a finite abelian group of
order m. Let n = qβn′ and m = qδm′ with (m′, q) = (n′, q) = 1. Let

E = {k ∈ N
󰀏󰀏 ϕG(q

k) ∕= ϕH(q
k), qk|(m,n)}.

Suppose that E is nonempty and let t = min E . If ϕG(q
t) < ϕH(q

t), then we have qt+1|m,
i.e., δ > t. Moreover,

qt 󰃑 ϕH(q
t)− ϕG(q

t) 󰃑 qδ − qt.

Proof. Let

Sylq(G) = Cqn1 ⊕ · · ·⊕ Cqnc , Sylq(H) = Cqm1 ⊕ · · ·⊕ Cqmd ,

where 1 󰃑 n1 󰃑 · · · 󰃑 nc and 1 󰃑 m1 󰃑 · · · 󰃑 md. As ϕG(q
t) < ϕH(q

t), we have md 󰃍 t.
We claim that d 󰃍 2. Otherwise, we also have c = 1. In other words, both Sylq(G) and
Sylq(H) are cyclic groups of order 󰃍 pt. So ϕG(q

t) = qt− qt−1 = ϕH(q
t) which contradicts

our assumption. This proves the claim. Note that d 󰃍 2 implies qm1+md |m, that is qt+1|m.
It is easy to show that

󰁓t
i=0 ϕG(q

i) = qe1 and
󰁓t

j=0 ϕH(q
j) = qe2 for some e1 and e2

with t 󰃑 e1 < e2 󰃑 δ. As ϕH(q
i) = ϕG(q

i) for i = 0, · · · , t− 1, we have

ϕH(q
t)− ϕG(q

t) =
t󰁛

i=0

󰀃
ϕH(q

i)− ϕG(q
i)
󰀄
=

t󰁛

i=0

ϕH(q
i)−

t󰁛

j=0

ϕG(q
j) = qe2 − qe1 .

Note that qt 󰃑 qe1(qe2−e1 − 1) = qe2 − qe1 󰃑 qδ − qt. Therefore, we obtain

qt 󰃑 ϕH(q
t)− ϕG(q

t) 󰃑 qδ − qt.

This completes the proof.

Lemma 9. Let G (resp. H) be a finite abelian group of order n (resp. m). Let n = pαn′

and m = pγm′ with (n′, p) = (m′, p) = 1. Let

E = {k ∈ N
󰀏󰀏 ϕG(p

k) ∕= ϕH(p
k), pk|(m,n)}.

Suppose that E is nonempty and let s = min E . Assume that the following hold

1. s 󰃍 2;

2. ps+1|(m,n);
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3. ϕG(p
s) > ϕH(p

s), but ϕG(p
s+1) < ϕH(p

s+1).

Then we have α 󰃍 s+ 2 and γ 󰃍 s+ 2.

Proof. Let

Sylp(G) = Cpn1 ⊕ · · ·⊕ Cpnc and Sylp(H) = Cpm1 ⊕ · · ·⊕ Cpmd ,

where 1 󰃑 n1 󰃑 · · · 󰃑 nc and 1 󰃑 m1 󰃑 · · · 󰃑 md. Similar to the proof of Lemma 8,
we have c 󰃍 2 and nc 󰃍 s, as ϕG(p

k) = ϕH(p
k) for k < s and ϕG(p

s) > ϕH(p
s). Since

ϕG(p
s+1) < ϕH(p

s+1), we have md 󰃍 s + 1. If d = 1, then ϕH(p) = p − 1. Therefore,
we have ϕG(p) = pc − 1 󰃍 p2 − 1 > p − 1 = ϕH(p) and s 󰃑 1, which contradicts the
assumption that s 󰃍 2. Consequently, we have d 󰃍 2 and pm1+md |m, that is, γ 󰃍 s+ 2.

Note that
󰁓s

i=0 ϕG(p
i) = pe1 and

󰁓s
j=0 ϕH(p

j) = pe2 for some positive integers e1 and

e2. As d 󰃍 2 and md 󰃍 s + 1, we have pe2 󰃍 ps+1. Moreover, by the definition of s, we
have pe1 > pe2 . Consequently, we obtain e1 > s+ 1, which implies α 󰃍 s+ 2.

3 Proofs of the main results

In this section, we finish the proofs of our main results. Firstly, we prove Theorem 3 and
show that Theorem 3 implies a special case of Theorem 1. Then we provide the whole
proof of Theorem 1. At the end of this section, we answer Problem 4 affirmatively.

Proof of Theorem 3. It suffices to prove that if |M(G, |H|)| = |M(H, |G|)|, then we have
ϕG(d) = ϕH(d) holds for any d|(|G|, |H|). Assume to the contrary that there exists some
d|(|G|, |H|) such that ϕG(d) ∕= ϕH(d). Let |G| = n and |H| = m.

Recall that

|M(G, |H|)| = 1

m+ n

󰁛

d|(m,n)

ϕG(d)

󰀕
m+n
d

m
d
, n
d

󰀖

and

|M(H, |G|)| = 1

m+ n

󰁛

d|(m,n)

ϕH(d)

󰀕
m+n
d

m
d
, n
d

󰀖
.

Let
a = min{d | ϕG(d) ∕= ϕH(d) for d|(m,n)}.

Without loss of generality, we assume that ϕG(a) > ϕH(a). In this case, we shall prove
that

|M(G, |H|)| > |M(H, |G|)|, (8)

which contradicts our assumption.
If ϕG(d) 󰃍 ϕH(d) holds for any d|(m,n), then the desired result follows immediately.

Therefore, we assume that ϕG(d) < ϕH(d) holds for some d|(m,n) and let

b = min{d | ϕG(d) < ϕH(d) for d|(m,n)}.
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Clearly, we have a < b. Moreover, by Lemma 7, both a and b are prime powers. Recall
that

EH = {e ∈ N
󰀏󰀏 ϕG(e) < ϕH(e) and e|(m,n)}.

We denote
F := {e ∈ N

󰀏󰀏 ϕG(e) > ϕH(e), e > a, and e|(m,n)},
and

SF :=
󰁛

e∈F

(ϕG(e)− ϕH(e))

󰀕
m+n
e

m
e
, n
e

󰀖
.

It is clear that SF > 0. Therefore, we have

(m+ n) (|M(G, |H|)|− |M(H, |G|)|)

=
󰁛

d|(m,n)

(ϕG(d)− ϕH(d))

󰀕
m+n
d

m
d
, n
d

󰀖

= (ϕG(a)− ϕH(a))

󰀕
m+n
a

m
a
, n
a

󰀖
+ SF +

󰁛

e∈EH

(ϕG(e)− ϕH(e))

󰀕
m+n
e

m
e
, n
e

󰀖

= (ϕG(a)− ϕH(a))

󰀕
m+n
a

m
a
, n
a

󰀖
+ SF −

󰁛

e∈EH

(ϕH(e)− ϕG(e))

󰀕
m+n
e

m
e
, n
e

󰀖

󰃍 a

󰀕
m+n
a

m
a
, n
a

󰀖
+ SF −

󰁛

e∈EH

(ϕH(e)− ϕG(e))

󰀕
m+n
e

m
e
, n
e

󰀖
,

where the last inequality follows from Lemma 8.
Therefore, in order to prove (8), it suffices to show that

a

󰀕
m+n
a

m
a
, n
a

󰀖
+ SF >

󰁛

e∈EH

(ϕH(e)− ϕG(e))

󰀕
m+n
e

m
e
, n
e

󰀖
. (9)

As a and b are prime powers, we may assume that a = ps and b = qt (p and q are primes,
but not necessarily distinct).

If b 󰃍 2a, i.e., qt 󰃍 2ps, then by Lemma 5.(ii), we have

a

󰀕
m+n
a

m
a
, n
a

󰀖
> m

󰀕
m+n
b

m
b
, n
b

󰀖
󰃍

󰁛

e∈EH

ϕH(e)

󰀕
m+n
b

m
b
, n
b

󰀖
󰃍

󰁛

e∈EH

(ϕH(e)− ϕG(e))

󰀕
m+n
e

m
e
, n
e

󰀖
,

and (9) follows immediately.
If a < b < 2a, i.e., ps < qt < 2ps, then we have

qt−1 =
qt

q
<

2ps

q
󰃑 ps.

Consequently, we have p ∕= q. Moreover, by the definition of a = ps, we have t = min{i ∈
N

󰀏󰀏 ϕG(q
i) ∕= ϕH(q

i)} and ϕG(q
t) < ϕH(q

t). By Lemma 8, we have qt+1|m and ps+1|n.
Assume that

n = pαqβn′, m = pγqδm′,
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where (n′, pq) = (m′, pq) = 1. Then we have a = ps < b = qt < 2ps and 1 󰃑 s < α,
1 󰃑 t < δ, and s 󰃑 γ, t 󰃑 β. Consequently, we have p|n( 1

a
− 1

b
), which implies n( 1

a
− 1

b
) 󰃍

p 󰃍 2. We distinguish two cases.
Case 1: Assume that n( 1

a
− 1

b
) = 2, that is, b − a = 1 and p = 2. In this case, we

have n = ps+1qt.
Subcase 1.1: Assume that s 󰃍 2. First, we claim that γ = s. In fact, as ps|(m,n),

we have γ 󰃍 s. If γ 󰃍 s+ 1, then

s+1󰁛

i=0

ϕH(p
i) 󰃍 ps+1 =

s+1󰁛

i=0

ϕG(p
i) >

s󰁛

i=0

ϕH(p
i).

Therefore, ϕH(p
s+1) > 0. On the other hand, we have ϕG(p

s+1) = 0, as Sylp(G) can
not be a cyclic group. Hence, ϕH(p

s+1) > ϕG(p
s+1). By Lemma 9, we obtain ps+2|n, a

contradiction. So γ 󰃑 s. This completes the proof of the claim.
Let d|(m,n). In this case, ϕG(d) > ϕH(d) if and only if d = psqi for i = 0, 1, · · · , t,

and ϕG(d) < ϕH(d) if and only if d = pjqt for j = 0, 1, · · · , s. By Lemma 8, we have
ϕH(b) − ϕG(b) 󰃑 qδ − qt. Recall that ∆m,n(a, b) = pα+γ−2s−1qβ−tm′n′. It is easy to see
that ∆m,n(a, b) 󰃍 1. Note that {a, b} ∕= {2, 3}, as a = ps 󰃍 4. Since n( 1

a
− 1

b
) = p = 2, by

Lemma 6.(ii), we have

a

󰀕
m+n
a

m
a
, n
a

󰀖
−

󰁛

e∈EH

(ϕH(e)− ϕG(e))

󰀕
m+n
e

m
e
, n
e

󰀖

󰃍 a

󰀕
m+n
a

m
a
, n
a

󰀖
− (qδ − qt)

󰀕
m+n
b

m
b
, n
b

󰀖
−

t󰁛

j=1

ϕH(p
jb)

󰀕 m+n
pjb

m
pjb

, n
pjb

󰀖

󰃍 b

󰀕
m+n
b

m
b
, n
b

󰀖
−

t󰁛

j=1

ϕH(p
jb)

󰀕 m+n
pb

m
pb
, n
pb

󰀖

󰃍 b

󰀕
m+n
b

m
b
, n
b

󰀖
−m

󰀕 m+n
pb

m
pb
, n
pb

󰀖
> 0,

where the last inequality follows from Lemma 5.(ii). Therefore, (9) follows.
Subcase 1.2: Assume that s = 1. Therefore, ps = 2 and 2 = ps < qt < 2ps = 4

which implies qt = 3 and n = ps+1qt = 12. In this case, G = C2 ⊕ C6 and H = C2γ ⊕H ′,
where |H ′| = 3δm′. It is easy to verify that 2

󰀃m
2
+6
6

󰀄
> m

󰀃m
3
+4
4

󰀄
for all m 󰃍 18 and 6|m.

Therefore, we have

a

󰀕
m+n
a

m
a
, n
a

󰀖
−

󰁛

e∈EH

(ϕH(e)− ϕG(e))

󰀕
m+n
e

m
e
, n
e

󰀖

󰃍 2

󰀕
m+n
2
n
2

󰀖
−

󰁛

e∈EH

ϕH(e)

󰀕
m+n
3
n
3

󰀖

󰃍 2

󰀕
m
2
+ 6

6

󰀖
−m

󰀕
m
3
+ 4

4

󰀖
> 0.

Consequently, (9) follows.
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Case 2: Assume that n( 1
a
− 1

b
) 󰃍 3. Recall that ∆m,n(a, b) = pα+γ−2s−1qβ−tm′n′. As

α + γ > 2s, ∆m,n(a, b) 󰃍 1. By Lemma 6.(i), we have

a

󰀕
m+n
a

m
a
, n
a

󰀖
− (qδ − qt)

󰀕
m+n
b

m
b
, n
b

󰀖
> 2b

󰀕
m+n
b

m
b
, n
b

󰀖
. (10)

We denote
E1 := {e ∈ EH

󰀏󰀏 b < e < 2b}, E2 := {e ∈ EH
󰀏󰀏 e 󰃍 2b}.

By Lemma 8, we have ϕH(b)− ϕG(b) 󰃑 qδ − qt. Therefore, by (10), we obtain

SF + a

󰀕
m+n
a

m
a
, m
a

󰀖
−

󰁛

e∈EH

(ϕH(e)− ϕG(e))

󰀕
m+n
e

m
e
, n
e

󰀖

󰃍 SF + a

󰀕
m+n
a

m
a
, m
a

󰀖
− (ϕH(b)− ϕG(b))

󰀕
m+n
b

m
b
, n
b

󰀖
−

󰁛

e∈E1∪E2

ϕH(e)

󰀕
m+n
e

m
e
, n
e

󰀖

> SF + 2b

󰀕
m+n
b

m
b
, n
b

󰀖
−

󰁛

e1∈E1

ϕH(e1)

󰀕 m+n
e1

m
e1
, n
e1

󰀖
−

󰁛

e2∈E2

ϕH(e2)

󰀕 m+n
e2

m
e2
, n
e2

󰀖

= SF + b

󰀕
m+n
b

m
b
, n
b

󰀖
−

󰁛

e1∈E1

ϕH(e1)

󰀕 m+n
e1

m
e1
, n
e1

󰀖
+ b

󰀕
m+n
b

m
b
, n
b

󰀖
−

󰁛

e2∈E2

ϕH(e2)

󰀕 m+n
e2

m
e2
, n
e2

󰀖
.

Denote

S1 := SF + b

󰀕
m+n
b

m
b
, n
b

󰀖
−

󰁛

e1∈E1

ϕH(e1)

󰀕 m+n
e1

m
e1
, n
e1

󰀖

and

S2 := b

󰀕
m+n
b

m
b
n
b

󰀖
−

󰁛

e2∈E2

ϕH(e2)

󰀕 m+n
e2

m
e2
, n
e2

󰀖
.

In order to prove (9), it suffices to show that S1 > 0 and S2 > 0.
First, we consider S2, as it is easier to handle. If E2 is empty, then the desired result

follows. Assume that E2 is not empty, let c = min E2. By definition, we have c 󰃍 2b.
Therefore, by Lemma 5.(ii), we have

b

󰀕
m+n
b

m
b
, n
b

󰀖
−

󰁛

e2∈E2

ϕH(e2)

󰀕 m+n
e2

m
e2
, n
e2

󰀖
󰃍 b

󰀕
m+n
b

m
b
, n
b

󰀖
−

󰁛

e2∈E2

ϕH(e2)

󰀕
m+n
c

m
c
, n
c

󰀖

󰃍 b

󰀕
m+n
b

m
b
, n
b

󰀖
−m

󰀕
m+n
c

m
c
, n
c

󰀖
> 0.

Therefore, S2 > 0, as desired.
Next, we consider S1. If E1 is empty, then the desired result follows. So, we may

assume that E1 is not empty. First, we claim that E1 consists of powers of distinct primes,
i.e., E1 = {qt11 , qt22 , · · · , qtvv }, where qi ∕= qj for i ∕= j. For each e1 ∈ E1, by definition,
ϕG(e1) < ϕH(e1) and qt < e1 < 2qt. Therefore, there is some prime power ℓk such that
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e1 = ℓke′1 (e′1 ∈ N) and ϕG(ℓ
k) < ϕH(ℓ

k). If e′1 󰃍 2, we have ℓk = e1
2
< 2qt

2
= qt which

contradicts the definition of b = qt. Therefore, we have e′1 = 1. This completes the proof
of the claim.

Denote

EG
1 := {ℓk ∈ E1

󰀏󰀏 ℓ ∕= p and ϕG(ℓ
i) > ϕH(ℓ

i) for some i < k}.

For any ℓk ∈ EG
1 , let u = min{i ∈ N | ϕG(ℓ

i) > ϕH(ℓ
i)}. Moreover, by the definitions

of b and E1, we also have

u = min{i ∈ N | ϕG(ℓ
i) ∕= ϕH(ℓ

i)}.

By Lemma 8, we have ϕG(ℓ
u)− ϕH(ℓ

u) 󰃍 ℓu. By Lemma 5.(ii), we have

(ϕG(ℓ
u)− ϕH(ℓ

u))

󰀕
m+n
ℓu

m
ℓu
, n
ℓu

󰀖
󰃍 ℓu

󰀕
m+n
ℓu

m
ℓu
, n
ℓu

󰀖
> ϕH(ℓ

k)

󰀕
m+n
ℓk

m
ℓk
, n
ℓk

󰀖
. (11)

Recall that SF =
󰁓

e∈F (ϕG(e)− ϕH(e))
󰀃m+n

e
m
e
,n
e

󰀄
. Since EG

1 consists of powers of distinct

primes (which are different from p, q), by (11), we obtain

SF + b

󰀕
m+n
b

m
b
, n
b

󰀖
−

󰁛

e1∈E1

ϕH(e1)

󰀕 m+n
e1

m
e1
, n
e1

󰀖

= SF −
󰁛

e∈EG
1

ϕH(e)

󰀕
m+n
e

m
e
, n
e

󰀖
+ b

󰀕
m+n
b

m
b
, n
b

󰀖
−

󰁛

e1∈E1\EG
1

ϕH(e1)

󰀕 m+n
e1

m
e1
, n
e1

󰀖

󰃍 b

󰀕
m+n
b

m
b
, n
b

󰀖
−

󰁛

e1∈E1\EG
1

ϕH(e1)

󰀕 m+n
e1

m
e1
, n
e1

󰀖
.

As a result, in order to prove S1 > 0, it suffices to show that

b

󰀕
m+n
b

m
b
, n
b

󰀖
−

󰁛

e1∈E1\EG
1

ϕH(e1)

󰀕 m+n
e1

m
e1
, n
e1

󰀖
> 0. (12)

If E1 \ EG
1 is empty, then clearly we have S1 > 0. Therefore, suppose that E1 \ EG

1 is
nonempty. Without loss of generality, we may assume that

E1 \ EG
1 = {qt11 , · · · , q

tL
L },

where L 󰃑 v and qt11 < · · · < qtLL . We denote b0 := b (with q0 := q and t0 := t) and
bi := qtii for i = 1, 2, · · · , L. Therefore, b0 < b1 < b2 < · · · < bL < 2b = 2qt. For each
i = 0, 1, · · · , L− 1, let

n = qβi

i q
βi+1

i+1 ni, m = qδii q
δi+1

i+1 mi,

where (ni, qiqi+1) = (mi, qiqi+1) = 1, and denote

∆m,n(bi, bi+1) := qβi+δi−2ti−1
i q

βi+1−ti+1

i+1 mini.
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In the following, we shall prove that

bi

󰀕 m+n
bi

m
bi
, n
bi

󰀖
− ϕH(bi+1)

󰀕 m+n
bi+1

m
bi+1

, n
bi+1

󰀖
> bi+1

󰀕 m+n
bi+1

m
bi+1

, n
bi+1

󰀖
, i = 0, 1, · · · , L− 1. (13)

Note that, if (13) holds, then we have

L−1󰁛

i=0

󰀣
bi

󰀕 m+n
bi

m
bi
, n
bi

󰀖
− ϕH(bi+1)

󰀕 m+n
bi+1

m
bi+1

, n
bi+1

󰀖󰀤
>

L−1󰁛

i=0

bi+1

󰀕 m+n
bi+1

m
bi+1

, n
bi+1

󰀖
,

which implies

b0

󰀕 m+n
b0

m
b0
, n
b0

󰀖
−

L−1󰁛

i=0

ϕH(bi+1)

󰀕 m+n
bi+1

m
bi+1

, n
bi+1

󰀖
> bL

󰀕 m+n
bL

m
bL
, n
bL

󰀖
.

Therefore, we have

b

󰀕
m+n
b

m
b
, n
b

󰀖
−

󰁛

e1∈E1\EG
1

ϕH(e1)

󰀕 m+n
e1

m
e1
, n
e1

󰀖
> bL

󰀕 m+n
bL

m
bL
, n
bL

󰀖
> 0,

and (12) follows.
Now, we prove (13). Note that, for each i = 0, 1, · · · , L− 1,

• if qi = p, then we have qtii = ps+1, as qtii < 2b < 4ps;

• if qi ∕= p, by Lemma 8 (note that ti = min{j
󰀏󰀏 ϕG(q

j
i ) ∕= ϕH(q

j
i )} and that ϕG(q

ti
i ) <

ϕH(q
ti
i ) as bi = qtii ∈ E1 \ EG

1 ), we have δi > ti;

• we have {bi, bi+1} ∕= {2, 3}, as bi > qt 󰃍 2.

We distinguish three cases.
Subcase 2.1: Assume that bi+1 ∕= ps+1. It is easy to verify that, if n has at least

three different prime divisors, then n( 1
bi
− 1

bi+1
) 󰃍 3.

If bi ∕= ps+1, as mentioned above, we have δi > ti. Therefore, p, qi, and qi+1 are
different prime divisors of n.

If bi = ps+1, we have q, p, and qi+1 are different prime divisors of n. Moreover, we have
qt|ni and

ni

qi
󰃍 qt

qi
󰃍 qt

ps
> 1, where qi = p.

Therefore, we always have that n( 1
bi
− 1

bi+1
) 󰃍 3 and ∆m,n(bi, bi+1) 󰃍 1. By Lemma

6.(i), we have

bi

󰀕 m+n
bi

m
bi
, n
bi

󰀖
> 2∆m,n(bi, bi+1)q

δi+1

i+1

󰀕 m+n
bi+1

m
bi+1

, n
bi+1

󰀖
󰃍 2q

δi+1

i+1

󰀕 m+n
bi+1

m
bi+1

, n
bi+1

󰀖
.

As bi+1 < q
δi+1

i+1 and ϕH(bi+1) < q
δi+1

i+1 , (13) follows.
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Subcase 2.2: Assume that bi+1 = ps+1 and s 󰃍 2. In this case, by Lemma 9, we have
ps+2|n. Consequently, p|n( 1

bi
− 1

bi+1
), which implies n( 1

bi
− 1

bi+1
) 󰃍 2. Moreover, as δi > ti

and βi+1 󰃍 s+ 2 > s+ 1 = ti+1, we have ∆m,n(bi, bi+1) 󰃍 p 󰃍 2. By Lemma 6, we obtain

bi

󰀕 m+n
bi

m
bi
, n
bi

󰀖
> ∆m,n(bi, bi+1)p

δi+1

󰀕 m+n
bi+1

m
bi+1

, n
bi+1

󰀖
󰃍 2pδi+1

󰀕 m+n
bi+1

m
bi+1

, n
bi+1

󰀖
.

As bi+1 < pδi+1 and ϕH(bi+1) < pδi+1 , (13) follows.
Subcase 2.3: Assume that bi+1 = ps+1 and s = 1. In this case, we have p 󰃑 3. In

fact, as b < 2ps 󰃑 ps+1 < 2b, we have p/2 = ps+1/2ps < 2b/b = 2.
Subcase 2.3.1: Assume that p = 2. In this case, we have that a = ps = 2 and

b = qt = 3 and E1 \ EG
1 ⊆ {4, 5}. Therefore, it suffices to consider the case b0 = qt0 = 3

and b1 = ps+1 = 4. Note that n( 1
a
− 1

b
) 󰃍 3. Therefore, n 󰃍 18. Hence n( 1

b0
− 1

b1
) 󰃍 18

16
> 1

which implies that n( 1
b0
− 1

b1
) 󰃍 2. If n(1

3
− 1

4
) = 2 (i.e., n = 24), then ∆m,n(b0, b1) 󰃍 2

(as δ0 > t0 and β1 = 3 and t1 = 2). Therefore, by Lemma 6.(ii), we have

b0

󰀕 m+n
b0

m
b0
, n
b0

󰀖
> ∆m,n(b0, b1)2

δ1

󰀕 m+n
b1

m
b1
, n
b1

󰀖
󰃍 2 · 2δ1

󰀕 m+n
b1

m
b1
, n
b1

󰀖
.

If n(1
3
− 1

4
) 󰃍 3, as ∆m,n(b0, b1) 󰃍 1, by Lemma 6.(i),

b0

󰀕 m+n
b0

m
b0
, n
b0

󰀖
> 2∆m,n(b0, b1)2

δ1

󰀕 m+n
b1

m
b1
, n
b1

󰀖
󰃍 2 · 2δ1

󰀕 m+n
b1

m
b1
, n
b1

󰀖
.

As b1 < 2δ1 and ϕH(b1) < 2δ1 , (13) follows.
Subcase 2.3.2: Assume that p = 3. In this case, qt ∈ {4, 5}. If qt = 4, then

E1 \ EG
1 ⊆ {5, 7}, which contains no powers of p. Therefore, we only need to consider

qt = 5. As a result, we have a = ps = 3 and b = qt = 5, and E1 \ EG
1 ⊆ {7, 8, 9}. It suffices

to consider the following three cases

(1) : {b0, b1} = {5, 9}, (2) : {b0, b1} = {7, 9}, (3) : {b0, b1} = {8, 9}.

Clearly, we have ∆m,n(b0, b1) 󰃍 1, as δ0 > t0. For the case (1), we have n(1
5
− 1

9
) 󰃍 4

as 5|n and 9|n. For the cases (2) and (3), n has at least three different prime divisors.
Therefore, we always have n( 1

b0
− 1

b1
) 󰃍 3. By Lemma 6.(i),

b0

󰀕 m+n
b0

m
b0
, n
b0

󰀖
> 2∆m,n(b0, b1)3

δ1

󰀕 m+n
b1

m
b1
, n
b1

󰀖
󰃍 2 · 3δ1

󰀕 m+n
b1

m
b1
, n
b1

󰀖
.

As b1 < 3δ1 and ϕH(b1) < 3δ1 , (13) follows. This completes the proof.

The following proposition is an easy consequence of Theorem 3.
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Proposition 10. Let G and H be abelian groups of order n, then we have

|M(G, n)| = |M(H,n)| ⇔ G ∼= H,

or equivalently
P(G) = P(H) ⇔ G ∼= H.

Proof. It is easy to see that, (3) holds if and only if for all primes p|(|G|, |H|), either
Sylp(G) ∼= Sylp(H), or Sylp(G) and Sylp(H) are both cyclic. As |G| = |H| = n and
|M(G, n)| = |M(H,n)|, by Theorem 3 and the above discussion, we have Sylp(G) ∼=
Sylp(H) for all primes p|n, which implies that G ∼= H.

Note that Proposition 10 is a special case of Theorem 1. Now, we finish the proof of
Theorem 1.

Proof of Theorem 1. By Proposition 10, it suffices to consider the case when G and H
have different orders. Without loss of generality, we may assume that |G| = n > m = |H|.

Recall the counting formulas

|M(G, n)| = 1

2n

󰁛

d|n

ϕG(d)

󰀕
2n/d

n/d

󰀖

and

|M(H,m)| = 1

2m

󰁛

d|m

ϕH(d)

󰀕
2m/d

m/d

󰀖
.

Let p be the smallest prime divisor of m. It is easy to see that

|M(G, n)| > 1

2n

󰀕
2n

n

󰀖

and, by Lemma 5,
1

2m

󰀕󰀕
2m

m

󰀖
+m

󰀕
2m/p

m/p

󰀖󰀖
> |M(H,m)|.

Therefore, it suffices to prove

1

2n

󰀕
2n

n

󰀖
>

1

2m

󰀕󰀕
2m

m

󰀖
+m

󰀕
2m/p

m/p

󰀖󰀖
. (14)

By routine calculation (note that n > m and p 󰃍 2), it can be verified that

1

2n

󰀕
2n− 1

n

󰀖
>

1

2m

󰀕
2m

m

󰀖
(15)

and
1

2n

󰀕
2n− 1

n

󰀖
>

1

2

󰀕
2m/p

m/p

󰀖
. (16)

By (15) and (16), we obtain (14) and the desired result follows.
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Now, we answer Problem 4 by proving the following result.

Proposition 11. Let G be a finite abelian group of order n and Cn a cyclic group of
order n. Then for any integer m 󰃍 2, we have

|M(G,m)| 󰃍 |M(Cn,m)|,
where the equality holds if and only if either (n,m) = 1 or for all primes p|(n,m), Sylp(G)
is cyclic.

Proof. Note that

|M(G,m)| = 1

m+ n

󰁛

d|(m,n)

ϕG(d)

󰀕
m+n
d

m
d
, n
d

󰀖

and

|M(Cn,m)| = 1

m+ n

󰁛

d|(m,n)

ϕCn(d)

󰀕
m+n
d

m
d
, n
d

󰀖
.

If either (n,m) = 1 or for all primes p|(n,m), Sylp(G) is cyclic, then clearly we have
|M(G,m)| = |M(Cn,m)|.

Assume that (n,m) > 1 and that there exists a prime p|(n,m) such that Sylp(G) is
not cyclic. We shall prove that

|M(G,m)| > |M(Cn,m)|. (17)

Let
a = min{p | Sylp(G) is not cyclic for prime p|(m,n)},

and
b = min{d | ϕG(d) < ϕCn(d) for d|(m,n)}.

Note that ϕG(a
t) < ϕCn(a

t) for some t 󰃍 2. Clearly, we have a < b. We denote

• ECn := {e ∈ N
󰀏󰀏 ϕG(e) < ϕCn(e) and e|(m,n)};

• F := {e ∈ N
󰀏󰀏 ϕG(e) > ϕCn(e), e > a, and e|(m,n)};

• SF :=
󰁓

e∈F (ϕG(e)− ϕCn(e))
󰀃m+n

e
m
e
,n
e

󰀄
.

It is clear that SF > 0. Therefore, we have

(m+ n) (|M(G,m)|− |M(Cn,m)|)

=
󰁛

d|(m,n)

(ϕG(d)− ϕCn(d))

󰀕
m+n
d

m
d
, n
d

󰀖

= (ϕG(a)− ϕCn(a))

󰀕
m+n
a

m
a
, n
a

󰀖
+ SF +

󰁛

e∈ECn

(ϕG(e)− ϕCn(e))

󰀕
m+n
e

m
e
, n
e

󰀖

= (ϕG(a)− ϕCn(a))

󰀕
m+n
a

m
a
, n
a

󰀖
+ SF −

󰁛

e∈ECn

(ϕCn(e)− ϕG(e))

󰀕
m+n
e

m
e
, n
e

󰀖

󰃍 a

󰀕
m+n
a

m
a
, n
a

󰀖
+ SF −

󰁛

e∈ECn

(ϕCn(e)− ϕG(e))

󰀕
m+n
e

m
e
, n
e

󰀖
,
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where the last inequality follows from Lemma 8.
Therefore, in order to prove (17), it suffices to show that

a

󰀕
m+n
a

m
a
, n
a

󰀖
+ SF >

󰁛

e∈ECn

(ϕCn(e)− ϕG(e))

󰀕
m+n
e

m
e
, n
e

󰀖
. (18)

As b is a prime power by Lemma 7, we may assume that b = qs for some prime q and
s 󰃍 2.

Assume that a < b < 2a. In this case, we have qs−1 = qs

q
< 2a

q
󰃑 a, which contradicts

the definition of a. Therefore, it suffices to consider the case b 󰃍 2a. In this case, by
Lemma 5, we have

a

󰀕
m+n
a

m
a
, n
a

󰀖
> n

󰀕
m+n
b

m
b
, n
b

󰀖
󰃍

󰁛

e∈ECn

ϕCn(e)

󰀕
m+n
b

m
b
, n
b

󰀖
󰃍

󰁛

e∈ECn

(ϕCn(e)− ϕG(e))

󰀕
m+n
e

m
e
, n
e

󰀖
,

and (18) follows immediately. This completes the proof.

4 General case

In this section, we discuss Theorem 3 from the viewpoint of invariant theory and consider
an extension of Theorem 3 to finite groups (not necessarily abelian). Let G be a finite
group and ρ : G → GL(V ) be a finite dimensional linear representation of G over C. Let
C[V ] denote the graded algebra of polynomial functions on V . We can regard C[V ] as the
symmetric algebra on V ∗, the dual space of V . Equivalently, if z1, . . . , zn ∈ V ∗ is a basis,
then C[V ] is just the polynomial ring C[z1, . . . , zn], whose elements are the homogeneous
polynomials in the linear forms z1, . . . , zn with coefficient in C. The action of G on V
(through the representation ρ) naturally induces a right action of G on V ∗ as follows:

xg(v) = x(g · v) = x(ρ(g)v).

Moreover, this action can be naturally extended to an action on C[V ]. The central topic
of invariant theory is to study the algebra of polynomial invariants which is defined as
follows:

C[V ]G = {f ∈ C[V ] | f g = f, for all g ∈ G}.

Recall that C[V ]G is finitely generated and that C[V ]G is a graded C-algebra; see [27]. We
denote by dimC[V ]Gm the dimension of the m-th component of C[V ]G as a vector space
over C. In particular, if G is a finite abelian group and V is the regular representation of
G over C, then for any positive integer m we have

dimC[V ]Gm = |M(G,m)|

(see [21, Section 3] for a discussion). Now, we can restate Theorem 3 in terms of invariant
theory as follows.
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Theorem 12. Let G and H be two finite abelian groups. Let V (resp. V ′) be the regular
representation of G (resp. H). Then we have

dimC[V ]G|H| = dimC[V ′]H|G|

if and only if ϕG(d) = ϕH(d) for any d|(|G|, |H|).

For any finite group G of order n and its regular representation V over C, Almkvist
and Fossum [1, Section V 1.8] proved that

dimC[V ]Gm =
1

n+m

󰁛

d|(n,m)

ϕG(d)

󰀕
n/d+m/d

n/d

󰀖
, (19)

where ϕG(d) is the number of elements in G of order d. Note that (19) has the same form
as (2). Consequently, for any finite group H and its regular representation V ′ over C, if
(3) holds, then we have

dimC[V ]G|H| = dimC[V ′]H|G|. (20)

Based on this observation and Theorem 3, it is natural to consider whether (3) is a
necessary condition for the reciprocity (20) to hold. In fact, we prove some positive
results on this problem.

Theorem 13. Let G and H be two finite groups. Let V (resp. V ′) be the regular repre-
sentation of G (resp. H). Assume that one of the following holds:

1. G = D2p is the dihedral group of order 2p, where p 󰃍 5 is a prime;

2. |H| 󰃍 |G|2 and |G| does not contain two divisors d1, d2 > 1 with d1 − d2 = 1.

Then we have
dimC[V ]G|H| = dimC[V ′]H|G|

if and only if ϕG(d) = ϕH(d) for any d|(|G|, |H|).

Proof. (1) Firstly, we assume that

G = D2p = 〈x, y | x2 = 1 = yp, xyx = y−1〉

is the dihedral group of order 2p, where p 󰃍 5 is a prime.
It suffices to prove that if dimC[V ]G|H| = dimC[V ′]H|G|, then we have ϕG(d) = ϕH(d)

holds for any d|(|G|, |H|). As |G| = 2p, d|(|G|, |H|) if and only if d ∈ {1, 2, p, 2p}. The
desired result follows easily if (|G|, |H|) ∈ {1, 2, p}. Therefore, it suffices to consider the
case (|G|, |H|) = 2p, i.e., 2p|m.

Note that ϕH(p) 󰃍 ϕG(p) = p − 1, and ϕH(2p) 󰃍 ϕG(2p) = 0. If ϕH(2) 󰃍 ϕG(2), by
the formula (19), we have the desired result. Now, suppose that ϕH(2) < ϕG(2) = p. Let
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|H| = m = 2ℓp where ℓ ∈ N. In this case, we have

(m+ 2p)(dimC[V ]G|H| − dimC[V ′]H|G|)

=
󰁛

d|2p

(ϕG(d)− ϕH(d))

󰀕m+2p
d

m
d
, 2p

d

󰀖

󰃍 (ϕG(2)− ϕH(2))

󰀕m+2p
2

m
2
, 2p

2

󰀖
− ϕH(p)

󰀕m+2p
p

m
p
, 2p

p

󰀖
− ϕH(2p)

󰀕m+2p
2p

m
2p
, 2p
2p

󰀖

󰃍
󰀕m+2p

2
m
2
, 2p

2

󰀖
−m

󰀕m+2p
p

m
p
, 2p

p

󰀖
=

󰀕
ℓp+ p

p

󰀖
−m

󰀕
2ℓ+ 2

2

󰀖
.

Moreover, as p 󰃍 5, we have

󰀕
ℓp+ p

p

󰀖
=

p󰁜

i=1

ℓp+ i

i
󰃍 ℓp(

p󰁜

i=2

ℓp+ i

i
)

> ℓp

p󰁜

i=2

(ℓ+ 1) 󰃍 m
(ℓ+ 1)4

2
> m

󰀕
2ℓ+ 2

2

󰀖
.

Therefore, we obtain dimC[V ]G|H| > dimC[V ′]H|G|, a contradiction.

(2) Secondly, we assume that |H| 󰃍 |G|2 and |G| does not contain two divisors d1, d2 >
1 with d1 − d2 = 1. As before, it suffices to prove that if dimC[V ]G|H| = dimC[V ′]H|G|,

then we have ϕG(d) = ϕH(d) holds for any d|(|G|, |H|). Assume to the contrary that
ϕG(d) ∕= ϕH(d) for some d|(|G|, |H|). Let |G| = n and |H| = m.

Let
a = min{d | ϕG(d) ∕= ϕH(d) for d|(n,m)}.

Case 1: Assume that ϕG(a) < ϕH(a). If ϕG(d) 󰃑 ϕH(d) holds for any d|(n,m), then
the desired result follows. Therefore, we assume that ϕG(d) > ϕH(d) holds for some
d|(n,m) and let

b = min{d | ϕG(d) > ϕH(d) for d|(n,m)}.
Clearly, we have a < b. Now, we show that

(ϕH(a)− ϕG(a))

󰀕
n+m
a

n
a
, m
a

󰀖
>

󰀣
󰁛

e󰃍b

ϕG(e)

󰀤󰀕
n+m
b

n
b
, m

b

󰀖
. (21)

In fact, (21) follows from the following stronger result
󰀕

n+m
a

n
a
, m
a

󰀖
> n

󰀕
n+m
b

n
b
, m

b

󰀖
. (22)

In order to prove (22), by Lemma 5.(i), we only need to prove that

(1 +
m

n
)n(

1
a
− 1

b
)(1 +

a

b

n

m
)m( 1

a
− 1

b
) > n. (23)
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It is easy to see that, as n
a
− n

b
󰃍 1 and m 󰃍 n2,

(1 +
m

n
)n(

1
a
− 1

b
)(1 +

a

b

n

m
)m( 1

a
− 1

b
) > 1 +

m

n
> n,

and therefore (22) follows. By (21) and the formula (19), it is easy to see that
dimC[V ′]H|G| > dimC[V ]G|H|, a contradiction.

Case 2: Assume that ϕG(a) > ϕH(a). If ϕG(d) 󰃍 ϕH(d) holds for any d|(n,m),
then the desired result follows. Therefore, we assume that ϕG(d) < ϕH(d) holds for some
d|(n,m) and let

b = min{d | ϕG(d) < ϕH(d) for d|(n,m)}.

Clearly, we have a < b. Similar to the above case, we show that

(ϕG(a)− ϕH(a))

󰀕
n+m
a

n
a
, m
a

󰀖
>

󰀣
󰁛

e󰃍b

ϕH(e)

󰀤󰀕
n+m
b

n
b
, m

b

󰀖
. (24)

In fact, (24) follows from the following stronger result

󰀕
n+m
a

n
a
, m
a

󰀖
> m

󰀕
n+m
b

n
b
, m

b

󰀖
. (25)

In order to prove (25), by Lemma 5.(i), we only need to prove that

(1 +
m

n
)n(

1
a
− 1

b
)(1 +

a

b

n

m
)m( 1

a
− 1

b
) > m. (26)

Note that, as n does not contain two divisors d1, d2 > 1 with d1 − d2 = 1, we have
n( 1

a
− 1

b
) 󰃍 2. Since m 󰃍 n2, we have that

󰀓
1 +

m

n

󰀔n( 1
a
− 1

b
)

󰃍
󰀓
1 +

m

n

󰀔2

= 1 + 2
m

n
+

m2

n2
> m,

as desired. By (24) and the formula (19), it is easy to see that dimC[V ]G|H| > dimC[V ′]H|G|,
a contradiction. This completes the proof.

5 Further discussions

Let D(G) be the number of formally different monomials occurring in det(MG). Due
to possible cancellations, we have D(G) 󰃑 P(G). It is natural to consider an analog of
Theorem 1 for D(G) (note that, such a result, if it is correct, is stronger than the result
of Formanek and Sibley). Unlike P(G), there is no explicit formula for D(G). When G
is cyclic, using ideas from symmetric functions and number theory, it was proved that
D(G) = P(G) if and only if |G| is a prime power; see [2, 33]. For general abelian groups,
it is still unknown whether there exists a similar relation between D(G) and P(G); see
[11, Problem 1].
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We have discussed several characterization results for finite groups in terms of the
permanent or the determinant of MG. Note that, for an n× n matrix M = (mij)1󰃑i,j󰃑n,
the permanent and the determinant are just special cases of the immanant

immλ(M) =
󰁛

τ∈Sn

χλ(τ)
n󰁜

i=1

mi,τ(i),

where χλ is an irreducible character of Sn indexed by the partition λ of n [24, Chapter
VI] (the determinant and the permanent are the immanants corresponding to the sign
character and the trivial character, respectively). Immanants appeared naturally and are
very important in algebraic combinatorics [17, 18, 31, 32]. It would be interesting to see
if there are some other immanents characterize the finite groups.

This paper provides some results on zero-sum sequences over finite abelian groups
and polynomial invariants of finite groups. Recently, the relationship between zero-sum
theory (also factorization theory) and invariant theory is getting closer; see [3, 4, 6, 20]
for some recent studies. Based on Theorems 3, 12, and 13, it is natural to propose the
following conjecture.

Conjecture 14. Let G and H be finite groups. Let V (resp. V ′) be the regular repre-
sentation of G (resp. H). Then we have

dimC[V ]G|H| = dimC[V ′]H|G|

if and only if ϕG(d) = ϕH(d) for any d|(|G|, |H|).
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