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Abstract

We completely describe the order ideal ( resp. antichain) toggleability space for
general fences: the space of statistics which are linear combinations of order ideal
(antichain) indicator functions and equal to a constant plus a linear combination
of toggleability statistics. This allows us to strengthen some homomesies under
rowmotion on fences proven by Elizalde et al. and prove some new homomesy
results for combinatorial, piecewise-linear, and birational rowmotion.

Mathematics Subject Classifications: 05E18, 06A07

1 Introduction

The work in this paper is motivated by the goal of understanding the occurrence of the
homomesy phenomenon under the action of rowmotion on order ideals of fences within two
natural subspaces of statistics. Homomesy occurs when a statistic on a set of objects has
the same average along every orbit of some action and has been a recent recurring theme in
the field of dynamical algebraic combinatorics. For a great overview of this phenomenon,
see [15, 20]. The rowmotion operator acting on the distributive lattice J (P ) of order
ideals of a poset P is one of the operators that has received significant attention in this
field. This action is easily described: rowmotion maps an order ideal I to the order ideal
generated by min(P \ I). The name rowmotion we are using here originates from the
work of Striker and Williams [21] and is the most common name for this map now, but
this action has been called many different names and studied by numerous authors in a
variety of contexts previously, see [1, 7, 13, 16, 17] for a few examples. This simple action
often induces rich structure, which has led to discoveries related to order, orbit structure,
and other properties on certain families of posets, of which root and minuscule posets (in
particular, rectangle posets) are notable examples.

Usual suspects for initial searches for homomesic statistics are linear combinations of
the order ideal indicator functions (χ̂p for p ∈ P ) or of the antichain indicator functions
(χp for p ∈ P ). For example, both the order ideal and antichain cardinality statistics,
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which are the sum of all order ideal and antichain indicator functions, respectively, are
both known to be homomesic on the a × b rectangle poset with respective averages ab

2

and ab
a+b

[14]. Let IH(P ) and AH(P ) be the subspaces of homomesic statistics within
SpanR({χ̂p | p ∈ P}) and SpanR({χp | p ∈ P}), respectively. A natural question is
whether one can completely describe IH(P ) and AH(P ). Towards this goal, one can con-
sider two subspaces, IT (P ) and AT (P ), made of those statistics in IH(P ) and AH(P ),
respectively, which can be written as linear combinations of so-called toggleability statis-
tics, up to a constant. Namely, if one can write a statistic f as a linear combination
of the toggleability statistics and a constant function, then it follows automatically that
f is homomesic under rowmotion. Moreover, for certain posets, the derived expression
allows one to lift f to the more general piecewise-linear and birational settings and obtain
homomesies there [11, 3].

This paper focuses on these spaces for fences. Fences have shown up in a variety
of contexts due to their ties to cluster algebras, q-analogues, and unimodality (see the
introduction of [6] for a detailed background). The rowmotion action on fences is an
interesting example in dynamical algebraic combinatorics. Its order is not known in
general and there are known examples of fences on which birational rowmotion has infinite
order [8, §12], so one expects fewer nice results compared to the minuscule and root
posets. However, in their paper, which initiated the study of the dynamical algebraic
combinatorics of fences, Elizalde et al. [6] identified several statistics which are homomesic
under rowmotion using a correspondence of rowmotion orbits with a certain kind of tilings.
Here we show that many of those statistics have the stronger property of being in IT (F )
or AT (F ).

Our main results give descriptions of the spaces IT (F ) and AT (F ). In Section 2, we
give a more formal treatment to the terms loosely defined in the introduction, and we
introduce other necessary terminology that will be used later. We exhibit a basis for each
of the spaces IT (F ) and AT (F ) separately in Sections 3 and 4. An interesting corollary of
these results is that for a fence F with n elements and t segments, IT (F ) and AT (F ) both
have dimension n− (t− 1). In [3], it was conjectured that dim(IT (P )) = dim(AT (P )) for
certain root and minuscule posets, but in general, there is no relation between dim(IT (P ))
and dim(AT (P )). We believe this to be the first infinite family of posets for which the
dimensions of the toggleability spaces have been proven.

It should be noted that while the statistics presented as the basis for AT (F ) (Theo-
rem 7) were shown to be homomesic in [6], as a corollary of describing IT (F ) we obtain
new homomesy results (Theorem 8, part of Corollary 9).

In Section 5, we consider the order ideal cardinality statistic χ̂. While χ̂ is not in
IT (F ), it was conjectured in [6] that χ̂ is homomesic for certain fences and proven to
be homomesic for self-dual fences with three segments. We connect this conjecture to a
conjecture about differences of antichain indicator functions for “opposite” elements in
the fence. Then we consider those differences and show results about them when the fence
is self-dual.

In Section 6, we explain how from the statistics in IT (F ) and AT (F ), we obtain
homomesy results for corresponding lifted statistics under piecewise-linear and birational
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rowmotion. This idea was started in [11] and further extended in [3]. However, the
main examples were the minuscule and root posets, for which birational rowmotion has
finite order. In contrast, these generalizations of rowmotion on fences do not have finite
order in general. However, since the spaces IT (F ) and AT (F ) are relatively big, we get
many homomesies even in these settings without explicitly considering the structure of
the infinite orbits.

We end with a discussion in Section 7 where we compare the toggleability subspaces
with the homomesic subspaces and explain how some of our results imply homomesies
under a different action on ideals called promotion.

2 Background

All partially ordered sets (posets) in this paper are assumed to be finite. We call a poset
a fence if it consists of alternating maximal chains called segments such that

x1 C · · · C xα1 B · · · B xα1+α2 C · · · ,

where E is the partial order. We denote the i-th segment by Si and use [n] := {1, . . . , n}.
An element that covers or is covered by two elements, and hence belongs to two

segments, is called shared. A shared element is a peak if it covers two elements; otherwise,
it is a valley. Elements that are not shared are unshared, and we will denote the set of
unshared elements of Si by S̆i. The fence in Figure 1 has three segments S1 = {x1, x2, x3},
S2 = {x3, x4, x5, x6}, and S3 = {x6, x7}. The elements x1, x2, x4, x5, and x7 are unshared,
x3 is a peak, and x6 is a valley.

x1

x2

x3

x4

x5

x6

x7

Figure 1: An example of a fence, F̆ (3, 3, 2).

In general, we refer to a fence using a t-tuple of positive integers α = (α1, . . . , αt),
where t > 2, α1, αt > 2, and

αi = #S̆i + 1,

for all i ∈ [t]. The fence constructed from this α is denoted F̆ (α). It follows from the
definition of α that

#F = α1 + α2 + · · ·+ αt − 1

for any fence F = F̆ (α).
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An order ideal of a poset (P,E) is a subset I ⊆ P such that if x ∈ I and y E x, then
y ∈ I for all x, y ∈ P . From here on, when referring to an order ideal, we will simply
say “ideal”. For a subset S ⊆ P , we let 〈S〉 denote the ideal generated by the set S.
We denote the set of all ideals of a poset by J (P ). The map ρ : J (P ) → J (P ) called
rowmotion is defined as

ρ(I) := {x ∈ P : x E y for some y ∈ min(P \ I)}.

In other words, ρ sends an ideal I to the ideal generated by the minimal elements of the
complement of I. This is a succinct way to describe rowmotion, but it can also be defined
using local maps known as toggles.

For each p ∈ P , define the toggle τp : J (P )→ J (P ) as

τp(I) :=


I ∪ {p} if p ∈ min(P \ I),

I \ {p} if p ∈ max(I),

I otherwise.

The toggle operation τp(I) adds p to the ideal I if p /∈ I and the result is a valid ideal,
removes p if p ∈ I and removing it results in a valid ideal, and does nothing otherwise.
Furthermore, τp and τp′ commute if p and p′ do not share a covering relation.

A linear extension of a poset P is a list p1, . . . , pn of all elements of P that respects
the order of P . That is, pi E pj in P implies i 6 j. Cameron and Fon-Der-Flaass showed
in [2] that rowmotion is equivalent to a composition of toggles, ρ = τp1 ◦ · · · ◦ τpn , for
any linear extension p1, . . . , pn of P , where the toggles are applied from right to left. See
Figure 2 for an example of a rowmotion orbit.

Figure 2: An example of a rowmotion orbit on the fence F̆ (3, 3, 2), where elements of the
ideals are shaded in.

Given a poset P , an element p ∈ P , and an ideal I ⊆ P , we define the order ideal
indicator function χ̂p(I) and the antichain indicator function χp(I) as

χ̂p(I) :=

{
1 if p ∈ I,
0 otherwise,

and χp(I) :=

{
1 if p ∈ max(I),

0 otherwise.
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Related to these are the order ideal cardinality statistic χ̂(I) given by

χ̂(I) := #I =
∑
p∈P

χ̂p(I),

and the antichain cardinality statistic χ(I) given by

χ(I) := # max(I) =
∑
p∈P

χp(I).

We define the toggleability statistic Tp : J (P )→ R, for p ∈ P , by

Tp(I) :=


1 if p ∈ min(P \ I),

−1 if p ∈ max(I),

0 otherwise.

Note that an element p ∈ P that can be “toggled in” to the ideal I has Tp(I) = 1, while
an element that can be “toggled out” has Tp(I) = −1. An element that cannot be toggled
in or out has Tp(I) = 0. For ease of notation, given a fence F , we also define Ti := Txi for
xi ∈ F .

For example, for the ideal I = {x1, x2, x5, x6} of the fence in Figure 1, we have
max(I) = {x2, x5}, χ̂(I) = 4, χ(I) = 2, T2(I) = T5(I) = −1, T4(I) = T7(I) = 1,
and Ti(I) = 0 for i = 1, 3, 6.

In Section 6, the following alternative way to view the toggleability statistics will be
useful: Tp(I) = T+

p (I)− T−p (I), where

T+
p (I) :=

{
1 if p ∈ min(P \ I),

0 otherwise,
and T−p (I) :=

{
1 if p ∈ max(I),

0 otherwise.

A statistic f : X → R, with X a finite set, is said to be homomesic if the average of f
on every orbit of an invertible operator T : X → X is equal to some constant c, in which
case f is said to be c-mesic. The interest in the toggleability statistics, when homomesies
are considered, is due to the following fact:

Theorem 1 ([19], Lemma 6.2). For any poset P and any p ∈ P , the toggleability statistic
Tp is 0-mesic under rowmotion acting on J (P ).

A simple, intuitive explanation for this theorem is that every element must be toggled in
exactly as many times as it is toggled out in a rowmotion orbit.

Because of the linearity of expectation, any linear combination of 0-mesic statistics is
also 0-mesic. So, when trying to prove that a statistic f is homomesic, one can try to
take advantage of a technique systematized in [3] by attempting to express f as the sum
of a constant c and a linear combination of toggleability statistics. That is, one can try
to find suitable constants cp, for p ∈ P , such that

f(I) = c+
∑
p∈P

cpTp(I) (1)
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for all I ∈ J (P ). If such an identity exists, then the identity implies that f is c-mesic.
The converse is not true in general. To make the existence of such an identity easier to
indicate, we use the notation from [3] and write f ≡ g when there exist constants cp ∈ R
such that f − g =

∑
p∈P cpTp. By a slight abuse of notation, for c ∈ R, we also write c for

the function that is identically equal to c. Often we will write f ≡ const to denote that
f can be written as in (1) (and is hence homomesic) without specifying the value of c.

It is straightforward to see that functions which are ≡ const are closed under addi-
tion and scalar multiplication and thus form a subspace of the homomesic statistics on
J (P ) under rowmotion. We will mainly be concerned with two subspaces, the antichain
toggleability space AT (P ) and the order ideal toggleability space IT (P ), where

AT (P ) := {f : f ∈ AH(P ) and f ≡ const}

and
IT (P ) := {f : f ∈ IH(P ) and f ≡ const}.

In the following two sections, we will completely describe both of these spaces for a general
fence F .

Remark 2. We summarize here some notation and conventions that will be used through-
out the next three sections. We define βi := #S̆i = αi − 1 for i ∈ [t]. Let s(i,j) be the

j-th minimal element of S̆i. When statistics refer to elements of this type, we will often
omit the ‘s’, as in T(i,j), χ̂(i,j), and χ(i,j). Let si be the unique shared element in Si ∩Si+1.
When statistics refer to elements of this type, we will include the ‘s’, as in Tsi , χ̂si , and
χsi . We adopt the convention that if an element does not exist in F , then the statistics
of interest indexed by it (say, Ts0 , χ̂st , χ(i,αi)) are defined to be identically zero on J (F ).

3 Antichain Toggleability Space

In this section, we describe a basis for the antichain toggleability space AT (F ) of a general
fence F = F̆ (α1, . . . , αt). Let

BA(F ) =
t⋃
i=1

{αiχx + χsi−1
+ χsi | x ∈ S̆i}.

The statistics in BA(F ) were shown to be homomesic in [6]. Here we first show the
stronger result that these statistics are ≡ const, and thus in AT (F ). Since they are
linearly independent, this gives a lower bound on dimAT (F ). Lemma 6 gives an upper
bound on dimAT (F ).

Theorem 3. Let α = (α1, . . . , αt) with corresponding fence F = F̆ (α). Let i ∈ [t] with
αi > 2, x ∈ S̆i, v be the valley of Si (if it exists), p be the peak of Si (if it exists), y = s(i,1),
and z = s(i,βi). Then

αiχx + χv + χp = 1− Tv −
∑
yEuEx

#[y, u]Tu +
∑
xCuEz

#[u, z]Tu. (2)

the electronic journal of combinatorics 31(4) (2024), #P4.46 6



Proof. For a given ideal I, the left-hand side (LHS) of (2) has possible values:

(αiχx + χv + χp)(I) =


αi if x ∈ max(I),

1 if v ∈ max(I),

1 if p ∈ max(I),

0 if x, v, p /∈ max(I).

Next, we compute the value of the right-hand side (RHS) of (2) by considering four cases.
In evaluating the RHS, it is helpful to note that the relevant toggleability statistics are all
associated with elements from the same segment Si. Therefore, for each ideal I, at most
two of them are nonzero.

Case 1: Let x ∈ max(I). Then Tx = −1, and there are two subcases to consider based
on whether x is covered by an unshared element or not.

Case 1a: Assume x is covered by an unshared element t. Note that x C t E z,
[t, z] = (x, z], and Tt = 1, so the RHS simplifies to

1−#[y, x]Tx + #[t, z]Tt = 1 + #[y, x] + #(x, z] = 1 + #[y, z] = 1 + βi = αi,

since #[y, z] is the number of elements in S̆i.
Case 1b: Assume x is not covered by an unshared element. In this case, x = z and

Tx = −1 is the only nonzero toggleability statistic on the RHS, so the RHS reduces to

1−#[y, x]Tx = αi.

Thus, the RHS has value αi if x ∈ max(I).
Case 2: Let v ∈ max(I), and note that Tv = −1. Also note that y covers v and that

Ty = 1 since y can be toggled in. The RHS then simplifies to

1− Tv −#[y, y]Ty = 1.

Case 3: Let p ∈ max(I). Note that since p is the only element of Si that can be
toggled, all toggleability statistics on the RHS are zero. Thus, the RHS is equal to 1.

Case 4: Assume x, v, p /∈ max(I). We consider five subcases based on whether the
segment Si has a valley, whether max(I) contains an element from Si and, if so, where it
is located.

Case 4a: Assume v does not exist, and no elements of Si are in I. In this case, y can
be toggled in and Ty = 1 is the only nonzero toggleability statistic on the RHS, so the
RHS is

1−#[y, y]Ty = 0.

Case 4b: Assume v exists and no elements of Si are in I. In this case, Tv = 1 since v
can be toggled in, and the RHS is 1− Tv = 0.

Case 4c: Assume v ∈ I, but r /∈ max(I) for every r ∈ Si. In this case, y can be toggled
in, so Ty = 1 and the RHS simplifies to 0.
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Case 4d: Assume r ∈ max(I) for some r ∈ [y, x). In this case, r and the element that
covers r, say t, would result in two nonzero summands in the first sum, with Tr = −1 and
Tt = 1. The RHS would then simplify to

1−#[y, r]Tr −#[y, t]Tt = 0.

Case 4e: Assume r ∈ max(I) for some r ∈ (x, z]. Again, we have that Tr = −1, and
we let t denote the element of Si that covers r. If t 6= p, then Tt appears in the second
sum and Tt = 1, so the RHS is

1 + #[r, z]Tr + #[t, z]Tt = 0.

If t = p, then Tt does not appear in the second sum and #[r, z] = 1, resulting in a RHS
value of

1 + #[r, z]Tr = 0.

In all five cases, we see the RHS has a value of 0.
In conclusion, the case analysis shows that

(
1− Tv −

∑
yEuEx

#[y, u]Tu +
∑
xCuEz

#[u, z]Tu

)
(I) =


αi if x ∈ max(I),

1 if v ∈ max(I),

1 if p ∈ max(I),

0 if x, v, p /∈ max(I).

Therefore, the LHS and RHS of (2) are equal for every ideal I ∈ J (F ), giving us the
desired result.

Since statistics which are ≡ const are closed under linear combinations, we have the
following corollary of Theorem 3, which strengthens some of the homomesy results that
were shown in [6].

Corollary 4. Let α = (α1, . . . , αt) with corresponding fence F = F̆ (α).

1. If x, y ∈ S̆i, then χx − χy ≡ 0.

2. If αi = 2 for all i ∈ [t], then χ ≡ t/2.

Proof. (1) Let x, y ∈ S̆i. Then

χx − χy =
1

αi
(αiχx + χsi−1

+ χsi)−
1

αi
(αiχy + χsi−1

+ χsi),

and since
αiχx + χsi−1

+ χsi ≡ 1 and αiχy + χsi−1
+ χsi ≡ 1,

we have χx − χy ≡ 0.
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(2) Assume αi = 2 for all i ∈ [t]. Then

χ =
∑
x∈F

χx =
t∑
i=1

1

2
(2χ(i,1) + χsi−1

+ χsi),

and since
2χ(i,1) + χsi−1

+ χsi ≡ 1

for each i ∈ [t], we have χ ≡ t
2
.

Theorem 3 will be used to show that dim(AT (F )) >
∑t

i=1(αi − 1). Lemma 6 below
shows that dim(AT (F )) 6

∑t
i=1(αi − 1). Part of the argument in the proof of Lemma 6

is also used in the proof of Lemma 10 in Section 4, so we state it separately as Lemma 5
next.

For the following results, we will be plugging various ideals into equations of type

c+
∑
x∈F

cxTx = f.

To simplify notation, we will denote by eq(S) the equation

c+
∑
x∈F

cxTx(〈S〉) = f(〈S〉),

where we will opt to omit the braces around the set S for ease of notation. For example,
for the fence F = F̆ (3, 3, 2), which is depicted in Figure 1, and the statistic f = χ, we
have

eq(x2, x5) : c− c2 + c4 − c5 + c7 = 2.

For a statement P , let

1(P ) =

{
1 if P is true,

0 if P is false.

Lemma 5. Let F be a fence and let f ∈ SpanR({χx | x ∈ F}) ∪ SpanR({χ̂x | x ∈ F}). If

f = c+
∑
x∈F

cxTx (3)

for real constants c and cx, x ∈ F , then cp = 0 for every peak p ∈ F .
If, additionally, f ∈ SpanR({χsi | i ∈ [t − 1]}) ∪ SpanR({χ̂si | i ∈ [t − 1]}), then also

cu = 0 for every unshared u ∈ F .

Proof. Let F = F̆ (α1, . . . , αt), f ∈ SpanR({χx | x ∈ F}) ∪ SpanR({χ̂x | x ∈ F}), and p
be the peak of segments Si and Si+1, for some i ∈ [t− 1]. Recall that βi = #S̆i and that
s(i,j) is the j-th minimal element in S̆i. Let c(i,j) denote the coefficient corresponding to
the element s(i,j) in (3). To find cp, we consider two different cases based on the number
of elements in Si.
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Case 1: Assume Si has only two elements. Let x = min(Si). Then x is either a valley
(if i 6= 1) or an unshared element (if i = 1). In either case,

eq(x)− eq(∅) : −2cx + 1(x is a valley and βi−1 > 1)ci−1,1 = C1,

where C1 ∈ R depends on the statistic f and the element x. Now, let y denote the element
of Si+1 covered by p. Then

eq(x, y)− eq(y) : −2cx + 1(x is a valley and βi−1 > 1)ci−1,1 + cp = C1.

Note that the same value C1 appears on the right-hand side since any contribution to the
statistic f from the segment Si+1 is canceled out when subtracting eq(y) from eq(x, y).
By subtracting the last two equations, we get cp = 0.

Case 2: Assume Si has more than two elements. Let x be the element of Si covered
by p and let z be the element covered by x. We have that

eq(x, z)− eq(z) : −2cx + cz + 1(z is a valley and βi−1 > 1)ci−1,1 = C2,

where C2 ∈ R depends on f, x, and z. Let y denote the element of Si+1 covered by p.
Then

eq(x, y, z)− eq(y, z) : −2cx + cz + 1(z is a valley and βi−1 > 1)ci−1,1 + cp = C2,

with the same value C2 on the right-hand side. Subtracting the last two equations gives
that cp = 0, which shows that cp = 0 for every peak p ∈ F .

Now let f ∈ SpanR({χsi | i ∈ [t−1]})∪SpanR({χ̂si | i ∈ [t−1]}). To find the c(i,j)’s, we
form a system of equations by subtracting certain equations obtained by closely related
ideals. Specifically, fix i ∈ [t] with βi > 1. Let I0 be the ideal generated by all the peaks in
F in segments {1, . . . , i−1} (resp. {i+1, . . . , t}) if Si is an up (resp. down) segment. Let
Ik = 〈I0 ∪ s(i,k)〉 for k ∈ [βi]. If βi > 1, we use these ideals in (3) and subtract consecutive
ideals, noting that the right-hand sides will all be zero since the same shared elements
appear in each ideal. This process yields the following system of βi equations:

eq(I1)− eq(I0) : −2c(i,1) + c(i,2) = 0

eq(I2)− eq(I1) : c(i,1) − 2c(i,2) + c(i,3) = 0

... (4)

eq(Iβi−1)− eq(Iβi−2) : c(i,βi−2) − 2c(i,βi−1) + c(i,βi) = 0

eq(Iβi)− eq(Iβi−1) : c(i,βi−1) − 2c(i,βi) = 0.

By using all but the last equation in this system, it is easy to see that we must have

c(i,k) = kc(i,1) (5)

for k ∈ [βi]. Substituting (5) into the last equation in (4), we get

(βi − 1)c(i,1) − 2βic(i,1) = 0

the electronic journal of combinatorics 31(4) (2024), #P4.46 10



and, therefore,
c(i,1) = 0.

Combining the above equation with (5) yields that c(i,k) = 0 for all k ∈ [βi].
If βi = 1, we can similarly obtain

eq(I1)− eq(I0) : −2c(i,1) = 0,

so in either case,
c(i,k) = 0

for all k ∈ [βi]. Since i was arbitrary, we conclude that cu = 0 for all unshared u ∈ F .

We now show that SpanR({χx | x ∈ F}) contains a (t−1)-dimensional subspace which
has a trivial intersection with AT (F ). Since the total number of elements in a fence is

#F = #{unshared elements of F}+#{shared elements of F} =

(
t∑
i=1

(αi − 1)

)
+(t−1),

this implies that dim(AT (F )) 6
∑t

i=1(αi − 1).

Lemma 6. Let α = (α1, . . . , αt) with corresponding fence F = F̆ (α). Then the set
X = {χsi | 1 6 i 6 t− 1} is linearly independent and SpanR(X) ∩ AT (F ) = {0}.

Proof. Let i ∈ [t − 1]. Note that χsi(〈si〉) = 1 and χsj(〈si〉) = 0 for j 6= i. Therefore, X
is linearly independent.

Let g ∈ SpanR(X) ∩ AT (F ). Then

g = b1χs1 + · · ·+ bt−1χst−1 ,

for some b1, . . . , bt−1 ∈ R and there are real numbers c and cx, x ∈ F such that

g = c+
∑
x∈F

cxTx. (6)

We begin by finding cx for each x ∈ F . By Lemma 5, cp = 0 for every peak p and cu = 0
for every unshared u ∈ F , so we only need to determine the coefficients corresponding to
the valleys. We do this by plugging in different ideals in 6.

Let si be a valley and observe that

eq(si)− eq(∅) : −2csi = bi,

so that for a valley si:

csi = −bi
2
. (7)
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We now argue that bi = 0 for all i ∈ [t−1]. We consider two cases based on the parity
of i ∈ [t− 1]. In both cases, we will use the equation

eq(F ) : c =
t−1∑
i=1
i odd

bi, (8)

which follows from the fact that the set max(F ) consists of the peaks in F and, if t is
odd, the maximal element of the last segment.

Case 1: Assume i is odd so that si is a peak. The equation eq(F \ 〈si〉) is

c =
t−1∑
j=1
j odd
j 6=i

bj. (9)

Subtracting (9) from (8) yields bi = 0.
Case 2: Let i ∈ [t− 1] with i even. Then eq(F \ (Si ∪ Si+1)) is

csi + c =
t−1∑
j=1
j odd

j 6=i−1,i+1

bj,

and subtracting (8) yields
csi = −bi−1 − bi+1,

where bi := 0 for i /∈ [t − 1]. Since i is even, i − 1 and i + 1 are odd and thus zero by
either Case 1 or definition if i + 1 /∈ [t− 1], so csi = 0. By (7), this gives that bi = 0 for
all even i, and hence every i ∈ [t − 1]. We conclude that SpanR(X) ∩ AT (F ) = {0}, as
desired.

Theorem 7. Let α = (α1, . . . , αt) with corresponding fence F = F̆ (α). A basis for AT (F )
is given by

BA(F ) =
t⋃
i=1

{αiχx + χsi−1
+ χsi | x ∈ S̆i},

and thus

dim(AT (F )) =
t∑
i=1

(αi − 1).

Proof. By Theorem 3, BA(F ) ⊂ AT (F ). Note that for any i ∈ [t] and x ∈ S̆i, all statistics
in BA(F ) but αiχx + χsi−1

+ χsi are zero when evaluated at I = 〈x〉. Therefore, BA(F ) is
linearly independent and

dim(AT (F )) > #BA(F ) =
t∑
i=1

(αi − 1).
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Furthermore, by Lemma 6, SpanR({χx | x ∈ F}) contains a (t− 1)-dimensional subspace
that trivially intersects AT (F ), which implies

dim(AT (F )) 6 #F − (t− 1) =
t∑
i=1

αi − 1− (t− 1) =
t∑
i=1

(αi − 1),

which yields the result.

4 Order Ideal Toggleability Space

In this section, we use the same approach as in Section 3 to describe IT (F ) of a fence
F = F̆ (α1, . . . , αt) in Theorem 11. Recall that s(i,j) is the j-th minimal element of S̆i
and that χ̂(i,j) and T(i,j) are the order ideal indicator function and toggleability statistic,
respectively, corresponding to s(i,j). In Theorem 8, we show that each element of

BI(F ) :=
t⋃
i=1

βi⋃
j=1

{αiχ̂(i,j) − jχ̂p − (αi − j)χ̂v | p peak of Si, v valley of Si}

is in IT (F ). The fact that BI(F ) is linearly independent provides a lower bound on
dim(IT (F )). Lemma 10 gives an upper bound on dim(IT (F )).

Theorem 8. Let α = (α1, . . . , αt) with corresponding fence F = F̆ (α). Let i ∈ [t] with
αi > 2, v be the valley of Si (if it exists) and p be the peak of Si (if it exists). Then, for
each j ∈ [βi],

αiχ̂(i,j) − jχ̂p − (αi − j)χ̂v = 1(Si has no valley)(αi − j)

− (αi − j)
∑

s(i,1)EuEs(i,j)

#
[
s(i,1), u

]
Tu − j

∑
s(i,j)CuEs(i,βi)

#
[
u, s(i,βi)

]
Tu. (10)

Proof. Assume first that Si has a valley so that 1(Si has no valley) = 0. For a given ideal
I, the left-hand side (LHS) of (10) has possible values:

(
αiχ̂(i,j) − jχ̂p − (αi − j)χ̂v

)
(I) =


j if v, s(i,j) ∈ I and p /∈ I,
−(αi − j) if v ∈ I and s(i,j), p /∈ I,
0 if v, s(i,j), p /∈ I or v, s(i,j), p ∈ I.

(11)

We now compute the value of the right-hand side (RHS) of (10) by considering 3 cases.
Case 1: Let v, s(i,j) ∈ I and p /∈ I. There are two subcases to consider based on

whether or not s(i,j) ∈ max(I).
Case 1a: Assume s(i,j) ∈ max(I), so T(i,j) = −1. If s(i,j) is the maximal element in

S̆i, then j = βi and T(i,j) is the only nonzero toggleability statistic on the RHS, which
therefore simplifies to

−(αi − βi)#
[
s(i,1), s(i,j)

]
T(i,j) = j.
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If s(i,j) is not the maximal element in S̆i, then s(i,j) C s(i,j+1) E s(i,βi) and T(i,j+1) = 1, so
the RHS reduces to

−(αi − j)#
[
s(i,1), s(i,j)

]
T(i,j) − j#

[
s(i,j+1), s(i,βi)

]
T(i,j+1) = j.

Case 1b: Assume s(i,j) /∈ max(I). Then s(i,k) ∈ max(I) for some j < k 6 βi. Note that
s(i,j) C s(i,k) E s(i,βi) and T(i,k) = −1. If k = βi, then T(i,k) is the only nonzero toggleability
statistic on the RHS, which simplifies to

−j#
[
s(i,βi), s(i,βi)

]
T(i,j) = j.

If k 6= βi, then s(i,k) C s(i,k+1) E s(i,βi) and T(i,k+1) = 1. The RHS reduces to

−j
(
#
[
s(i,k), s(i,βi)

]
T(i,k) + #

[
s(i,k+1), s(i,βi)

]
T(i,k+1)

)
= j.

In all possible subcases, we see that the RHS has value j if v, s(i,j) ∈ I and p /∈ I.

Case 2: Let v ∈ I and s(i,j), p /∈ I. If S̆i ∩ max(I) = ∅ or S̆i ∩ max(I) = {v}, then
T(i,1) = 1, and the RHS is thus

−(αi − j)#
[
s(i,1), s(i,1)

]
T(i,1) = −(αi − j).

Otherwise, let s(i,k) ∈ S̆i ∩max(I). Note that s(i,1) E s(i,k) C s(i,k+1) E s(i,j), T(i,k) = −1,
and T(i,k+1) = 1. The RHS is then

−(αi − j)
(
#
[
s(i,1), s(i,k)

]
T(i,k) + #

[
s(i,1), s(i,k+1)

]
T(i,k+1)

)
= −(αi − j),

so the RHS is equal to −(αi − j) when v ∈ I and s(i,j), p /∈ I.
Case 3: Assume v, s(i,j), p /∈ I or v, s(i,j), p ∈ I. For both of these assumptions, all of

the toggleability statistics on the RHS are zero, so the RHS has value 0.
Summarizing the values of the RHS in the three cases above and comparing them

with (11) gives the result when Si has a valley.
For the remainder of the proof, we assume that Si has no valley. For a given ideal I,

the LHS has possible values:

(
αiχ̂(i,j) − jχ̂p

)
(I) =


αi − j if s(i,j), p ∈ I,
αi if s(i,j) ∈ I and p /∈ I,
0 if s(i,j), p /∈ I.

(12)

If s(i,j), p ∈ I, all toggleability statistics on the RHS are zero, so the RHS reduces to
αi − j since Si has no valley.

If s(i,j) ∈ I and p /∈ I, note that the argument given in Case 1 above gives j as the
value of the RHS when ignoring the contribution of (αi− j) that occurs due to Si having
no valley. The RHS thus has value j + (αi − j) = αi.

If s(i,j), p /∈ I, the argument in Case 2 gives −(αi − j) as the value for the RHS when
excluding the contribution of (αi − j) from Si not having a valley. The RHS thus has
value 0.

Summarizing the above and comparing to (12) yields the result when Si has no valley,
concluding the proof.
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As a consequence of Theorem 8, we obtain many new statistics which are homomesic
under rowmotion. In [6], it was shown that the statistic kχ̂1,j − jχ̂1,k is (k − j)-mesic.
As we show in the following corollary, this homomesy follows from Theorem 8 and can
further be extended to statistics from the last segment as well.

Corollary 9. Let α = (α1, . . . , αt) with corresponding fence F = F̆ (α). If Si does not
have a valley, then

kχ̂(i,j) − jχ̂(i,k) ≡ k − j.

If Si does not have a peak, then

(αi − k)χ̂(i,j) − (αi − j)χ̂(i,k) ≡ 0.

Proof. Let Si be a segment with no valley, and let p be the peak of Si. Observe that

kχ̂(i,j) − jχ̂(i,k) =
k

αi
(αiχ̂(i,j) − jχ̂p)−

j

αi
(αiχ̂(i,k) − kχ̂p).

By Theorem 8, we have that αiχ̂(i,j) − jχ̂p ≡ αi − j and αiχ̂(i,k) − kχ̂p ≡ αi − k, so

kχ̂(i,j) − jχ̂(i,k) ≡
k

αi
(αi − j)−

j

αi
(αi − k) = k − j.

Now, let Si be a segment with valley v and no peak. Then

(αi−k)χ̂(i,j)− (αi− j)χ̂(i,k) =
αi − k
αi

(αiχ̂(i,j)− (αi− j)χ̂v)−
αi − j
αi

(αiχ̂(i,k)− (αi−k)χ̂v).

By Theorem 8, αiχ̂(i,j) − (αi − j)χ̂v ≡ 0 and αiχ̂(i,k) − (αi − k)χ̂v ≡ 0, which gives

(αi − k)χ̂(i,j) − (αi − j)χ̂(i,k) ≡ 0.

Lemma 10. Let α = (α1, . . . , αt) with corresponding fence F = F̆ (α). Then the set
Y = {χ̂si | i ∈ [t− 1]} is linearly independent and SpanR(Y ) ∩ IT (F ) = {0}.

Proof. Let ai ∈ R for all i ∈ [t− 1], such that

a1χ̂s1 + · · ·+ at−1χ̂st−1 = 0. (13)

We proceed by showing ai = 0 for all i ∈ [t− 1].
Observe that χ̂si(〈si〉) 6= 0 for all i ∈ [t − 1]. Let i ∈ [t − 1] with i even so that si

is a valley. Then χ̂sj(〈si〉) = 0 for j 6= i, so we must have ai = 0. Now assume that
i ∈ [t− 1] with i odd so that si is a peak. Observe that χ̂sj(〈si〉) = 0 for all j 6 i− 2 and
all j > i+2. Additionally, if i−1 and i+1 are in [t−1], they are even by the assumption
on i, and hence ai−1 = ai+1 = 0. To satisfy (13), we must have ai = 0. This shows ai = 0
for all odd i, so ai = 0 for all i ∈ [t− 1]. Therefore, Y is linearly independent.
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Let g ∈ SpanR(Y ) ∩ IT (F ). Then

g = b1χ̂s1 + · · ·+ bt−1χ̂st−1 ,

for some b1, . . . , bt−1 ∈ R and there are real numbers c and cx, x ∈ F such that

g = c+
∑
x∈F

cxTx. (14)

We now determine cx for every x ∈ F . By Lemma 5, cp = 0 for every peak p and
cu = 0 for every unshared u ∈ F , so all that remains is to find the coefficients for the
valleys. We do this by plugging in different ideals in (14).

Let si be a valley and observe that

eq(si)− eq(∅) : −2csi = bi,

so that for any valley si:

csi = −bi
2
. (15)

We now argue that bi = 0 for all i ∈ [t−1]. We consider two cases based on the parity
of i ∈ [t− 1]. In both cases, we will use the equation

eq(F ) : c =
t−1∑
i=1

bi. (16)

Case 1: Assume i is odd so that si is a peak. The equation eq(F \ 〈si〉) is

c =
t−1∑
j=1
j 6=i

bj. (17)

Subtracting (17) from (16) yields bi = 0.
Case 2: Let i ∈ [t− 1] with i even. Then eq((F \ (Si ∪ Si+1)) ∪ {si}) is

−csi + c =
t−1∑
j=1

j 6=i−1,i+1

bj,

and subtracting the above equation from (16) yields

csi = bi−1 + bi+1,

where we again define bi := 0 for i /∈ [t− 1]. Since i is even, i− 1 and i + 1 are odd and
thus zero by either Case 1 or definition if i + 1 /∈ [t − 1], so csi = 0. By (15), this gives
that bi = 0 for all even i and hence all i ∈ [t − 1]. Thus, SpanR(Y ) ∩ IT (F ) = {0}, as
desired.
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Theorem 11. Let α = (α1, . . . , αt) with corresponding fence F = F̆ (α). A basis for
IT (F ) is given by

BI(F ) =
t⋃
i=1

βi⋃
j=1

{αiχ̂(i,j) − jχ̂p − (αi − j)χ̂v | p peak of Si, v valley of Si},

and thus

dim(IT (F )) =
t∑
i=1

(αi − 1).

Proof. By Theorem 8, BI(F ) ⊂ IT (F ). We now show that BI(F ) is linearly independent.
Let ξ(i,j) = αiχ̂(i,j) − jχ̂p − (αi − j)χ̂v, where p is the peak of Si and v is the valley of

Si, for i ∈ [t]. Suppose
t∑
i=1

βi∑
j=1

a(i,j)ξ(i,j) = 0, (18)

where the a(i,j)’s are real constants. Fix i′ ∈ [t] with βi′ > 1 and j′ ∈ [βi′ ]. Let I1 denote
the ideal generated by the element covered by s(i′,j′). If such an element does not exist, let
I1 be the empty ideal. Let I2 = 〈s(i′,j′)〉. Observe that ξ(i,j)(I1) = ξ(i,j)(I2) for all i, j such
that (i, j) 6= (i′, j′) and that ξ(i′,j′)(I2) = ξ(i′,j′)(I1) + αi since s(i′,j′) ∈ I2 but s(i′,j′) /∈ I1.
Evaluating (18) at I1 and then I2 yields two equations:

a(i′,j′)(ξ(i′,j′))(I1) +
t∑
i=1

βi∑
j=1

(i,j) 6=(i′,j′)

a(i,j)(ξ(i,j))(I1) = 0, (19)

and

a(i′,j′)(ξ(i′,j′))(I2) +
t∑
i=1

βi∑
j=1

(i,j) 6=(i′,j′)

a(i,j)(ξ(i,j))(I2) = 0.

The second equation is equivalent to

a(i′,j′)((ξ(i′,j′))(I1) + αi) +
t∑
i=1

βi∑
j=1

(i,j)6=(i′,j′)

a(i,j)(ξ(i,j))(I1) = 0. (20)

Subtracting (19) from (20) gives
αia(i′,j′) = 0,

so a(i′,j′) = 0. Since (i′, j′) was arbitrary, we must have a(i,j) = 0 for each a(i,j) in (18).
Therefore BI(F ) is linearly independent and

dim(IT (F )) > #BI(F ) =
t∑
i=1

(αi − 1).
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Furthermore, by Lemma 10, Span({χ̂x | x ∈ F}) contains a (t− 1)-dimensional subspace
which intersects trivially with IT (F ). Thus,

dim(IT (F )) 6 #F − (t− 1) =
t∑
i=1

αi − 1− (t− 1) =
t∑
i=1

(αi − 1),

which proves equality.

5 The Statistic χ̂

This section is motivated by a conjecture concerning the order ideal cardinality statistic
χ̂ on certain self-dual fences. Let at denote the tuple consisting of t elements, all with
value a.

Conjecture 12 ([6]). Let α = (at) with t odd and let F = F̆ (α). The statistic χ̂ is
n/2-mesic where n = #F .

It is important to note that χ̂ 6≡ const for this type of fence in general. Thus, the tog-
gleability statistics cannot be used directly to prove this conjectured homomesy. However,
we will show how using the toggleability statistics leads to exploring related homomesy
statements, which might be helpful in showing Conjecture 12.

The following lemma gives a straightforward way to translate between antichain and
order ideal indicator functions for general fences, which we will use for some results in
this section and later in the proof of Theorem 33.

Lemma 13. Let F be a fence. Then

χx =


χ̂x if x is a peak,

χ̂x − χ̂y if x is unshared and y covers x,

1− Tx − χ̂x if x is a valley,

(21)

and

χ̂x =


χx if x is a peak,∑

yDx χy if x is unshared,

1− Tx − χx if x is a valley.

(22)

Proof. We first show (22). The first two cases of (22) follow directly from the fact that
x ∈ I if and only if y ∈ max(I) for some y D x. If x is a valley, we consider three subcases
based on whether x ∈ I and x ∈ max(I).

Case 1: Assume x /∈ I, so that χ̂x = χx = 0. Then x can be toggled in, so Tx = 1.
Case 2: Assume x ∈ max(I), so that χ̂x = χx = 1. Then x can be toggled out, so

Tx = −1.
Case 3: Assume x ∈ I but x /∈ max(I). Then χ̂x = 1, χx = 0, and Tx = 0.
In each of these cases, one can confirm that when x is a valley, χ̂x = 1− Tx − χx.
Finally, (21) follows from (22) by Möbius inversion.
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The above lemma allows us to express χ̂ for F = F̆ (at), t odd, in an alternative way
that involves antichain indicator functions for shared elements.

Theorem 14. Let F = F̆ (at) with t odd. Then

χ̂ ≡ n

2
+ a

( ∑
p: peak

χp −
∑

v: valley

χv

)
.

Proof. We first write the order ideal cardinality as the sum of the individual order ideal in-
dicator functions and then apply (22) to express everything in terms of antichain indicator
functions and toggleability statistics:

χ̂ =
∑
p: peak

χ̂p +
∑

v: valley

χ̂v +
t∑
i=1

a−1∑
j=1

χ̂(i,j)

=
∑
p: peak

(2a− 1)χp +
∑

v: valley

(1− Tv − χv) +
t∑
i=1

a−1∑
j=1

jχ(i,j).

By Theorem 3,

χ(i,j) ≡
1

a
(1− χpi − χvi) ,

where pi (resp. vi) is the peak (resp. valley) of Si. Substituting this in the last sum yields

χ̂ ≡
∑
p: peak

(2a− 1)χp +
∑

v: valley

(1− χv) +
1

a

t∑
i=1

a−1∑
j=1

j(1− χpi − χvi)

=
∑
p: peak

(2a− 1)χp +
∑

v: valley

(1− χv) +
1

a

t∑
i=1

(
(a− 1)a

2

)
(1− χpi − χvi)

=
∑
p: peak

(2a− 1)χp +
∑

v: valley

(1− χv) +
(a− 1)

2

t∑
i=1

(1− χpi − χvi).

Since each pi and vi appears twice in the last sum, simplification yields

χ̂ ≡ a
∑
p: peak

χp +
∑

v: valley

(1− aχv) +
t(a− 1)

2
.

Since the number of valleys is t−1
2

and n = #F = ta− 1, we obtain

χ̂ ≡ a
∑
p: peak

χp − a
∑

v: valley

χv +
t− 1

2
+
t(a− 1)

2
=
n

2
+ a

( ∑
p: peak

χp −
∑

v: valley

χv

)
.

Using Theorem 14, one can see that Conjecture 12 is equivalent to the following.
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Conjecture 15. Let F = F̆ (at) with t odd. The statistic∑
p: peak

χp −
∑

v: valley

χv

is 0-mesic.

In fact, we make a stronger conjecture which we have confirmed for the fences F̆ (at)
with a+ t 6 10, as well as F̆ (29) and F̆ (83):

Conjecture 16. Let F = F̆ (at) with t odd, and let i ∈ [t− 1]. Then

χsi − χst−i

is 0-mesic.

To discuss a potential method for proving the above conjectures, we mention a gen-
eralization of toggleability statistics which have been called antichain toggleability statis-
tics [3].

Let P be a poset, and let A(P ) be the set of all antichains of P . For each A ∈ A(P ),
define the antichain toggleability statistic TA : J (P )→ R as

TA(I) :=


1 if A ⊆ min(P \ I),

−1 if A ⊆ max(I),

0 otherwise.

Antichain toggleability statistics are far more numerous than the toggleability statistics
we have been considering, but an advantage of the former can be seen in the following
theorem.

Theorem 17 ([3], Theorem 6.2). For a poset P , the space of functions J (P ) → R that
are 0-mesic under rowmotion is equal to SpanR({TA | A ∈ A(P )}).

So, if we can prove that a statistic can be written as a constant plus a linear combina-
tion of antichain toggleability statistics, then that statistic is homomesic, and the converse
is also true. The difficulty is that the antichain toggleability statistics are not linearly
independent in general, so even when one finds such expressions for smaller posets, it’s
challenging to find one which nicely generalizes to a whole family. In contrast, the tog-
gleability statistics associated with single elements are linearly independent [3, Theorem
2.7].

As an example of this, we prove that the statistic χa − χ2a on the fence F̆ (a, a, a),
which is a specific instance of the statistics found in Conjectures 15 and 16, is 0-mesic by
writing it as a linear combination of antichain toggleability statistics. We note that this
homomesy can be derived as a consequence of Theorem 14 and [6, Theorem 4.4], but the
proof provided here uses the antichain toggleability statistics directly.

the electronic journal of combinatorics 31(4) (2024), #P4.46 20



Example 18. Before we state the theorem for general a, we provide the example when
a = 3 which should help the reader parse the statement. Consider the fence F = F̆ (3, 3, 3)
shown in Figure 3. We have that

χ3−χ6 = −T1−2T2−3T3−2T6−2T7−T8 + 3T{1,6}+ 3T{1,7}+ 3T{2,6}+ 3T{2,7}+ 3T{2,8}

+ 3T{3,7} + 3T{3,8} − 3T{1,5,7} − 3T{2,4,8}.

x1

x2

x3

x4

x5

x6

x7

x8

Figure 3: The fence F̆ (3, 3, 3).

Theorem 19. Let F = F̆ (a, a, a) for some a > 2. Then

χa − χ2a =
a∑
i=1

(−iTi)− (a− 1)T2a +
a−1∑
i=1

(−iT3a−i)

+
a−1∑
i=1

i∑
j=0

(aT{i,2a+j}) +
a−1∑
j=1

(aT{a,2a+j}) +
a−1∑
i=1

(−aT{i,2a−i,2a+i}). (23)

Proof. Let

TS1 =
a∑
i=1

−iTi, TS3 = −(a− 1)T2a +
a−1∑
i=1

−iT3a−i,

Tpairs =
a−1∑
i=1

i∑
j=0

aT{i,2a+j} +
a−1∑
j=1

aT{a,2a+j}, Ttriples = −a
a−1∑
i=1

T{i,2a−i,2a+i}.

The claim is that
χa − χ2a = TS1 + TS3 + Tpairs + Ttriples.

Since at most two elements per segment can be toggled for any ideal I, most of the
(antichain) toggleability statistics are 0 for any given ideal. We show that (23) holds for
every ideal by summarizing all possible cases in Table 1. We use three rectangles as a
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shorthand to convey the type of the ideal I based on the number of unshared elements in
Si ∩ I, 1 6 i 6 3. An empty rectangle means there are no unshared elements in Si ∩ I, a
half-shaded rectangle means that I contains some, but not all, unshared elements from Si,
and a shaded rectangle means that I contains all unshared elements from Si. In most cases,
the type determines whether the peak and valley are in I. When it doesn’t, we consider
subcases indicated in the disambiguation column. Note that we sometimes intentionally
leave cells unsimplified in an effort to give more detail about the contributions of the
antichain toggleability statistics. Also note that the final column is always the sum of the
third through sixth columns, which proves (23).

We note that even though Theorem 19 treats fences with only three segments, the
proof involves checking many cases and cannot be generalized as is. However, although
we were unsuccessful in finding a general pattern for the coefficients of the antichain
toggleability statistics for any of the statistics in Conjectures 15 and 16, the approach
may yet prove fruitful with the proper insight.

We have been focusing on differences of antichain indicator functions for “opposite”
peaks and valleys of F̆ (at), t odd, but we can discuss sums and differences of indicator
functions for opposite elements more generally. We will do this next in the expanded
context of self-dual fences. We show that, in fact, if all differences of antichain indicator
functions for opposite peaks and valleys are 0-mesic for a self-dual fence, then all differ-
ences of antichain indicator functions for opposite elements are 0-mesic and all sums of
order ideal indicator functions for opposite elements are 1-mesic.

Theorem 20. Let α = (α1, . . . , αt) be palindromic with t odd, F = F̆ (α) be the associated
fence, and n = #F . Assume χsi − χst−i is 0-mesic for all i ∈ [t− 1]. Then

1. χk − χn−k+1 is 0-mesic for all k ∈ [n], and

2. χ̂k + χ̂n−k+1 is 1-mesic for all k ∈ [n].

Proof. (1) If xk and xn−k+1 are shared elements, the result follows by assumption. Assume
then that xk and xn−k+1 are unshared elements. Let xk ∈ Si, and note that this implies
that xn−k+1 ∈ St−i+1. Let pj (resp. vj) denote the peak (resp. valley) of segment Sj,
j ∈ [t− 1]. By Theorem 3,

χx ≡
1

αj
(1− χpj − χvj) (24)

for each unshared x ∈ Sj. Combining this with αi = αt−i+1 (since α is palindromic), we
have

χk − χn−k+1 ≡
1

αi
(1− χpi − χvi)−

1

αi
(1− χpt−i+1

− χvt−i+1
)

=
1

αi
(χvt−i+1

− χpi) +
1

αi
(χpt−i+1

− χvi).

The combinations of statistics in each set of parentheses are 0-mesic by assumption, so
χk − χn−k+1 is 0-mesic for all k ∈ [n].
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Ideal Disambiguation TS1(I) TS3(I) Tpairs(I) Ttriples(I) χa − χ2a

v /∈ I −1 −(a− 1) a 0 0

v ∈ I −1 0 a −a −1

−1 1 0 0 0

−1 1 0 0 0

−1 −(a− 1) a 0 0

−1 1 0 0 0

−1 1 0 0 0

−1 −(a− 1) a 0 0

−1 1 0 0 0

−1 1 0 0 0

v /∈ I −1 −(a− 1) a 0 0

v ∈ I −1 0 −a+ a 0 −1

−1 1 0 or −a+ a 0 0

−1 1 0 0 0

−1 −(a− 1) a 0 0

−1 1 0 or −a+ a 0 or a− a 0

−1 1 0 0 0

−1 −(a− 1) a 0 0

−1 1 0 or −a+ a 0 0

−1 1 0 0 0

v /∈ I a− 1 −(a− 1) 0 0 0

v ∈ I a− 1 0 −a 0 −1

a− 1 1 −a 0 0

a− 1 1 −a 0 0

a− 1 −(a− 1) 0 0 0

a− 1 1 −a 0 0

a− 1 1 −a 0 0

p /∈ I −1 −(a− 1) a 0 0

p ∈ I a −(a− 1) 0 0 1

p /∈ I −1 1 −a+ a 0 0

p ∈ I a 1 −a 0 1

p /∈ I −1 1 −a a 0

p ∈ I a 1 −a 0 1

Table 1: Cases for the proof of Theorem 19.
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(2) Fix k ∈ [n]. If xk is a shared element, we can assume without loss of generality
that xk is a peak. Then xn−k+1 is a valley, and using (22), we get

χ̂k + χ̂n−k+1 = 1 + χk − χn−k+1 − Tn−k+1 ≡ 1 + χk − χn−k+1.

Since χk − χn−k+1 is 0-mesic, we conclude that χ̂k + χ̂n−k+1 is 1-mesic.
Suppose now that xk is an unshared element, say xk = s(i,j). Then xn−k+1 =

s(t−i+1,αt−i+1−j). Using (22), (24), and αi = αt−i+1, we have

χ̂k + χ̂n−k+1 = χpi +

αi−1∑
m=j

χ(i,m) + χpt−i+1
+

αi−1∑
m=αi−j

χ(t−i+1,m)

≡ χpi +

(
αi − j
αi

)
(1− χpi − χvi) + χpt−i+1

+

(
j

αi

)
(1− χpt−i+1

− χvt−i+1
)

= 1 +

(
j

αi

)
(χpi − χvt−i+1

) +

(
αi − j
αi

)
(χpt−i+1

− χvi).

Since χpi −χvt−i+1
and χpt−i+1

−χvi are 0-mesic by assumption, we have that χ̂k + χ̂n−k+1

is 1-mesic.

A similar result can be shown in the case where only the sums of order ideal indicator
functions for opposite shared elements are assumed to be 1-mesic.

Theorem 21. Let α = (α1, . . . , αt) be palindromic with t odd, F = F̆ (α) be the associated
fence, and n = #F . Assume χ̂si + χ̂st−i is 1-mesic for all i ∈ [t− 1]. Then we have that

1. χ̂k + χ̂n−k+1 is 1-mesic for all k ∈ [n], and

2. χk − χn−k+1 is 0-mesic for all k ∈ [n].

Proof. (1) If xk and xn−k+1 are shared elements, the result follows by assumption. Assume
then that xk and xn−k+1 are unshared elements, say xk = s(i,j) and hence xn−k+1 =
s(t−i+1,αt−i+1−j). We consider cases based on whether one of xk, xn−k+1 is in S1.

Case 1: Assume one of xk or xn−k+1 is in S1. Without loss of generality, assume
xk ∈ S1. Note that S1 has no valley and St has no peak. By Theorem 8 and the
palindromicity of α, we have

χ̂(i,j) ≡
1

α1

(α1 − j + jχ̂p1) and χ̂(t−i+1,α1−j) ≡
1

α1

(jχ̂vt−i+1
),

so that

χ̂k + χ̂n−k+1 ≡
1

αi
(αi − j + jχ̂pi) +

1

αi
(jχ̂vt−i+1

) =
αi − j
αi

+
j

αi
(χ̂pi + χ̂vt−i+1

).

We have that χ̂pi + χ̂vt−i+1
is 1-mesic by assumption, so χ̂k + χ̂n−k+1 is 1-mesic in this

case.
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Case 2: Assume xk and xn−k+1 are not in S1. Then, by Theorem 8,

χ̂k + χ̂n−k+1 ≡
1

αi
(jχ̂pi + (αi − j)χ̂vi) +

1

αi
((αi − j)χ̂pt−i+1

+ jχ̂vt−i+1
)

=
j

αi
(χ̂pi + χ̂vt−i+1

) +
αi − j
αi

(χ̂vi + χ̂pt−i+1
).

The combinations of statistics in each set of parentheses are 1-mesic by assumption, so
χ̂k + χ̂n−k+1 is 1-mesic for all k ∈ [n].

(2) Fix k ∈ [n]. If xk is a shared element, we can assume without loss of generality
that xk is a peak. Then xn−k+1 is a valley, and using (21) yields

χk − χn−k+1 = χ̂k + χ̂n−k+1 − 1 + Tn−k+1 ≡ χ̂k + χ̂n−k+1 − 1.

Since χ̂k + χ̂n−k+1 is 1-mesic, we conclude that χk − χn−k+1 is 0-mesic.
If xk is unshared, say xk = s(i,j), then xn−k+1 = s(t−i+1,αt−i+1−j). Suppose that xk, and

hence xn−k+1, is on an up-segment (the other case is similar). We consider two cases based
on whether or not xk or xn−k+1 is in S1. In both cases, we show the proof assuming that
the covering elements xk+1 and xn−k+2 are unshared elements (if they exist). Considering
the cases when one (or both) of the covering elements is a peak is very similar, so we omit
the details.

Case 1: Assume xk or xn−k+1 is in S1. Without loss of generality, we can assume
xk ∈ S1. Using the palindromicity of α, (21), and that

χ̂(i,j) ≡
1

αi
(1(Si has no valley)(αi − j) + jχ̂pi + (αi − j)χ̂vi)

by Theorem 8, we have

χk − χn−k+1 = χ̂k − χ̂k+1 − χ̂n−k+1 + χ̂n−k+2

≡ 1

αi
− 1

αi
χ̂pi −

1

αi
χ̂vt−i+1

=
1

αi
− 1

αi
(χ̂pi + χ̂vt−i+1

).

Since χ̂pi + χ̂vt−i+1
is 1-mesic by assumption, we have that χk − χn−k+1 is 0-mesic.

Case 2: Assume xk and xn−k+1 are not in S1. Then

χk − χn−k+1 = χ̂k − χ̂k+1 − χ̂n−k+1 + χ̂n−k+2

≡ 1

αi
χvi −

1

αi
χpi −

1

αi
χvt−i+1

+
1

αi
χpt−i+1

=
1

αi
(χ̂vi + χ̂pt−i+1

)− 1

αi
(χ̂pi + χ̂vt−i+1

),

which implies χk − χn−k+1 is 0-mesic.
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The statistics in Theorems 20 and 21 were considered in [6] and were shown to be
homomesic under additional palindromic constraints related to the realization of rowmo-
tion orbits as tilings. By combining the two previous theorems, we get as a corollary that
these sets of homomesies are equivalent for self-dual fences.

Corollary 22. Let α = (α1, . . . , αt) be palindromic with t odd, F = F̆ (α) be the associated
fence, and n = #F . The statistics χk − χn−k+1 are 0-mesic for all k ∈ [n] if and only if
the statistics χ̂k + χ̂n−k+1 are 1-mesic for all k ∈ [n].

While we haven’t found a counterexample or been able to prove the homomesies in
Conjectures 15 and 16, we can prove a weaker result which is similar in flavor to a result
in [6]. An order filter of a poset P is a set U where x ∈ U and y > x implies y ∈ U . Let
U(P ) denote the set of order filters of P . Let ∇ : U(P )→ A(P ) be the map defined as

∇(U) := {x ∈ U | x ∈ min(U)},

and let ∆ : J (P )→ A(P ) be the map

∆(I) := {x ∈ I | x ∈ max(I)}.

Additionally, let c : P → P be the complement map given by c(S) = P \S for any subset
S ⊆ P . Note that rowmotion is a composition of the previous maps (and their inverses):

ρ = ∆−1 ◦ ∇ ◦ c.

In fact, different versions of rowmotion on antichains and order filters have been studied
which are compositions of the maps defined above and their inverses, see for example [12].

Let P be a self-dual poset and κ : P → P an order-reversing bijection. We define the
ideal complement (with respect to κ) of I:

I := κ ◦ c(I).

The following lemma connects I and I via rowmotion.

Lemma 23 ([6]). Let P be self-dual and fix an order-reversing bijection κ : P → P . Then
for all I ∈ J (P ),

ρ−1(I) = ρ(I),

where the ideal complements are with respect to κ.

To prove this lemma, it was shown that the following diagram commutes:

I U A J

I B V K

c ∇

κ

∆−1

κ κ

∆ ∇−1 c

(25)

We will use the above diagram to state a similar result. Let κ be an order-reversing
bijection on a self-dual poset P . Given an ideal I ∈ J (P ), define

I ′ := ∆−1 ◦ κ ◦∆(I).
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Lemma 24. Let P be self-dual and fix an order-reversing bijection κ : P → P . If κ is an
involution, then for all I ∈ J (P ),

ρ−1(I ′) = (ρ(I))′.

Proof. Note that
ρ−1(I ′) = c ◦ ∇−1 ◦ κ ◦∆(I),

and
(ρ(I))′ = ∆−1 ◦ κ ◦ ∇ ◦ c(I).

Using (25) and the fact I = I since κ and c are commuting involutions, we see that

ρ−1(I ′) = I = (ρ(I))′,

which completes the proof.

For the statement of the next result, it will be helpful to define f(O) :=
∑

I∈O f(I),
where O is an orbit of rowmotion and f is a statistic on ideals.

Corollary 25. Let P be a self-dual poset with n = #P and suppose there is an order-
reversing involution κ : P → P . Let I ∈ J (P ) and fix ` ∈ [n].

1. If I, I ′ ∈ O for some orbit O, then

(χ` − χκ(`))(O) = 0.

2. If I ∈ O and I ′ ∈ O′ for some orbits O and O′ with O 6= O′, then #O = #O′ and

(χ` − χκ(`))(O) + (χ` − χκ(`))(O′) = 0.

Proof. (1) Let I, I ′ ∈ O, then observe that for some J = ρj(I) ∈ O, we have by Lemma 24

J ′ = (ρj(I))′ = ρ−j(I ′) ∈ O.

That is, O can be partitioned into pairs of ideals {I, I ′} with I 6= I ′ and singletons {I}
with I = I ′. Furthermore, since ` ∈ max(I) if and only if κ(`) ∈ max(I ′), the value of
χ` − χκ(`) is 0 on each of the pairs and singletons and hence 0 on the entire orbit.

(2) Let O = {I1, . . . , Im}. Similar reasoning as in the proof of (1) shows that O′ =
{I ′1, . . . , I ′m}. The value of χ` − χκ(`) is 0 on each of the pairs {Ii, I ′i}, which implies the
result.

Let P be self-dual with an order-reversing involution κ : P → P . Note that self-dual
fences have such a map but there exist self-dual posets for which none of the order-
reversing bijections are involutions [18, Exercise 8, Chapter 3]. Consider the group gen-
erated by the action of ρ and the map I 7→ I ′, and call the orbits of this action dihedral
group orbits. By the proof of Corollary 25, all orbits will be either a rowmotion orbit or a
union of two rowmotion orbits. We have the following homomesy result as a consequence.

Theorem 26. Let P be self-dual with n = #F and an order-reversing involution κ : P →
P , and let ` ∈ [n]. Then χ` − χκ(`) is 0-mesic on dihedral group orbits.
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6 Homomesies for Piecewise-linear and Birational Rowmotion

Earlier in the paper, we alluded to the fact that proving a statistic is in the toggleability
space for (combinatorial) rowmotion, which we consider in this paper, yields results for
both piecewise-linear and birational rowmotion. We briefly describe these maps and the
process for lifting statistics to these realms here.

In [5], Einstein and Propp introduced piecewise-linear rowmotion through a composi-

tion of toggles. Let RP denote the set of functions π : P → R. Let P̂ denote the poset
obtained from P by adding a minimal element 0̂ and maximal element 1̂, and fix parame-
ters αPL, ωPL ∈ R. We also view any π ∈ RP as a function π : P̂ → R via the conventions
that π(0̂) = αPL and π(1̂) = ωPL. To denote that an element x ∈ P is covered by y ∈ P ,
we write xl y. For π ∈ RP and p ∈ P , define the piecewise-linear toggle τPL

p to be

τPL
p (π)(p′) :=

{
π(p′) if p 6= p′,

min{π(r) : pl r ∈ P̂}+ max{π(r) : pm r ∈ P̂} − π(p) if p = p′.

Note that the toggles τPL
p and τPL

p′ commute if p and p′ do not share a covering relation.

As with combinatorial rowmotion, we define piecewise-linear rowmotion ρPL : RP → RP

as
ρPL := τPL

p1
◦ · · · ◦ τPL

pn ,

where p1, . . . , pn is any linear extension of P .
It should be noted that when given I ∈ J (P ), if we take πI ∈ RP , where πI is the

indicator function of the complement of I, and set αPL = 0 and ωPL = 1, piecewise-linear
toggling of πI corresponds to combinatorial toggling of I. Therefore, any results that hold
for piecewise-linear rowmotion also hold for combinatorial rowmotion, and the process of
going from piecewise-linear to combinatorial rowmotion is called specialization.

Einstein and Propp [5] also introduced a further generalization of rowmotion called
birational rowmotion via “detropicalizing” the piecewise-linear expressions by replacing
+ with × and max with +. Let RP

>0 denote the set of functions π : P → R>0, and

fix parameters αB, ωB ∈ R>0. View any π ∈ RP
>0 as a function π : P̂ → R>0 via the

convention that π(0̂) = αB and π(1̂) = ωB. For p ∈ P , define the birational toggle
τB
p : RP

>0 → RP
>0 by

τB
p (π)(p′) :=



π(p′) if p 6= p′,∑
pmr∈P̂

π(r)

π(p) ·
∑
plr∈P̂

π(r)−1
if p = p′,

and, as before, τB
p and τB

p′ commute if p and p′ do not share a covering relation. We define

birational rowmotion ρB : RP
>0 → RP

>0 by

ρB := τB
p1
◦ · · · ◦ τB

pn ,
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where p1, . . . , pn is any linear extension of P . Any results found in the birational realm give
results in the piecewise-linear realm by replacing + with max and × with + everywhere
in expressions in a process known as tropicalization.

The surprising fact is that though both piecewise-linear and birational rowmotion can
induce infinite orbits even on finite posets, there are cases when the order is finite (see,
for example, [8] and [9]).

Fence posets are not one of the families which enjoy finite order under these generaliza-
tions of rowmotion in general. For example, the 7-element fence F̆ (2, 1, 1, 1, 1, 2) is known
to have infinite birational rowmotion order [8, §12]. The only fence we were able to find
with finite birational order through computer experimentation was the fence F = F̆ (a, a)
for a > 2. This case can be explained through a couple of results in the literature. Call
a poset P graded if all chains from a minimal element of P to a maximal element of
P have the same length. In [8], Grinberg and Roby consider skeletal posets, which are
inductively defined and include graded rooted forests (of which F̆ (a, a) is an example).
For skeletal posets, they prove that the order of birational rowmotion coincides with the
order of combinatorial rowmotion. The order of combinatorial rowmotion on the fence
F = F̆ (a, a) was proven in [6] to be a(a+ 1), and so we have the following result.

Theorem 27. Let α = (a, a), a > 2, and let F = F̆ (α) be the corresponding fence. The
order of ρB on F is a(a+ 1).

In addition to the order, we can say a bit more about homomesies in the piecewise-
linear and birational realms as well for the statistics in AT (F ) and IT (F ). We note that
our original definition of homomesy needs to be altered since RP and RP

>0 are not finite
sets. We thus consider the limits of the time averages (arithmetic and geometric means).
More explicitly, a statistic f : RP → R is said to be homomesic under piecewise-linear
rowmotion if, for every π ∈ RP ,

lim
n→∞

1

n

n−1∑
i=0

f((ρPL)i(π)) = c,

for some c ∈ R. In this case, f is said to be c-mesic. Analogously, a statistic f : RP
>0 → R

is said to be multiplicatively homomesic under birational rowmotion if, for every π ∈ RP
>0,

lim
n→∞

(
n−1∏
i=0

f((ρB)i(π))

) 1
n

= c,

for some constant c. The statistic f is said to be multiplicatively c-mesic in this case.
We now describe how to lift toggleability statistics to these realms and show that they

are indeed still homomesic. Much of what follows was shown in [11] and [3], so we omit
some details. We begin with the piecewise-linear toggleability statistics. Let P be a finite
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poset. For p ∈ P , define T+,PL
p , T−,PL

p , TPL
p : RP → R by

T+,PL
p (π) := π(p)−max{π(r) : pm r ∈ P̂},
T−,PL
p (π) := min(π(r) : pl r ∈ P̂} − π(p),

TPL
p (π) := T+,PL

p (π)− T−,PL
p (π).

Note that TPL
p specializes to Tp.

Lemma 28 ([11], Lemma 4.31 and Remark 4.33). For any π ∈ RP and p ∈ P , TPL
p is

0-mesic, i.e.,

lim
n→∞

1

n

n−1∑
i=0

TPL
p ((ρPL)i(π)) = 0.

For the birational case, we define T+,B
p , T−,Bp , TB

p : RP
>0 → R>0 by

T+,B
p (π) :=

π(p)∑
pmr∈P̂ π(r)

,

T−,Bp (π) :=
1

π(p) ·
∑

plr∈P̂ π(r)−1
,

TB
p (π) := T+,B

p (π)/T−,Bp (π).

In [11], Hopkins shows that TB
p is 1-mesic for posets that have only finite orbits under

birational rowmotion. In [3, Remark 4.4], it is stated that one can extend this result to
infinite orbits, but a proof is not written anywhere, so we give one here. For this, we need
to establish bounds for T+,B

p . The first observation is trivial, but useful: ρB(π)(0̂) = π(0̂)

and ρB(π)(1̂) = π(1̂) for any π ∈ RP
>0. This is easily seen since no toggle changes the

labels at 0̂ or 1̂ [9]. An additional observation is that the sum

γ(π) :=
∑

p,r∈P̂ , plr

π(p)

π(r)

is preserved under birational rowmotion [5, 10].
The proof of the following lemma, which uses the above fact, is due to Darij Grinberg.

Lemma 29. Let π ∈ RP
>0 and p ∈ P . Then there exist C1, C2 ∈ R>0 such that for n > 0,

C1 6 (ρB)n(π)(p) 6 C2.

Proof. Note that each π(p)
π(r)

, where p, r ∈ P̂ with p l r, is bounded from above by γ(π).

Since γ(π) is preserved under birational rowmotion, we have that γ((ρB)n(π)) = γ(π).
Thus,

(ρB)n(π)(p)

(ρB)n(π)(r)
6 γ(π) (26)
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for all p, r ∈ P̂ with plr and any n ∈ N. Then for p ∈ P , applying (26) along a saturated
chain pl r l · · ·l 1̂ of length k, we get

(ρB)n(π)(p) 6 (ρB)n(π)(r)γ(π) 6 · · · 6 ωBγ(π)k 6 max{ωB, ωBγ(π)M},

where M is the length of the longest chain in P . Similarly, applying (26) on a saturated
chain pm r m · · ·m 0̂, one obtains a lower bound on (ρB)n(π)(p) independent of n.

It is not hard to show that Lemma 29 yields nonzero upper and lower bounds on
T+,B
p ((ρB)n(π)) which are independent of n. Additionally, we have that for any π ∈ RP

>0

and p ∈ P , T+,B
p (π) = T−,Bp (ρB(π)) [11, Proof of Lemma 4.42]. These observations allow

us to prove the multiplicative homomesy for the birational toggleability statistics.

Lemma 30. For any π ∈ RP
>0 and p ∈ P , TB

p is multiplicatively 1-mesic.

Proof. Let π ∈ RP
>0 and p ∈ P . Since T+,B

p (π) = T−,Bp (ρB)(π), we have that, for any
n ∈ N,

n−1∏
i=0

TB
p ((ρB)i(π)) =

T+,B
p (ρB)n−1(π)

T−,Bp (π)

due to cancellations in the numerator and denominator. Since T+,B
p (ρB)n−1(π) is bounded

by nonzero constants, we have

lim
n→∞

(
n−1∏
i=0

TB
p ((ρB)i(π))

) 1
n

= lim
n→∞

(
T+,B
p (ρB)n−1(π)

T−,Bp (π)

) 1
n

= 1,

as desired.

Since every element in a fence covers and is covered by at most two elements, every
statistic in either the order ideal or antichain toggleability space can be lifted to statistics
in the piecewise-linear and birational realms via corresponding linear combinations of
lifted toggleability statistics and a constant. Moreover, these lifted statistics still enjoy
homomesy in their respective realms. We give a couple of examples of this below, but
first we need some definitions. Note that χp = T−p .

Let p ∈ P and define

χ̂PL
p (π) := ωPL − π(p), χPL

p (π) := min{π(r) : pl r ∈ P̂} − π(p),

χ̂B
p (π) :=

ωB

π(p)
, χB

p (π) :=
1

π(p) ·
∑

plr∈P̂ π(r)−1
.

If a statistic f : J (P )→ R is of the form

f =
∑
p∈P

(apχ̂p + bpχp),
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set
fPL :=

∑
p∈P

apχ̂
PL
p + bpχ

PL
p ,

and
fB :=

∏
p∈P

(χ̂B
p )ap · (χB

p )bp .

If P is such that every element covers or is covered by at most two elements, by [3,
Lemma 4.9], fPL and fB are well-defined. Moreover, by [3, Theorem 4.11], if f ≡ c, then

fPL ≡PL c(ωPL − αPL) and fB ≡B
(
ωB

αB

)c
, where ≡PL and ≡B are defined analogously to

≡ but with lifted toggleability statistics (and division as opposed to subtraction in the
birational case). In particular, by Lemmas 28 and 30, this means that statistics in the
spaces IT (F ) and AT (F ) of a fence F automatically lift to statistics in the piecewise-linear
and birational realms which are still homomesic.

We end this section with a couple of examples of lifted statistics.

Example 31. Recall from Theorem 3 that for any x ∈ S̆i, if p is the peak of Si and v is
the valley of Si, we have

αiχx + χv + χp ≡ 1.

Then, for any π ∈ RP ,

lim
n→∞

1

n

n−1∑
i=0

(
αiχ

PL
x (ρPL)i(π) + χPL

v (ρPL)i(π) + χPL
p (ρPL)i(π)

)
= ωPL − αPL.

In the birational case, for any π ∈ RP
>0, we have

lim
n→∞

(
n−1∏
i=0

χB
x (ρB)i(π)αi · χB

v (ρB)i(π) · χB
p (ρB)i(π)

) 1
n

=

(
ωB

αB

)
.

Example 32. From Theorem 8, in the case where Si has no valley, we have that

αiχ̂(i,j) − jχ̂p ≡ αi − j,

where p is the peak of Si. Then, for any π ∈ RP
>0,

lim
n→∞

1

n

n−1∑
i=0

(
αiχ̂

PL
(i,j)(ρ

PL)i(π)− jχ̂PL
p (ρPL)i(π)

)
= (αi − j)(ωPL − αPL).

In the birational case, for any π ∈ RP
>0, we have

lim
n→∞

(
n−1∏
i=0

χ̂B
(i,j)(ρ

B)i(π)αi · χ̂B
p (ρB)i(π)

) 1
n

=

(
ωB

αB

)αi−j
.

the electronic journal of combinatorics 31(4) (2024), #P4.46 32



7 Discussion

7.1 Homomesic subspaces

Recall that IH(F ) and AH(F ) are the subspaces of 〈χ̂i〉 := SpanR({χ̂i | i ∈ [n]}) and
〈χi〉 := SpanR({χi | i ∈ [n]}), where n is the size of the fence F , which consist of
homomesic statistics and contain the subspaces IT (F ) and AT (F ), respectively. Since our
results show that dim(IT (F )) = dim(AT (F )), it is a natural question to ask how these
subspaces are different and whether we can describe the dimensions of IH(F ) and AH(F ).
While we cannot give the complete answers to these questions for a general fence F , one
can easily show that the two spaces have the same dimension.

Theorem 33. For any fence F , we have

dim(IH(F )) = dim(AH(F )).

Proof. Let H be the space of all statistics on F which are homomesic under rowmotion.
By Theorem 17, H is the span (over R) of all antichain toggleability statistics and the
constant functions. Then

dim(IH(F )) = dim(H ∩ 〈χ̂i〉) = dim(H) + dim(〈χ̂i〉)− dim(H + 〈χ̂i〉)

and
dim(AH(F )) = dim(H ∩ 〈χi〉) = dim(H) + dim(〈χi〉)− dim(H + 〈χi〉).

Note that dim(〈χ̂i〉) = dim(〈χi〉) = n, so it is sufficient to prove that dim(H + 〈χ̂i〉) =
dim(H + 〈χi〉). Using (21) and (22), and the fact that the toggleability statistics are
homomesic, one can see that H + 〈χ̂i〉 = H + 〈χi〉, so the result follows.

We note that a similar proof to the one above can be used to show dim(IT (F )) =
dim(AT (F )) since (21) and (22) only involve toggleability statistics but does not determine
the dimension of the spaces, nor their bases.

For a fence F with t segments, we proved that dim(IT (F )) = dim(AT (F )) = n −
(t − 1), which gives an upper bound on the codimensions of IH(F ) and AH(F ). Based
on our computer experiments for fences with up to 7 segments, we conjecture that the
codimension of the homomesic space can take a value within the full range [0, t − 1].
Specifically,

Conjecture 34. Given t > 2 and 0 6 i 6 t − 1, there exists a fence F with t segments
such that

dim(IH(F ))− dim(IT (F )) = i.

Question 35. For which fences do 〈χ̂i〉 and 〈χi〉 not contain additional homomesic statis-
tics, i.e., IH(F ) = IT (F ) and AH(F ) = AT (F )?
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Some data relevant to this question is summarized in Table 2. Since the homomesy
phenomenon becomes interesting only if there is more than one orbit under the considered
action, we also include information about how many small fences have only one orbit under
rowmotion.

t n # fences # fences with single orbit #{F | dim(IH(F )) = dim(IT (F ))}

3 6 20 969 234 (≈ 24.15%) 40 (≈ 4.13%)

4 6 20 3876 346 (≈ 8.93%) 188 (≈ 4.85%)

5 6 15 2002 54 (≈ 2.70%) 74 (≈ 3.70%)

6 6 15 3003 16 (≈ 0.53%) 218 (≈ 7.26%)

7 6 15 3432 2 (≈ 0.06%) 472 (≈ 13.75%)

Table 2: Data for Question 35 for small fences.

7.2 Promotion

While we have focused on the action of rowmotion on order ideals of a poset in this paper,
which involves toggling in the reverse order of a linear extension, other actions that are
compositions of toggles have also been considered, see for example [2, 21, 19]. One action,
in particular, is promotion, which involves toggling “columns” from left to right. With the
way we have been drawing the fences, each element is in its own “column”, so performing
promotion amounts to toggling the elements from left to right. That is, if F is a fence
with n = #F , then the promotion map pro : J (F )→ J (F ) is defined as

pro := τn ◦ · · · ◦ τ1.

Striker and Williams [21] showed that, for any rc-poset, rowmotion and promotion
are conjugate elements in the toggle group: the group generated by all of the order
ideal toggles. This result was later generalized to posets P with an n-dimensional lattice
projection [4] (an order- and rank-preserving map π : P → Zn). In particular, this implies
that promotion and rowmotion have the same orbit structure for such posets.

Enjoying the same orbit structure does not necessarily translate into having the same
homomesies, though. For example, the toggleability statistics which have been heavily
utilized to show homomesy results in this paper are not generally 0-mesic under promo-
tion. However, Einstein and Propp [5] were the first to use a process called recombination
which relates the promotion and rowmotion orbits to show that statistics which are lin-
ear combinations of order ideal indicator functions are homomesic under rowmotion on
the rectangle poset if and only if they are homomesic under promotion. This idea was
later generalized to posets with an n-dimensional lattice projection by Vorland [22]. In
particular, Theorem 56 from [22] applies to fences and we illustrate it with an example.
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Example 36. For this example, we draw the fence F rotated clockwise by π/4, so that
the element 1 is in the top left corner (Figure 4) and the notion of columns is clear.
Suppose F has k columns. The recombination, R(I), of an ideal I of F is the union of
the j-th columns of ρj−1(I), 1 6 j 6 k. Then pro(R(I)) = R(ρ(I)).

ρ ρ ρ ρ

pro

Figure 4: Illustration of recombination: pro(R(I)) = R(ρ(I)).

So, as a corollary of Theorem 8, we have the following result.

Theorem 37. Let α = (α1, . . . , αt) with corresponding fence F = F̆ (α). The statistics in

SpanR

(
t⋃
i=1

βi⋃
j=1

{αiχ̂(i,j) − jχ̂p − (αi − j)χ̂v | p peak of Si, v valley of Si}

)

are homomesic under promotion.
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