
Keller Properties for Integer Tilings

Benjamin Brucea Izabella  Labab

Submitted: May 10, 2024; Accepted: Nov 1, 2024; Published: Nov 29, 2024

©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Keller’s conjecture on cube tilings asserted that, in any tiling of Rd by unit
cubes, there must exist two cubes that share a (d−1)-dimensional face. This is now
known to be true in dimensions d 6 7 and false for d > 8. In this article, we propose
analogues of Keller’s face-sharing property for integer tilings. We construct coun-
terexamples to a “strong” version of this property, and prove that a weaker version
holds for integer tilings under appropriate additional assumptions. We also discuss
the connections to the Coven-Meyerowitz conjecture and other open problems in
the theory of integer tilings.

Mathematics Subject Classifications: 05B45, 11B75, 20K01

1 Introduction

1.1 Motivation

Let A ⊂ Z be a finite and nonempty set. We say that A tiles the integers by translations if
there exists a translation set T ⊂ Z such that every integer n ∈ Z can be written uniquely
as n = a + t with a ∈ A and t ∈ T . Informally, Z can be covered by pairwise disjoint
translates of A. We will refer to such A as an integer tile.

It is well known [22] that any tiling of Z by a finite set A must be periodic, so that there
exists an M ∈ N and a finite set B ⊂ Z such that T = B⊕MZ. Thus A⊕B⊕MZ = Z;
in other words, A ⊕ B mod M is a factorization of the cyclic group ZM . We will write
this as A⊕B = ZM . Since translating an element of A or B by a multiple of M does not
change that property, we will consider A,B as subsets of ZM .

The tiling condition A⊕B = ZM has an equivalent formulation in terms of the divisor
sets of A and B. Fix M ∈ N; given two integers m,n ∈ Z, we will use (m,n) to denote
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their greatest common divisor. For a finite set A ⊂ Z, we define the divisor set of A
relative to M :

Div(A) = {(a− a′,M) : a, a′ ∈ A}. (1.1)

Informally, we refer to the elements of Div(A) as the divisors of A.

Theorem 1. (Sands) Let A,B ⊂ ZM be sets. Then A⊕B = ZM is a tiling if and only
if

|A| |B| = M and Div(A) ∩Div(B) = {M}. (1.2)

Thus, if A⊕B = ZM , (1.2) says that each m|M with m 6= M may belong to at most
one of Div(A) and Div(B). It does not, however, specify which divisors must actually
occur in Div(A) ∪ Div(B), nor does it say how they might be distributed between these
two sets.

In this paper, we investigate the following question. Let M ∈ N. Must every tiling
A⊕B = ZM satisfy

M/p ∈ Div(A) ∪Div(B) for some prime p|M? (1.3)

Furthermore, is it true that one of A and B mod M must in fact contain a translate of
the entire arithmetic progression

{0,M/p, 2M/p, . . . , (p− 1)M/p} for some prime p|M? (1.4)

While we are not able to resolve the problem in its full generality, we do have both positive
and negative results in this direction.

To the best of our knowledge, the above questions were not considered previously in
the literature. They are, however, related directly to well known open problems in the
theory of integer tilings, including the Coven-Meyerowitz conjecture and estimates on the
minimal tiling period. We outline these connections here briefly to motivate our work,
with a more detailed discussion postponed until Section 8 after the appropriate notation
and terminology has been introduced.

The main open problem concerning integer tilings is the Coven-Meyerowitz conjecture
[3]. For finite sets A,B ⊂ N ∪ {0}, we define their mask polynomials

A(X) =
∑
a∈A

Xa, B(X) =
∑
b∈B

Xb.

Then A⊕B = ZM is equivalent to

A(X)B(X) = 1 +X + · · ·+XM−1 mod (XM − 1). (1.5)

This can be rephrased further in terms of the cyclotomic divisors of A(X) and B(X).
Recall that the s-th cyclotomic polynomial Φs(X) is the unique monic, irreducible poly-
nomial whose roots are the primitive s-th roots of unity. Equivalently, Φs can be computed
from the identity Xn − 1 =

∏
s|n Φs(X). Then we may rewrite (1.5) as

|A||B| = M and Φs(X) |A(X)B(X) for all s|M, s 6= 1. (1.6)
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Since Φs are irreducible, each Φs(X) with s|M and s 6= 1 must divide at least one of
A(X) and B(X). Coven and Meyerowitz [3] proposed conditions on how these cyclotomic
divisors may be distributed between A(X) and B(X); the statement that all integer tiles
must satisfy these conditions has become known as the Coven-Meyerowitz conjecture.
The conjecture allows an equivalent statement in terms of the divisor sets defined in (1.1)
[9, Proposition 3.4]. It has been proved in certain significant special cases [3, 10, 11, 12],
but remains open in general and appears to be very difficult to resolve.

The recent papers [9, 10, 11, 12] established a link between the Coven-Meyerowitz con-
jecture and structural properties such as (1.3). For instance, the “fiber-shifting” method
in [10, 11] depends on being able to find translated copies of (1.4) in one or both of the
tiles. Our main negative result, Theorem 7, provides examples of integer tilings where
such progressions do not appear in either tile. This limits the applicability of some of the
methods of [10, 11] to tilings where M has a small number of distinct prime factors. The
more recent approach in [12] relies on establishing (1.3) as an intermediate step in certain
situations where one of the prime factors of M is large relative to all others. In cases
where the status of the Coven-Meyerowitz conjecture is not known yet, (1.3) can still
provide useful partial structural information; see e.g. the open problems in [9, Section
9],

In a different direction, suppose that A ⊕ B = ZM , and let diam(A) := max(A) −
min(A) be the diameter of A. If A contains a translate of (1.4), then in particular we
have

diam (A) >M(p− 1)/p. (1.7)

The relationship between the diameter of an integer tile and its minimal tiling period has
been studied in the literature, see e.g. [1, 8, 13, 33]. Coven and Meyerowitz claim without
proof [3, p.167] that if A obeys their tiling conditions, then it should tile the integers with
period M satisfying (1.7); however, we do not know whether this actually holds, and our
Theorem 7 provides examples of integer tiles that do not contain translates of (1.4). We
refer the reader to [13, Section 4] for further discussion of this.

Much of the work mentioned above takes advantage of a partial correspondence be-
tween integer tilings and cube tilings in higher dimensions, provided by the Chinese Re-
mainder Theorem (see Section 2). This connection can provide useful geometrical insights
into properties of integer tilings that might otherwise be difficult to visualize. In particu-
lar, given the existing rich body of work on high-dimensional tilings with counterintuitive
properties, a natural direction of research is to try to use this correspondence to con-
struct “pathological” integer tilings. For instance, the examples in [15], [34] (disproving
a conjecture of Sands [29] on factorization of finite abelian groups) have a natural inter-
pretation in terms of 3-dimensional cube tilings with “shifted columns”. In [9, 10, 12],
this geometrical interpretation played a significant role in the classification of tilings of
Zp2q2r2 , where p, q, r are distinct primes. In [8, 33], it was used to construct integer tilings
with long periods.

Keller’s conjecture on cube tilings (see Section 1.2 for the relevant background) stated
that in any tiling of Rd by translates of the unit cube, there must be two cubes that
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share a full (d − 1)-dimensional face. The counterexamples found in [14, 19] provide an
important class of counterintuitive tilings in high dimensions. It is natural to ask to what
extent such phenomena have meaningful counterparts in the setting of integer tilings. Our
question (1.3) is a natural analogue of Keller’s face-sharing property. However, it turns
out that the counterexamples in [14, 19] are not easily adapted; we are only able to use
them to disprove the stronger property that one of the tiles contains a translate of (1.4).

The tilings we construct are known to satisfy the Coven-Meyerowitz tiling conditions
(see Section 8). On one hand, this means that such constructions cannot provide a
counterexample to the Coven-Meyerowitz conjecture without further significant new ideas.
On the other hand, it also shows that integer tilings may have rather complicated structure
even when the Coven-Meyerowitz conditions are known to hold.

1.2 Keller’s conjecture for cube tilings

Let Q = [0, 1)d be the unit cube in Rd. For the purpose of this paper, a cube tiling will
always mean a tiling of Rd by congruent and pairwise disjoint translates of Q. Consider the
following Keller properties that a cube tiling T ⊕Q = Rd might have. For i ∈ {1, . . . , d},
we use ei to denote the unit vector in the i-th direction.

(KP1) There exist t, t′ ∈ T such that t− t′ = ei for some i ∈ {1, . . . , d}.

(KP2) There exist t ∈ T and i ∈ {1, . . . , d} such that {t+ nei : n ∈ Z} ⊂ T .

The first property states that there are two cubes in the given tiling that share a full
(d−1)-dimensional face. The second property makes the stronger assertion that the tiling
must in fact contain an infinite “column” of cubes sharing full (d− 1)-dimensional faces.

Keller [6] conjectured in 1930 that all cube tilings must satisfy (KP2), hence also
(KP1). The (formally weaker) statement that all cube tilings must satisfy (KP1) has
become known in the literature as Keller’s conjecture. This is now known to be true in
low dimensions but false in general. Perron [23, 24] proved that (KP1) holds for all cube
tilings of Rd with d 6 6. The stronger statement that (KP2) holds for all cube tilings
in dimensions d 6 6 was proved by  Lysakowska and Przes lawski [17, 18]. Brakensiek,
Heule, Mackey, and Narváez [2] proved that (KP1) holds for all unit cube tilings of R7. In
the other direction, Lagarias and Shor [14] constructed cube tilings in dimensions d > 10
that do not have the property (KP1) and, therefore, (KP2). Mackey [19] extended this
to dimensions d > 8.

1.3 Integer Keller properties

Assume that M =
∏d

i=1 p
ni
i , where p1, . . . , pd are distinct primes and n1, . . . , nd ∈ N. Let

A⊕B = ZM be a tiling. Define the divisor sets Div(A), Div(B) as in (1.1), and let

Fi := {0,M/pi, 2M/pi, . . . , (pi − 1)M/pi} ⊂ ZM for i = 1, 2, . . . , d. (1.8)
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In [9, 10, 11], a translate (coset) of Fi is called an M-fiber in the pi direction. Consider
the following “integer Keller properties” that the tiling might have.

(IKP1) There exists an i ∈ {1, . . . , d} such that M/pi ∈ Div(A) ∪Div(B).

(IKP2) There exist u ∈ A and i ∈ {1, . . . , d} such that u+ Fi ⊂ A.

We will also consider the “cyclotomic Keller property” below. Unlike (IKP1) and
(IKP2), the statement (CKP) concerns sets A ⊂ ZM that need not be tiles.

(CKP) For every nonempty set A ⊂ ZM such that ΦM(X)|A(X), there exists an i ∈
{1, . . . , d} such that M/pi ∈ Div(A).

Clearly, (IKP2) is a stronger statement than (IKP1). Furthermore, if A⊕B = ZM is a
tiling, then by (1.6) ΦM(X) divides at least one of A(X) and B(X); hence if (CKP) holds
for some M , then (IKP1) holds for all tilings of ZM with that M . On the other hand,
the failure of (CKP) would not necessarily imply the failure of (IKP1), since there exist
nonempty sets A ⊂ ZM that satisfy ΦM(X)|A(X) but do not tile ZM . We also note that
ΦM(X)|A(X) does not imply that u + Fi ⊂ A for any u or i (hence there is no (CKP2)
property). See e.g. [25] for an extensive family of examples.

The geometric interpretation of the above statements is as follows. By the Chinese
Remainder Theorem, we have

ZM =
d⊕
i=1

Zpnii . (1.9)

This represents ZM as a d-dimensional lattice, with each cardinal direction corresponding
to a prime divisor pi of M , and pnii -periodic in each such direction (see Section 2 for
more details). Then (IKP1) states that at least one of the sets A,B in the given tiling,
say A, contains two elements a, a′ such that a − a′ is one of the “cardinal differences”
M/pi, 2M/pi, . . . , (pi − 1)M/pi in some direction. The stronger property (IKP2) states
that at least one of A,B contains an entire fiber in some direction. Thus (IKP1) and
(IKP2) can be viewed as the integer counterparts of the properties (KP1) and (KP2) for
cube tilings.

1.4 Results

The structure of tilings whose period M has at most 3 distinct prime factors is understood
well enough to provide the partial results in Theorem 2 below. These results are either
stated explicitly in the literature, or else they follow directly from known arguments; we
provide the details in Section 4.

Theorem 2. [4, 16, 10, 12] Let M = pn1
1 p

n2
2 p

n3
3 with n1, n2, n3 ∈ N∪ {0}, where p1, p2, p3

are distinct primes. Then:

(i) (CKP) holds for M ; consequently, (IKP1) holds for any tiling A⊕B = ZM .
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(ii) Assume further that either n3 = 0 or max(n1, n2, n3) 6 2. Then (IKP2) holds for
any tiling A⊕B = ZM .

Our new result in this regard is the following theorem.

Theorem 3. Let M = pn1
1 · · · p

nd
d , where p1 < · · · < pd are distinct primes and

n1, . . . , nd ∈ N. Assume further that

pj > 2j−2 for all j ∈ {6, . . . , d}. (1.10)

Then (CKP) holds for M . Consequently, (IKP1) holds for any tiling A⊕B = ZM .

Remark 4. The assumption pj > 2j−2 is always true for j 6 5, so that if (1.10) holds, it
actually holds for all 1 6 j 6 d. In particular, (1.10) holds when all primes are sufficiently
large relative to d, with pj > 2d−2 for all j ∈ {1, . . . , d}.

We also note a special case when one of the primes is very large relative to the others.

Theorem 5. Let M = pn1
1 . . . pndd , where p1, . . . , pd are distinct primes and n1, . . . , nd ∈ N.

Let A⊕B = ZM be a tiling. Assume further that

pd > max
(

(|A|,M/pndd ), (|B|,M/pndd )
)
. (1.11)

Then (IKP1) holds for this tiling.

In many cases, the assumption (1.11) of Theorem 5 can be weakened; see Theorem 17
and Lemma 20.

We do not know of any counterexamples to either (IKP1) or (CKP). However, there
exist integer tilings for which (IKP2) fails. Our counterexamples are provided by the class
of tilings we define now.

Definition 6. Let M = p2
1 · · · p2

d, where p1, . . . , pd are distinct primes. Let Mi = M/p2
i

for i = 1, . . . , d. An integer cube tiling is a tiling of the form A⊕B = ZM , where

B =
d⊕
j=1

{0,Mj, 2Mj, . . . , (pj − 1)Mj}

=

{
d∑
j=1

cjMj : cj ∈ {0, 1, . . . , pj − 1}, j = 1, . . . , d

}
.

(1.12)

Equation (1.12) implies in particular that |A| = |B| = p1 · · · pd. We may view integer
cube tilings as tilings of the integer lattice by translates of a discrete rectangular box; see
Section 2.2 for more details.

Theorem 7. Assume that d > 8. For any choice of distinct primes p1, . . . , pd, there exists
an integer cube tiling A⊕B = ZM that does not satisfy (IKP2).
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Our proof of Theorem 7 is an adaptation of the counterexamples to Keller’s conjecture
in dimensions 8 and higher [14], [19], together with a rearrangement argument due to
Szabó [35]. On the other hand, the known positive results towards Keller’s conjecture
imply the following theorem for this specific type of tilings.

Theorem 8. All cube integer tilings with d 6 6 satisfy (IKP2) (therefore also (IKP1)).
Moreover, (IKP1) holds for all cube integer tilings with d = 7.

For cube tilings, the property (KP2) is formally stronger than (KP1), but they turn
out to be true or false in the same dimensions except possibly for d = 7 where, to the
best of our knowledge, the status of (KP2) is unknown. On the other hand, the property
(IKP2) is strictly stronger than (IKP1), in the sense that there exist integer cube tilings
that satisfy (IKP1) but not (IKP2). To see this, let d > 8, and let p1, . . . , pd be distinct
primes. By Theorem 7, for any choice of p1, . . . , pd there exists an integer cube tiling
A⊕B = ZM for which (IKP2) does not hold. On the other hand, if p1, . . . , pd satisfy the
additional assumptions of either Theorem 3 or Theorem 5, then (IKP1) must hold for the
same tiling.

The rest of this paper is organized as follows. In Section 2, we detail the conversion
between integer tilings and lattice tilings with appropriate periodicity conditions. In
Section 3, we introduce notation and basic cyclotomic divisibility tools to be used in the
proofs of Theorems 2, 3, and 5. We prove these theorems in Sections 4, 5, and 6. We
prove Theorem 7 in Section 7. Finally, in Section 8 we discuss the relationship between
integer Keller properties and the Coven-Meyerowitz conjecture.

2 Correspondence between integer tilings and multidimensional
lattice tilings

2.1 The general case

We establish a natural correspondence between integer tilings and tilings of multidimen-
sional integer lattices satisfying appropriate periodicity conditions. This also provides a
correspondence between integer cube tilings and a class of cube tilings of Rd.

Let M =
∏d

i=1 p
ni
i , where p1, . . . , pd are distinct primes and n1, . . . , nd ∈ N. It will

be convenient to have a specific coordinate system on ZM corresponding to (1.9). Let
Mi := M/pnii =

∏
j 6=i p

nj
j . Let also [n] = {0, 1, . . . , n− 1} for n ∈ N. Define the projection

Zd 3 x = (x1, . . . , xd) → π(x) :=
d∑
i=1

xiMi, (2.1)

and let

LM := pn1
1 Z× · · · × pndd Z ⊂ Zd,

ΛM := [pn1
1 ]× · · · × [pndd ] ⊂ Zd,

(2.2)
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Figure 1: The sets LM (red) and ΛM (blue) for M = 5 · 3.

so that ΛM ⊕ LM = Zd. (See Figure 1.)

Lemma 9. Let x ∈ Zd. Then

x ∈ LM ⇔ π(x) ≡ 0 mod M. (2.3)

Furthermore, π(ΛM) is a complete residue system mod M , the projection π is one-to-one
on ΛM , and π(LM) = MZ.

Proof. We first prove (2.3). Let x ∈ LM . Then M divides each term in the sum
∑

i xiMi,
hence π(x) ∈ MZ. Conversely, suppose that M |π(x), and let j ∈ {1, . . . , d}. Then
p
nj
j |π(x) =

∑
i xiMi. Since p

nj
j |Mi for all i 6= j, and (pj,Mj) = 1, we must have p

nj
j |xj.

Since this is true for all j, we have x ∈ LM .

Next, if x, x′ ∈ ΛM are distinct, then x − x′ 6∈ LM by definition. By (2.3), we have
π(x) 6≡ π(x′) mod M , implying the statements about ΛM . Clearly, (2.3) implies that
π(LM) ⊂ MZ. The converse inclusion follows from the fact that π((mpn1

1 , 0, . . . , 0)) =
mM for all m ∈ Z.

Corollary 10. Let Ã, B̃ ⊂ ΛM , and let A = π(Ã), B = π(B̃). Then A⊕ B = ZM if and
only if Ã⊕ B̃ ⊕ LM = Zd.

Proof. Assume that Ã ⊕ B̃ ⊕ LM = Zd. Since π is one-to-one on ΛM , we have |A||B| =
|Ã||B̃| = M . To prove that A⊕B = ZM is a tiling, it remains to verify that

if a+ b = a′ + b′ mod M, a, a′ ∈ A, b, b′ ∈ B, then (a, b) = (a′, b′). (2.4)

Let a = π(ã), a′ = π(ã′), b = π(b̃), b′ = π(b̃′) for some ã, ã′ ∈ Ã and b̃, b̃′ ∈ B̃. By (2.3), if
a+ b ≡ a′ + b′ mod M , then (ã+ b̃)− (ã′ + b̃′) ∈ LM . But since Ã⊕ B̃ ⊕ LM = Zd, this
can only happen when ã = ã′ and b̃ = b̃′, so that a = a′ and b = b′. This proves (2.4).

For the converse, we reverse the above argument. The details are left to the reader.
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Remark 11. Let an integer tiling A⊕B = ZM be given. By Lemma 9, we may represent
A,B as subsets of π(ΛM). Then there exist Ã, B̃ ⊂ ΛM such that A = π(Ã), B = π(B̃),
and Corollary 10 applies to these sets.

This establishes a one-to-one correspondence between M -periodic tilings of Z and
LM -periodic tilings of Zd. Any tiling of Z by a finite set must be M -periodic for some
M , therefore we may lift it to a multidimensional tiling as described above. However, we
caution the reader that there are many translational tilings of integer lattices by finite sets
that cannot be matched to 1-dimensional integer tilings in this manner, either because
they are non-periodic [5] or because their period lattice does not have the form required
in (2.2).

2.2 Integer cube tilings

We now assume that M = N2, where N = p1 · · · pd and p1, . . . , pd are distinct primes. Let
Mi = M/p2

i for i = 1, . . . , d, and define π : Zd → Z as in (2.1). Let A⊕ B be an integer
cube tiling as in Definition 6. Then the set B in (1.12) satisfies

B = π(ΛN).

By Corollary 10 and Remark 11, there is a set Ã ⊂ ΛM such that Ã ⊕ ΛN ⊕ LM = Zd.
Let T := Ã⊕ LM ⊂ Zd, and let

R := B + [0, 1)d = [0, p1)× · · · × [0, pd) ⊂ Rd. (2.5)

Then T ⊕ R = Rd is a tiling of Rd by translates of the rectangular box R. Note the
periodicity condition

T is invariant under translations by all t ∈ LM = p2
1Z× · · · × p2

dZ. (2.6)

Conversely, given a tiling T ⊕ R = Rd, where R is the box in (2.5) and T ⊂ Zd satisfies
(2.6), we can convert it to an M -periodic integer cube tiling by reversing the above
procedure. (See Figure 2.)

We can rescale R to the unit cube Qd = [0, 1)d in Rd; this also rescales any tiling of
Rd by translates of R to a tiling by translates of a unit cube (hence our terminology).
However, for our purposes it will be easier to use the box R as defined in (2.5), without
rescaling, and rescale the unit cube instead when needed. This convention makes it easier
to keep track of the additional restrictions on periodicity and translation vectors that our
integer cube tilings must satisfy.

In this setting, (IKP2) is the direct analogue of (KP2). Indeed, for a given i ∈
{1, . . . , d}, we have u + Fi ⊂ A for some u ∈ ZM if and only if the tiling T ⊕ R = Rd

contains a column in the direction of ei – more precisely, the translation set T contains a
subset of the form {v+mpiei : m ∈ Z} for some v ∈ Zd. This is (KP2) after rescaling R
to Qd.
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Figure 2: Top: An integer cube tiling ZM = A ⊕ B for M = p2
1p

2
2 = 52 · 32. Here ZM

is represented as Zp21 × Zp22 , with A marked in red and B marked in blue. Bottom: The

corresponding LM -periodic tiling of R2 by translates of R = [0, p1) × [0, p2). One of the
translates is shaded.

A little bit more care is needed in establishing the appropriate analogue of (KP1)
in our context. In the tiling T ⊕ R = Rd, two translates t + R and t′ + R share a
(d− 1)-dimensional face if and only if u = π(t) and u′ = π(t′) satisfy

u− u′ ≡ ±M/pi mod M (2.7)

for some i ∈ {1, . . . , d}. However, (IKP1) is a more natural analogue of (KP1) for integer
tilings than (2.7), for the following reason. The coordinate system corresponding to the
decomposition (1.9) is not unique: for example, if π is the projection defined in (2.1) and
r ∈ Z is relatively prime to M , then the mapping x → rπ(x) also establishes a linear
bijection between ΛM (considered as a group mod LM) and ZM . This leads to multiple
representations of the same integer tiling A⊕B = ZM as LM -periodic tilings of Zd. The
property (IKP1) does not depend on the choice of such representation, while (2.7) does
depend on it.

As pointed out earlier, Theorem 8 is now a straightforward consequence of the existing
results on Keller’s conjecture for cube tilings.

Proof of Theorem 8. Let A ⊕ B = ZM be an integer cube tiling, and let T ⊕ R = Rd be
the tiling of Rd constructed in Section 2.2. The theorem follows by applying the results
of [17, 18, 2] to a rescaling of T .
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In the other direction, a straightforward discretization of counterexamples to Keller’s
conjecture in dimensions 8 and higher [14], [19] does not produce counterexamples to
(IKP1) or (IKP2). This is because, in order to be able to convert a tiling of Rd by the
rectangular box R back to an integer cube tiling, the translation set T must satisfy the
periodicity condition (2.6). The unit cube tilings in [14], [19] are all 2-periodic in each
cardinal direction, and become 2pi-periodic in the i-th cardinal direction after rescaling
the unit cube to R. Choose i so that pi 6= 2. If the tiling were also p2

i -periodic in the i-th
direction (as required in (2.6)), this would imply pi-periodicity in that direction, hence a
column parallel to ei, contradicting the failure of (KP2).

One could ask whether the tilings in [14], [19], after rescaling, could be “corrected” to
be p2

i -periodic instead of 2pi-periodic in the ei direction for each i. This is in fact how we
prove Theorem 7.

We note the following property of cube integer tilings.

Lemma 12. Let S ⊂ ΛM with |S| = N , and define B as in (1.12). Then S⊕ΛN ⊕LM =
Zd (hence π(S)⊕ B = ZM is a cube integer tiling) if and only if for every a, a′ ∈ S such
that a 6= a′, there exists i ∈ {1, . . . , d} such that pi ‖ ai − a′i.

Proof. One proof of this is based on Sands’s theorem. Let A = π(S). By Theorem 1,
A⊕B = ZM is a tiling if and only if (1.2) holds. With B defined in (1.12), we have

Div(B) =
{
pα1

1 . . . pαdd : αi ∈ {0, 2} for all i ∈ {1, . . . , d}
}
,

so that (1.2) is equivalent to

Div(A) ⊂
{
pα1

1 . . . pαdd |M : αi = 1 for some i ∈ {1, . . . , d}
}

But this is equivalent to the condition in Lemma 12.

Alternatively, the lemma also follows from (a rescaled version of) Keller’s theorem on
cube tilings [6]: if T ⊕ Qd is a tiling of Rd, then for all t, t′ ∈ T with t 6= t′ there exists
i ∈ {1, . . . , d} such that |ti − t′i| ∈ N.

3 Cyclotomic divisibility tools

The notation below has been borrowed from [9] and adapted to our setting. We assume
that M = pn1

1 . . . pndd , where p1, . . . , pd are distinct primes and n1, . . . , nd ∈ N.

We use A(X), B(X), etc. to denote polynomials modulo XM − 1 with integer coef-
ficients. Each such polynomial A(X) =

∑
a∈ZM wA(a)Xa is associated with a weighted

multiset in ZM , which we will also denote by A, with weights wA(x) assigned to each
x ∈ ZM . (If the coefficient of Xx in A(X) is 0, we set wA(x) = 0.) In particular, if A
has {0, 1} coefficients, then wA is the characteristic function of a set A ⊂ ZM . We use
M(ZM) to denote the family of all weighted multisets in ZM , and reserve the notation
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A ⊂ ZM for sets. We also use M+ to denote the family of all weighted multisets in ZM ,
i.e.,

M+ = {A ∈M(ZM) : wA(a) > 0 for all a ∈ ZM}.

For D|M , a D-grid in ZM is a set of the form

Λ(x,D) := x+DZM = {x′ ∈ ZM : D|(x− x′)}

for some x ∈ ZM . In particular, if Fi is the fiber

Fi = {0,M/pi, 2M/pi, . . . , (pi − 1)M/pi} (3.1)

for some i, we have Fi = Λ(0,M/pi). For a prime p and an integer m, we write that
pα ‖ m if pα|m but pα+1 - m.

Definition 13. Let M be as above. A cuboid is a multiset ∆ ∈ M(ZM) associated to
a mask polynomial of the form

∆(X) = Xc

d∏
j=1

(
1−XrjM/pj

)
(3.2)

with (rj, pj) = 1 for all j. Furthermore, if A ∈M(ZM), we define

A[∆] =
∑
x∈ZM

wA(x)w∆(x). (3.3)

The geometric interpretation of N -cuboids ∆ is as follows. With notation as in Defi-
nition 13, let

D(M) = M/p1 · · · pd. (3.4)

Then the “vertices” x ∈ ZM with w∆(x) 6= 0 form a full-dimensional rectangular box in
the grid Λ(c,D(M)), with one vertex at c and alternating ±1 weights. See Figure 1 for
the geometric representation of a cuboid with d = 3.

The following cyclotomic divisibility test is well known in the literature. The equiv-
alence between (i) and (iii) is the Bruijn-Rédei-Schoenberg theorem on the structure of
vanishing sums of roots of unity (see [4], [16], [21], [26], [27], [30]). For the equivalence (i)
⇔ (ii), see e.g. [32, Section 3], [7, Section 3], [9, Section 5].

Proposition 14. Let A ∈M(ZM). Then the following are equivalent:

(i) ΦM(X)|A(X).

(ii) For all cuboids ∆, we have
A[∆] = 0, (3.5)

(iii) A is a linear combination of fibers, so that

A(X) =
∑
i

Pi(X)Fi(X) mod XM − 1,

where Pi(X) have integer (but not necessarily nonnegative) coefficients.
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Figure 3: Left: A cuboid with ±1 weights labeled. Middle and right: Two cuboids, ∆
and ∆′, with points in A labeled in red. The middle cuboid is ‘balanced’, as it satisfies
A[∆] = 0. The right cuboid is ‘unbalanced’, with A[∆′] > 0.

Proposition 14 can be strengthened as follows if M has only two distinct prime factors.
This goes back to the work of de Bruijn [4]; see also [16, Theorem 3.3] for a self-contained
proof, and [10, Lemma 4.7] for a statement in the language we use here.

Lemma 15. Let A ∈M+(ZM). Assume that ΦM |A, and that M has at most two distinct
prime factors p1, p2. Then A is a linear combination of fibers with nonnegative weights.
In other words,

A(X) = P1(X)F1(X) + P2(X)F2(X) mod XM − 1,

where P1, P2 are polynomials with nonnegative integer coefficients. If furthermore M = pn1
1

is a prime power, then the above holds with P2 = 0.

4 Proof of Theorem 2

Let M = pn1
1 p

n2
2 p

n3
3 with n1, n2, n3 ∈ N∪{0}, where p1, p2, p3 are distinct primes. We need

to prove the following:

(i) (CKP) holds for M , and (IKP1) holds for any tiling A⊕B = ZM .

(ii) If either n3 = 0 or max(n1, n2, n3) 6 2, then (IKP2) holds for any tiling A⊕B = ZM .

Assume first that n3 = 0. By Lemma 15, if A ⊂ ZM satisfies ΦM |A, then A is a union
of non-overlapping fibers in the p1 and p2 directions. This implies (CKP) in this case.
Furthermore, let A ⊕ B = ZM be a tiling. By (1.6), ΦM(X) must divide at least one of
A(X) and B(X), hence (IKP2) follows as well.

Assume now that
min(n1, n2, n3) > 1,

and that A ⊂ ZM obeys ΦM |A. We prove (i) in this case. By translational invariance,
we may assume that 0 ∈ A. Let Λ := Λ(0, D(M)), then A ∩ Λ 6= ∅. If M/pi ∈ Div(A)
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for all i ∈ {1, 2, 3}, we are done. Suppose now that there exists i ∈ {1, 2, 3} such that
M/pi 6∈ Div(A). By [10, Proposition 6.1], A ∩ Λ must contain either a fiber in some
direction or a diagonal boxes configuration defined in [10, Definition 5.1]. It is easy to see
that either the fiber or at least one of the diagonal boxes must contain a pair of points
a, a′ ∈ A ∩ Λ with (a− a′,M) = M/pi. This proves (i).

Finally, assume that

min(n1, n2, n3) > 1 and max(n1, n2, n3) 6 2.

Let A ⊕ B = ZM be a tiling. Assume without loss of generality that 0 ∈ A and
ΦM(X)|A(X), and define Λ as above.

By [10, Proposition 5.2], A ∩ Λ must either be a union of disjoint fibers, or else it
must contain a diagonal boxes configuration. If A ∩ Λ is a union of disjoint fibers, or
if it contains both diagonal boxes and at least one fiber, we are done. We are left with
the case when A ∩ Λ contains diagonal boxes but no fibers. Then A ∩ Λ has one of the
structures considered in [10, Section 7] (if M is odd) or [11, Section 8] (if M is even). In
each of these cases, an intermediate step in the proofs of the Coven-Meyerowitz conditions
in [10, 11] is proving that A must then contain fibers that do not lie in A ∩ Λ.

5 Proof of Theorem 3

Let M = pn1
1 · · · p

nd
d , where p1, . . . , pn are distinct primes and n1, . . . , nd ∈ N. Assume

further that
pi > 2i−2 for all i ∈ {1, . . . , d}. (5.1)

We need to prove that (CKP) holds for M .

Assume for contradiction that (CKP) fails for some M and A as above. Let d be the
lowest number of prime factors of M for which this can happen; by Lemma 15, we must
have d > 3. Let A ⊂ ZM be the hypothetical counterexample, so that A is nonempty and
we have pi > 2i−2 for all i ∈ {1, . . . , d}, but M/pi 6∈ Div(A) for all i.

By translational invariance, we may assume that 0 ∈ A. Let Md := M/pndd and

A0 := {p−ndd a : a ∈ A ∩ Λ(0,M/p1 · · · pd−1)}.

We cannot have ΦMd
(X)|A0(X), since otherwise A0 ⊂ ZMd

would be a counterexample
with (d − 1) prime factors and we assumed that d is minimal. By Proposition 14, there
exists a cuboid

∆0(X) = Xc

d−1∏
j=1

(1−XrjM/pj), (5.2)

with pndd |c and (rj, pj) = 1 for all j, such that A0[∆0] 6= 0. Without loss of generality, we
may assume that A0[∆0] > 0.
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Let

∆s(X) = Xc+sM/pd

d−1∏
j=1

(1−XrjM/pj), s = 1, 2, . . . , pd − 1,

so that (∆0 − ∆s)(X) is a full-dimensional cuboid in ZM for each s = 1, 2, . . . , d − 1.
For visualization purposes, we suggest representing ZM as a d-dimensional lattice as in
Section 2, with the pd direction vertical and Λ(0,M/p1 · · · pd−1) represented as a lattice
in a (d− 1)-dimensional horizontal plane. Then ∆s are partial cuboids stacked above the
partial cuboid ∆0.

By Proposition 14, we have A[∆0] − A[∆s] = 0. But A[∆0] = A0[∆0] > 0, so that
A[∆s] > 0. It follows that, for each s, at least one of those vertices of ∆s that are counted
with + sign must belong to A.

Let v1, v2, . . . , v` be the vertices of ∆0 that are counted with + sign; we have ` = 2d−2,
half of the total number of vertices of ∆0. For each s ∈ {0, 1, . . . , pd− 1}, any vertex u of
∆s that is counted with + sign must satisfy (M/pd)|u − vj for some j (geometrically, u
must lie on the vertical line through one of the points v1, . . . , v`). We must have at least
pd points of A at such vertices, and, since we assume that M/pd 6∈ Div(A), at most one
such point can lie on the same line. Therefore pd 6 2d−2, contradicting our assumption.

Remark 16. Let A ⊕ B = ZM be an integer cube tiling. By (1.6), ΦM must divide at
least one of A(X) and B(X). If we had ΦM(X)|B(X), then B would satisfy the condition
(3.5) of Proposition 14 with N = M . However, this is false, since any M -cuboid with
one vertex in B cannot have any other vertices in B. Therefore ΦM |A, and Theorem 3
implies that in this case we must in fact have M/pi ∈ Div(A) for some i.

6 Proof of Theorem 5

Theorem 5 is a consequence of the following more general result. Let M = pn1
1 . . . pndd . For

x ∈ ZM and i ∈ {1, . . . , d}, we define

Πi(x) := {y ∈ ZM : pnii |(x− y)}.

In the Chinese Remainder Theorem geometric representation, Πi(x) is the (d−1)-dimensional
hyperplane passing through x and perpendicular to the i-th cardinal direction. Let also

mA = min
a∈A
|A ∩ Πd(a)|,

and similarly for B. We will continue to write Mi = M/pnii .

Theorem 17. Let A⊕B = ZM be a tiling. If

pd > max(mA,mB), (6.1)

then (IKP1) holds for this tiling, with M/pd ∈ Div(A) ∪Div(B).
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We will rely on a basic result from [12, Lemma 4.3]. We include the short proof for
completeness.

Lemma 18. (Splitting for fibers, [12, Lemma 4.5]) Assume that A⊕B = ZM is a tiling,
and let i ∈ {1, . . . , d}. Let zk = kM/pi for k = 0, 1, . . . , pi − 1. Let ak ∈ A, bk ∈ B satisfy
ak + bk = zk. Then one of the following must hold:

(i) We have a1, . . . , api−1 ∈ Πi(a0) and pni−1
i ‖ bk − bk′ for k 6= k′.

(ii) We have b1, . . . , bpi−1 ∈ Πi(b0) and pni−1
i ‖ ak − ak′ for k 6= k′.

Proof. By translational invariance, we may assume that a0 = b0 = 0. Fix k ∈ {1, . . . , pi−
1}. Then ak + bk = M/pi, so that (ak,Mi) = (bk,Mi). By divisor exclusion (1.2) we must
have (ak, p

ni
i ) 6= (bk, p

ni
i ), hence we are in one of the following two cases for each k:

(a) pnii |ak and pni−1
i ‖ bk,

(b) pnii |bk and pni−1
i ‖ ak.

We now prove uniformity in k. Assume for contradiction that (a) holds for some k and
(b) holds for some k′. By the same argument as above, we have M/pi|(zk − zk′) =
(ak − ak′) + (bk − bk′), so that

(ak − ak′ ,Mi) = (bk − bk′ ,Mi).

But now we also have (ak − ak′ , p
ni
i ) = (bk − bk′ , p

ni
i ) = pni−1

i . Hence (ak − ak′ ,M) =
(bk − bk′ ,M), contradicting (1.2).

Assume now that (a) holds for all k. Then a1, . . . , api−1 ∈ Πi(0), and the second part
of (i) follows from ak + bk = kM/pi. Similarly, if (b) holds for all k, then (ii) follows.

Proof of Theorem 17. Choose a0 ∈ A and b0 ∈ B so that mA = |A ∩ Πd(a0)| and mB =
|B ∩ Πd(b0)|. By translational invariance, we may assume that a0 = b0 = 0. For k =
1, . . . , pd − 1, let ak ∈ A, bk ∈ B satisfy ak + bk = kM/pd. Interchanging the sets A and
B if necessary, we may further assume that the statement (i) of Lemma 18 holds, so that
a1, . . . , apd−1 ∈ Πd(0).

By (6.1), at least two of the elements a0, a1, . . . , apd−1 must coincide, so that ak = ak′ for
some k 6= k′. But then bk−bk′ = kM/pd−k′M/pd = (k−k′)M/pd, so that M/pd ∈ Div(B)
as claimed.

Theorem 5 now follows from Theorem 17 and Lemma 19 below.

Lemma 19. (Plane bound; cf. [10, Lemma 4.3]) Let A ⊕ B = ZM be a tiling. Assume
that |A| = mpkd, where m = (|A|,Md) satisfies (m, pd) = 1. Then for any x ∈ ZM ,

|A ∩ Πd(x)| 6 m. (6.2)

A similar statement holds for B.
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Proof. By [3, Theorem B1], there exist 0 < s1 < s2 < · · · < sk 6 nd such that

Φp
s1
d

(X) · · ·Φp
sk
d

(X) | A(X).

This implies that for each j ∈ {1, . . . , k} and x ∈ ZM , we have

|A ∩ Λ(x, p
sj−1
d )| = pd |A ∩ Λ(x, p

sj
d )|.

Iterating this, we get
pkd · |A ∩ Πd(x)| 6 |A| = pkdm,

and (6.2) follows.

In general, mA and mB could be significantly smaller than the upper bound in (6.2):
there could, for example, exist planes that contain only one element of A or B.

If A ⊕ B = ZM is an integer cube tiling, the conclusion (ii) of Lemma 18 is true for
the simple geometric reason that a rectangular box has a fixed width in each direction.
Moreover, for each b ∈ B we have |B∩Πd(b)| = p1 · · · pd−1, optimizing the bound in (6.2).
Theorem 17 then states that (IKP1) holds for integer cube tilings with

pd > p1 · · · pd−1. (6.3)

Further improvements may be possible with additional assumptions. For example, we
have the following.

Lemma 20. Let A ⊕ B = ZM be an integer cube tiling, where M = p2
1 · · · p2

d and p1 <
p2 < · · · < pd are distinct primes. If

pj > p2p3 · · · pj−1 for each j ∈ {3, . . . , d}, (6.4)

then (IKP1) holds for this tiling, with M/pj ∈ Div(A) for some j ∈ {1, . . . , d}.

Unlike in (6.3), we require (6.4) to hold for all j ∈ {3, . . . , d}; the payoff is that we
lose the first prime factor from the right side of the inequality.

Proof. Assume towards contradiction that the lemma fails, and let d be the smallest
integer for which this happens. By Theorem 8, we must have d > 7. Translating A if
necessary, we may assume that 0 ∈ A. For each x ∈ ZM , we use a(x) and b(x) to denote
the elements a(x) ∈ A and b(x) ∈ B that satisfy a(x) + b(x) = x.

Let Λ0 = Λ(0,M/p1 · · · pd−1). Suppose first that p2
d|a(x) for all x ∈ Λ0. Let A′ =

A ∩ Πd(0) and B′ = B ∩ Πd(0). Then a(x) ∈ A′ for all x ∈ Λ0; furthermore, if x, x′ ∈ Λ0

are distinct, the sets a(x) + B′ and a(x′) + B′ are disjoint. Hence |A′| = p1 · · · pd, and
A′ ⊕ B′ = ZM/p2d

is an integer cube tiling that does not satisfy (IKP1), contradicting the
minimality of d.

Assume now that there is x′ ∈ Λ0 such that p2
d - a(x). Then there exist j ∈ {1, . . . , d−

1} and y, y′ ∈ Λ0 such that (y− y′,M) = M/pj but p2
d - a(y)− a(y′). Translating A again

if necessary, we may assume that y′ = a(y′) = 0.
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Let Λ = Λ(0,M/pjpd) (a lattice in the 2-dimensional discrete plane passing through
0, y, and M/pd). By [12, Lemma 7.1], at least one of the following holds:

a(z) ∈ Πd(0) for all z ∈ Λ, (6.5)

a(z) ∈ Πj(0) for all z ∈ Λ. (6.6)

But we have assumed that (6.5) fails for z = y. Hence (6.6) holds. Now the rest of the
argument is as in Theorem 17, but with the additional constraint that p2

j | ai for all i.

Instead of invoking [12, Lemma 7.1], we could have converted the integer cube tiling
to a tiling of Rd by a rectangular box (as we do in Section 7), and then used the structure
of tilings of a 2-dimensional plane by translates of a rectangle. This is equivalent to [12,
Lemma 7.1] in this specific case, and yields the same conclusion.

7 Proof of Theorem 7

7.1 Setup

We will use the notation and conventions of Section 2.2. It suffices to prove that there
exists a column-free tiling T ⊕ R = Rd such that T ⊆ Zd and T is invariant under
translations by elements of LM . To construct this tiling, we will use an argument of
Szabó [35] to periodize the counterexample to (KP2) from [19]. This procedure will not
introduce any columns but could possibly introduce some shared faces. The relevant
result from [19] is the following: There exists a tiling of R8 by unit cubes with centres in
1
2
Z8 such that no two cubes share an entire 7-dimensional face. Stacking this tiling, with

appropriate half-integer offsets between adjacent layers, leads to an analogous tiling of Rd

for every d > 8. Thus, by rescaling, we have for each d > 8 a tiling S ⊕ R = Rd with
S ⊆ p1

2
Z× · · · × pd

2
Z that contains no shared faces.

We will need some notation and a lemma. Given a set S ⊆ Rd, define

Si,a := {(s1, . . . , sd) ∈ S : si = pia} for i ∈ {1, . . . , d}, a ∈ 1

2
Z.

(See Figure 4.) If the projection of S to the ith coordinate is contained in pi
2
Z, then the

sets Si,a (with i fixed) form a partition of S. We also define a shifted version of Si,a,
namely

S∗i,a :=

{
Si,a if pia ∈ Z,
Si,a + 1

2
ei if pia /∈ Z.

Lemma 21. For i ∈ {1, . . . , d}, let πi denote the projection (x1, . . . , xd) 7→ (x1, . . . , x̂i, . . . , xd).
Suppose S⊕R = Rd and that s, s′ ∈ S are such that πi(R+s) and πi(R+s′) have nonempty
intersection. Then si − s′i ∈ piZ.
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Figure 4: A tiling S ⊕R = R2 with S ⊆ p1
2
Z× p2

2
Z. The dots represent points in S. The

subset S1, 3
2

is marked in orange, and the subset S2,2 is marked in green.

Proof. Fix a point x ∈ πi(R + s) ∩ πi(R + s′), and consider the line ` = π−1
i (x) ⊂ Rd.

The tiling S⊕R = Rd restricts to a tiling of ` by segments of length pi. The endpoints of
these segments are just the points where ` enters one box in the tiling and exits another.
Since ` intersects R+ s and R+ s′ and is parallel to ei, it follows that si− s′i is an integer
multiple of pi.

We now begin the construction of the tiling T ⊕R = Rd described above. This will be
done inductively. We claim that for each j ∈ {0, . . . , d}, there exists a tiling Sj ⊕R = Rd

satisfying the following properties:

(i) If j > 1, then Sj ⊆ Zj × pj+1

2
Z× · · · × pd

2
Z.

(ii) If 1 6 i 6 j, then Sj is p2
i ei-periodic.

(iii) If 1 6 i 6 j, then Sj contains no columns in the ei direction; i.e. there is no s ∈ Sj
such that {s+ npiei : n ∈ Z} ⊆ Sj.

(iv) If j < i 6 d, then Sj contains no shared faces in the ei direction; i.e. piei /∈ Sj − Sj.

Once this is proved, the desired tiling T ⊕R = Rd is obtained by taking T = Sd.

As mentioned above, there exists a tiling S ⊕ R = Rd with S ⊆ p1
2
Z× · · · × pd

2
Z that

contains no shared faces; we set S0 := S. Properties (i)–(iv) hold for S0 (although (i)–(iii)
are vacuous in this case). Suppose j > 1 and that the claim holds with j − 1 in place of
j. Let

Sj :=
⋃
n∈Z

⋃
a∈ 1

2
Z∩[0,pj)

(Sj−1)∗j,a + np2
jej.

We will show that Sj ⊕R = Rd and that this tiling satisfies properties (i)–(iv).
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7.2 Proof of the tiling property

We need to prove that Sj ⊕ R = Rd. We begin by showing that the translates R + s
with s ∈ Sj cover Rd. Fix x ∈ Rd. Since Sj−1 ⊕ R = Rd, there exists s ∈ Sj−1 such that
x ∈ R + s. We consider two cases. Suppose first that sj ∈ pjZ. Let n ∈ Z be such that

np2
j 6 sj 6 (n+ 1)p2

j − pj. (7.1)

Set x′ := x−np2
jej and let s′ ∈ Sj−1 be such that x′ ∈ R+ s′. Clearly x ∈ R+ s′+np2

jej;
we claim that s′+np2

jej ∈ Sj. This would show that x ∈ R+Sj. Using (7.1) and the fact
that x′ ∈ R + s′ and x ∈ R + s, we find that

s′j > x′j − pj = xj − np2
j − pj > sj − np2

j − pj > −pj

and

s′j 6 x′j = xj − np2
j < sj + pj − np2

j 6 p2
j .

Since x and x′ differ only in the jth coordinate, Lemma 21 implies that sj−s′j ∈ pjZ. We
have assumed that sj ∈ pjZ, and so we must have s′j ∈ pjZ. Therefore, the strict upper
and lower bounds for s′j (displayed above) imply that s′j ∈ pjZ ∩ [0, p2

j). Consequently,

s′ ∈
⋃

a∈Z∩[0,pj)

(Sj−1)j,a =
⋃

a∈Z∩[0,pj)

(Sj−1)∗j,a,

from which it easily follows that s′ + np2
jej ∈ Sj. This concludes the proof in the case

where sj ∈ pjZ.

Next suppose that sj /∈ pjZ. The projection of Sj−1 to the jth coordinate is contained
in

pj
2
Z; if j = 1 then this follows from the definition of S0, while if j > 1 then this is due to

property (i). Therefore, we have sj ∈ pj
2
Z\pjZ. Let t ∈ Sj−1 be such that x−δej ∈ R+ t,

where δ := 0 if pj = 2 and δ := 1
2

if pj > 2. By Lemma 21, we have that tj − sj ∈ pjZ,
and thus tj ∈ pj

2
Z \ pjZ. Let n ∈ Z be such that

np2
j +

pj
2

6 tj 6 (n+ 1)p2
j −

pj
2
,

and let t′ ∈ Sj−1 be such that x− (δ + np2
j)ej ∈ R + t′. Clearly x ∈ R + t′ + (δ + np2

j)ej;
we claim that t′ + (δ + np2

j)ej ∈ Sj. Arguing as in the first case, we find that

−pj
2
< t′j < p2

j +
pj
2
.

However, t′j ∈
pj
2
Z \ pjZ (by another application of Lemma 21), so we must have t′j ∈

(
pj
2
Z \ pjZ) ∩ [0, p2

j). This means that

t′ ∈
⋃

a∈( 1
2
Z\Z)∩[0,pj)

(Sj−1)j,a so that t′ + δej ∈
⋃

a∈( 1
2
Z\Z)∩[0,pj)

(Sj−1)∗j,a.
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It easily follows that t′+(δ+np2
j)ej ∈ Sj, completing the proof in the case where sj /∈ pjZ.

To prove that Sj ⊕ R = Rd, it remains to show that the translates of R by elements
of Sj are pairwise disjoint. Fix s, s′ ∈ Sj, and let a, a′ ∈ 1

2
Z∩ [0, pj) and n, n′ ∈ Z be such

that s ∈ (Sj−1)∗j,a+np2
jej and s′ ∈ (Sj−1)∗j,a′ +n

′p2
jej. We consider two cases. Suppose first

that pj(a− a′) /∈ Z. Then sj − s′j /∈ pjZ, so by Lemma 21, the projections πj(R + s) and
πj(R+ s′) are disjoint. This implies that R+ s and R+ s′ are disjoint. Next suppose that
pj(a− a′) ∈ Z. Then |sj − s′j| = pj|a− a′ + pj(n− n′)|. Assuming that R + s and R + s′

intersect, this difference is strictly less than pj, forcing a′ = a and n′ = n. Consequently,
we have s− s′ ∈ (Sj−1)∗j,a − (Sj−1)∗j,a ⊆ Sj−1 − Sj−1, and since Sj−1 ⊕ R = Rd is a tiling,
this implies that s = s′. This completes the proof that Sj ⊕R = Rd.

7.3 Proof of the properties (i)–(iv)

Next, we verify that Sj satisfies properties (i)–(iv), beginning with property (i). Let U
be the projection of Sj to the jth coordinate. By construction, Sj is a union of subsets
of Sj−1 that have been translated in the ej direction only. Therefore, if j = 1, then
Sj ⊆ U × p2

2
Z× · · · × pd

2
Z by the definition of S0, while if j > 1, then property (i) applied

to Sj−1 implies that Sj ⊆ Zj−1×U × pj+1

2
Z× · · ·× pd

2
Z. Now, observe that the projection

of (Sj−1)∗j,a to the jth coordinate is always contained in Z; this is because pja /∈ Z implies
pja+ 1

2
∈ Z for a ∈ 1

2
Z. It follows that U ⊆ Z.

We now turn to property (ii). It is clear that Sj is p2
jej-periodic. Suppose that

1 6 i 6 j − 1. Property (ii) applies to Sj−1; thus Sj−1 is p2
i ei-periodic. From this it

follows that each (Sj−1)∗j,a is p2
i ei-periodic, and consequently the same is true of Sj.

Next we verify property (iii). Suppose that Sj contains a column in the ei direction. If
i < j, then the p2

jej-periodicity of Sj implies that
⋃
a∈ 1

2
Z∩[0,pj)

(Sj−1)∗j,a contains a column

in the ei direction. The projections of the sets (Sj−1)∗j,a to the jth coordinate are distinct;
therefore, the column must be contained in a single (Sj−1)∗j,a. But (Sj−1)∗j,a is a subset of
Sj−1, possibly shifted in the ej direction, and Sj−1 does not contain a column in the ei
direction, by property (iii). If i = j, then the column intersects

⋃
a∈ 1

2
Z∩[0,pj)

(Sj−1)∗j,a in

pj > 2 consecutive points; these points are either all contained in Sj−1 or all contained in
Sj−1 + 1

2
ej. Either way, it follows that pjej ∈ Sj−1 − Sj−1. This contradicts the fact that

Sj−1 has no shared faces in the ej direction, by property (iv).

Finally, we check property (iv). Suppose that Sj contains a shared face in the ei
direction, for some i > j. Then by p2

jej-periodicity, the set
⋃
a∈ 1

2
Z∩[0,pj)

(Sj−1)∗j,a also

contains a shared face in the ei direction. Since the sets (Sj−1)∗j,a project to distinct
values in the jth coordinate, this shared face must occur within a single (Sj−1)∗j,a. But
this implies that Sj−1 contains a shared face in the ei direction, contradicting property
(iv). This completes the proof of the claim; therefore the proof of the theorem is complete.
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8 Integer Keller properties and the Coven-Meyerowitz conjec-
ture

We conclude this paper by providing more details on the Coven-Meyerowitz conjecture
and its relationship to our results here. Given a finite set A ⊂ N ∪ {0}, let SA be the set
of prime powers pα such that Φpα(X) divides A(X). Coven and Meyerowitz [3] proposed
the following tiling conditions:

(T1) A(1) =
∏

s∈SA Φs(1),

(T2) if s1, . . . , sk ∈ SA are powers of distinct primes, then Φs1···sk(X) divides A(X).

The main results of [3] are:

• if A satisfies (T1), (T2), then A tiles Z by translations;

• if A tiles Z by translations, then (T1) holds;

• if A tiles Z by translations, and if |A| has at most two distinct prime factors, then
(T2) holds.

The statement that (T2) must hold for all finite tiles of Z has become known as the
Coven-Meyerowitz conjecture. The methods of [3] extend to certain cases where additional
assumptions are made on the tiling period M and not just on the cardinality of |A|; see
[20, Theorem 1.5], [31, Proposition 4.1], the comments on [36], and [9, Corollary 6.2].
More recently,  Laba and Londner [9, 10, 11, 12] developed a new set of methods and
proved (T2) for significantly broader classes of tilings. Corollary 1.4 in [12] summarizes
the most general conditions on M under which (T2) is currently known to hold for both
tiles in any tiling A⊕ B = ZM . In particular, assume that A⊕ B = ZM and that one of
the following holds:

• M = pn1
1 p

n2
2 p

n3
3 with p1 > pn2−1

2 pn3−1
3 ,

• M = pn1
1 p

2
2p

2
3p

2
4 with p1 > p2p3p4,

where p1, p2, p3, p4 are distinct primes and n1, n2, n3 ∈ N. Then both A and B satisfy
(T2) [12, Corollary 1.5].

The condition (T2) has an interpretation in terms of tiling complements. Coven and
Meyerowitz [3] proved that if A satisfies (T1) and (T2), then it admits a tiling of the
form A ⊕ B[ = ZM , where M = lcm(SA) and B[ is an explicitly constructed and highly
structured “standard” tiling complement depending only on the prime power cyclotomic
divisors of A(X). Conversely, if a tile A admits a tiling with a standard tiling complement,
it satisfies (T2) [9, Proposition 3.4].

As a special case, the set B defined in (1.12) is the standard tiling set with

Φp1(X) · · ·ΦpN (X)|B(X).
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It follows that both sets A and B in any integer cube tiling, no matter how badly behaved,
must satisfy the Coven-Meyerowitz conditions. At the same time, examples such as those
in Theorem 7 show that the structure of integer tilings may be quite complicated even
when (T2) is known in advance. They also shed light on the viability of certain approaches
to proving (T2), and specifically, of the approach initiated in [10, 12].

A high-level overview of the proof of (T2) in [10, 11] is as follows. Let M = p2q2r2,
where p, q, r are distinct primes. Assume that A⊕ B = ZM is a tiling, with |A| = |B| =
pqr. Without loss of generality, we may assume that ΦM(X)|A(X). Let Λ := pqrZM ,
and consider the sets Aa := A∩ (Λ + a) with a ∈ A. The proof now splits in two cases. If
each set Aa is a union of disjoint fibers in some direction (depending on a, but the same
for the entire set Aa), this fibering property is used to split up the tiling into tilings of
smaller groups. Assume now that there is an a ∈ A such that Aa is not a union of disjoint
fibers in a fixed direction. In this “unfibered” case, the authors are able to find fibers in
A that do not lie in Λ +a, then shift these fibers so that the original tiling A⊕B = ZM is
replaced by a new tiling A′⊕B = ZM with a simpler structure. The procedure continues
until the entire set A is replaced by the subgroup coset a+Λ; at that point, (T2) for both
A and B follows from [9, Proposition 3.4].

Some of the methods and intermediate results of [9, 10, 11] extend to integer tilings
with more prime factors and/or more scales. However, Theorem 7 shows that any ap-
proach to proving (T2) that is based on fiber shifting cannot lead to a full resolution of
the conjecture for tilings with 8 or more prime factors. This also answers Question 2 in
[9, Section 9] in the negative.

The approach in [12] is different and based on splitting (Lemma 18). Let A⊕B = ZM ,
and suppose that one of the prime divisors of M , say pi, is sufficiently large relative to the
others. It follows from Theorem 1 that we also have A⊕ (t+ rB) = ZM for all t, r ∈ ZM
with (r,M) = 1. By an argument similar to that in the proof of Theorem 17, if the
conclusion (i) of Lemma 18 holds for any of these tilings, then M/pi ∈ Div(B), and if (ii)
holds for any of these tilings, then M/pi ∈ Div(A). By Theorem 1 again, we cannot have
M/pi ∈ Div(A) ∩ Div(B). Thus only one of the above must hold, say M/pi ∈ Div(A),
so that we have (ii) for all t, r. This allows us to apply the variant of the slab reduction
of [9] developed in [12, Lemma 5.4], and to set up an inductive argument based on this
reduction.

The property (IKP1) is not, by itself, sufficient to set up the above argument. However,
it does constitute an important intermediate step, and it is likely that further arguments
based on (IKP1) might work in other cases.

We also mention the possibility of proving partial results concerning either the struc-
ture or certain specific elements of the divisor sets. For example, Conjecture 9.1 in [9]
states the following:

Let A ⊕ B = ZM be a tiling. Let p be a prime such that pn ‖ M and Φpn |A.
Then M/p 6∈ Div(B).

This would follow from (T2), but might also be proved independently as a weaker
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result. By Theorem 1, if A⊕B = ZM then Div(A)∩Div(B) = {M}. In the specific case
of integer cube tilings, we always have Φp2|A for each p|M . If there exist integer cube
tilings that do not satisfy (IKP1), this would not disprove the above conjecture, but it
would prove the weaker statement that M/p 6∈ Div(A) is possible.
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[26] L. Rédei, Über das Kreisteilungspolynom, Acta Math. Hungar. 5 (1954), 27–28.
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