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Abstract

In this note, we prove that every even regular multigraph on n vertices with
multiplicity at most 7 and minimum degree at least rn/2 + o(n) has a Hamilton
decomposition. This generalises a result of Vaughan who proved an asymptotic
version of the multigraph 1-factorisation conjecture. We derive our result by proving
a more general result which states that dense regular multidigraphs that are robust
outexpanders have a Hamilton decomposition. This in turn is derived from the
corresponding result of Kithn and Osthus about simple digraphs.

Mathematics Subject Classifications: 05C45, 05C35, 05C70, 05C20, 05C38

1 Introduction

A multidigraph (or directed multigraph) D is a pair (V (D), E(D)) where V(D) is a finite
set and (D) is a multiset with elements from the set (V (D) xV(D))\{(v,v): v € V(D)}
(so loops are not allowed). We call V(D) the set of vertices of D and E(D) the multiset
of edges of D. The multiplicity of a multidigraph D is the maximum number of times
an edge appears in E(D). For a vertex v € V(D), we denote by dj(v) the number
of outedges at v in D, that is, edges of the form (v,z) for some x € V(D) (counting
multiplicities). Similarly, d(v) is the number of inedges at v in D. We say that D is
s-regular, if df,(v) = dp(v) = s for every v € V(D). A Hamilton cycle in a multidigraph
is a directed cycle covering all the vertices. A Hamilton decomposition of a multidigraph
D is a partition of F(D) such that every part is the edge set of a Hamilton cycle of D. We
also use analogous definitions for multigraphs (the undirected analogue to multidigraphs).

Vaughan proved that if n is even and G is a regular multigraph on n vertices with multi-
plicity at most r and minimum degree at least 7n/24o0(n), then G has a 1-factorisation® [9].
This is an approximate version of the multigraph 1-factorisation conjecture of Plantholt
and Tipnis [8] which is a generalisation of the 1-factorisation conjecture [1]. The 1-
factorisation conjecture states that if G is an s-regular graph on n vertices where n is an
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even integer and s > n/2, then G has a 1-factorisation. The multigraph 1-factorisation
conjecture states that if G is an s-regular multigraph on n vertices with multiplicity at
most r where n is an even integer and s > rn/2, then G has a 1-factorisation. The
1-factorisation conjecture was proved for all large graphs by Csaba, Kiihn, Lo, Osthus,
and Treglown [2]. Our aim in this note is to generalise the result of Vaughan by showing
that if in addition the multigraph is even-regular, then it has a Hamilton decomposition.

Theorem 1. For every ¢ € (0,1) and r € N, there exists ng € N such that the following
holds for all n = ng. Let G be an s-reqular n-vertex multigraph with multiplicity at most r
where s € 2N with s > rn/2 +en. Then G has a Hamilton decomposition.

Observe that this does indeed imply the theorem of Vaughan since if G is an odd-
regular graph on an even number of vertices we can first remove a perfect matching and
then apply our result to the remaining graph.

We also prove a directed analogue of Theorem 1.

Theorem 2. For every ¢ € (0,1) and r € N, there exists ng € N such that the following
holds for all n > ng. Let D be an s-reqular n-vertex multidigraph with multiplicity at
most r where s = rn/2+en. Then D has a Hamilton decomposition.

We derive these results from a more general result about multidigraphs that are robust
outexpanders. To state this result we need the following definitions.

For an n-vertex digraph D, a set S C V(D), and v € (0,1), we define the v-robust
outneighbourhood of S in D to be RN, ,(S) = {v € V(D): |SN Np(v)| > vn}. For
v,7 € (0,1), a simple? n-vertex digraph D is said to be a robust (v, T)-outezpander if for
each set S C V(D) with 7n < |S| < (1 — 7)n, we have |RN:D(S)| > |S| 4+ vn. For a
multidigraph D, the underlying simple digraph of D is the digraph D obtained from D
by dropping any multiple edges (that is an ordered pair of vertices is an edge in D if and
only if it appears (at least once) in E(D)). We analogously define the underlying simple
graph of a multigraph.

The hierarchy notation 0 < @ < b < 1 is a short form of stating that there exists
a nondecreasing function ag: (0,1) — (0,1) such that the statement that follows after
holds for all a,b € (0,1) with a < ag(b) (that is the statement holds as long as a is
sufficiently small in terms of b). Hierarchies with more variables are defined similarly and
whenever 1/a appears in a hierarchy we implicitly assume that a is a positive integer.

The following theorem is our main result from which we derive all other results in this
note.

Theorem 3. Let 1/n < v < 7 < 1/r,a < 1. Let D be a n-vertex multidigraph with
multiplicity at most r such that the following hold.

(a) D is s-regular for some s > an.

(b) The underlying simple digraph of D is a robust (v, T)-outexpander.

2 A multidigraph is simple if its multiplicity is 1 (such a multidigraph is also called a digraph or a simple
digraph).
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Then D has a Hamilton decomposition.

We also prove an analogous result for (undirected) multigraphs. For this we need the
corresponding undirected version of the above definition of robust outexpansion. For an
n-vertex graph G, a set S C V(G), and v € (0,1), we define the v-robust neighbourhood
of S in G to be RN, ¢(S) = {v € V(G): |SN Ng(v)| = vn}. For v,7 € (0,1), a
simple n-vertex (undirected) graph G is said to be a robust (v, 7)-expander if for each
set S C V(G) with Tn < |S| < (1 — 7)n, we have |RN, ¢(S)| = |S| 4+ vn. As discussed
in [6], robust expansion is a very weak notion of quasirandomness, and thus, for example,
random graphs of constant density are robust expanders with high probability.

Theorem 4. Let 1/n < v < 7 < 1/r,a < 1. Let G be a n-vertex multigraph with
multiplicity at most r such that the following hold.

(a) G is s-reqular for some s € 2N with s > an.
(b) The underlying simple graph of G is a robust (v, T)-expander.
Then G has a Hamilton decomposition.

The case r = 1 of all these results was proved by Kiihn and Osthus in [5]. Throughout,
we ignore floors and ceilings whenever doing so does not affect the argument.

2 Proofs of secondary results

In this section, we prove that Theorem 3 implies Theorems 1, 2 and 4.

2.1 Proof of Theorem 4

To derive Theorem 4 from Theorem 3 we need the following two lemmas from [6]. The
first of these lemmas allows us to orient the edges of a robust expander in such a way that
the resulting digraph is a robust outexpander and the in-degree and out-degree of every
vertex are not too far apart.

Lemma 5 ([6, Lemma 3.1]). Suppose that 1/n < n < v,7,a < 1. Suppose that G is a
robust (v, T)-expander on n vertices with 6(G) = an. Then one can orient the edges of G
in such a way that the resulting oriented graph D satisfies the following:

(i) D is a robust (v/4,T)-outexpander.
(ii) dp(x) = (1+1)% and dp(z) = (1 )%,
For a (simple) digraph D, we define its minimum semi-degree 6°(D) to be
6'(D) = min d%(v).
o€{+7_}
veV (D)

The second lemma allows us to find a regular spanning subdigraph of a robust outexpander
with linear minimum semi-degree that is still a robust outexpander.

3For positive reals a, b, ¢, d, we write a = b(c + d) for b(c — d) < a < b(c + d).
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Lemma 6 ([6, Lemma 3.4]). Suppose that 1/n < V' < { K v <7< a<1. Let D be a
robust (v, T)-outexpander on n vertices with 8°(D) > an. Then D contains a &n-factor?
which is still a robust (V', T)-outexpander.

We now show that Theorem 3 implies its undirected analogue Theorem 4.

Proof of Theorem 4 assuming Theorem 3. We choose new constants v/ and £ such that
I/n <V < <K v <7< 1/r,a. Note that we can write G = G'UH where G’ is the
underlying simple graph of G and H is a multigraph that is edge-disjoint from G’. By
assumption, G’ is a robust (v, 7)-expander with 6(G") > an/r. By Theorem 5, there exists
an orientation D of G’ such that D is a robust (v/4, 7)-outexpander with 6°(D) > an/3r.
By Theorem 6, D contains a {n-factor F' that is a robust (¢, 7)-outexpander. Let G be
the undirected multigraph obtained from G' by deleting the edges contained in F'. Note
that G is (s — 2¢n)-regular. Since s is even, there exists a decomposition of G into cycles
(we allow 2-cycles, that is, two parallel edges). Orienting each of these cycles consistently
and then combining this with F' gives an orientation D of G that is s /2-regular. Moreover,
the underlying simple digraph of D contains F and thus is a robust (v, T)-outexpander.
By applying Theorem 3 to 13, we get a Hamilton decomposition of D which, by dropping
the orientations, gives the desired Hamilton decomposition of G. O

2.2 Proof of Theorem 2 and Theorem 1

Theorem 2 follows from Theorem 3 by the following lemma which states that the minimum
semi-degree condition on D implies that D is a robust outexpander.

Lemma 7 ([6, Lemma 3.7]). Let 1/n < v < 7 < e < 1. Let D be a digraph on n vertices
with minimum semi-degree 8°(D) > (1/2 4 &)n. Then D is a robust (v, T)-outezpander.

Proof of Theorem 2 assuming Theorem 3. Let v and 7 be new constants such that 1/n <
v € 17 < g,1/r. Note that the underlying simple digraph D’ of D has minimum semi-
degree 8°(D') > (1/2 + ¢/r)n. By Theorem 7, D' is a robust (v, 7)-outexpander. Hence
we are done by Theorem 2. O

Analogously, Theorem 1 follows from Theorem 4 by the following lemma (the undi-
rected version of Theorem 7).

Lemma 8 ([6, Lemma 3.8]). Let 1/n < v < 7 < e < 1. Let G be a graph on n vertices
with minimum degree 6(G) = (1/2 + e)n. Then G is a robust (v, T)-expander.

Proof of Theorem 1 assuming Theorem 4. Let v and 7 be new constants such that 1/n <
v < 17 < g,1/r. Note that the underlying simple graph G’ of G has minimum degree
(G") = (1/2+4¢/r)n. By Theorem 8, G’ is a robust (v, 7)-expander. Hence we are done
by Theorem 4. O]

4A &n-factor is a &n-regular spanning subdigraph.
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3 Proof of Theorem 3

In this section we prove Theorem 3, the main theorem of this note. The main ingredients
for our proof are the following two results from [5] and [7]. They state, respectively, that
a robust outexpander with linear minimum semi-degree has a Hamilton decomposition if
it is regular and can be almost decomposed into Hamilton cycles if it is almost regular.

Theorem 9 ([5, Theorem 1.2]). Let 1/n K v < 7 < aw < 1. Let D be a s-regular simple
digraph on n wvertices that is a robust (v, T)-outexpander where s > an. Then D has a
Hamilton decomposition.

Theorem 10 ([7, Corollary 1.2]). Let I/n K { K 6 K v < 7 < o < 1. Let D be an
n-vertex digraph such that

(i) dj,(v) = (e £ &n, dp(v) = (a+&E)n for allv € V(D) and
(ii) D is a robust (v, T)-outexpander.
Then D contains at least (o — 6)n edge-disjoint Hamilton cycles.

To prove Theorem 3, we also need the following four facts about robust outexpanders.
The first is the fact that robust outexpanders with linear minimum semi-degree are
Hamilton-connected.

Corollary 11 ([4, special case p = 1 of Corollary 6.9]). Let 1/n < v < 7 < a < 1. Let
D be a simple digraph on n vertices that is a robust (v, T)-outezpander with 6°(D) > an.
Then for any x,y € V(D), D contains a Hamilton path from x to y.

The next fact is that a random subgraph of a robust outexpander is very likely to still
be a robust outexpander.

Lemma 12 ([3, Lemma 4.12], [6, Lemma 3.2(ii)]). Let 1/n < v < 7,p < 1. Let D be a
robust (v, T)-outexpander on n vertices. Suppose that I' is the spanning random subgraph
of D obtained by taking each edge independently with probability p. Then, with probability
at least 1 — exp(—v>n?), T is a robust (pv /2, T)-outexpander.

Finally, we need the following two simple facts which follow easily from the definition
of robust outexpanders.

Lemma 13 ([3, Lemma 4.2]). Let 1/n < ¢ < v < 7 < 1 and let D be digraph that is
a robust (v, T)-outexpander on n vertices. Then any digraph obtained from D by deleting
at most en inedges and at most en outedges at each verter as well as deleting at most en
vertices is a robust (v — 2e, 27)-outexpander.

Lemma 14 ([4, Lemma 6.6]). Let 1/n < v < 7 < 1. Let D be a simple digraph on n
vertices that is a robust (v, T)-outexpander with 6°(D) > 2tn. Then for any x,y € V(D),
there exists a (directed) path in D from x to y of length at most 1/v.

ot

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(4) (2024), #P4.49



We are now ready to prove Theorem 3. The main idea of the proof is to randomly
split the multidigraph D into r simple digraphs Dy, ..., D,. We then cover most edges in
Ds, ..., D, with Hamilton cycles using Theorem 10. Using a small number of edges of D,
we then find Hamilton cycles covering the remaining edges of Do, ..., D,. Finally, we show

that the remaining subgraph of D; has a Hamilton decomposition using Theorem 9.

Proof of Theorem 3. Let o = i/n > a. Let D be the underlying simple digraph corre-
sponding to D. For each e € F(D), we denote by m, the multiplicity with which e appears
in D. For each e € E(D) independently, we let X, be a subset of [r| of size m, chosen
uniformly at random. For each i € [r], we let D; be the digraph with V(D;) = V(D) and

E(D;) ={e € E(D): i€ X.}. Note that D; is a simple digraph for each i € [r] and that
UiepyDi = D as a multidigraph.

Let £ and 6 be new constants with 1/n < £ € § < v. Let w € V(D) and i € [r]. We
have

Eap = 3 SO V{0 B SR AT

veV (D veV (D)

e=(u,v)€E(D) e=(u,v)€E(D)
And similarly, E[d}, (u)] = s/r. Thus by the Chernoff bound, we have
Pldp, (v) # (14 &)s/r], Pldp, (v) # (1 £&)s/r] < exp(=Q(n)).

Note that there is a coupling of D; and the digraph D, /r obtained from D by taking each
edge independently with probability 1/r such that l~)1 /» € D;. Hence, since D is a robust
(v, 7)-outexpander, we have by Theorem 12, with probability at least 1 — exp(v3n?), D, is
a robust (v/2r, 7)-outexpander. Hence by a union bound, we have that with probability
1 —o0(1) for every i € [r],

(i) df,(v) = (1 x£&)s/r, dp (v) = (L £ &)s/r for all v € V(D) and
(ii) D; is a robust (v/2r, T)-outexpander.

Fix such a choice of (Dy, ..., D,). Note that («//r —&a//r)n=(1—=&)s/r < (1+&)s/r =
(o//r 4+ €a//r)n. Hence by Theorem 10, for each i € [r], there is a set H; of at least
(o /r—d)n edge-disjoint Hamilton cycles in D;. For each i € [r], let D; = Di—Jycyy, E(H)
and note that A%(D}) = maXoe(+ _yvev(p) d3y (v) < on + &/ /rn < 26n — 1.

Let D' = Dy U Uy, Di- Observe that it suffices to show that D’ has a Hamilton
decomposition. Note that D’ is s'-regular for some ¢ > (1 — 2§)a/n/r and since Dy
is a robust (v/2r, 7)-outexpander, the underlying simple digraph of D’ is also a robust
(v/2r, T)-outexpander.

We now show that, for each i € {2,...,r}, there exists a decomposition of D! into
a set M, of at most 166"/?n matchings each of size at most 6'/?n. Indeed, for each
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i €{2,...,r}, first decompose Dj into two oriented graphs® D¢} and Dg%. Since A°(Dj) <
20m — 1, the underlying graphs of D} and Dy, have maximum degree at most 40n — 2.
Hence, by applying Vizing’s theorem to the underlymg graphs of D7} and Dy, we obtain
a decomposition of the edges of each of D} and Df% into a set of at most 46m matchings.
These two decompositions together give a decomposition of the edges of D! into a set of
at most 86n matchings. From this the desired set of matchings is obtained by splitting
each matching of size larger than 6'/2n into 2/§'/? matchings of as equal size as possible.

Let M = Uye;op My = {My, ..., M}, where t < 16r6'/?n < §*/*n. We construct a
set of edge-disjoint paths ={P,..., P} in D' such that M; C E(P;) and |V(P)| <
§Y4n for each i € [t] as follows. Let i € [t] and suppose that P, ..., P;_; have already
been constructed. Let M; = {(u;,v;): j € [m]} where m < §?n and let D* = D’ —
Uicjciit E(P) — Uiy1<j<e Mi- In order to show that D* contains a path P; such that
M; C E(P;) and |V(P))| < 6"*n, we show by induction on j € [m] that there exists a
path @; from u; to v; in D* — Ujﬂgj,gm{uj/,vj/} of length at most 2jv~2 such that Q;
contains the edges (u;/,v;/) for all j* € [j] (then @), is the desired path P;). To that end, let
J € [m] and suppose that ();_; is a path from u; to vj_; in D* — U]<],<m{uj/, vj } of length
at most 2(j — 1)v~2 such that Q;_; contains the edges (u;/,v;) for all j* € [j —1]. Let D**
be the underlying simple digraph of D* —{v;} — U, 1< jrcm{wy vt — (V(Qj-1) \ {vj-11})-
Observe that D** can be obtained from the underlying simple digraph of D’ by deleting
at most 6'/*n inedges and at most 6'/*n outedges at every vertex and then deleting at
most 20'/%n + 2(j — 1)r~2 < §'/*n vertices. Hence by Theorem 13 (with §'/* and v/2r
playing the roles of £ and v, respectively), D** is a robust (v/2r —2§'/4, 27)-outexpander.
Since 6°(D**) > 4rn, by Theorem 14 (with v/2r — 2§'/% and 27 playing the roles of v
and 7, respectively), we have that there exists a path P* in D** from v;_; to u; of length
at most 1/(v/2r — 26'/*) < v=2. Prepending @;_; and appending the edge (u;,v;) to P*
gives the desired path @);.

We now construct a set H = {Hy, ..., H;} of edge-disjoint Hamilton cycles in D’ such
that, for each i € [t|, E(P;) C E(H;). Let i € [t] and suppose that Hy,..., H;_1 have al-
ready been constructed. Let x and y be the first and last vertex of P;, respectively. Let D°
be the digraph obtained from D’ by deleting the edges in U, ;; ; E(H;)UU, 1< E(F))
and deleting all vertices of P; except x and y. Observe that D° is obtained from D’ by
deleting at most §/*n inedges and at most §'/*n outedges at every vertex and then
deleting at most 6'/*n vertices. Hence by Theorem 13 (with 6'/4 and v/2r playing the
roles of ¢ and v, respectively), D° is a robust (v/2r — 2§'/4 27)-outexpander. Since
§°(D°) > a'n/2r, by Theorem 11 (with o//2r, 27, and v/2r — 26'/* playing the roles
of a, 7, and v, respectively), D°® contains a Hamilton path from y to x which together
with P; forms the desired Hamilton cycle H; in D’.

Let D" = D" — Upyey E(H). It now suffices to show that D” has a Hamilton de-
composition. Note that D” is a simple digraph as D” C D;. Since D" is obtained
from D’ by deleting at most 6'/*n inedges and 6'/*n outedges at every vertex, we have
by Theorem 13 (with §'/* and v/2r playing the roles of ¢ and v, respectively), that D"

SAn oriented graph is a simple digraph such that for any vertices z and y at most one of (z,y) and
(y,x) is an edge.
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is a robust (v/2r — 26/, 27)-outexpander. Moreover, since D’ is s'-regular for some
s> (1 —=28€)a'n/r, D" is s"-regular for some s” > o/n/2r. Finally, by Theorem 9 (with
o /2r, 27, and v/2r — 26'/4 playing the roles of a, 7, and v, respectively), D" has a
Hamilton decomposition. O
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