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Abstract

In this note, we prove that every even regular multigraph on n vertices with
multiplicity at most r and minimum degree at least rn/2 + o(n) has a Hamilton
decomposition. This generalises a result of Vaughan who proved an asymptotic
version of the multigraph 1-factorisation conjecture. We derive our result by proving
a more general result which states that dense regular multidigraphs that are robust
outexpanders have a Hamilton decomposition. This in turn is derived from the
corresponding result of Kühn and Osthus about simple digraphs.

Mathematics Subject Classifications: 05C45, 05C35, 05C70, 05C20, 05C38

1 Introduction

A multidigraph (or directed multigraph) D is a pair (V (D), E(D)) where V (D) is a finite
set and E(D) is a multiset with elements from the set (V (D)×V (D))\{(v, v) : v ∈ V (D)}
(so loops are not allowed). We call V (D) the set of vertices of D and E(D) the multiset
of edges of D. The multiplicity of a multidigraph D is the maximum number of times
an edge appears in E(D). For a vertex v ∈ V (D), we denote by d+D(v) the number
of outedges at v in D, that is, edges of the form (v, x) for some x ∈ V (D) (counting
multiplicities). Similarly, d−D(v) is the number of inedges at v in D. We say that D is
s-regular, if d+D(v) = d−D(v) = s for every v ∈ V (D). A Hamilton cycle in a multidigraph
is a directed cycle covering all the vertices. A Hamilton decomposition of a multidigraph
D is a partition of E(D) such that every part is the edge set of a Hamilton cycle of D. We
also use analogous definitions for multigraphs (the undirected analogue to multidigraphs).

Vaughan proved that if n is even andG is a regular multigraph on n vertices with multi-
plicity at most r and minimum degree at least rn/2+o(n), thenG has a 1-factorisation1 [9].
This is an approximate version of the multigraph 1-factorisation conjecture of Plantholt
and Tipnis [8] which is a generalisation of the 1-factorisation conjecture [1]. The 1-
factorisation conjecture states that if G is an s-regular graph on n vertices where n is an

a Institute of Discrete Mathematics, Graz University of Technology (pfenninger@math.tugraz.at).
1A 1-factorisation is a decomposition of the edge set into perfect matchings.
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even integer and s > n/2, then G has a 1-factorisation. The multigraph 1-factorisation
conjecture states that if G is an s-regular multigraph on n vertices with multiplicity at
most r where n is an even integer and s > rn/2, then G has a 1-factorisation. The
1-factorisation conjecture was proved for all large graphs by Csaba, Kühn, Lo, Osthus,
and Treglown [2]. Our aim in this note is to generalise the result of Vaughan by showing
that if in addition the multigraph is even-regular, then it has a Hamilton decomposition.

Theorem 1. For every ε ∈ (0, 1) and r ∈ N, there exists n0 ∈ N such that the following
holds for all n > n0. Let G be an s-regular n-vertex multigraph with multiplicity at most r
where s ∈ 2N with s > rn/2 + εn. Then G has a Hamilton decomposition.

Observe that this does indeed imply the theorem of Vaughan since if G is an odd-
regular graph on an even number of vertices we can first remove a perfect matching and
then apply our result to the remaining graph.

We also prove a directed analogue of Theorem 1.

Theorem 2. For every ε ∈ (0, 1) and r ∈ N, there exists n0 ∈ N such that the following
holds for all n > n0. Let D be an s-regular n-vertex multidigraph with multiplicity at
most r where s > rn/2 + εn. Then D has a Hamilton decomposition.

We derive these results from a more general result about multidigraphs that are robust
outexpanders. To state this result we need the following definitions.

For an n-vertex digraph D, a set S ⊆ V (D), and ν ∈ (0, 1), we define the ν-robust
outneighbourhood of S in D to be RN+

ν,D(S) := {v ∈ V (D) : |S ∩ N−D (v)| > νn}. For
ν, τ ∈ (0, 1), a simple2 n-vertex digraph D is said to be a robust (ν, τ)-outexpander if for
each set S ⊆ V (D) with τn 6 |S| 6 (1 − τ)n, we have |RN+

ν,D(S)| > |S| + νn. For a

multidigraph D, the underlying simple digraph of D is the digraph D̃ obtained from D
by dropping any multiple edges (that is an ordered pair of vertices is an edge in D̃ if and
only if it appears (at least once) in E(D)). We analogously define the underlying simple
graph of a multigraph.

The hierarchy notation 0 < a � b < 1 is a short form of stating that there exists
a nondecreasing function a0 : (0, 1) → (0, 1) such that the statement that follows after
holds for all a, b ∈ (0, 1) with a 6 a0(b) (that is the statement holds as long as a is
sufficiently small in terms of b). Hierarchies with more variables are defined similarly and
whenever 1/a appears in a hierarchy we implicitly assume that a is a positive integer.

The following theorem is our main result from which we derive all other results in this
note.

Theorem 3. Let 1/n � ν � τ � 1/r, α 6 1. Let D be a n-vertex multidigraph with
multiplicity at most r such that the following hold.

(a) D is s-regular for some s > αn.

(b) The underlying simple digraph of D is a robust (ν, τ)-outexpander.

2A multidigraph is simple if its multiplicity is 1 (such a multidigraph is also called a digraph or a simple
digraph).
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Then D has a Hamilton decomposition.

We also prove an analogous result for (undirected) multigraphs. For this we need the
corresponding undirected version of the above definition of robust outexpansion. For an
n-vertex graph G, a set S ⊆ V (G), and ν ∈ (0, 1), we define the ν-robust neighbourhood
of S in G to be RNν,G(S) := {v ∈ V (G) : |S ∩ NG(v)| > νn}. For ν, τ ∈ (0, 1), a
simple n-vertex (undirected) graph G is said to be a robust (ν, τ)-expander if for each
set S ⊆ V (G) with τn 6 |S| 6 (1 − τ)n, we have |RNν,G(S)| > |S| + νn. As discussed
in [6], robust expansion is a very weak notion of quasirandomness, and thus, for example,
random graphs of constant density are robust expanders with high probability.

Theorem 4. Let 1/n � ν � τ � 1/r, α 6 1. Let G be a n-vertex multigraph with
multiplicity at most r such that the following hold.

(a) G is s-regular for some s ∈ 2N with s > αn.

(b) The underlying simple graph of G is a robust (ν, τ)-expander.

Then G has a Hamilton decomposition.

The case r = 1 of all these results was proved by Kühn and Osthus in [5]. Throughout,
we ignore floors and ceilings whenever doing so does not affect the argument.

2 Proofs of secondary results

In this section, we prove that Theorem 3 implies Theorems 1, 2 and 4.

2.1 Proof of Theorem 4

To derive Theorem 4 from Theorem 3 we need the following two lemmas from [6]. The
first of these lemmas allows us to orient the edges of a robust expander in such a way that
the resulting digraph is a robust outexpander and the in-degree and out-degree of every
vertex are not too far apart.

Lemma 5 ([6, Lemma 3.1]). Suppose that 1/n � η � ν, τ, α < 1. Suppose that G is a
robust (ν, τ)-expander on n vertices with δ(G) > αn. Then one can orient the edges of G
in such a way that the resulting oriented graph D satisfies the following3:

(i) D is a robust (ν/4, τ)-outexpander.

(ii) d+D(x) = (1± η)dG(x)
2

and d−D(x) = (1± η)dG(x)
2

.

For a (simple) digraph D, we define its minimum semi-degree δ0(D) to be

δ0(D) := min
◦∈{+,−}
v∈V (D)

d◦D(v).

The second lemma allows us to find a regular spanning subdigraph of a robust outexpander
with linear minimum semi-degree that is still a robust outexpander.

3For positive reals a, b, c, d, we write a = b(c± d) for b(c− d) 6 a 6 b(c+ d).

the electronic journal of combinatorics 31(4) (2024), #P4.49 3



Lemma 6 ([6, Lemma 3.4]). Suppose that 1/n� ν ′ � ξ � ν 6 τ � α < 1. Let D be a
robust (ν, τ)-outexpander on n vertices with δ0(D) > αn. Then D contains a ξn-factor4

which is still a robust (ν ′, τ)-outexpander.

We now show that Theorem 3 implies its undirected analogue Theorem 4.

Proof of Theorem 4 assuming Theorem 3. We choose new constants ν ′ and ξ such that
1/n � ν ′ � ξ � ν � τ � 1/r, α. Note that we can write G = G′∪̇H where G′ is the
underlying simple graph of G and H is a multigraph that is edge-disjoint from G′. By
assumption, G′ is a robust (ν, τ)-expander with δ(G′) > αn/r. By Theorem 5, there exists
an orientation D of G′ such that D is a robust (ν/4, τ)-outexpander with δ0(D) > αn/3r.

By Theorem 6, D contains a ξn-factor F that is a robust (ν ′, τ)-outexpander. Let G̃ be
the undirected multigraph obtained from G by deleting the edges contained in F . Note
that G̃ is (s− 2ξn)-regular. Since s is even, there exists a decomposition of G̃ into cycles
(we allow 2-cycles, that is, two parallel edges). Orienting each of these cycles consistently

and then combining this with F gives an orientation D̃ of G that is s/2-regular. Moreover,

the underlying simple digraph of D̃ contains F and thus is a robust (ν ′, τ)-outexpander.

By applying Theorem 3 to D̃, we get a Hamilton decomposition of D̃ which, by dropping
the orientations, gives the desired Hamilton decomposition of G.

2.2 Proof of Theorem 2 and Theorem 1

Theorem 2 follows from Theorem 3 by the following lemma which states that the minimum
semi-degree condition on D implies that D is a robust outexpander.

Lemma 7 ([6, Lemma 3.7]). Let 1/n� ν � τ � ε < 1. Let D be a digraph on n vertices
with minimum semi-degree δ0(D) > (1/2 + ε)n. Then D is a robust (ν, τ)-outexpander.

Proof of Theorem 2 assuming Theorem 3. Let ν and τ be new constants such that 1/n�
ν � τ � ε, 1/r. Note that the underlying simple digraph D′ of D has minimum semi-
degree δ0(D′) > (1/2 + ε/r)n. By Theorem 7, D′ is a robust (ν, τ)-outexpander. Hence
we are done by Theorem 2.

Analogously, Theorem 1 follows from Theorem 4 by the following lemma (the undi-
rected version of Theorem 7).

Lemma 8 ([6, Lemma 3.8]). Let 1/n� ν � τ � ε < 1. Let G be a graph on n vertices
with minimum degree δ(G) > (1/2 + ε)n. Then G is a robust (ν, τ)-expander.

Proof of Theorem 1 assuming Theorem 4. Let ν and τ be new constants such that 1/n�
ν � τ � ε, 1/r. Note that the underlying simple graph G′ of G has minimum degree
δ(G′) > (1/2 + ε/r)n. By Theorem 8, G′ is a robust (ν, τ)-expander. Hence we are done
by Theorem 4.

4A ξn-factor is a ξn-regular spanning subdigraph.
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3 Proof of Theorem 3

In this section we prove Theorem 3, the main theorem of this note. The main ingredients
for our proof are the following two results from [5] and [7]. They state, respectively, that
a robust outexpander with linear minimum semi-degree has a Hamilton decomposition if
it is regular and can be almost decomposed into Hamilton cycles if it is almost regular.

Theorem 9 ([5, Theorem 1.2]). Let 1/n� ν � τ � α 6 1. Let D be a s-regular simple
digraph on n vertices that is a robust (ν, τ)-outexpander where s > αn. Then D has a
Hamilton decomposition.

Theorem 10 ([7, Corollary 1.2]). Let 1/n � ξ � δ � ν � τ � α 6 1. Let D be an
n-vertex digraph such that

(i) d+D(v) = (α± ξ)n, d−D(v) = (α± ξ)n for all v ∈ V (D) and

(ii) D is a robust (ν, τ)-outexpander.

Then D contains at least (α− δ)n edge-disjoint Hamilton cycles.

To prove Theorem 3, we also need the following four facts about robust outexpanders.
The first is the fact that robust outexpanders with linear minimum semi-degree are
Hamilton-connected.

Corollary 11 ([4, special case p = 1 of Corollary 6.9]). Let 1/n� ν � τ � α 6 1. Let
D be a simple digraph on n vertices that is a robust (ν, τ)-outexpander with δ0(D) > αn.
Then for any x, y ∈ V (D), D contains a Hamilton path from x to y.

The next fact is that a random subgraph of a robust outexpander is very likely to still
be a robust outexpander.

Lemma 12 ([3, Lemma 4.12], [6, Lemma 3.2(ii)]). Let 1/n � ν � τ, p 6 1. Let D be a
robust (ν, τ)-outexpander on n vertices. Suppose that Γ is the spanning random subgraph
of D obtained by taking each edge independently with probability p. Then, with probability
at least 1− exp(−ν3n2), Γ is a robust (pν/2, τ)-outexpander.

Finally, we need the following two simple facts which follow easily from the definition
of robust outexpanders.

Lemma 13 ([3, Lemma 4.2]). Let 1/n � ε � ν � τ 6 1 and let D be digraph that is
a robust (ν, τ)-outexpander on n vertices. Then any digraph obtained from D by deleting
at most εn inedges and at most εn outedges at each vertex as well as deleting at most εn
vertices is a robust (ν − 2ε, 2τ)-outexpander.

Lemma 14 ([4, Lemma 6.6]). Let 1/n � ν � τ 6 1. Let D be a simple digraph on n
vertices that is a robust (ν, τ)-outexpander with δ0(D) > 2τn. Then for any x, y ∈ V (D),
there exists a (directed) path in D from x to y of length at most 1/ν.
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We are now ready to prove Theorem 3. The main idea of the proof is to randomly
split the multidigraph D into r simple digraphs D1, . . . , Dr. We then cover most edges in
D2, . . . , Dr with Hamilton cycles using Theorem 10. Using a small number of edges of D1,
we then find Hamilton cycles covering the remaining edges of D2, . . . , Dr. Finally, we show
that the remaining subgraph of D1 has a Hamilton decomposition using Theorem 9.

Proof of Theorem 3. Let α′ := s/n > α. Let D̃ be the underlying simple digraph corre-

sponding to D. For each e ∈ E(D̃), we denote by me the multiplicity with which e appears

in D. For each e ∈ E(D̃) independently, we let Xe be a subset of [r] of size me chosen
uniformly at random. For each i ∈ [r], we let Di be the digraph with V (Di) = V (D) and

E(Di) = {e ∈ E(D̃) : i ∈ Xe}. Note that Di is a simple digraph for each i ∈ [r] and that⋃̇
i∈[r]Di = D as a multidigraph.

Let ξ and δ be new constants with 1/n� ξ � δ � ν. Let u ∈ V (D̃) and i ∈ [r]. We
have

E[d+Di
(u)] =

∑
v∈V (D)

e=(u,v)∈E(D̃)

(
r − 1

me − 1

)
/

(
r

me

)
=

∑
v∈V (D)

e=(u,v)∈E(D̃)

me/r = d+D(u)/r = s/r.

And similarly, E[d−Di
(u)] = s/r. Thus by the Chernoff bound, we have

P[d+Di
(v) 6= (1± ξ)s/r], P[d−Di

(v) 6= (1± ξ)s/r] 6 exp(−Ω(n)).

Note that there is a coupling of Di and the digraph D̃1/r obtained from D̃ by taking each

edge independently with probability 1/r such that D̃1/r ⊆ Di. Hence, since D̃ is a robust
(ν, τ)-outexpander, we have by Theorem 12, with probability at least 1− exp(ν3n2), Di is
a robust (ν/2r, τ)-outexpander. Hence by a union bound, we have that with probability
1− o(1) for every i ∈ [r],

(i) d+Di
(v) = (1± ξ)s/r, d−Di

(v) = (1± ξ)s/r for all v ∈ V (D) and

(ii) Di is a robust (ν/2r, τ)-outexpander.

Fix such a choice of (D1, . . . , Dr). Note that (α′/r− ξα′/r)n = (1− ξ)s/r 6 (1 + ξ)s/r =
(α′/r + ξα′/r)n. Hence by Theorem 10, for each i ∈ [r], there is a set Hi of at least
(α′/r−δ)n edge-disjoint Hamilton cycles inDi. For each i ∈ [r], letD′i = Di−

⋃
H∈Hi

E(H)
and note that ∆0(D′i) := max◦∈{+,−},v∈V (D′

i)
d◦D′

i
(v) 6 δn+ ξα′/rn 6 2δn− 1.

Let D′ = D1 ∪
⋃

26i6rD
′
i. Observe that it suffices to show that D′ has a Hamilton

decomposition. Note that D′ is s′-regular for some s′ > (1 − 2ξ)α′n/r and since D1

is a robust (ν/2r, τ)-outexpander, the underlying simple digraph of D′ is also a robust
(ν/2r, τ)-outexpander.

We now show that, for each i ∈ {2, . . . , r}, there exists a decomposition of D′i into
a set Mi of at most 16δ1/2n matchings each of size at most δ1/2n. Indeed, for each
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i ∈ {2, . . . , r}, first decompose D′i into two oriented graphs5 Dor
i,1 and Dor

i,2. Since ∆0(D′i) 6
2δn − 1, the underlying graphs of Dor

i,1 and Dor
i,2 have maximum degree at most 4δn − 2.

Hence, by applying Vizing’s theorem to the underlying graphs of Dor
i,1 and Dor

i,2, we obtain
a decomposition of the edges of each of Dor

i,1 and Dor
i,2 into a set of at most 4δn matchings.

These two decompositions together give a decomposition of the edges of D′i into a set of
at most 8δn matchings. From this the desired set of matchings is obtained by splitting
each matching of size larger than δ1/2n into 2/δ1/2 matchings of as equal size as possible.

Let M =
⋃

26i6rMi = {M1, . . . ,Mt}, where t 6 16rδ1/2n 6 δ1/4n. We construct a
set of edge-disjoint paths P = {P1, . . . , Pt} in D′ such that Mi ⊆ E(Pi) and |V (Pi)| 6
δ1/4n for each i ∈ [t] as follows. Let i ∈ [t] and suppose that P1, . . . , Pi−1 have already
been constructed. Let Mi = {(uj, vj) : j ∈ [m]} where m 6 δ1/2n and let D∗ = D′ −⋃

16j6i−1E(Pj) −
⋃
i+16j6tMi. In order to show that D∗ contains a path Pi such that

Mi ⊆ E(Pi) and |V (Pi)| 6 δ1/4n, we show by induction on j ∈ [m] that there exists a
path Qj from u1 to vj in D∗ −

⋃
j+16j′6m{uj′ , vj′} of length at most 2jν−2 such that Qj

contains the edges (uj′ , vj′) for all j′ ∈ [j] (then Qm is the desired path Pi). To that end, let
j ∈ [m] and suppose that Qj−1 is a path from u1 to vj−1 in D∗−

⋃
j6j′6m{uj′ , vj′} of length

at most 2(j−1)ν−2 such that Qj−1 contains the edges (uj′ , vj′) for all j′ ∈ [j−1]. Let D∗∗

be the underlying simple digraph of D∗−{vj}−
⋃
j+16j′6m{uj′ , vj′}− (V (Qj−1) \ {vj−1}).

Observe that D∗∗ can be obtained from the underlying simple digraph of D′ by deleting
at most δ1/4n inedges and at most δ1/4n outedges at every vertex and then deleting at
most 2δ1/2n + 2(j − 1)ν−2 6 δ1/4n vertices. Hence by Theorem 13 (with δ1/4 and ν/2r
playing the roles of ε and ν, respectively), D∗∗ is a robust (ν/2r−2δ1/4, 2τ)-outexpander.
Since δ0(D∗∗) > 4τn, by Theorem 14 (with ν/2r − 2δ1/4 and 2τ playing the roles of ν
and τ , respectively), we have that there exists a path P ∗ in D∗∗ from vj−1 to uj of length
at most 1/(ν/2r − 2δ1/4) 6 ν−2. Prepending Qj−1 and appending the edge (uj, vj) to P ∗

gives the desired path Qj.
We now construct a set H = {H1, . . . , Ht} of edge-disjoint Hamilton cycles in D′ such

that, for each i ∈ [t], E(Pi) ⊆ E(Hi). Let i ∈ [t] and suppose that H1, . . . , Hi−1 have al-
ready been constructed. Let x and y be the first and last vertex of Pi, respectively. Let D�

be the digraph obtained from D′ by deleting the edges in
⋃

16j6i−1E(Hj)∪
⋃
i+16j6tE(Pj)

and deleting all vertices of Pi except x and y. Observe that D� is obtained from D′ by
deleting at most δ1/4n inedges and at most δ1/4n outedges at every vertex and then
deleting at most δ1/4n vertices. Hence by Theorem 13 (with δ1/4 and ν/2r playing the
roles of ε and ν, respectively), D� is a robust (ν/2r − 2δ1/4, 2τ)-outexpander. Since
δ0(D�) > α′n/2r, by Theorem 11 (with α′/2r, 2τ , and ν/2r − 2δ1/4 playing the roles
of α, τ , and ν, respectively), D� contains a Hamilton path from y to x which together
with Pi forms the desired Hamilton cycle Hi in D′.

Let D′′ = D′ −
⋃
H∈HE(H). It now suffices to show that D′′ has a Hamilton de-

composition. Note that D′′ is a simple digraph as D′′ ⊆ D1. Since D′′ is obtained
from D′ by deleting at most δ1/4n inedges and δ1/4n outedges at every vertex, we have
by Theorem 13 (with δ1/4 and ν/2r playing the roles of ε and ν, respectively), that D′′

5An oriented graph is a simple digraph such that for any vertices x and y at most one of (x, y) and
(y, x) is an edge.

the electronic journal of combinatorics 31(4) (2024), #P4.49 7



is a robust (ν/2r − 2δ1/4, 2τ)-outexpander. Moreover, since D′ is s′-regular for some
s′ > (1 − 2ξ)α′n/r, D′′ is s′′-regular for some s′′ > α′n/2r. Finally, by Theorem 9 (with
α′/2r, 2τ , and ν/2r − 2δ1/4, playing the roles of α, τ , and ν, respectively), D′′ has a
Hamilton decomposition.
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