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Abstract

The greedy and nearest-neighbor TSP heuristics can both have log n approxima-
tion factors from optimal in worst case, even just for n points in Euclidean space. In
this note, we show that this approximation factor is only realized when the optimal
tour is unusually short. In particular, for points from any fixed d-Ahlfor’s regular
metric space, our results imply that the greedy and nearest-neighbor heuristics have
additive errors from optimal on the order of the optimal tour length through random
points in the same space, for d > 1.

Mathematics Subject Classifications: 90C27

1 Introduction

Papadimitriou [7] showed that finding an optimum Traveling Salesperson Tour is NP-hard
even for points in Euclidean space, while Arora [1] and Mithcell [6] give polynomial-time
approximation schemes for the Euclidean TSP. In practice these have resisted efficient
implementations, and Euclidean TSP approximation still leans heavily on heuristics which
are not known to be asymptotically optimal. For metric TSP, Christofides algorithm
achieves an approximation ratio of 1.5, which saw slight improvement with the recent
breakthrough of Karlin, Klein, Gharan, and Shayan [4].

Perhaps the simplest heuristics to find a tour through n points are the Nearest Neigh-
bor heuristic and the Greedy heuristic. At each step the Greedy heuristic chooses the
shortest available edge which would not create any vertices of degree 3 or close a cycle ex-
cept on the nth step. It continues until it has created a tour. The Nearest Neighbor heuris-
tic starts by choosing some vertex y1 and builds a sequence of paths Pi = (y1, y2, . . . , yi)
where yi+1 minimises the distance dist(yi, y) over all y ∈ Xn \ {y1, y2, . . . , yi} and finishes
with the tour (y1, y2, . . . , yn, y1).

For n points in an arbitrary metric space, each of these heuristics is known to give a
tour within log n of optimal [2, 3], and examples are known which realize these approxima-
tion ratios, even just in Euclidean space. But our main result implies that for n points in
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the unit square whose optimal tour has length Ω(
√
n) (as is the typical case), the Greedy

and Nearest Neighbor heuristics will both return a tour whose length is within a constant
factor of optimal.

We will prove our results not just for full-dimensional Euclidean space but for any
sufficiently regular metric space with dimension d > 1; the point of this generality is to
emphasize that for greedy or nearest-neighbor algorithms to have poor approximation
ratios on some input, it is really necessary that the input admits an unexpectedly short
tour given the space its points are taken from, rather than, say, just because the input
was actually chosen from a lower dimensional subset of the space than expected.

A metric space M equipped with a measure µ is d-Ahlfor’s regular if there are con-
stants C,D so that

Crd 6 µ(B(p, r)) 6 Drd (1)

for all p ∈ M and 0 < r 6 diam(M). Here B(p, r) is the ball of radius r centred
at p. Simple examples of regular metric spaces include subspaces of Euclidean space like
unit cubes under Lebesgue measure (having integer dimensions), d-dimensional manifolds,
or fractals like the Sierpinski gasket under the Hausdorff measure (having intermediate
dimensions)—for example, the metric space induced in Euclidean space by any fractal
generated by an iterative function system satisfying the open set condition is Ahlfor’s
regular for some d, for the Hausdorff measure of appropriate dimension (e.g., see Section
8.3 of [5]).

We will prove the following about optimal TSP tours in Ahlfor’s-regular spaces:

Theorem 1. Suppose x1, x2, . . . is a sequence of i.i.d points drawn from a d-Ahlfor’s
regular probability measure on the metric space M. Then there exists a constant A1 so
that for Xn = {x1, . . . , xn}, the length of the optimal tour through Xn has length at least

A1n
1− 1

d for all sufficiently large n, with probability 1.

Our main result for the nearest-neighbor and greedy heuristics is then the following:

Theorem 2. If the bounded metric space M admits a d-Ahlfor’s regular probability mea-
sure then there is a constant A2 and an n0 such that for any n points in M with n > n0,
the nearest-neighbor and greedy algorithms produce a tour of length at most A2n

1− 1
d .

2 Proofs

Proof of Theorem 1. Let D be the constant from (1) guaranteed to exist for (M, µ). Let

r =
(

1
Dn

)1/d
. For any fixed i, let Zi be the indicator for the event Ei that xi is the unique

point from Xn in B(xi, r). Then

Pr(Ei) > (1−Drd)n−1 > e−1.

Let Z = Z1 + · · · + Zn. Thus E(Z) > e−1n. Let Bn be the event that there exists i such
that B(xi, 2r) contains more than γ = log2 n points from Xn other than xi. Then

Pr(Bn) 6 nPr(Bin(n,D(2r)d) > γ) 6

(
n

γ

)
(D(2r)d)γ 6

(
2de

γ

)γ
6 n− logn.
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If Bn does not occur then changing the value of one xi only changes the value of Z by at
most γ. Indeed, moving a point can only remove it from γ balls and so moving a ball can
only increase Z by γ. On the other hand, suppose there are λ points xj, j ∈ Λ such that
(i) Zj = 1 and (ii) there is a point x within r of each point in Λ, so that moving xi to x
decreases Z by λ. Now j ∈ Λ implies that the ball B(xj, 2r) contains at least λ points
and so λ 6 γ.

If Bn does occur then Z could change by at most n. We will now use Warnke’s typical
bounded differences inequality [8] to show that Z is concentrated around its mean.

Theorem 3 (Warnke). Let X = (X1, . . . , XN) be a family of independent random vari-
ables with Xk taking values in a set Λk. Let Γ ⊆

∏
j∈[N ] Λj be an event and assume that

the function f :
∏

j∈[N ] Λj → R satisfies the typical Lipschitz condition: there are numbers

ck, k ∈ [N ] and dk, k ∈ [N ] such that whenever x, y differ only in the kth coordinate, we
have

|f(x)− f(y)| 6

{
ck if x ∈ Γ.

dk otherwise.

Then for all numbers γk, k ∈ [N ] with γk ∈ (0, 1),

Pr(|f(X)− E(f(X))| > t) 6

2 exp

{
− t2

2
∑

k∈[N ](ck + γk(dk − ck))2

}
+ Pr(X /∈ Γ)

∑
k∈[N ]

γ−1k .

We will apply this theorem with f = Z,N = n,X = {x1, . . . , xn},Γ = Bcn and
ck = γ, dk = n, γk = n−2 for k ∈ [n]. This yields

Pr(Z 6 E(Z)− n2/3) 6 2 exp

{
− n4/3

2n(log2 n+ 1)2

}
+ n3−logn = o(1).

So, w.h.p. there are at least n/3 of the xi that are at least r from their nearest neighbor.
Theorem 1 follows immediately from the Borel-Cantelli Lemma.

Proof of Theorem 2. Consider any nearest-neighbor or greedy tour x1, . . . , xn through the
point-set X = {x1, . . . , xn} ∈ M. We define a sequence of open balls B1, . . . , Bn−1, where
Bi is centered at xi and has radius dist(xi, xi+1). Observe that when the edge from
{xi, xi+1} is selected, there can be no other vertices xj which would be available for
selection but are closer to xi than dist(xi, xi+1). This implies that the family Bn = {Bi}
has the following property:

(?) For any distinct balls Bi, Bj ∈ Bn, we have either that Bi does not contain the center
of Bj or that Bj doesn’t contain the center of Bi (according to whether i < j or j < i,
respectively).

Now we partition Bn into sets B1,B2, . . . , where each Bj consists of every ball in Bn
whose radius r satisfies 1

2j
< r 6 1

2j−1 .
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Now each family Bi consists of balls whose radii differ by at most a factor of 2. In
particular, as (?) implies that the distance between the center of two balls in Bn is at
least the minimum of the radii of the two balls, within each family Bi, we know that the
distance between the centers of two balls is at least half the maximum of the radii of the
two balls. In particular, if we define families B̃i by rescaling the balls in each family Bi
by a factor of 1

2
, then each family B̃i is a family of disjoint balls, each of measure at least

C2−kd. As such, we have from the condition (1) that

|Bk| 6 C−12kd. (2)

In particular, we can bound the total length L of the nearest neighbor tour by the radii
r(B) of the balls B ∈ Bn as follows:

L 6
∑
B∈Bn

r(B) =
∑
k>1

∑
B∈Bk

r(B) 6 C−1
k0∑
k=1

2kd · 2−(k−1) 6 C−1
2(k0+1)(d−1)+2

2d−1 − 1
, (3)

where k0 is smallest integer for which the bound C−12k0d on |Bk0| from (2) exceeds n. We
have thus that for any d > 1 and a constant C1 depending on the metric space M but
not the point set X, that

L 6 C1n
1− 1

d ,

proving the theorem.
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