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Abstract

Let G be an r-partite graph such that the edge density between any two parts is
at least α. How large does α need to be to guarantee that G contains a connected
transversal, that is, a tree on r vertices meeting each part in one vertex? And what
if instead we want to guarantee the existence of a Hamiltonian transversal?

In this paper we initiate the study of such extremal multipartite graph problems,
obtaining a number of results and providing many new constructions, conjectures
and further questions.

Mathematics Subject Classifications: 05C35, 05C80

1 Introduction

1.1 Background

Given an r-partite graph G with r-partition tri=1Vi, denote its r-partite density dr(G) by

dr(G) := min
16i<j6r

|E(G[Vi, Vj])|
|Vi| · |Vj|

.

(Here we assume Vi 6= ∅ for every i.)
A transversal G′ of G is a subgraph of G induced by a set of vertices U meeting each

part Vi in exactly |U ∩ Vi| = 1 vertex. Clearly G′ can be viewed a subgraph of Kr, the
complete graph on r-vertices. Given a family F of non-empty subgraphs of Kr, we say
that G has F-free transversals if every transversal G′ of G is F -free. In this paper we are
concerned with a generalisation of the following Turán-type problem:

Problem 1.1 (Density Turán problem for multipartite graphs). Determine the supremum
πr(F) of the α 6 1 such that there exists an r-partite graph G with dr(G) = α and F -free
transversals.
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Problem 1.1 was introduced by Bondy, Shen, Thomassé and Thomassen [8], who
considered the case when F consists of a single graph, the triangle K3. Bondy, Shen,
Thomassé and Thomassen gave a beautiful proof that any tripartite graph G with d3(G) >
−1+

√
5

2
(the reciprocal of the golden ratio) must contain a triangle, and that this result

is best possible. They also fully resolved a more general inhomogeneous version of the
problem. Further, they showed than in any infinite-partite graph, a partite density strictly
greater than 1

2
suffices to guarantee the existence of a triangle.

This latter result was improved by Pfender [18], who showed that for r > 12, any
r-partite graph with triangle-free transversals can have r-partite density at most 1

2
(the

cases 4 6 r 6 11 remain open to this day — it is known from [8] that π4({K3}) > 1/2).
More generally, Pfender showed that for any t ∈ Z>2 there exists r ∈ Z>t such that any
r-partite graph with Kt-free transversals can have r-partite density at most t−2

t−1 , which is
easily seen to be best possible by taking a suitable intersection of a (t− 1)-partite Turán
graph with an (r−1)-partite graph. Thus, in our notation, Pfender’s result is a multigraph
analogue of Turán’s theorem stating that for every integer t > 2, πr({Kt}) = t−2

t−1 for all
r sufficiently large.

Pfender’s result was generalised by Narins and Tran [17], who obtained a multipartite
analogue of the Erdős–Stone theorem, with a surprising twist. Given a graph F with
chromatic number χ(F ), they showed that if F is almost colour-critical (see [17] for a
definition of this term), then for all r sufficiently large,

πr({F}) =
χ(F )− 2

χ(F )− 1
,

as one would expect; however, if F is not almost-colour critical, then Narins and Tran
showed that πr({F}) > χ(F )−2

χ(F )−1 + 1
(χ(F )−1)2(r−1)2 >

χ(F )−2
χ(F )−1 for all r > |F |.

Bondy, Shen, Thomassé and Thomassen’s results were extended in three further di-
rections. First of all Baber, Johnson and Talbot [5] considered the problem of minimising

the density of triangles in tripartite graphs with 3-partite density above −1+
√
5

2
(which

can be viewed as a multipartite version of the Rademacher–Turán problem). Secondly,
Markström and Thomassen [15] determined the partite density needed to guarantee a

copy of K
(r)
r+1, the complete r-uniform hypergraph on r + 1 vertices, in an (r + 1)-partite

r-uniform hypergraph.
Finally, in a direction related to the one we pursue in the present paper, Nagy [16]

studied the partite density needed in a subgraph of a blow-up of a graph H to guarantee
the existence of H as a transversal subgraph. In particular, Nagy determined this critical
density in the case when H is a tree or a cycle, relating it to the spectral properties of H’s
adjacency matrix. Nagy’s work was generalised by Csikváry and Nagy [9], who obtained
inhomogeneous versions and extensions of Nagy’s results.

Beyond the problems considered in this paper, multipartite graphs are widely-studied
objects in extremal graph theory. Multipartite graphs appear in applications of the Sze-
merédi regularity lemma, and are the subject of an influential family of problems posed by
Bollobás, Erdős and Szemerédi [7], on which research is still ongoing [13]. Finally, there
is a connection between multipartite graphs (and especially the more general H-partite
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graphs we shall focus on) and 1-dependent random graph models, which we expound on
in Section 2.2. Given the applications of such 1-dependent models in percolation the-
ory [3, 19], this gives strong motivation for studying the connectivity-related questions we
shall consider.

1.2 Setting of this paper

In this paper we study a slightly more general form of Problem 1.1. Following Nagy [16],
given a host graph H we will consider H-partite graphs, which we define below.

Definition 1.2 (H-partite graphs). A weighted H-partite graph (henceforth abbrevi-
ated to H-partite graph) is a graph G together with a canonical H-partition V (G) :=⊔
x∈V (H) Vx and a weight function w : V (G)→ [0, 1] satisfying the following:

1. for each x ∈ V (H),
∑

v∈Vx w(v) = 1 (i.e. for each x ∈ V (H), w gives rise to a
probability distribution over Vx);

2. E(G) =
⋃
xx′∈E(H)E(G[Vx, Vy]) (i.e. G is a subgraph of the blow-up of the host

graph H associated with the canonical partition
⊔
x∈V (H) Vx).

Remark 1.3. Any subgraph of a blow-up of the host graph H can be viewed as a weighted
H-partite graph by letting the weight function correspond to the uniform distribution
over each part Vx, x ∈ V (H) (i.e. setting w(v) = 1/|Vx| for every v ∈ Vx).

Conversely, given any weighted H-partite graph G where the weight function w takes
rational values only, one can construct a subgraph G′ of a blow-up of H in a natural
way: let N ∈ N be chosen so that Nw(v) ∈ N for all v ∈ V (G) with w(v) > 0. Then
replace each v ∈ V (G) by a set Bv of Nw(v) vertices, and put a complete bipartite graph
between Bu and Bv whenever uv ∈ E(G). Since any weight function on a finite graph
can be arbitrarily well-approximated by a rational weight function, it follows that the
study of subgraphs of blow-ups of H and weighted H-partite graphs are (asymptotically)
equivalent.

We thus choose in the rest of this paper to refer to the slightly more general class
of weighted H-partite graphs as H-partite graphs — the latter setting makes for much
cleaner results and proofs, and for the Turán-type problems we consider the two settings
are fully equivalent by a result of Bondy, Shen and Thomassé, Proposition 2.1 given in
the next section.

The notion of r-partite density generalises to the H-partite setting in a natural way:

Definition 1.4 (H-partite density). Given an H-partite graph G, we define the H-partite
density profile of G to be

α(G) :=
(
αxy

)
xy∈E(H)

,

where αxy :=
∑

u∈Vx,v∈Vy w(u)w(v)1uv∈E(G) is the edge density of the (weighted) bipartite

subgraph of G induced by Vx t Vy. Further, the H-partite density of G is dH(G) :=
min {αxy : xy ∈ E(H)}.
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Similarly to the r-partite setting, a transversal of an H-partite graph G is a subgraph of G
induced by a set of vertices U meeting each part Vx, x ∈ V (H) of the canonical partition
of G in exactly one vertex. Our interest in this paper is then the following generalisation
of Problem 1.1:

Problem 1.5. [Density Turán problem for H-partite graphs] Given a non-empty family
F of non-empty subgraphs of a host graph H, determine

πH(F) := sup
{
dH(G) : G is an H-partite graph with F -free transversals

}
.

As alluded to above, a result of Bondy, Shen, Thomassé and Thomassen implies that for
finite host graphs H the supremum in the definition of πH(F) is in fact a maximum (see
Proposition 2.1), and in particular for H = Kr we have πr(F) = πKr(F) for all non-empty
families F of non-empty graphs on at most r vertices.

Even in the case H = Kr of Problem 1.5, which is equivalent to Problem 1.1 as we
remarked above, and whose origins can be traced back to remarks of Bollobás [6, page
324] in the late 1960s, many interesting questions remain open, notably when it comes
to spanning structures — indeed the whole extent of the literature can be found in the
previous subsection.

However a need to consider the more general setting of host graphs H other than Kr

stems from applications to percolation theory. As we explain in Section 2.2, weighted
H-partite graphs correspond to an important family of locally dependent random graph
models (referred to as “colouring models” in the recent work of Lengler, Martinsson,
Petrova, Schnider, Steiner, Weber and Welzl [12]); in particular it would be highly desir-
able to better understand such models when the host graph H is an N ×N square grid, a
d-dimensional hypercube or the (infinite) integer square lattice. This motivates the study
of the more general H-partite setting of Problem 1.5.

1.3 Results

We investigate the H-partite density threshold for connected transversals in H-partite
graphs. Given a positive integer r, let Tr denote the family of all trees on r vertices.
Our first result is as follows: for every graph H obtained from Kn by deleting a non-
empty matching, we determine the smallest H-partite density forcing the existence of a
connected transversal in an H-partite graph.

Theorem 1.6. Let r > 3 and let M be a non-empty matching in Kr. Then for the graph
H = Kr −M obtained from Kr by deleting the edges of the matching M , we have

πH(Tr) =
1

2
.

We show however that when H = Kr, the connectivity threshold dips strictly below 1/2:

Theorem 1.7. For all r > 3,

r − 2

2(r − 1)2

(
3r − 4−

√
5r2 − 16r + 12

)
6 πKr(Tr) 6

1

2
− 1

4r − 6
.
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Remark 1.8. It is easily checked that for r > 4, the sequence given by

ur :=
r − 2

2(r − 1)2

(
3r − 4−

√
5r2 − 16r + 12

)
is strictly increasing and satisfies u4 = 8−2

√
7

9
= 0.300944 . . . and limr→∞ ur = 3−

√
5

2
=

0.381966 . . ..

Remark 1.9. In the case r = 3 of Theorem 1.7, it is a fairly trivial exercise to improve the
upper bound to 1/4, matching the lower bound and establishing that πK3(T3) = 1

4
; this

result also follows from [12, Theorem 7, Colouring model with two colours].

We conjecture that the lower bound in Theorem 1.7 is always tight, and in particular that
a Kr-partite density of 3−

√
5

2
guarantees the existence of a connected transversal:

Conjecture 1.10. The lower bound in Theorem 1.7 is tight. In particular, for any r > 4,
every r-partite graph with r-partite density at least 3−

√
5

2
contains a transversal tree on r

vertices.

Update added in revision: Conjecture 1.10 was recently proved in an asymptotic form
by Lengler, Martinsson Petrova, Schnider, Steiner, Weber and Welzl [12]. More precisely,
they proved in [12, Theorem 7, colouring model] that for any ε > 0 there exists r0 such

that for every r > r0 any weighted r-partite graph with r-partite density at least 3−
√
5

2
+ ε

must contain a connected transversal. The proof uses an ingenious and highly non-trivial
13-pages long probabilistic argument, that may well have further application to extremal
problems for r-partite graphs.

Remark 1.11. An interesting question is why Conjecture 1.10 appears to be much harder
to prove than Theorem 1.6. We speculate this may be due to the simpler structure of
the extremal constructions in Theorem 1.6: these consist of weighted r-partite graphs
in which each part contains at most two vertices. On the other hand, the conjectured
extremal configuration for Conjecture 1.10, Construction 3.4, features one part containing
r − 1 different vertices, requiring any argument to take a ‘global’ approach in order to
capture its more complex structure.

In addition to the results above, we prove some general upper bounds on the threshold
for the existence of connected transversals.

Proposition 1.12. Let H be any connected graph on r vertices. Then πH(Tr) 6 r−2
r−1 .

This elementary bound is sharp in general, as can be seen by considering stars.

Proposition 1.13. For the star K1,r−1, we have πK1,r−1(Tr) = r−2
r−1

Before stating the next result, recall that given two graphs G1 and G2, their Cartesian
product G1×G2 is the graph on the set V (G1)×V (G2) in which vertices (u1, u2) and (v1, v2)
are joined by an edge if either u1v1 ∈ E(G1) and u2 = v2 or u1 = v1 and u2v2 ∈ E(G2).
For r even, the ladder on r vertices is the Cartesian product K2 × Pr/2 of a single edge
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with a path of length r/2. As a consequence of works of Nagy [16] and Day, Falgas–
Ravry and Hancock [10], πH(Tr) is known when H is a tree or a ladder on r vertices (see
Section 2.2). Since clearly πH(Tr) 6 πH′(Tr) whenever H ′ is a supergraph of H, this yields
the following:

Corollary 1.14. Let r ∈ Z>2, and let H be a graph on r vertices. If H contains a
Hamiltonian path Pr, then πH(Tr) < 3

4
, while if H contains a spanning ladder K2 × Pr/2,

then πH(Tr) < 2
3
.

We also investigate small cases of Problem 1.5. Up to isomorphism, the connected graphs
on 4-vertices consist of K4, K

−
4 (K4 with an edge removed), K2,2 = C4 (the cycle on 4

vertices), K1,3 (the star on 4 vertices), P4 (the path on 4 vertices) and K4 − P3 (K4 with
a path on three vertices deleted). We summarise our bounds for πH(T4) for these graphs
H as well as for the 5-cycle C5 in the table below.

Graph H Connected transversal threshold Result

K4 πK4(T4)
?
= 8−2

√
7

9
= 0.3009 . . . Theorem 1.7/Conjecture 1.10

πK4(T4) < 2− 2
√

2
3

= 0.36701 . . . Theorem 3.3

K−4 πK−4 (T4) = 1
2

Theorem 1.6

K2,2 = C4 πK2,2(T4) = 1
2

Theorem 1.6

K4 − P3 πK4−P3(T 4) = 4− 2
√

3 = 0.5358 . . . Proposition A.1

P4 πP4(T4) = −1+
√
5

2
= 0.6180 . . . Nagy [16, Corollary 3.13]

K1,3 πK1,3(T4) = 2
3

Proposition 1.13
C5 πC5(T5) = 1

2
Proposition A.2

Finally, we consider multipartite versions of Dirac’s theorem. Let Cr denote the collection
of Hamilton cycles on r labelled vertices. We prove (perhaps surprisingly) that the r-
partite density threshold for Hamiltonicity in r-partite graphs is strictly greater than
1/2.

Theorem 1.15. Fix r ∈ Z>4. Let p? = p?(r) be the unique real solution in (1
2
, 1) to the

cubic equation

(r − 2)− (4r − 10)p+ (6r − 14)p2 − (4r − 8)p3 = 0. (1.1)

Then πKr(Cr) > (p?)
2 + (1− p?)2 > 1

2
.

Remark 1.16. Asymptotic analysis of (1.1) yields that p? = 1
2

+ 1
2r

+ O (r−2) and hence
that p?

2 + (1− p?)2 = 1
2

+ 1
2r2

+O (r−3).

We conjecture, however, that the Hamiltonicity threshold should converge to 1/2 as r →
∞.

Conjecture 1.17 (Multipartite Dirac Conjecture). limr→∞ πKr(Cr) = 1
2
.

Here again, we prove some lower bounds for the r = 4 case.

Proposition 1.18. 0.5707 . . . 6 πK4(C4) 6 1√
3

= 0.5773 . . ..
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1.4 Organisation of the paper

We gather some preliminary remarks in Section 2. Our main results on connected transver-
sals, Theorems 1.6 and 1.7 are proved in Section 3, while our results on Hamiltonian
transversals can be found in Section 4. We end the paper in Section 5 with some remarks
and discussion regarding a long list of related problems. The results on the connectivity
thresholds for the small graphs K4−P3 and C5 are included together with their proofs in
Appendix A.

1.5 Notions and notation

We use [r] to denote the set {1, 2, . . . , r} and, given a set S, we write S(t) for the collection
of all subsets of S of size t. Throughout the paper, we use standard graph theoretic notions
and notation, which we recall below for the reader’s convenience.

A graph is a pairG = (V,E), where V = V (G) is a set of vertices and E = E(G) ⊆ V (2)

forms the edges of the graph. A subgraph of G is a graph G′ with V (G′) ⊆ V (G′) and
E(G′) ⊆ E(G). A spanning subgraph of G is a subgraph G′ with V (G′) = V (G). Given
a set U ⊆ V (G), the subgraph of G induced by U is the graph G[U ] := (U,E(G) ∩ U (2)).

The neighbourhood NG(x) of a vertex x in a graph G is the collection of vertices
y ∈ V (G) such that {x, y} is an edge of G; the degree deg(x) = degG(x) of x is the size of
its neighbourhood. The adjacency matrix of a graph G, A = A(G) is a matrix with rows
and columns indexed by vertices of V , with Au,v = 1{u,v}∈E(G).

A path of length `− 1 in a graph G is a sequence of ` distinct vertices {v1, v2, . . . v`}
with {vi, vi+1} ∈ E(G) for all i ∈ [` − 1]. Two vertices in a graph are connected if they
are joined by a finite path; this is an equivalence relation on V (G), whose equivalence
classes are the connected components of G. A graph is connected if it consists of a single
connected component. A tree is a minimally connected graph; a vertex of degree 1 in a
tree is called a leaf.

We denote by Kr the complete graph on r vertices Kr = ([r], [r](2)), and Kr,s the
complete bipartite graph whose vertex-set is the disjoint union of an r-set A and an s-
set B, and whose edges include all pairs {a, b} with a ∈ A, b ∈ B. The graph K1,r−1
is known as the star on r vertices. We also denote by Cr the cycle on r vertices, Cr =
([r], {{i, i+ 1} : i ∈ [r − 1]} ∪ {{r, 1}}). A matching in a graphG is a collection of vertex-
disjoint edges.

Whenever there is no ambiguity, we write uv for a pair {u, v}. Similarly we write F for
the subgraph family {F}. Finally, when we consider H-partite graphs with H = Kr, the
complete graph on r-vertices, we write ‘r-partite’ rather than ‘Kr-partite’, and similarly
‘dr(G)’ and ‘πr(F) rather than ‘dKr(G)’ and ‘πKr(F)’, so as to avoid notational clutter
(note that it is an easy corollary to Proposition 2.1 that the notions of πr(F) and πKr(F)
we introduced do coincide, and thus can be conflated). In the context of (weighted) H-
partite graphs, given a set A of vertices we write w(A) :=

∑
a∈Aw(a) for the sum of the

weights of the vertices contained therein.
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2 Preliminaries

2.1 Compactness and computability

Using a simple convexity argument, Bondy, Shen, Thomassé and Thomassen [8] proved
the useful fact that if H = K3, then for the problems we are considering, there always
exists a finite extremal example in which all the parts have bounded sizes. However, their
argument easily generalises to the statement of the next Proposition, as noted by several
authors, see e.g. Nagy [16, Lemma 2.1] for a formal proof.

Proposition 2.1 (Bondy, Shen, Thomassé, Thomassen). For any non-empty host graph
H and any family F of non-empty subgraphs of H, there exists an H-partite graph G such
that

(i) (extremality) G has F-free transversals and H-partite density πH(F);

(ii) (finiteness) for every vertex x ∈ V (H), the corresponding part Vx in the canonical
partition of G contains at most degH(x) vertices.

So in principle, determining πH(F) is a finitely computable problem — albeit one in which
the complexity rises very quickly as the average degree in H increases.

2.2 Random transversals and connection to 1-dependent random graphs

A useful tool when studying H-partite graphs is to consider random transversals. More
specifically, given an H-partite graph G, a random transversal of G is obtained by first se-
lecting a representative vx ∈ Vx independently at random from each of the parts (Vx)x∈V (H)

of the canonical H-partition of G, with P (vx = u) = w(u) for every x ∈ V (H) and u ∈ Vx.
The random transversal T is then the subgraph of G induced by the randomly chosen
representatives, T := G [{vx : x ∈ V (H)}] (which may be viewed as a random spanning
subgraph of H in the natural way).

Random transversals are a special class of 1-dependent random graphs, whose defini-
tion we recall below. Given a host graph H = (V (H), E(H)) and a probability measure µ
on the collection of subsets of E(H), we can build a random graph H from H by setting
V (H) = V (H) and letting E(H) be a µ-random subset of E(H), i.e. a subset of E(H)
chosen at random according to the probability distribution given by µ. Thus H is a ran-
dom variable taking values in the collection of spanning subgraphs of H, and we refer to
it as a random graph model on H.

Definition 2.2 (1-dependent random graph models). Let H be a host graph. A random
graph model H on H is said to be 1-dependent if whenever A and B are disjoint subsets of
V (H), the random induced subgraphs H[A] and H[B] are mutually independent random
variables.

Informally, a random graph model is 1-dependent if events ‘living’ (defined by what hap-
pens) on disjoint vertex-subsets are mutually independent. Denote byM1,>p(H) the col-
lection of 1-dependent random graph models H on H such that for each edge xy ∈ E(H),
P(xy ∈ E(H)) > p.
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It is clear that given an H-partite graph G with dH(G) > p, taking a random transver-
sal of G gives us a 1-dependent random graph model over H from M1,>p(H). While in
general there exist 1-dependent random graphs that cannot be constructed from H-partite
graphs, H-partite graphs are arguably the most important class of 1-dependent random
graph models from the point of view of applications and constructions. They have notably
been recently studied in [12] under the name “colouring models”.

As noted by Balister and Bollobás [2], “1-dependent percolation models have become
a key tool in establishing bounds on critical probabilities” in percolation theory. De-
spite their usefulness, however, many basic questions about the behaviour of 1-dependent
models are open.

With regards to the problems studied in this paper, set

pconn(H) := sup{p ∈ [0, 1] : ∃H ∈M1,>p(H) such that P (H is connected) = 0}

be the 1-dependent critical probability for connectivity over H. By the observation above
that H-partite graphs correspond to a special class of 1-dependent models, it follows that
for any connected host graph H on r vertices,

πH(Tr) 6 pconn(H). (2.1)

Day, Falgas–Ravry and Hancock showed in [10, Theorems 15, 16] that pconn(Pr) =
1
4

(
3− tan2

(
π
2r

))
, which is exactly the value of πPr(Pr) determined by Nagy [16] (and

implies his result), and that pconn(Kr) = 1
2

(
1− tan2

(
π
2r

))
(in which case we do not be-

lieve we have equality in (2.1)).
Further in [10, Theorem 26], Day, Falgas–Ravry and Hancock showed that pconn(Pr ×

K2) <
2
3

for every r > 1; here Pr × K2 denotes the ladder graph on 2r vertices (the
Cartesian product of the path Pr with the edge K2, obtained by taking two disjoint copies
of Pr and joining each vertex in one copy by an edge to the corresponding vertex in the
other copy). Corollary 1.14 follows as an immediate corollary of (2.1) and our discussion
so far. Finally, we note the proofs of [10, Theorems 30 and 26] implicitly determine
πPr×K2(T2r) = pconn(Pr × K2), though the common value of these two quantities is only
given as the optimal solution to a (complicated) set of recursive inequalities.

2.3 Paths, stars and trees

As mentioned in the introduction, Nagy [16, Theorem 3.9] determined πT (T ) for every
tree T on r vertices in terms of the largest eigenvalue of T ’s adjacency matrix A(T ).

Theorem 2.3 (Nagy). Let T be a tree on r vertices, and let λ = λmax(T ) be the largest
eigenvalue of A(T ). Then πT (T ) = 1− 1

λ2
.

By results of Lovász and Pelikán [14, Theorem 2], among all trees T on r vertices
the star K1,r−1 is the one maximising the value of λmax(T ), and satisfies λmax(K1,r) =√
r − 1 [14, Theorem 3]. Together with Theorem 2.3 this immediately implies Proposi-

tions 1.13 and 1.12 — for the latter, note that if H is any connected graph on r vertices
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and T is any spanning tree of H we have

πH(Tr) 6 πT (T ) = 1− 1

λmax(T )
6 1− 1

λmax(K1,r−1)
=
r − 2

r − 1
.

For future reference, let us also note here that the results of Lovász and Pelikán [14,
Theorems 2,3] taken together with Nagy’s Theorem 2.3 imply that the minimum of πT (T )
over all r-vertex trees T is attained when T is the path Pr on r vertices, for which we
have

πPr(Pr) = 1− 1

4 cos2( π
r+1

)
; (2.2)

see [16, Corollary 3.13] or [10, Theorem 16] for an elementary proof of a stronger result
using a variant of the Lovász local lemma.

For the sake of making this paper self-contained, we give here short, direct proofs of
Propositions 1.12 and 1.13 that do no rely on the work of Lovász, Pelikán and Nagy, as
well as of an illustrative ‘star absorption’ lemma.

Lemma 2.4 (Star absorption lemma). Consider a K1,N -partite graph G with partite
density p > 1/2. Suppose that there is a subset A of the part corresponding to the centre
of the star K1,N such that w(A) = α > 1− p. Then there exists a vertex a ∈ A such that

all but at most
(

1−p
α

)
N of the leaf-parts of G contain a vertex joined to a by an edge of

G.

Proof. Suppose no vertex a ∈ A sends an edge to more than θN of the leaf-parts of G.
Then by the partite density condition, we have:

pN 6 (1− α)N + αθN.

Rearranging yields 1 − θ 6 1−p
α

. In particular, there exists a vertex a ∈ A such that all

but at most a 1−p
α

proportion of the leaf-parts of G send an edge to a.

Let us now sketch how this lemma may be applied to find transversals with large or
connected components. Consider an arbitrary part V0 in an (r + 1)-partite graph G with
(r + 1)-partite density p > 1/2. By averaging and relabelling, there exists a vertex v0 in
V0 sending edges to an αi proportion of part Vi (meaning a subset of Vi with weight αi)
for 1 6 i 6 r, where α1 > α2 > α3 > · · · > αr and

∑r
i=1 αi > pr.

Observe that if αr/2 > 1/2 then by the pigeon-hole principle and our partite density
condition, for each i ∈ {1, 2, . . . , r/2} there exists a vertex in Vr/2+i sending an edge of G
to N(v0) ∩ Vi. We can thus find a transversal copy of a 2-subdivision of a star with r/2
leaves and v0 as its centre, and hence a connected transversal of G. Also if αr > 0, then
G contains a transversal copy of K1,r, i.e. a connected transversal, since for every i ∈ [r]
there exists vi ∈ Vi with v0vi ∈ E(G).
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On the other hand if αr/2 6 1/2 and αr = 0, then there exists a least t < r/2 such
that αt+1 6 1/2, and a greatest s > 1 such that αr+1−s = 0. The αi then satisfy

pr 6
r − t− s

2
+

t∑
i=1

αi. (2.3)

Applying Lemma 2.4 successively to V1, V2, . . . , Vt to ‘absorb’ the bad parts Vr+1−s, . . . , Vr,
we see that provided

s
t∏
i=1

(
1− p
αi

)
< 1, (2.4)

there exists a transversal connected subgraph of G, consisting of a central vertex joined by
an edge to the centres of a ‘star-forest’ (a collection of vertex-disjoint stars on r vertices).
This simple idea underlies the proofs of Theorems 1.6 and 1.7 and may have further
applications to the study of H-partite graphs.

Proof of Proposition 1.12. Recall that H is an r-vertex graph. Let G be an H-partite
graph with H-partite density p > (r − 2)/(r − 1). Let T be a random transversal of G,
and let S be any spanning tree of H. Then

E|E(T) ∩ E(S)| > p(r − 1) > r − 2.

It follows that with strictly positive probability |E(T) ∩ E(S)| = r − 1, and thus that H
contains a connected transversal.

Proof of Proposition 1.13. The upper bound was proved in Proposition 1.12, and also
follows directly from an application of Lemma 2.4 with α = 1, N = r−1 and 1−p < 1

r−1 .
For the lower bound, consider a K1,r−1-partite graph obtained by setting the centre part
V0 of the star to be [r − 1] with the uniform weighting w(i) = 1/(r − 1), letting each of
the r− 1 leaf parts Vi, 1 6 i 6 r− 1 consist of a single vertex vi, and adding all edges ivj,
1 6 i, j 6 r− 1 with i 6= j. This is easily seen to have no spanning connected transversal,
and K1,r-partite density r−2

r−1 .

3 Transversal trees in H-partite graphs

3.1 Kr-partite graphs

Construction 3.1. Fix α ∈ [0, 1]. For r > 3, we construct a weighted r-partite graph
Gb = Gb(α) as follows: for i ∈ [r − 1], we set Vi := {(i, i), (i, r)} with weight function
w((i, i)) = α and w((i, r)) = 1 − α, while we set Vr := {(r, i) : i ∈ [r − 1]} with the
uniform weight function w((r, i)) = 1/(r − 1) for all i ∈ [r − 1]. A partite edge uv is
present in Gb if and only if u2 = v2 = r (note this implies u1, v1 6= r) or u1 = r and
u2 6= v2.
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Proposition 3.2. For α = 1
2(r−1)

(
3r − 4−

√
5r2 − 16r + 12

)
, the graph Gb has r-partite

density

ρb(r) :=
r − 2

2(r − 1)2

(
3r − 4−

√
5r2 − 16r + 12

)
,

and contains no connected transversal.

Proof. Consider any transversal T of Gb, with ti the vertex in T ∩ Vi. Then tr = (r, j)
for some j ∈ [r − 1], and is joined by an edge to all vertices ti, i ∈ [r − 1] \ {j} with
ti = (i, i). Further, the restriction of Gb to T \ {tr} consists of the disjoint union of a
(possibly empty) clique, corresponding to those vertices ti, i ∈ [r − 1], with ti = (i, r),
and of a (possibly empty) independent set, corresponding to those ti with ti = (i, i).

The transversal subgraph of Gb induced by T is thus one of the following: the disjoint
union of a star centred at tr and a non-empty clique containing tj (this occurs if tj = (j, r)),
or the disjoint union of a star centred at tr, a (possibly empty) clique and an isolated vertex
tj (this occurs if tj = (j, j)). In either case, the spanning transversal is not connected,
establishing half of the proposition.

For the other half, observe that the edge density between parts Vi and Vj for 1 6
i < j 6 r is (1 − α)2 if j < r and r−2

r−1α if j = r. The function min
(
r−2
r−1α, (1− α)2

)
is

maximised for α ∈ [0, 1] when

α2 − 3r − 4

r − 1
α + 1 = 0

i.e. when α = 1
2(r−1)

(
3r − 4−

√
5r2 − 16r + 12

)
, at which point it attains the value

ρb(r).

Proof of Theorem 1.7. The lower bound on πKr(Tr) follows from Proposition 3.2. For
the upper bound, consider an r-partite graph G with edge density p > r−2

2r−3 . Suppose
for contradiction that G contains no connected transversal. By averaging, there exists a
vertex vr ∈ Vr such that ∑

i∈[r−1]

w(NG(vr) ∩ Vi) > (r − 1)p. (3.1)

We may assume without loss of generality that αi := w(N(vr) ∩ Vi) is a decreasing
sequence. If αr−1 > 0, then for every i ∈ [r − 1] there exists vi ∈ Vi with vivr ∈ E(G),
and G contains a transversal star on r vertices, a contradiction. Let therefore s > 0 be
the maximal integer such that αr−s+1 = 0. By averaging, we have α1 > r−1

r−1−sp >
r−1
2r−3 .

Let t > 1 be the maximal integer such that αt > r−1
2r−3 .

Observe that for any i 6 t and j > r− s, there exist vertices vi ∈ Vi and vj ∈ Vj with
vivj ∈ E(G). Indeed, by our choice of p, we have αi > r−1

2r−3 > 1 − p. Thus if t > s, we
have that G contains a subdivision of a star on a total of r vertices as a transversal, a
contradiction. We may therefore assume s > t.
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Now by (3.1) we have

(r − 1)(r − 2)

2r − 3
< (r − 1)p 6

r−1∑
i=1

αi 6 (r − 1− s− t) r − 1

2r − 3
+ t,

which after rearranging terms and using our assumption s > t implies

r − 1

2r − 3
>
s(r − 1)− t(r − 2)

2r − 3
>

(r − 1) + t

2r − 3
,

a contradiction.

For the special case r = 4, we can prove a slightly better upper bound on the threshold
for connected transversals.

Theorem 3.3. π4(T4) 6 2− 2
√

2
3

= 0.36701 . . ..

Proof. Consider a 4-partite graph G with edge density p with 1/3 6 p < 2/3 and no
transversal tree on 4 vertices. Then each vertex of G sends edges to at most two parts
of the canonical partition of G. By averaging and relabelling parts if necessary, it follows
that there exists a vertex v1 ∈ V1 whose neighbourhood has maximum weight over all
vertices of G, sending no edge to V4, and with α := w(N(v1) ∩ V2), β := w(N(v1) ∩ V3)
satisfying α > β and

α + β > 3p. (3.2)

Since p > 1/3, this implies that α and β are both non-zero. Given a vertex u ∈ V4, set

(xu, yu, zu) := (w(N(u) ∩ V1), w(N(u) ∩ V2), w(N(u) ∩ V3)) .

Since G contains no transversal tree on 4 vertices, (xu, yu, zu) has at most two non-zero
coordinates, and sends no edge to v or N(v). Thus one of the following holds:

(1) xu = 0, yu 6 1− α, zu 6 1− β;

(2) 0 < xu 6 1 and yu = 0, and zu 6 min(1− β, α + β − xu);

(3) 0 < xu 6 1, 0 < yu 6 min(1− α, α + β − xu) and zu = 0.

Let θi := w{u ∈ V4 : (xu, yu, zu) satisfies (i)}. Then by the density condition on G
between the parts V4 and Vi, i ∈ [3], we have:

(1− θ1) > p (3.3)

(1− α)(1− θ2) > p (3.4)

(1− β)(θ1 + θ2) > p. (3.5)
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Now adding (θ1 + θ2) times (3.4) to (1− θ2) times (3.5) and combining it with our lower
bound (3.2) on α + β, we obtain

(1 + θ1)p 6 (θ1 + θ2)(1− θ2)(2− α− β) 6 (θ1 + θ2)(1− θ2)(2− 3p).

Rearranging terms, we get

p

2− 3p
6

(θ1 + θ2)(1− θ2)
1 + θ1

:= f(θ1, θ2). (3.6)

Now the partial derivative of f(x, y) with respect to x is (1 − y)2/(1 + x)2, which is
strictly positive for x > 0. In particular, since θ1 6 1−p by (3.3), it follows that the right
hand-side of (3.6) is at most

f(1− p, θ2) = 1− θ2 −
(1− θ2)2

2− p
.

Substituting this into (3.6) and rearranging terms, we get the following quadratic inequal-
ity for θ2:

(θ2)
2 − pθ2 +

7p− 2− 4p2

2− 3p
6 0.

In particular, the discriminant

p2 − 4

(
7p− 2− 4p2

2− 3p

)
=

2− p
2− 3p

(
3p2 − 12p+ 4

)
must be non-negative. Solving 3p2−12p+4 > 0 for p 6 1 yields p 6 2−2

√
2
3
, concluding

the proof of the proposition.

3.2 (Kr − M)-partite graphs

Construction 3.4. Let 12 be the missing edge in K−r . We construct a K−r -partite graph
Gb as follows: let V1 = {1} and V2 = {2}; for every i ∈ [r] \ [2], set Vi = {1, 2}. Place
a uniform weight function on each of the parts, and include an edge xy ∈ Vi × Vj (with
i 6= j) in Gb if and only if x = y.

Proof of Theorem 1.6. For the lower bound, it is easily checked that the K−r partite graph
Gb given in Construction 3.4 has K−r partite density exactly equal to 1/2 and contains no
connected transversal, since every transversal component can meet at most one of V1 and
V2.

For the upper bound, let H be a graph on [r] in which each vertex has degree at least
r − 2, i.e. a graph obtained from Kr by deleting a matching. Assume without loss of
generality that [r − 2] ⊆ NH(r).

Consider an H-partite graph G with H-partite density p > 1/2. Let V1, V2, . . . , Vr
denote the parts from the H-partition of V (G). If r = 3, then without loss of generality
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we have that both 13 and 23 are edges of H and by averaging there is a vertex v3 ∈ V3
sending edges to both V1 and V2, and hence a connected transversal. We may thus assume
in what follows that r > 4.

By averaging and our assumption on NH(r), there exists a vertex vr ∈ Vr such that
for every i ∈ [r− 2], there are αi|Vi| edges of G from vr to Vi, where the αi are reals from
[0, 1] satisfying:

r − 2

2
< p(r − 2) 6

r−1∑
i=1

αi. (3.7)

Let t be the number of i for which αi > 1/2, and let s be the number of i for which αi = 0.
Then

r−2∑
i=1

αi 6
r − 2− s− t

2
+ t =

r − 2 + t− s
2

.

Combining this with (3.7), we have that t > s+1. Since every vertex of H is incident with
at most one non-edge, it follows from this inequality that there exists an injection f from
the s-set B := {i ∈ [r− 2] : αi = 0} ∪ {r− 1} into the t-set A := {i ∈ [r− 2] : αi > 1/2}
such that if(i) ∈ E(H) for all ∈ B. We shall use this to find a subdivision of a star as a
subgraph of a transversal of G.

Pick for each i ∈ [r − 1] a vertex vi ∈ Vi such that (i) if i /∈ B then vivr ∈ E(G),
while (ii) if i ∈ B then vivf(i) ∈ E(G). Clearly if we can do this then we have found
our desired subdivision of a star centred at vr as a subgraph of a transversal of G. Let
us therefore verify we can find good choices of the vertices vi ∈ Vi, i ∈ [r − 1]. For
i ∈ [r − 1] \ (B ∪ f(B)), we just pick vi to be an arbitrary vertex in NG(ve) ∩ Vi and (i)
is trivially satisfied.

Next consider i ∈ B, and the associated index f(i) ∈ A. By the edge density condition,
at least a p > 1/2 proportion of the edges between Vi and Vf(i) are present in G (since
if(i) ∈ E(H) by construction of the injection f). In particular, since |NG(vr) ∩ Vf(i)| =
αf(i)|Vf(i)| > 1

2
|Vf(i)|, there exist vi ∈ Vi and vf(i) ∈ NG(vr) ∩ Vf(i) such that vivf(i) is

an edge of G. Clearly for these choices of vi and vf(i) we have that (ii) is satisfied for i.
Further, by construction, vrvf(i) ∈ E(G), and (i) is satisfied for the index f(i) /∈ B. Thus
there exists good choices of the vertices vi ∈ Vi, i ∈ [r − 1], and we are done.

4 A multipartite Dirac density problem

4.1 Multipartite graphs with no Hamiltonian transversals

We begin by giving two easy constructions that give the lower bound of πr(Cr) > 1/2 for
the multipartite Dirac and odd cycle problems.

Construction 4.1 (Two colour construction). For r > 4, we construct a weighted r-partite
graph G1 as follows. We let the parts Vi, i ∈ [r − 2] consist of r − 2 disjoint copies of
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{0, 1}. Further we let Vr−1 = {0} and Vr = {1}. We let the weight function w be constant
and equal to 1/2 on ti∈[r−2]Vi, and constant and equal to 1 on Vr−1 ∪ Vr. Given x ∈ Vi
and y ∈ Vj with i 6= j, we let xy be an edge of G1 if either x = y or {i, j} = {r − 1, r}.
It is easily checked that Construction 4.1 has r-partite density 1/2 and contains no
transversal Hamilton cycle, so that πr(Cr) > 1

2
for all r > 3.

Construction 4.2 (Parity construction). For r > 5, we construct a weighted r-partite
graph G2 as follows. We let the parts Vi, i ∈ [r] consist of r disjoint copies of {0, 1}, and
the weight function to be the constant function w : V (G2) → {1/2}. Given x ∈ Vi and
y ∈ Vj with 1 6 i < j 6 r, we let xy be an edge of G2 if and only if x+ y is odd.

It is easily checked that Construction 4.2 has r-partite density 1/2 and contains no
transversal cycle of odd length. In particular, for r > 3 and odd this gives an alter-
native proof that πr(Cr) > 1

2
. We now give a refined version of Construction 4.1, which

gives an improved upper bound for πr(Cr).

Construction 4.3. Let p1, p2, p3 ∈ (0, 1). For r > 4, we construct a weighted r-partite
graph G3 := G3(p1, p2, p3) as follows. We let the parts Vi, i ∈ [r − 2] consist of r − 2
disjoint copies of {0, r − 1}. Further we let Vr−1 = {0, r} and Vr = {1, 2, . . . r − 2, r − 1},
with all parts pairwise disjoint.

We now define a weight function w in the following way. If v ∈ Vi for some i ∈ [r− 2],
then w(v) = p1 if v = 0 and w(v) = 1 − p1 otherwise. If v ∈ Vr−1, then w(v) = p2
if v = 0 and w(v) = 1 − p2 otherwise. If v ∈ Vr, then w(v) = p3 if v = r − 1, and
w(v) = (1− p3)/(r − 2) otherwise.

Finally, we specify the edges of G. Given x ∈ Vi and y ∈ Vj with 1 6 i < j 6 r − 1,
we let xy be an edge of G3 if and only if x = y = 0 or x = y = r − 1. For x ∈ Vi with
i 6 r − 2 and y ∈ Vr, we let xy be an edge of G3 if either x = r − 1 or y = i. Finally if
x ∈ Vr−1 and y ∈ Vr, we let xy be an edge if either x = 0 and y = r − 1 or x = r.

Proof of Theorem 1.15. We prove first of all that the graph G3 given in Construction 4.3
above does not contain a transversal Cr. Indeed, this can be seen via a simple analysis:
suppose for a contradiction that we had chosen vi ∈ Vi for i ∈ [r], and that G :=
G3[{v1, v2, . . . , vr}] contains a copy C of Cr.

Note that, for all i ∈ [r], the vertex vi is connected to at least two other parts in G.
Otherwise, vi cannot be part of a transversal cycle. This, together with the fact that
vertex r ∈ Vr−1 is only connected to Vr, implies vr−1 = 0. Further, since a Hamilton cycle
is 2-connected, G3[{v1, v2, . . . , vr−1}] must be connected, which implies that vi = 0 for
all i ∈ [r − 2](since vr−1 = 0 and edges between parts Vi and Vj for i < j < r exist only
between vertices with the same labels).

To complete the cycle C, we then need distinct i, j ∈ [r−1] such that vi and vj have a
common neighbour in Vr. However, for all i ∈ [r− 1], the vertex 0 ∈ Vi is only connected
to the vertex i ∈ Vr, a contradiction.

We have thus shown that G3 has Cr-free transversals. It now remains to show that
we can achieve dKr(G3) > 1/2 for judicious choices of p1, p2, p3. This will be achieved by
considering a simple optimisation problem. For i < j, the edge density between Vi and
Vj in G3 is equal to
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• (p1)
2 + (1− p1)2 if 1 6 i < j 6 r − 2;

• p1p2 if 1 6 i 6 r − 2 and j = r − 1;

• (1− p1) + (1− p3)/(r − 2) if 1 6 i 6 r − 2 and j = r;

• (1− p2) + p2p3 if i = r − 1 and j = r.

We must pick p1, p2, p3 to ensure the minimum of these four quantities is strictly greater
than 1/2. This is a simpler task than solving the optimisation problem of maximising the
minimum of these quantities. Fix ε with 0 < ε < 1

2(r−1) . Pick p1 = 1
2

+ ε, p2 = 1− ε and

p3 = 1− (r− 1)ε (note all three of these quantities are in (0, 1) by our choice of ε). Then
for these choices of the parameters p1, p2, p3, we have

dKr(G3) = min

(
(p1)

2 + (1− p1)2, p1p2, (1− p1) +
(1− p3)
r − 2

, (1− p2) + p2p3

)
= min

(1

2
+ ε2,

1

2
+
ε

2
(1− 2ε),

1

2
+

ε

r − 2
,
1

2
+

(
1

2
− (r − 1)ε

)
+ (r − 1)ε2

)
,

which is strictly greater than 1
2
, as required. This shows that πr(Cr) >

1
2
, as claimed.

In fact, we can explicitly solve the optimisation problem needed to work out the best
lower bound on πKr(Cr) we can get from Construction 4.3. Set p1 = p?, where p? is the
unique real solution in (1

2
, 1) to the cubic equation

(r − 2)− (4r − 10)p+ (6r − 14)p2 − (4r − 8)p3 = 0, (4.1)

and let

p2 =
(p?)

2 + (1− p?)2

p?
p3 = 1− (r − 2)p?(2p? − 1).

Then for these choices of parameters, we have dKr(G3) = (p?)
2 + (1− p?)2.

4.2 Transversal squares in 4-partite graphs

Proof of Proposition 1.18. The lower bound follows from the case r = 4 Theorem 1.15,
solving the cubic equation (1.1) explicitly. For the upper bound, suppose G is a weighted
4-partite-graph with dK4(G) = p > 1/

√
3. Let t4i=1Vi be the canonical partition of G.

Select vertices vi ∈ Vi for i ∈ [4] independently at random, with vi = v with probability
w(v) for every v ∈ Vi.

Observe that the edges of K4 may be decomposed into 3 perfect matchings, M1, M2

and M3, the union of any two of which gives a copy of C4. Now the expected number
of Mj, 1 6 j 6 3, such that both of the edges in Mj are present in G[{v1, v2, v3, v4}]
is 3p2 > 1. It follows from Markov’s inequality that with probability at least (3p2 −
1)/2 > 0, G[{v1, v2, v3, v4}] contains a C4. Thus G fails to have C4-free transversals, as
required.
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5 Further open problems

The most obvious directions for future research are, of course, to prove Conjectures 1.10
and Conjecture 1.17 on the (asymptotic) r-partite thresholds for connectivity and Hamil-
tonicity in r-partite graphs. As in [8] and [9], it may be useful for inductive approaches to
these conjectures to consider inhomogeneous versions of Problem 1.1, and to determine the
set of Kr-partite density profiles α = (αe)e∈E(Kr)

needed to guarantee the existence of a
desirable transversal subgraphs. Finally Lengler, Martinsson, Petrova, Schnider, Steiner,
Weber and Welzl’s recent and himpressive probabilistic proof of an asymptotic version
of Conjecture 1.10 in [12] provides a new set of techniques for attacking these problems,
which should be investigated further.

Beyond Conjectures 1.10 and 1.17, there are a number of other natural problems we
would like to highlight.

5.1 Component evolution, long paths and large treess

In this paper, we focus on the problem of finding connected transversals in multipartite
graphs. What if instead we looked for transversals containing a connected component of
order at least t?

Problem 5.1 (Extremal component evolution). For each t with 3 6 t 6 r, determine
πKr(Tt).

We provide below a family of constructions giving lower bounds for this problem for
various values of t.

Construction 5.2 (Intersecting palette construction). Fix t ∈ Z>2. For r >
(
2t−1
t

)
, we

construct a weighted r-partite graph Gt with r-partition V (Gt) := tri=1Vi as follows.
Let tX∈[2t−1](t)SX be a balanced partition of [r] into

(
2t−1
t

)
sets SX indexed by the

t-elements subsets X ∈ [2t− 1](t). For each part Vj, j ∈ [r] with j ∈ SX , we let Vj consist
of a copy of X, and we let the weight function be constant and equal to 1/t over Vj. We
then add an edge between x ∈ Vi and y ∈ Vj (i 6= j) if and only if x = y. See Figure 5.1
for the case r = 6, t = 2.

Proposition 5.3. For every t > 2 fixed and every r >
(
2t−1
t

)
, the graph Gt has r-

partite density 1/t2 and contains no transversal connected component containing more
than

⌈(
2t−2
t−1

)
/
(
2t−1
t

)
r
⌉

=
⌈

t
2t−1r

⌉
vertices.

Proof. Straightforward analysis of Construction 5.2.

Proposition 5.3 suggests the following sub-problem of Problem 5.1 may be particularly
fruitful to study.

Problem 5.4. Given α ∈ (0, 1), let fr(α) denote the maximum r-partite density of
an r-partite graph whose transversal components have size at most αr. Determine the
asymptotic behaviour of fr(α) as r →∞.
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Figure 1: Construction 6.2 for r = 6 and t = 2.

In a different direction, Erdős and Gallai determined the largest size of a graph on n
vertices containing no path of length `. It is natural to consider the analogous problem
in our setting, and in particular to determine whether long transversal paths are easier to
avoid than large transversal trees (i.e. whether the answer to the problem below is greater
than the answer to Problem 5.1 with t = `).

Problem 5.5. Given ` with 3 6 ` 6 r, determine πKr(P`).

5.2 Bipartite graphs

Another potentially interesting direction to consider is the density Turán H-partite prob-
lem when H = Kr,r. Clearly, the connectivity threshold in that setting is at least
πK−2r = 1/2 (by Theorem 1.6 and monotonicity). We ask whether this lower bound might

be tight (which would imply a significant strengthening of Theorem 1.6):

Question 5.6. Is πKr,r(T2r) = 1
2

?

Similarly to Pfender, we could also look for transversal copies of smaller complete bipartite
subgraphs.

Problem 5.7 (Multipartite Zarankiewicz problem). Given intergers 2 6 s 6 r, determine
the quantity πKr,r(Ks,s).

This problem is of particular interest when s = 2. Note that by the Erdős–Stone–
Simonovits theorem, πKr,r(K2,2) → 0 as r → ∞, so the question is about the order
of the rate of decay with respect to r.

Given the connection to locally dependent percolation theory outlined in Section 2.2, it
would also be of interest to study the connectivity problem for Qd-partite graphs, where
Qd denotes the d-dimensional hypercube graph. In particular, we have the following
questions:

Question 5.8 (Appearance of a transversal giant). Fix ε > 0. For d sufficiently large,
what is πQd

(Tbε2dc)?
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Question 5.9 (Connectivity). What is πQd
(T2d)?

We note Questions 5.8 and 5.9 are Qd-partite versions of questions of Falgas–Ravry and
Pfenninger and of Balister, Johnston, Savery and Scott on 1-dependent random graphs.
In particular, [11, Conjecture 1.18] would imply the answer to Question 5.8 is at most 1

2
.

We give below a simple matching lower bound.

Proposition 5.10. Fix d ∈ N and let s = 1 + max16r6d−1
((

d
r−1

)
+
(
d
r

)
+
(
d
r+1

))
. Then

πQd
(Ts) > 1

2
. In particular, for all ε > 0 fixed and d sufficiently large, the answer to

Question 5.9 is at least 1/2.

Proof. For each x = (x1, x2, . . . , xd) ∈ {0, 1}d, we let Vx be given by

Vx =


{0} with weight function w({0}) = 1 if

∑d
i=1 xi ≡ 0 mod 4

{0, 1} with w({0}) = w({1}) = 1
2

if
∑d

i=1 xi ≡ 1 mod 2

{1} with w({1}) = 1 if
∑d

i=1 xi ≡ 2 mod 4,

with the sets Vx chosen vertex-disjoint. Given an edge xy ∈ E(Qd), we place an edge
between u ∈ Vx and v ∈ Vy if and only u = v. This is easily seen to give rise to a
Qd-partite graph with Qd-partite density 1

2
and such that every connected component in

a transversal subgraph must be contained within the union of at most three consecutive
layers Lt := {x ∈ Qd :

∑d
i=1 xi = t}. Since the size of three consecutive layers is at most

s− 1 = O(2d/
√
d) = o(d), the proposition follows immediately.

5.3 Cycles

Using results of Nagy, we can obtain the following bounds on the threshold for connectivity
in Cr-partite graphs:

Proposition 5.11. For any r ∈ Z>4, we have:

3− tan2
(

π
b r
2
c+2

)
4

6 πCr(Tr) = πCr(Pr) 6
3− tan2

(
π
r+2

)
4

.

Proof. For the upper bound, we have

πCr(Tr) 6 πCr(Cr) = πPr+1(Pr+1) =
3− tan2

(
π
r+2

)
4

,

where the last two equalities follow from [16, Theorem 4.6]. For the lower bound, view
Cr as the union of paths P 1 and P 2 on dr/2e + 1 and br/2c + 1 vertices respectively,
with the left and right endpoints of P 1 identified with the left and right endpoints of
P2. Now consider a P 2-partite graph G2 with no transversal copy of P 2 and such that
dP 2(G2) = πPbr/2c+1

(Pbr/2c+1). Since the length of P 2 is less or equal to the length of G1,

we can clearly use G2 to make a P 1-partite graph G1 with no transversal copy of P 1 and
the same partite density as G2. Then the union G of G1 and G2 (identifying the parts
corresponding to the endpoints of P 1 and P 2 as appropriate) is a Cr-partite graph in
which every transversal has at least two edges missing, and in particular is not connected.
Thus πCr(Tr) > πP 2(P 2), and the lower bound then follows from [16, Corollary 3.13].
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By Theorem 1.6 (in the case r = 4) and Proposition A.2 (in the case r = 5), the lower
bound in Proposition 5.11 is tight for r ∈ {4, 5}.

Question 5.12. Is the lower bound in Proposition 5.11 tight for all r > 4?

In a different direction, one could ask for the Kr-partite density needed to force the
existence of a cycle of a given length ` (or of length at least/at most `) as a subgraph of
a transversal. This gives rise to the following family of problems

Problem 5.13 (Extremal girth and circumference). For every ` with 3 6 ` 6 r, determine
πKr(C`), πKr ({Ct : t 6 `}) and πKr ({Ct : t > `}).

One could also ask about the appearance of odd cycles. As noted in the introduction,
Pfender showed [18, Corollary 5] that πKr(K3) = 1/2 for r > 12. By a simple result of
Bondy, Shen, Thomassé and Thomassen [8, Theorem 1], there exist r-partite graphs with
r-partite density 1

2
and no odd cycles in transversals. This gives the following:

Corollary 5.14. For all r > 4, πKr (
⋃
{Ct : t odd}) > 1

2
, with equality for all r > 12.

Question 5.15. For which r between 4 and 12 does equality hold in Corollary 5.14?

5.4 Spectrum of the connectivity threshold

For any r, let Dr := {πH(Tr) : H is a connected r-vertex graph} denote the collection
of thresholds for the existence of connected spanning transversals for connected r-vertex
graphs.

Problem 5.16. Characterize Dr.

We note that by Proposition 2.1 for every r and every connected graph H on r-vertices
the value of πH(Tr) can in principle be reduced to the solution of a quadratic optimization
problem. As shown by our result for K4 − P3 (Proposition A.1) or by the earlier result
of Nagy [16, Corollary 3.13] for paths, even for small r the set Dr may contain irrational
numbers.

What is more interesting than the structure of Dr for specific small r is of course
the asymptotic behaviour. We know that for all connected non-complete graphs H on r
vertices, we have

1

2
= πK−r (Tr) 6 πH(Tr) 6 πK1,r−1(Tr) =

r − 2

r − 1
.

From Nagy’s results, Theorem 2.3 and (2.2), we have that limr→∞ πPr(Tr) = 3
4
. Further, it

follows from [10, Theorem 26] that for the ladder Pr×K2, we have limr→∞ πPr×K2(T2r) = 2
3
.

Finally the recent result of Lengler, Martinsson, Petrova, Schnider, Steiner, Weber and
Welzl [12] shows that 3−

√
5

2
= limr→∞ πKr(Tr). Thus 3−

√
5

2
, 1
2
, 2
3
, 3
4

and 1 are accumulation
points for the sequence Dr in the sense that we can find sequences of r-vertex connected
graphs Hr with πHr(Tr) tending to these numbers.
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Question 5.17. What are the other accumulation points for the sequence of finite sets
Dr ?

In particular, it would be nice to know whether or not one should expect the collection of
accumulation points of (Dr)r∈Z>2

to form a well-ordered set, or to contain only algebraic
numbers of degree at most 2.

5.5 Factors

Besides spanning trees and Hamilton cycles, another widely-studied class of spanning
subgraphs is that of F -factors : given a graph F and a graph H such that |V (H)| ≡ 0
mod |V (F )|, an F -factor in H is a collection of vertex-disjoint copies of F that together
cover all the vertices of H. We denote by mF such a collection of m vertex-disjoint copies
of F . What is the rs-partite threshold for a Ks-factor?

Problem 5.18 (Multipartite Hajnal–Szemerédi). For r ∈ Z>2 and s ∈ Z>3, determine
πKrs(rKs).

Remark 5.19. Problem 5.18 is very different from the analogous problem for graphs, where
one asks for the minimum degree condition for the existence of a Ks-factor. Indeed, by the
Hajnal–Szemerédi theorem, a minimum degree of 2n is necessary to force the existence
of a K3-factor in a graph on 3n vertices. On the other hand, it follows from the Bondy–
Shen–Thomassé–Thomassen Theorem [8, Corollary 3] and partitioning a 3n-partite graph
into n tripartite graphs that for any n,

πK3n(nK3) 6 πK3(K3) =
−1 +

√
5

2
<

2

3
.

Similarly, one could ask for cycle factors.

Problem 5.20 (Multipartite Abbasi). Given ` ∈ Z>3, determine πKr`
(rC`).

Partitioning an r`-partite graphs into r disjoint `-partite graphs, we immediately have
that πKr`

(rC`) 6 πK`
(C`), which is strictly greater than 1

2
for all ` > 4 (by Theorem 1.15)

and which we conjecture tends to 1/2 as ` → ∞ (Conjecture 1.17). This should be
compared with Abbasi’s result [1, Chapter 6] that any r`-vertex graph with minimum
degree at least r

`

⌊
`
2

⌋
contains a C`-factor.

5.6 Universality

The Erdős–Sós conjecture states that every n-vertex graph with strictly more than n
2
(k−1)

edges contains every tree on at most k vertices as a subgraph. Such universality questions
are natural in the multipartite setting also:

Question 5.21. Let 3 6 s 6 r be fixed. What is the threshold

αtree-universal(r, s) := inf
{
α > 0 : dKr(G) > α ⇒

∀T ∈ Ts, T is a subgraph of a transversal of G
}

?
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By Proposition 1.12, it is immediate that αtree-universal(r, s) 6 s−2
s−1 . However, we suspect

that the actual threshold may be significantly lower when r is larger than s. Given Nagy’s
result, Theorem 2.3, together with Lovász and Pelikán’s results on the largest eigenvalues
in the adjacency matrix of trees, the star K1,s−1 could well be the hardest tree to find as
a transversal. This would suggest that αtree-universal(r, s) should be no larger than s−2

r−1 : by
averaging, any r-partite graph with larger density has a spanning transversal with average
degree greater than s− 2.
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A Appendix: Connectivity threshold for H = K4 − P3 and
H = C5

Proposition A.1. πK4−P3(T4) = 4− 2
√

3.

Proof. For the lower bound, consider the following construction. We view H = K4 − P3

as a triangle on a vertex set {1, 2, 3} with a pendant edge {0, 1} attached to the vertex
1. We construct an H-partite graph by letting V0 = {v0}, V1 = {v2, v3, vX} with the
weighting w(v2) = w(v3) = 2−

√
3 and w(vX) = 2

√
3− 3, and let V2, V3 be two disjoint

copies of {v1, vY } with the weighting w(v1) = 2−
√

3 and w(vY ) =
√

3− 1. We then add
the edges v0v2, v0v3 between V0 and V1, the edges v1vi, v1vX and vY vX between Vi and V1
(i ∈ {2, 3}) and the edge vY vY between V2 and V3. It is easily checked that the resulting
H-partite graph has H-partite density 4− 2

√
3 and has no connected transversal.

For the upper bound, it follows from Proposition 2.1 (and possibly replacing some
vertices by two clones, each assigned half the weight) that it is enough to consider H-
partite graphs with |V0| = 1, |V1| = 3 and |V2| = |V3| 6 2. Consider such an H-partite
graph G with dH(G) = p > 0 and no connected transversal. By Proposition 1.13, we may
assume p 6 2/3.

Set V1 = {x1, x2, x3}, V2 = {y1, y2} and V3 = {z1, z2}. We know there exists at least
one edge from V2 to V3, so without loss of generality we may assume that y2z2 ∈ E(G).
Let U2 ⊆ V2 and U3 ⊆ V3 be the set of vertices in V2∪V3 incident with an edge from V2 to
V3. Further set W1 ⊆ V1 be the (non-empty) set of vertices sending an edge to V0. Since
G contains no connected transversal, there is no edge of G from W1 to U2 ∪ U3.

Given a set S ⊆ V (G), let w(S) :=
∑

v∈S w(v) be the total weight of the vertices in S.
By the partite density condition between V0 and V1 we have w(W1) > p, and similarly by
the partite density condition between V2 and V3 we have w(U2)w(U3) > p. Further by the
partite density conditions between V1 and V2 we have 1− p > w(W1)w(U2), and similarly
we have 1− p > w(W1)w(U3). We deal with two special cases to show we can restrict our
attention to a graph G with a similar structure to our lower bound construction (albeit
with potentially different weights).
Case 1: W1 = V1. Then our inequalities tell us 1 − p > max (w(U2), w(U3)), and

w(U2)w(U3) > p, so that (1− p)2 > p and hence p 6
√
3−5
2

< 1
2
< 4− 2

√
3. Thus moving

forward, we may assume that |W1| < |V1|.
Case 2: W1 sends edges to at most one of V2, V3. Relabelling parts, we may
assume without loss of generality that W1 sends no edges to V3. Then looking at the
partite densities between V1 and V3, we have w(W1) 6 1 − p. Now w(W1) > p, as
observed above, because of the partite density between V0 and V1. This immediately
implies p 6 1

2
< 4− 2

√
3. Thus moving forward, we may assume that W1 sends edges to

both of V2 and V3.
The final case. Since G does not contain a connected transversal, each vertex of W1

can send an edge to at most one of V2 and V3. Thanks to the previous case, we already
know |W1| < |V1| = 3. Thus in the remainder of the proof, we may assume without
loss of generality all of the following hold: W1 = {x2, x3}, U2 = {y2}, U3 = {z2} and
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{x2y1, x3z1} ⊆ E(G). By definition of W1, U2 and U3, we then have the following inequal-
ities:

p 6 w(x2) + w(x3) (density between V0 and V1),

p 6 w(x2)(1− w(y2)) + (1− w(x2)− w(x3)) (density between V1 and V2),

p 6 w(x3)(1− w(z2)) + (1− w(x2)− w(x3)) (density between V1 and V3),

p 6 w(y2)w(z2) (density between V2 and V3),

with all weights w(v) taking values in [0, 1] and w(x2) +w(x3) 6 1. We now analyse this
system of inequalities and deduce that p 6 4− 2

√
3.

Noting that the right hand-side of the second and third inequalities above are de-
creasing in w(y2), w(z2) while the right-hand side of the fourth inequality is increasing in
w(y2), w(z2), we may assume that, reducing the weight of y2 or z2 if necessary, we have
w(y2)w(z2) = p. Further, note that the right hand-side of the second and third inequali-
ties are decreasing in w(x2) and w(x3) respectively, while the right hand-side of the first
inequality is increasing in w(x2) and w(x3). Reducing the weight of x2 and x3 until the
first inequality is tight, we see that we may assume that w(x2)+w(x3) = p. Thus we may
eliminate two of our variables and, rearranging terms, rewrite our system of inequalities
as:

2p− 1 6 min

{
w(x2) (1− w(y2)) , (p− w(x2))

(
1− p

w(y2)

)}
,

with w(x2) ∈ [0, p], w(y2) ∈ [p, 1]. In particular, we have

(2p− 1)2 6 w(x2)(p− w(x2)) (1− w(y2))

(
1− p

w(y2)

)
6
(p

2

)2
(1−√p)2 .

Solving the inequality 2p − 1 6 p
2
(1 − √p) for p ∈ [0, 2

3
], we deduce that dH(G) = p 6

4− 2
√

3, as required.

Proposition A.2. πC5(T5) = 1
2
.

Proof. For the lower bound, we have πC5(T5) > πK−5 (T5) = 1
2

by monotonicity and Theo-

rem 1.6, where K−5 denotes K5 with one edge removed.
For the upper bound, it follows from Proposition 2.1 (and possibly replacing some

vertices by two clones, each assigned half the weight) that it is enough to consider C5-
partite graphs G with canonical partitions t5i=1Vi satisfying |Vi| = {xi, yi} for each i ∈ [5].
Let G be such a graph with no connected transversal and C5-partite density p, and suppose
for a contradiction that p > 1

2
.

If there exists some i such that neither xi nor yi sends an edge into both Vi−1 and Vi+1

(winding round modulo 5), then p = d(G) 6 min {w(xi), w(yi)} 6 1
2
, contradicting our

assumption on p. Thus, without loss of generality, we may assume that for every i ∈ [5]
the vertex xi sends an edge into both Vi−1 and Vi+1. If some xi is adjacent to both xi−1
and xi+1, then we have a transversal tree in G. Further if there is no i such that xixi+1
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is an edge of G, then x1, y2, x3, y4, x5 induces a transversal path on 5 vertices, i.e. a
connected transversal.

We may therefore assume without loss of generality that x1x2, y5x1 and x2y3 are all
edges of G, and further that at least one of y5x4, y3x4 is an edge of G. Thus G contains a
path on 5 vertices, i.e. a connected transversal, a contradiction. This concludes the proof
that πC5(T5) 6 1

2
.
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