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Abstract

Recently, a lower bound on the size of linear sets in projective spaces intersecting
a hyperplane in a canonical subgeometry was established. There are several con-
structions showing that this bound is tight. In this paper, we generalize this bound
to linear sets meeting some subspace π in a canonical subgeometry. We obtain a
tight lower bound on the size of any Fq-linear set spanning PG(d, qn) in case that
n 6 q and n is prime. We also give constructions of linear sets attaining equality in
the former bound, both in the case that π is a hyperplane, and in the case that π
is a lower dimensional subspace.

Mathematics Subject Classifications: 51E20, 05B25

1 Introduction

Linear sets are certain point sets in projective spaces, generalizing the notion of a subgeom-
etry. They have proven themselves to be very useful in constructing interesting objects in
projective spaces, such as blocking sets [Szi08] and KM-arcs [DBVdV16], and have been
used to construct Hamming and rank metric codes [PSSZ23, NPS23, ABNR22, She16,
SVdV20, PZ20, ZZ21]. For a survey on linear sets, we refer the reader to [LVdV15, Pol10].

Given the usefulness of linear sets, their recent spurt in popularity within the field of
finite geometry is far from surprising. One of the most natural questions arising in the
study of linear sets is establishing lower and upper bounds on their size. There is a quite
trivial upper bound on the size of linear sets, and the study of linear sets attaining equality
in this bound can be traced back to a paper by Blokhuis and Lavrauw [BL00]. However,
finding good lower bounds on the size of linear sets seems to be a harder problem. Yet it
is an interesting endeavor, e.g. due to its connection with the weight distribution of linear
rank metric codes [PSZ24].
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As a consequence of the celebrated result on the number of directions determined by
a function over a finite field [BBB+99, Bal03], Bonoli and Polverino established a lower
bound on the size of certain linear sets on a projective line. More specifically, they proved
the following result (for the definitions, we refer to Section 2).

Result 1 ([BP05, Lemma 2.2]). If LU is an Fq-linear set of rank n on PG(1, qn), and LU
contains at least one point of weight 1, then |LU | > qn−1 + 1.

De Beule and Van de Voorde managed to remove the condition on the rank from this
bound. We note that linear sets of rank greater than n on PG(1, qn) are not interesting
to study, since they necessarily contain all the points of the projective line. Hence it is
natural to limit the study to linear sets whose rank is at most n.

Result 2 ([DBVdV19, Theorem 1.2]). If LU is an Fq-linear set of rank k, with 1 < k 6 n
on PG(1, qn), and LU contains at least one point of weight 1, then |LU | > qk−1 + 1.

Using an inductive argument, De Beule and Van de Voorde obtained a bound on the
size of a linear set in a higher dimensional projective space, see [DBVdV19, Theorem
4.4]. Using Lemma 15, which we prove later in this paper, this result is equivalent to the
following result.

Result 3 ([DBVdV19, Theorem 4.4]). Let LU be an Fq-linear set of rank k > d in
PG(d, qn). If LU meets some hyperplane Ω in a canonical Fq-subgeometry of Ω, then

|LU | > qk−1 + qk−2 + · · ·+ qk−d + 1.

De Beule and Van de Voorde note directly after their statement of the above result that
they would like to find lower bounds on linear sets satisfying less restrictive conditions.
Furthermore, Jena and Van de Voorde [JVdV21, §2.5 (B)] state that they believe the
above lower bound to hold for all Fq-linear sets of rank k that span PG(d, qn), if n is
prime and k 6 d+ n.

In this article we will generalize the above result by dropping the condition that Ω is
a hyperplane.

Theorem 4. Let LU be an Fq-linear set of rank k in PG(d, qn). Suppose that there exists
some (r − 1)-space Ω, with r < k, such that LU meets Ω in a canonical Fq-subgeometry
of Ω. Then

|LU | > qk−1 + · · ·+ qk−r + IΩ,

where IΩ denotes the number of r-spaces through Ω, containing a point of LU \ Ω.

The theorem leads us to wonder, given a linear set, how we can assure the existence
of a large subspace intersecting it in a canonical subgeometry. This question turns out to
be closely related to studying which linear sets must certainly have a point of weight 1.
Csajbók, Marino, and Pepe [CMP24] recently proved the following seminal result.

Result 5 ([CMP24, Theorem 2]). Let LU be an Fq-linear set of PG(d, qn) of rank k 6 dn,
such that the following assumptions are satisfied:
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(1) n 6 q;

(2) every point of LU has weight at least w > 2.

Then there exists an integer t > w with t | n such that LU = LU ′, with U ′ = 〈U〉Fqt
.

Especially when n is prime, this is a powerful result. In that case, a linear sets without
points of weight 1 must coincide with a subspace as point sets. This allows us to prove the
following theorem. From now on, we mean the span of an Fq-linear set LU in PG(d, qn)
to be the projective subspace generated by the points of LU in PG(d, qn).

Theorem 6. Suppose that n is a prime number with n 6 q. Let LU be an Fq-linear set

in PG(d, qn) spanning the whole space. Define r = d −
⌊
k−(d+2)
n−1

⌋
. Then LU meets some

(r − 1)-space in a canonical subgeometry and

|LU | > qk−1 + · · ·+ qk−r +
qn(d−r+1) − 1

qn − 1
.

Moreover, this lower bound is tight.

Note in particular that this confirms the previously mentioned belief of Jena and
Van de Voorde [JVdV21, §2.5 (B)] – that all Fq-linear sets of rank k 6 d + n spanning
PG(d, qn), n prime, satisfy the lower bound of Result 3 – in case that n 6 q.

Also in the case where n is not prime, Result 5 is interesting from the point of view of
lower bounding the size of a linear set. It ensures that we can take r = 1 in Theorem 4,
i.e. Ω is a point, in case that Fq is the maximum geometric field of linearity of LU .

In PG(1, qn), the bound of De Beule and Van de Voorde is tight. For every rank k 6 n,
there exist so-called (k − 1)-clubs of rank k. These linear sets contain (an abundance of)
points of weight 1, and their size matches the bound in Result 2. Lunardon and Polverino
[LP00] provided the first less trivial family of linear sets of rank n reaching equality in
Result 1. Their example was extended by Jena and Van de Voorde [JVdV21] to a very
large family of linear sets of general rank, attaining equality in Result 2. More recently,
there have been other constructions of such linear sets, and partial classification results,
see Napolitano et al. [NPSZ23]. Moreover, Jena and Van de Voorde generalized their
constructions to higher dimensions, to obtain linear sets attaining equality in the bound
of Result 3, some of which also satisfy the conditions of Result 3 [JVdV21, §2.5 (B)].

In this article, we study the construction by Jena and Van de Voorde in general dimen-
sion, and we provide a sufficient condition for these linear sets to satisfy the hypothesis of
Result 3. We also generalize the construction of Napolitano et al. to higher dimensions.
Furthermore, we construct linear sets in PG(d, qn) satisfying the conditions of Theorem 4,
and attaining equality in the corresponding bound, where n is not prime. The size of these
linear sets is smaller than the bound from Result 3, hence this illustrates the necessity of
the conditions imposed in Result 3 in case n is not prime.

Structure of the paper. Section 2 contains preliminary results on linear sets. Sec-
tion 3 contains the proof of Theorems 4 and 6. In addition, we deduce from Theorem 4
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that the rank of a linear set is determined by its size and the minimum weight of its
points, and that it is spanned by its points of minimum weight. In Section 4 we discuss
linear sets attaining equality in Result 3. More specifically, we show a sufficient condition
for the minimum size linear sets of [JVdV21] to satisfy the hypothesis of Result 3, and
we generalize the construction from [NPSZ23] to higher dimension. Section 5 contains
constructions of linear sets attaining equality in Theorem 4.

2 Preliminaries

Throughout this article, q will always denote a prime power, and Fq will denote the
finite field of order q. The d-dimensional projective space over Fq will be denoted by
PG(d, q). If the projective space is constructed from a (d + 1)-dimensional Fq-vector
space V , and we want to emphasize the underlying vector space, we might also denote
the projective space as PG(V,Fq). We note that the number of points in PG(d, q) equals
qd+1−1
q−1

= qd + qd−1 + · · ·+ q + 1.

Notation 7. Throughout the article, when working in PG(d, q) = PG(Fd+1
q ,Fq), we

denote the vectors of Fd+1
q as (x0, . . . , xd), i.e. we label the coordinate positions from 0 to

d. The ith standard basis vector will be denoted as

ei = (0, . . . , 0, 1︸︷︷︸
ith position

, 0 . . . , 0),

and the corresponding point in PG(d, q) will be denoted as Ei.

2.1 Linear sets

Let V be a (d+1)-dimensional vector space over Fqn . Then V is also a (d+1)n-dimensional
vector space over Fq. Let U denote an Fq-subspace of V . Then

LU = {〈u〉Fqn
: u ∈ U \ {0}}

is a set of points in PG(d, qn). Sets of this type are called Fq-linear sets, and the Fq-
dimension of U is called the rank of LU .

We note that if U1 and U2 are Fq-subspaces, and LU1 and LU2 are equal as point set
in PG(d, qn), this need not imply that dimFq U1 = dimFq U2. Hence, the rank of a linear
set LU is generally defined ambiguously by LU as point set in PG(d, qn), without taking
into account the underlying subspace U .

Given an Fqn-subspace W 6 V , we define the weight of Ω = PG(W,Fqn) to be

wLU
(Ω) = dimFq(U ∩W ).

Note that wLU
(Ω) equals the rank of the linear set LU∩W = LU ∩ Ω.

For each i ∈ {1, . . . , n}, let Ni(LU) denote the number of points in PG(d, qn) of weight
i. We will simply denote this as Ni if LU is clear from context. The numbers N1, . . . , Nn
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are called the weight distribution of LU . In addition, the weight spectrum of LU is the
ordered tuple (i1, . . . , it) with i1 < . . . < it and

{i1, . . . , it} = {wLU
(P ) : P ∈ LU} = {i ∈ {1, . . . , n} : Ni > 0}.

Let k > 0 denote the rank of LU . Then the weight distribution satisfies the following
properties.

|LU | = N1 + · · ·+Nn, (1)
n∑
i=1

Ni
qi − 1

q − 1
=
qk − 1

q − 1
, (2)

|LU | 6
qk − 1

q − 1
, (3)

|LU | ≡ 1 ( mod q). (4)

Let T be an Fq-subspace of V with dimFq(T ) = r 6 d + 1. If dimFqn
(〈T 〉Fqn

) = r,
we will say that LT ∼= PG(T,Fq) = PG(r − 1, q) is an Fq-subgeometry of PG(V,Fqn) and
r is the rank of the subgeometry LT . When r = d + 1, we say that LT is a canonical
subgeometry of PG(V,Fqn) = PG(d, qn). Note that each point of a subgeometry LT has
weight 1 and hence |LT | = qr−1

q−1
, if LT has rank r.

Regarding the linearity of a linear set, we recall the following definitions explored in
[JVdV22].

Definition 8 ([JVdV22, Definitions 1.1, 1.2]). An Fq-linear set LU is an Fqs-linear set if
U is also an Fqs-vector space. We say that Fqs is the maximum field of linearity of LU if
s is the largest exponent of q such that LU is Fqs-linear.

Definition 9 ([JVdV22, Definitions 1.3, 1.4]). An Fq-linear set LU has geometric field of
linearity Fqs if there exists an Fqs-linear set LU ′ such that LU = LU ′ . An Fq-linear set LU
has maximum geometric field of linearity Fqs if s is the largest integer such that LU has
geometric field of linearity Fqs .

The maximum field of linearity and the maximum geometric field of linearity do not
always coincide. Clearly if LU is an Fqs-linear set, it has geometric field of linearity Fqs ,
but the converse need not hold, see e.g. [JVdV22, Example 1.5].

Remark 10. Note that if there exists a line ` that is (q+ 1)-secant to an Fq-linear set LU ,
LU has maximum geometric field of linearity Fq, see also [JVdV22]. Indeed, suppose that
there exists an Fqr -subspace W of V such that LU = LW , for some r > 1 with r | n. Since
` ∩ LW is an Fqr -linear set we have, by (4), that |` ∩ LW | > qr + 1. Therefore,

q + 1 = |LU ∩ `| = |LW ∩ `| > qr + 1

a contradiction.

We refer to [Pol10] and [LVdV15] for comprehensive references on linear sets.
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2.2 Subspaces of complementary weights

Recently, there has been an interest in linear sets admitting subspaces of complementary
weights (see below for the definition), due to their application in coding theory, see e.g.
[PSSZ23, NPS23, Zul23]. Linear sets on the projective line admitting two points of com-
plementary weights have been studied in [NPSZ22] (see also [JVdV22, NPSZ23]). The
higher dimensional analogue has been studied in [Zul23]. For the sake of completeness,
we state the definition and prove the structural description of such linear sets here in full
generality.

Call Fqn-subspaces W1, . . . ,Wm of Fd+1
qn independent if each subspace Wi intersects

〈Wj : j 6= i〉Fqn
trivially, or equivalently if dimFqn

〈Wi : i = 1, . . . ,m〉 = dimFqn
W1 + · · ·+

dimFqn
Wm.

Lemma 11. Let W1, . . . ,Wm be independent subspaces in Fd+1
qn , and let LU be an Fq-linear

set in PG(d, qn) of rank k, that spans the entire space. Then

wLU
(PG(W1,Fqn)) + · · ·+ wLU

(PG(Wm,Fqn)) 6 k.

If equality holds, then Fd+1
qn = W1 ⊕ · · · ⊕Wm.

Proof. Since no Wi intersects the span of the others, it is permitted to consider the direct
sum W1 ⊕ · · · ⊕Wm. Then

k = dimFq U > dimFq(U ∩ (W1 ⊕ · · · ⊕Wm)) > dimFq(U ∩W1) + · · ·+ dimFq(U ∩Wm)

= wLU
(PG(W1,Fqn)) + · · ·+ wLU

(PG(Wm,Fqn))

If equality holds, then
U ∩ (W1 ⊕ · · · ⊕Wm) = U.

Since W1 ⊕ · · · ⊕Wm is an Fqn-subspace, and 〈U〉Fqn
= Fd+1

qn , we get that

W1 ⊕ · · · ⊕Wm = Fd+1
qn .

Definition 12. If the subspaces W1, . . . ,Wm attain equality in Lemma 11, we say that
PG(W1,Fqn), . . . ,PG(Wm,Fqn) are subspaces of complementary weight (with respect to
LU).

Lemma 13. Let LU be an Fq-linear set spanning PG(d, qn). Then there exist subspaces
Ω1, . . . ,Ωm in PG(d, qn) of complementary weight, with dim Ωi = di and wLU

(Ωi) = ki, if
and only if U is GL(d + 1, qn)-equivalent to an Fq-subspace U1 × · · · × Um, with each Ui
a ki-dimensional Fq-subspace of Fdi+1

qn satisfying 〈Ui〉Fqn
= Fdi+1

qn .

Proof. First suppose that such subspaces Ωi = PG(Wi,Fqn) exist. Then there exists a map
ϕ ∈ GL(d + 1, qn) such that ϕ(W1) = 〈e0, . . . , ed1〉Fqn

, ϕ(W2) = 〈ed1+1, . . . , ed1+d2+1〉Fqn
,

and so on. As can be seen in the proof of the previous lemma,

ϕ(U) = ϕ(U ∩W1)⊕ · · · ⊕ ϕ(U ∩Wm),
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which equals U1 × · · · × Um, with

Ui = {u ∈ Fdi+1
qn : (0, . . . , 0, u, 0, . . . , 0) ∈ ϕ(U) ∩ ϕ(Wi)}.

Clearly,
dimFq Ui = dimFq ϕ(U ∩Wi) = dimFq U ∩Wi = wLU

(Ωi) = ki.

Vice versa, suppose that ϕ(U) = U1 × · · · × Um, with each Ui a ki-dimensional Fq-
subspace of Fdi+1

qn , for some ϕ ∈ GL(d+ 1, qn). Then define

W1 = 〈e0, . . . , ed1〉Fqn
, W2 = 〈ed1+1, . . . , ed1+d2+1〉Fqn

, . . .

Then clearly PG(W1,Fqn), . . . ,PG(Wm,Fqn) are subspaces of complementary weights with
respect to LU . Having subspaces of complementary weights is GL(d + 1, qn)-invariant,
which finishes the proof.

3 General bounds

This section is devoted to proving Theorems 4 and 6. From Theorem 4 we derive that
if a linear set LU contains a point of weight 1, its rank equals dlogq(|LU |)e, and 〈LU〉 is
spanned by the points of LU of weight 1.

3.1 Proof of Theorem 4

De Beule and Van de Voorde proved the following bound.

Result 14 ([DBVdV19, Theorem 4.4]). Let LU be an Fq-linear set spanning PG(d, qn)

of rank k. Suppose that LU meets some hyperplane Ω in exactly qd−1
q−1

points, spanning Ω.
Then

|LU | > qk−1 + qk−2 + . . .+ qk−d + 1.

Note that if d = 1, this result is exactly Result 2. We now prove that this result is
equivalent to Result 3. This follows directly from the following lemma.

Lemma 15. Let LU be an Fq-linear set in PG(d − 1, qn), with d > 2. Then LU spans

PG(d− 1, qn) and satisfies |LU | = qd−1
q−1

if and only if LU is a canonical Fq-subgeometry.

Proof. If LU is a canonical subgeometry, then it immediately follows that LU spans the

entire space, and |LU | = qd−1
q−1

. So suppose that LU spans the space, and that |LU | = qd−1
q−1

.
We need to prove that all points of LU have weight 1. Indeed in that case, by equations
(1) and (2), LU must then have rank d, which proves that LU is a canonical subgeometry.
So suppose by way of contradiction that LU has points of weight greater than 1. Note
that by Equations (1) and (2), the rank of LU is some number k > d. Let

σ = 〈P ∈ LU : wLU
(P ) > 1〉

denote the subspace of PG(d− 1, qn) spanned by points of weight greater than 1.
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Suppose that σ is not PG(d−1, qn). Then LU 6⊆ σ, and every point in LU \σ is a point
of weight 1. Hence, there are at least qk−1 points in LU \ σ corresponding to (necessarily

distinct) points of weight 1 of LU . Thus, |LU | > qk−1 > qd−1
q−1

since k > d, a contradiction.

Hence σ equals PG(d− 1, qn). Let

M = max
P∈LU

wLU
(P )

denote the maximum weight of the points of LU . Then we can choose d independent points
P1, . . . , Pd in LU such that wLU

(P1) = M , and wLU
(Pi) > 2 for each i. By Lemma 11,

k >
d∑
i=1

wLU
(Pi) >M + 2(d− 1).

Let N1, . . . , NM denote the weight distribution of LU . Then by Equations (1) and (2),

qM − 1

q − 1
|LU | =

M∑
i=1

Ni
qM − 1

q − 1
>

M∑
i=1

Ni
qi − 1

q − 1
=
qk − 1

q − 1
>
qM+2(d−1) − 1

q − 1
.

This implies that
qd − 1

q − 1
= |LU | >

qM+2(d−1) − 1

qM − 1
,

which yields a contradiction if d > 2.

Theorem 4. Let LU be an Fq-linear set of rank k in PG(d, qn). Suppose that there exists
some (r − 1)-space Ω, with r < k, such that LU meets Ω in a canonical Fq-subgeometry
of Ω. Then

|LU | > qk−1 + · · ·+ qk−r + IΩ,

where IΩ denotes the number of r-spaces through Ω, containing a point of LU \ Ω.

Proof. Consider the r-spaces Π1,Π2, . . . of PG(d, qn) through Ω = PG(W,Fqn), with Πi =
PG(Wi,Fqn), for each i. We can order the r-spaces in such a way that Πi contains a point
of LU \ Ω if and only if i 6 IΩ. Let

ki = dimFq(U ∩Wi)

denote the rank of the Fq-linear set LU∩Wi
. Then the sets Wi∩U \W partition the vectors

in U \W . Since LU intersects Ω in a canonical subgeometry, dimFq U ∩W = r. This
yields

qk − qr =

IΩ∑
i=1

(qki − qr) =⇒ qk−r = 1 +

IΩ∑
i=1

(qki−r − 1). (5)
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Analogously, the points of Πi \Ω partition the points of LU \Ω. Note that for i 6 IΩ,
we have that LU∩Πi = LU∩Wi

is an Fq-linear set in Πi of rank ki, satisfying the hypothesis
of Result 3. Hence,

|LU | = |LU ∩ Ω|+
IΩ∑
i=1

(|LU ∩ Πi| − |LU ∩ Ω|)

>
qr − 1

q − 1
+

IΩ∑
i=1

(
(qki−1 + · · ·+ qki−r + 1)− qr − 1

q − 1

)

=
qr − 1

q − 1
+

IΩ∑
i=1

(
qki−r

qr − 1

q − 1
− qr − 1

q − 1
+ 1

)

=
qr − 1

q − 1

(
1 +

IΩ∑
i=1

(qki−r − 1)

)
+ IΩ.

Using Equation (5) this implies that

|LU | >
qr − 1

q − 1
qk−r + IΩ = qk−1 + qk−2 + · · ·+ qk−r + IΩ.

Remark 16. If one wants to apply Theorem 4 to a particular linear set LU , different choices
of the (r−1)-space Ω can yield different bounds. In other words, IΩ need not be the same
for all (r− 1)-spaces meeting LU in a canonical Fq-subgeometry. This is illustrated in the
example below.

Example 17. Consider the (n+ 1)-dimensional Fq-subspace

U = {(x, xq) : x ∈ Fqn} × Fq

of F3
qn . Consider the corresponding Fq-linear set LU of rank n + 1 in PG(2, qn). Every

point of LU has weight 1, so we can apply Theorem 4 with Ω any point of LU . However,
for a point P ∈ LU , IP = qn−1 + 1 if P lies on the line X2 = 0, and IP = qn−1

q−1
if P does

not lie on X2 = 0. These numbers are distinct if n > 2.

We also remark that in Theorem 4 the number IΩ of r-spaces through Ω containing a
point of LU \ Ω equals the size of a certain linear set.

Definition 18. Consider an Fq-linear set LU in PG(V,Fqn) and take a subspace Ω =
PG(W,Fqn). Let U denote the subspace (U + W )/W of the quotient space V/W . Then
the projection of LU from Ω is the Fq-linear set LU of PG(V/W,Fqn).

Lemma 19. Suppose that LU is an Fq-linear set of rank k in PG(V,Fqn) and let LU be
the projection of LU from an (r − 1)-space Ω = PG(W,Fqn). Then for each Fqn-subspace
W ′ 6 V through W ,

wLU
(PG((W ′ +W )/W,Fqn)) = wLU

(PG(W ′,Fqn))− wLU
(Ω).
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In particular, LU has rank k − wLU
(Ω), and |LU | is equal to the number of r-spaces in

PG(V,Fqn) through Ω that contain a point of LU\Ω. Furthermore, if LU spans PG(V,Fqn),
then LU spans PG(V/W,Fqn).

Proof. We can find Fq-subspaces U1, U2, U3 of U such that

• U1 = W ∩ U ,

• U1 ⊕ U2 = W ′ ∩ U ,

• U1 ⊕ U2 ⊕ U3 = U .

Then

wLU
(PG((W ′ +W )/W,Fqn)) = dimFq(U ∩ ((W ′ +W )/W ))

= dimFq(〈U,W 〉Fq ∩W ′)− dimFq W

= dimFq(W ⊕ U2)− dimFq(W ) = dimFq(U2)

= dimFq(U1 ⊕ U2)− dimFq(U1)

= wLU
(PG(W ′,Fqn))− wLU

(Ω).

If we set W ′ = V , we see that LU has rank k−wLU
(Ω). It also follows that the points of

LU are in 1-1 correspondence with the (r + 1)-spaces W ′ of V with wLU
(PG(W,Fqn)) >

wLU
(Ω), which are exactly the r-spaces through Ω in PG(V,Fqn) containing a point of

LU \ Ω.

This tells us the following about the quantity IΩ in Theorem 4.

Proposition 20. In the hypothesis of Theorem 4, let LU be the projection of LU from Ω.
Then

|LU | > qk−1 + qk−2 + · · ·+ qk−r + |LU |.

Moreover, LU has rank k − r.

In the next sections, we will investigate linear sets attaining equality in the bound of
Theorem 4. To this end, we introduce some relevant terminology.

Definition 21. Let LU be an Fq-linear set of rank k in PG(d, qn). If

|LU | = qk−1 + · · ·+ qk−d + 1,

we say that LU is of d-minimum size. If there is some (r − 1)-space Ω such that LU and
Ω satisfy the hypothesis of Theorem 4, and

|LU | = qk−1 + · · ·+ qk−r + IΩ 6 qk−1 + · · ·+ qk−d + 1,

then we say that LU is of (r, d,Ω)-minimum size, or simply of (r, d)-minimum size. A
linear set of (d, d)-minimum size, will also be called of proper d-minimum size.
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In the next proposition, we also prove that if a linear set is of (r, d)-minimum size, it
is of (r′, d)-minimum size for every r′ 6 r.

Proposition 22. Let LU be an (r, d)-minimum size Fq-linear set of rank k in PG(d, qn).
Then LU is of (r′, d)-minimum size as well, for every 0 < r′ 6 r.

Proof. It is enough to prove the statement for r′ = r − 1. By hypothesis, we know that
there is some (r − 1)-space Ω = PG(W,Fqn) of PG(d, qn) meeting LU in a canonical
subgeometry, such that

|LU | = qk−1 + qk−2 + · · ·+ qk−r + |LU |, (6)

where LU is the Fq-linear set in PG(V/W,Fqn) = PG(d− r, qn) defined by U = U +W ⊆
V/W . Let Ω′ = PG(W ′,Fqn) be an (r − 2)-space of Ω that meets LU in a canonical
subgeometry. So, by Proposition 20, we have that

|LU | > qk−1 + qk−2 + · · ·+ qk−r+1 + |LU ′|, (7)

where LU ′ is the Fq-linear set of rank k − r + 1 in PG(V/W ′,Fqn) = PG(d − r + 1, qn)
defined by U ′ = U + W ′ ⊆ V/W ′. Therefore, by (6), it follows qk−r + |LU | > |LU ′ |. On
the other hand, since wLU

(Ω) = r, we get wL
U′

(PG(W/W ′,Fqn)) = 1 and so LU ′ has a
point of weight 1. Now, by Proposition 20, we get that

|LU ′ | > qk−r +
∣∣∣L

U ′

∣∣∣
with U ′ = U/W ′ +W/W ′ 6 (V/W ′)/W , which is equal to U = U +W 6 V/W . Hence,

|LU ′| > qk−r + |LU |.

Then, by (6), equality holds in (7) and so LU is of (r − 1, d,Ω′)-minimum size.

Remark 23. A linear set LU of (r, d)-minimum size has maximum geometric field of lin-
earity Fq whenever r > 2. Indeed, by the above proposition, LU is of (2, d)-minimum size
as well. As a consequence, there exists a line ` such that |LU ∩ `| = q+ 1. So, by Remark
10, we get that LU has maximum geometric field of linearity Fq.

We conclude this subsection by giving a sufficient condition to apply Result 3.

Theorem 24. Let k, d and r be non negative integers with r < k, d. Let LU be an Fq-
linear set in PG(d, qn) of rank k + d − r spanning PG(d, qn). Suppose that there is an
r-space Ω of PG(d, qn) such that wLU

(Ω) = k, and Ω contains an (r − 1)-space Ω′ that
meets LU in a canonical Fq-subgeometry. Then some hyperplane Π of PG(d, qn) meets LU
in a canonical Fq-subgeometry, implying |LU | > qk+d−r−1 + qk+d−r−2 + · · ·+ qk−r + 1.

Proof. Suppose that PG(d, qn) = PG(V,Fqn), Ω = PG(W,Fqn), and Ω′ = PG(W ′,Fqn).
Consider the projection of LU from Ω′, which equals the linear set LU , with U = U+W ′ ⊆
V/W ′. Write P0 = W/W ′, and choose any point P1 ∈ LU\{P0}. Since LU spans PG(d, qn),
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we can extend P0, P1 to a subset P0, P1, . . . , Pd−r of LU that spans PG(V/W ′,Fqn). Also,
wLU

(P0) = k − r, and the rank of LU equals k + d − 2r = (k − r) + (d − r). Hence, by
Lemma 11,

(k − r) + (d− r) >
d−r∑
i=0

wLU
(Pi) = (k − r) +

d−r∑
i=1

wLU
(Pi),

which implies that wLU
(Pi) = 1 for all i > 1, and P0, . . . , Pd−r are points of complementary

weights. Therefore, LU meets 〈P1, . . . , Pd−r〉 in a canonical subgeometry. There is a unique
Fqn-space W ′′ through W ′ such that 〈P1, . . . , Pd−r〉 = PG(W ′′ +W ′,Fqn). It follows that
PG(W ′′,Fqn) meets LU in a canonical subgeometry.

3.2 Proof of Theorem 6

Our next goal it to prove Theorem 6. Let us start by recalling two well-known results
concerning linear sets.

Lemma 25. Suppose that LU is an Fq-linear set of rank k of PG(d, qn). Let m =
min{wLU

(P ) : P ∈ LU} denote the minimum weight of the points of LU . Then there
exists an Fq-linear set LU ′ of rank k −m + 1 in PG(d, qn) containing points of weight 1
such that LU and LU ′ coincide as point sets.

Proof. Take a vector u ∈ U such that P = 〈u〉Fqn
has weight m in LU . Then there exists

a (k −m + 1)-dimensional Fq-subspace U ′ of U that intersects 〈u〉Fqn
in a 1-dimensional

subspace. Then wLU′
(P ) = 1. It remains to show that LU and LU ′ coincide as points sets.

The inclusion LU ′ ⊆ LU is evident. On the other hand, take a non-zero v ∈ U . Then, by
Grassmann’s identity

wLU′
(〈v〉Fqn

) = dimFq(〈v〉Fqn
∩ U ′) = dimFq((〈v〉Fqn

∩ U) ∩ U ′)
= dimFq(〈v〉Fqn

∩ U) + dimFq(U
′)− dimFq(〈〈v〉Fqn

∩ U,U ′〉Fq)

> m+ (k −m+ 1)− dimFq(U) = 1.

This shows that LU ⊆ LU ′ . Thus, LU and LU ′ coincide as point sets.

Lemma 26. Let LU be an Fq-linear set in PG(d, qn) of rank k. Then LU contains all
points of PG(d, qn) if and only if k > dn. In that case, LU contains a point of weight 1 if
and only if k = dn+ 1.

Proof. If k 6 dn, then |LU | 6 qdn−1
q−1

by (3), so it cannot contain all points of PG(d, qn).

If k > dn, then U intersects every Fq-subspace of Fd+1
qn of dimension n non-trivially by

Grassmann’s identity. In particular, U intersects all one-dimensional Fqn-subspaces of
Fd+1
qn non-trivially. Therefore, LU contains all points of PG(d, qn).

If k = dn+ 1, then LU contains points of weight 1 by Lemma 25, since we have proven
that LU cannot coincide with a linear set of lower rank. If k > dn + 1, then we can use
Grassmann’s identity again to prove that LU has no points of weight 1.

Combining this with Result 5, we obtain the following lemma.
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Lemma 27. Suppose that n is a prime number with n 6 q. Let LU be an Fq-linear set of
rank k spanning PG(d, qn). Then LU does not contain any points of weight 1 if and only
if dn+ 2 6 k 6 dn+ n.

Proof. By Lemma 26, it suffices to prove that LU contains a point of weight 1 if k 6 dn.
Suppose the contrary, i.e. k 6 dn and LU contains no points of weight 1. Then by Result 5
and n being prime, LU as point set must be a subspace of PG(d, qn). Since LU spans the
entire space, this means that LU contains all points of PG(d, qn). Using Lemma 26, we
see that this contradicts k 6 dn.

Before proving the lower bound of Theorem 6, let us provide examples attaining equal-
ity in the bound.

Construction 28. Choose integers 0 6 r 6 d. Let U1 be a k1-dimensional Fq-subspace
of Fd−r+1

qn with (d− r)n + 2 6 k1 6 (d− r + 1)n. Define the Fq-subspace U = U1 × Frq of

Fd+1
qn . Then LU is an Fq-linear set spanning PG(d, qn) of rank k = k1 + r of size

qk−1 + · · ·+ qk−r +
q(d−r+1)n − 1

qn − 1
.

Moreover, r = d−
⌊
k−(d+2)
n−1

⌋
.

Proof. It follows immediately that LU is an Fq-linear set of rank k spanning PG(d, qn).
Moreover, since k = k1 + r, one can check that

(d− r)n+ 2 6 k1 6 (d− r + 1)n =⇒ d− r 6 k − (d+ 2)

n− 1
6 d− r + 1− 1

n− 1
,

which yields r = d−
⌊
k−(d+2)
n−1

⌋
.

It remains to determine the size of LU . Let u = (u1, u2) ∈ U1 × Frq be a non-zero
vector of U . If u2 6= 0, then clearly α(u1, u2) ∈ U if and only if α ∈ Fq. Hence, the point
〈(u1, u2)〉 has weight 1 in LU . To make such a vector, we have qk1 choices for u1 and qr−1
choices for u2. Since this always gives points of weight 1, this gives us

qk1
qr − 1

q − 1
= qk−1 + · · ·+ qk−r

points of LU .
The number of points of LU represented by a vector of the form (u1,0) equals the size

of LU1 , which equals the number of points of PG(d − r, qn) by Lemma 26. Putting this
together, we find that the size of LU is as claimed in the lemma.

Now we are ready to finish the proof of Theorem 6.
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Theorem 6. Suppose that n is a prime number with n 6 q. Let LU be an Fq-linear set

in PG(d, qn) spanning the whole space. Define r = d −
⌊
k−(d+2)
n−1

⌋
. Then LU meets some

(r − 1)-space in a canonical subgeometry and

|LU | > qk−1 + · · ·+ qk−r +
qn(d−r+1) − 1

qn − 1
.

Moreover, this lower bound is tight.

Proof. Let s denote the largest integer such that LU meets an (s−1)-space σ in a canonical
subgeometry. Then the projection LU of LU from σ is an Fq-linear set of rank k − s
spanning PG(d− s, qn). Moreover, Lemma 19 implies that LU does not have any points
of weight 1, since no s-space through σ can intersect LU in a canonical subgeometry. By
Lemma 27, this means that

(d− s)n+ 2 6 k − s 6 (d− s)n+ n,

which is equivalent to

s = d−
⌊
k − (d+ 2)

n− 1

⌋
= r.

Hence, there exists an (r− 1)-space ρ intersecting LU in a canonical subgeometry. More-
over, the projection LU of LU from ρ is an Fqn-linear set in PG(d − r, qn) whose rank
exceeds (d− r)n. By Lemma 26, LU contains all points of PG(d− r, qn) and

|LU | > qk−1 + · · ·+ qk−r +
qn(d−s+1) − 1

qn − 1

by Theorem 4 and Proposition 20. The bound is tight by Construction 28.

3.3 Consequences of Theorem 4

When r = 1, Theorem 4 looks as follows.

Corollary 29. Let LU be an Fq-linear set of rank k > 2 in PG(d, qn), admitting at least
one point of weight 1. Let I be the number of secant lines through some point of weight
1. Then |LU | > qk−1 + I.

In particular, this result implies that the rank of a linear set is determined by its size
and the minimum weight of its points.

Proposition 30. Let LU be an Fq-linear set spanning PG(d, qn), containing more than
one point. Denote m = minP∈LU

wLU
(P ). Then the rank of LU is the unique integer k

satisfying

qk−m + 1 6 |LU | 6
qk − 1

qm − 1
,

i.e. k = dlogq(|LU |)e+m− 1 = blogq(|LU |)c+m.
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Proof. By Lemma 25, LU coincides as point set with an Fq-linear set LU ′ of rank k−m+1,
containing points of weight 1. By Theorem 4, |LU ′ | > qk−m + 1. The lower bound follows
from Lemma 25 and Corollary 29. By Equation (2),

(qm − 1)|LU | = (qm − 1)
n∑

i=m

Ni 6
n∑

i=m

Ni(q
i − 1) = qk − 1.

Another consequence of Corollary 29 is that any Fq-linear set is spanned by its points
of minimum weight, (cf. [BP05, Lemma 2.2] for linear sets on PG(1, qn)).

Proposition 31. If an Fq-linear set LU spans PG(d, qn), then its points of minimum
weight also span PG(d, qn).

Proof. Suppose that LU is an Fq-linear set of rank k, spanning PG(d, qn), and denote
m = minP∈LU

wLU
(P ). By Corollary 29, |LU | > qk−m. Now assume that the points

of weight m of LU lie in a hyperplane π = PG(W,Fqn) of PG(d, qn). Suppose that
U1 = U ∩ W . Then there exits a subspace U2 of U such that U = U1 ⊕ U2. Now let
U ′1 be an Fq-subspace of U1 of codimension m − 1, and let U ′2 be an Fq-subspace of U2

of codimension 1. Let U ′ = U ′1 ⊕ U ′2, then LU ′ and LU coincide as point sets. Indeed, if
P ∈ LU ∩ π, then wLU

(P ) = wLU1
(P ) > m. As in the proof of Lemma 25, this implies

that wLU′
(P ) = wLU′1

(P ) > 1. If P ∈ LU \ π, then wLU
(P ) > m + 1, and as in the proof

of Lemma 25, wLU′
(P ) > 1. But

dimq U
′ = (dimq U1 − (m− 1)) + (dimq U2 − 1) = k −m.

Hence, by Equation (3), |LU | = |LU ′ | 6 qk−m−1
q−1

< qk−m, a contradiction.

4 Constructions of linear sets of d-minimum size

4.1 Exploring the Jena-Van de Voorde construction

Recently, Jena and Van de Voorde constructed linear sets of d-minimum size admitting
points of complementary weights, and they completely determined their weight spectrum
and weight distribution. Recall that if λ ∈ Fqn , then the degree of λ over Fq equals the
degree of the minimal polynomial of λ over Fq, or equivalently the smallest integer t such
that λ ∈ Fqt .

Construction 32 ([JVdV21, Theorem 2.17]). Suppose that λ ∈ Fqn has degree t > 1 over
Fq. Choose positive integers k0 > · · · > kd such that k0 + k1 6 t+ 1. Define

JVq,n(λ, t; k0, . . . , kd) = 〈1, λ, . . . , λk0−1〉Fq × · · · × 〈1, λ, . . . , λkd−1〉Fq

= {(f0(λ), . . . , fd(λ)) : fi ∈ Fq[X], deg(fi) < ki}.

Then LJVq,n(λ,t;k0,...,kd) is an Fq-linear set of d-minimum size in PG(d, qn) of rank k0 + . . .+
kd.
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Note that since JVq,n(λ, t; k0, . . . , kd) is a Cartesian product of Fq-subspaces of Fqn , it
indeed admits points of complementary weights. Recall the symbols ei and the Ei from
Notation 7.

Before proceeding, we make some conventions regarding polynomials.

Definition 33. Given two polynomials f, g ∈ Fq[X], let gcd(f, g) denote the unique
monic polynomial of maximal degree that divides f and g. We call f and g coprime
if gcd(f, g) = 1. Furthermore, we will use the convention that the degree of the zero
polynomial is −∞, so that the equality deg(f · g) = deg f + deg g still holds if f or g is
the zero polynomial.

Remark 34 ([JVdV21, Remark 2.19]). Jena and Van de Voorde also determined the weight
spectrum of the above linear set. It is (1, . . . , k0) if k1 = k0, and (1, . . . , k1, k0) if k1 < k0, in
which case E0 is the unique point of weight k0. They also described the weight distribution,
but since it is rather involved, we omit it here. It follows from their arguments that if
gcd(f0, . . . , fd) = 1, then

wLU

(
〈f0(λ), . . . , fd(λ)〉Fqn

)
= min

06i6d
{ki − deg(fi)}. (8)

This makes it relatively easy to determine Ni for some large values of i. For instance, let

U = JVq,n(λ, t; k0, . . . , kd) ⊆ Fd+1
qn ,

and assume that k1 < k0. As stated above, E0 is the unique point of weight k0, and the
second largest weight of LU is k1. We can determine Nk1(LU). Let m denote the number
of indices j with kj = k1, i.e. k1 = · · · = km > km+1. Let P = 〈f0(λ), . . . , fd(λ)〉Fqn

∈ LU ,
with gcd(f0, . . . , fd) = 1. Then, by (8), P has weight k1 if and only if deg(f0) 6 k0 − k1,
deg(fi) 6 0, for i = 1, . . . ,m and fi = 0, for i > m and there exists some j ∈ {1, . . . ,m}
such that deg(fj) > 0. Then,

Nk1(LU) = qk0−k1+1 q
m − 1

q − 1
.

The above construction has the following consequence on the existence of linear sets
of d-minimum size in PG(d, qn).

Corollary 35 ([JVdV21, Corollary 2.18]). There exists an Fq-linear set of d-minimum
size of rank k in PG(d, qn) whenever

d < k 6

{
(d+ 1)n+1

2
if n is odd,

(d+ 1)n
2

+ 1 if n is even.

We now present a sufficient condition for the linear set of Construction 32 to be of
proper d-minimum size.

Theorem 36. Consider U = JVq,n(λ, t; k0, . . . , kd) as in Construction 32. Suppose that
there exist pairwise coprime polynomials g0, . . . , gd ∈ Fq[X] such that for each i, deg gi =
ki − 1. If k0 + · · ·+ kd 6 t+ d, then LU is of proper d-minimum size.
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Proof. By Construction 32, we know that LU is an Fq-linear set in PG(d, qn) of rank
k = k0 + · · · + kd of d-minimum size. So it remains to prove that there exists a hy-
perplane of PG(d, qn) meeting LU in a canonical subgeometry. Consider the points
Pi = 〈e0 + gi(λ)ei〉Fqn

for i = 1, . . . , d. Clearly, P1, . . . , Pd are independent, hence they
span a hyperplane. Define the polynomial

G(X) =
d∏
i=1

gi(X).

Note that for each i > 1, the polynomial(
G

gi

)
(X) =

d∏
j=1
j 6=i

gj(X)

is well-defined. Then the equation of the hyperplane Π = 〈P1, . . . , Pd〉Fqn
of PG(d, qn) is

G(λ)X0 =
d∑
i=1

(
G

gi

)
(λ)Xi. (9)

Let k = k0 + . . .+ kd denote the rank of LU . Then

degG =
d∑
i=1

(ki − 1) = k − k0 − d < t,

hence G(λ) 6= 0, and Equation (9) does indeed define a hyperplane. Now take a non-zero
vector v = (f0(λ), . . . , fd(λ)) ∈ U , and suppose that 〈v〉Fqn

∈ Π. Then

G(λ)f0(λ) =
d∑
i=1

(
G

gi

)
(λ)fi(λ). (10)

Every term in Equation (10) is a polynomial in λ, and

deg(Gf0) = degG+ deg f0 = (k − k0 − d) + deg f0 < t,

deg((G/gi)fi) = degG+ deg fi − deg(gi) 6 deg(G) < t.

Since 1, λ, . . . , λt−1 are Fq-linearly independent, Equation (10) implies that

G(X)f0(X) =
d∑
i=1

(
G

gi

)
(X)fi(X).

On the one hand, this implies that f0 is a constant polynomial. Otherwise, the left-
hand side has degree greater than deg(G), but the degree of the right-hand side is at most
deg(G), a contradiction. On the other hand, for each i,

gi(X) |

(
G(X)f0(X)−

∑
16j 6=i

(
G

gj

)
(X)fj(X)

)
=

(
G

gi

)
(X)fi(X).
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Since G/gi is coprime with gi, and deg(fi) 6 deg(gi) this is only possible if fi is an
F∗q-multiple of gi. Hence,

v = (α0, α1g1(λ), . . . , αdgd(λ)),

for some scalars α0, . . . , αd ∈ Fq. Moreover, since 〈v〉Fqn
∈ Π, α0 = α1 + · · ·+ αd. Hence,

LU intersects Π in the linear set LW , with

W =

{
d∑
i=1

αi(e0 + gi(λ)ei) : αi ∈ Fq

}
.

Therefore, LU intersects Π in a canonical subgeometry.

A sufficient condition to ensure the existence of pairwise coprime polynomials g0, . . . , gd
in Fq[X] such that deg(gi) = ki− 1, is to choose the size of the ground field large enough.

Proposition 37. Consider U = JVq,n(λ, t; k0, . . . , kd) as in Construction 32, with k0 +
. . .+ kd 6 t+ d. Assume that

d∑
i=0

ki − d− 1 6 q.

Then LU is of proper d-minimum size.

Proof. By the hypothesis, we can consider d+ 1 subsets S0, . . . , Sd of Fq that are pairwise
disjoint and such that |Si| = ki − 1, for each i ∈ {0, . . . , d}. Then, we can define gi(x) =∏

α∈Si
(x− αi). So the assertion follows by Theorem 36.

Another sufficient condition to ensure the existence of pairwise coprime polynomials
g0, . . . , gd ∈ Fq[X] such that deg(gi) = ki−1, is that the gi’s are different monic irreducible
polynomials over Fq. It is well known, see e.g. [LN97, Theorem 3.25], that the number
of monic irreducible polynomials of degree s over the finite field Fq is given by Gauss’s
formula

1

s

∑
h|s

µ(s/h)qh,

where h runs over the set of all positive divisors of s and µ denotes the Möbius function.

Remark 38. We note the following lower bound on the number of monic irreducible poly-
nomials of degree s over Fq, see e.g. [BS12]:

1

s

∑
h|s

µ (s/h) qh >
qs − 2qs/2

s
.

So we get the following corollary.
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Corollary 39. Consider U = JVq,n(λ, t; k0, . . . , kd) as in Construction 32, with k0 + . . .+
kd 6 t+ d. For each s = 1, . . . , t, suppose that

|{i : ki − 1 = s}| 6 qs − 2qs/2

s
.

Then LU is of proper d-minimum size.

Clearly, if the rank of a linear set LU obtained from Construction 32 is greater than
n+ d, then every hyperplane has weight at least d+ 1 in LU , so LU cannot be of proper
d-minimum size. In case the rank exceeds n+d, we can prove that LU is of (1, d)-minimum
size under some constraints on the rank.

Proposition 40. Let U = JVq,n(λ, t; k0, . . . , kd) be as in Construction 32. If k0 + kd−1 +
kd 6 t+ 2, then LU is an Fq-linear set of (1, d)-minimum size.

Proof. Let

U ′ = {(f0(λ), . . . , fd−1(λ) + λkd−1−1fd(λ), fd(λ)) : fi ∈ Fq[X], deg(fi) < ki}.

Then U ′ is GL(d+ 1, qn)-equivalent to U via the Fqn-linear map

ϕ : v = (v0, . . . , vd) 7→ v + vdλ
kd−1−1ed−1.

The point 〈(0, . . . , 0,−λkd−1−1, 1)〉Fqn
has weight 1 in LU and it is mapped to point Ed by

ϕ. So Ed has weight 1 in LU ′ . We prove that |LU ′ | = qk−1 + |LU |, where U = U ′+Ed is an
Fq-subspace of Fd+1

qn /Ed. Note that Fd+1
qn /Ed can be identified with Fdqn and U = U ′ + Ed

with
U = JVq,n(λ, t; k0, . . . , kd−2, kd−1 + kd − 1).

By hypothesis k0 + kd−1 + kd − 1 6 t + 1, and so k0, . . . , kd−2, kd−1 + kd − 1 indeed
satisfy the hypothesis of Construction 32 when rearranged in descending order. Therefore,
|LU | = qk−2 + . . .+ qk−d + 1. Since |LU | = |LU ′| = qk−1 + · · ·+ qk−d + 1 = qk−1 + |LU |, we
have the assertion.

The above proposition together with Corollary 35, allows to construct linear sets of
(1, d)-minimum size whose ranks exceed n+ d.

Corollary 41. There exist Fq-linear sets of (1, d)-minimum size in PG(d, qn), d > 2, of
rank k, whenever

d < k 6

{
dn+1

2
+ 1 if n is odd,

dn
2

+ 2 if n is even.
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4.2 Generalizing the Caserta construction

In [NPSZ23, Theorem 4.1], a construction is given of linear sets on the projective line,
based on the more general framework exploited in [GW03] and [PSW99]. In this subsec-
tion, we generalize this to higher dimensions. The construction starts from an Fq-linear
set LU ′ in PG(d, qt), and yields an Fq-linear set LU in PG(d, qst). Moreover, the weight
distribution of LU is completely determined by the weight distribution of LU ′ .

Construction 42. Suppose that n = st with s, t > 1. Let U ′ be an Fq-subspace of
Fd+1
qt ⊆ Fd+1

qn with dimFq(U
′) = k′ > 0. Let Z be an Fqt-subspace of Fqn of dimension

r > 0, such that 1 /∈ Z. Define

Cq,s,t(Z,U
′) := {(z + u0, u1, . . . , ud) : z ∈ Z, (u0, . . . , ud) ∈ U ′} ⊆ Fd+1

qn ,

which we will simply denote by U . Then

(1) the Fq-linear set LU ⊆ PG(d, qn) has rank rt+ k′,

(2) |LU | = qrt|LU ′ \ {E0}|+ 1,

(3) wLU
(E0) = rt+ wLU′

(E0),

(4) Ni(LU) = qrt(Ni(LU ′)− δi,wLU′
(E0)) + δi,wLU

(E0),

where δi,j denotes the Kronecker symbol.

Proof. (1) Since Z is an Fqt-subspace of Fqn , and 1 /∈ Z, Z ∩ Fqt = {0}. Furthermore,
since U ′ is an Fq-subspace of Fd+1

qt , Z ∩ {u0 : (u0, . . . , ud) ∈ U ′} = {0}. Hence,

U = (Z × {0}d)⊕Fq U
′.

Therefore,
dimFq U = dimFq Z + dimFq U

′ = rt+ k′.

(3) Similarly,

wLU
(E0) = dimFq

(
Z ⊕Fq {u0 : u0e0 ∈ U ′}

)
= dimFq Z + dimFq({u0 : u0e0 ∈ U ′})

= rt+ wLU′
(E0).

(2,4) Suppose that
〈ze0 + u〉Fqn

= 〈z′e0 + v〉Fqn
,

with z, z′ ∈ Z, and u, v ∈ U ′ \〈e0〉Fqn
. Then ze0 +u = α(z′e0 +v) for some α ∈ Fqn . Since

u, v are not multiples of e0, there must exist some position j > 0 such that uj, vj 6= 0.
This implies that α = vj/uj ∈ Fqt . We also have that z + u0 = α(z′ + v0), hence

z − αz′ = αv0 − u0
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Recall that Z is an Fqt-subspace, and that u0, v0, α ∈ Fqt . Therefore, the left-hand side
of the above equality is in Z, and the right-hand side is in Fqt . Since Z ∩ Fqt = {0}, this
implies that z = αz′ and therefore u = αv.

Vice versa, if z ∈ Z, u ∈ U ′\〈e0〉Fqn
and αu ∈ U ′ for some α ∈ Fqt , then 〈ze0 +u〉Fqn

=
〈αze0 + αu〉Fqn

. This proves that

wLU
(〈z + u〉Fqn

) = dimFq{α ∈ Fqt : αu ∈ U ′} = wLU′
(〈u〉Fqn

).

Hence, varying z, we see that every point of LU ′ \{E0} gives rise to |Z| points of LU \{E0}
of the same weight, and this accounts for all points of LU \{E0}. Points (2) and (4) follow
directly from this observation and the fact that E0 ∈ LU .

Remark 43. We remark that LU ′ is contained in LU and the weight distribution and
rank of LU in the above construction only depends on the weight distribution of LU ′ and
wLU′

(E0), but not on the specific structure of U ′. In particular, if ϕ ∈ ΓL(d + 1, qt),
and ϕ fixes 〈e0〉, then Cq,s,t(Z,U

′) and Cq,s,t(Z, ϕ(U ′)) have the same rank and weight
distribution.

Given some minor conditions, the above construction preserves the property of being
(r, d)-minimum size.

Proposition 44. Let U = Cq,s,t(Z,U
′) be as in Construction 42. If LU ′ is an Fq-linear

set of (r, d,Ω)-minimum size, and E0 ∈ LU ′ \ Ω, then LU is also of (r, d,Ω)-minimum
size.

Proof. Suppose that Ω = PG(W,Fqn), and that the rank of LU ′ is k′. Since LU ′ is of
(r, d,Ω)-minimum size, LU ′ meets Ω in a canonical subgeometry of Ω, and

|LU ′ | = qk
′−1 + · · ·+ qk

′−r + |LU ′ |,

where U ′ := U ′ + W is an Fq-subspace of Fd+1
qn /W . Since E0 /∈ Ω, up to GL(d + 1, qn)-

equivalence, we can suppose that Ω is defined by the equations X0 = · · · = Xd−r =
0. Hence Fd+1

qn /W can be identified with Fd−r+1
qn in an obvious way. Now, an element

z + u ∈ U belongs to W if and only if z + u0 = u1 = · · · = ud−r = 0 if and only if
z = u0 = · · · = ud−r = 0. Therefore, U ∩W = U ′ ∩W and so Ω also meets LU in a
canonical subgeometry. Moreover, by Construction 42,

U = U +W = {z + u : u ∈ U ′} ⊆ Fd+1
qn /W,

has size qrt(|LU ′| − 1) + 1. Therefore we have

|LU | = qrt(|LU ′ | − 1) + 1 = qrt(qk
′−1 + · · ·+ qk

′−r + |LU ′| − 1) + 1

= qk−1 + · · ·+ qk−r + |LU |,

with k = rt+ k′ the rank of LU .

We can apply Construction 42 with U ′ as in Construction 32, obtaining the following
families of linear sets of d-minimum size.
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Theorem 45. Consider U ′ = JVq,t(λ, t
′; k0, . . . , kd) where t′ | t as in Construction 32,

and choose ϕ ∈ GL(d + 1, qt) such that E0 ∈ Lϕ(U ′). Now define U = Cq,s,t(Z, ϕ(U ′)) as
in Construction 42, with Z an Fqt-subspace of rank r > 0, not containing 1. Then LU is
an Fq-linear set of d-minimum size of rank k = rt + k0 + · · · + kd. Moreover, the weight
spectrum of LU is

(
1, . . . , k1, k0, rt+ wLϕ(U′)

(E0)
)

if wLϕ(U′)
(E0) < k0 and k1 < k0,(

1, . . . , k1, rt+ wLϕ(U′)
(E0)

)
otherwise.

Proof. The Fq-linear set Lϕ(U ′) has the same weight spectrum, weight distribution, and
size as LU ′ . So the assertions follow by applying Construction 42 and Remark 34.

Remark 46. Using [JVdV21, Remark 2.19] and Construction 42 (3,4), one could in fact
also determine the weight distribution of the linear set in the above theorem.

The above construction gives new examples of linear sets of proper d-minimum size.

Corollary 47. In the hypothesis of Theorem 45, suppose that LU ′ is an Fq-linear set
of (d, d,Π)-minimum size, with Π = PG(W,Fqn). Suppose that E0 ∈ Lϕ(U ′) \ Π̃, with

Π̃ = PG(ϕ(W ),Fqn). Then LU is an Fq-linear set of proper d-minimum size in PG(d, qn).

Proof. The linear set LU ′ is of (d, d,Π)-minimum size, so the hyperplane Π = PG(W,Fqn)
of PG(d, qn) meets LU ′ in a canonical subgeometry of Π and

|LU ′ | = qm−1 + · · ·+ qm−d + 1.

It follows that Π̃ also meets Lϕ(U ′) in a canonical subgeometry of Π̃, that is Lϕ(U ′) is of
proper d-minimum size as well. The assertion follows by Proposition 44.

Construction 32 provides constructions of linear sets of d-minimum size admitting
points of complementary weights. Using Theorem 45, it is possible to construct linear
sets of proper d-minimum size that do not have this property, as we will see in the next
example. This proves that in general a linear set of d-minimum size need not contain
independent points whose weights sum to the rank of the linear set. So in general,
as already observed in [NPSZ23] for the projective line, being minimum size does not
determine the weight spectrum and distribution of a linear set.

Example 48. Consider
U ′ = JVq,6(λ, 6; 2, 2, 2)

as in Construction 32. Then LU ′ is an Fq-linear set of rank 6 in PG(2, q6) having size
q5 + q4 + 1 and points of weight at most 2. Moreover, wLU′

(E0) + wLU′
(E1) + wLU′

(E2) =
2 + 2 + 2 = 6 is equal to the rank of LU ′ . Define

ϕ ∈ GL(3, q6) : (x, y, z) 7→ (x, y − λx, z).

the electronic journal of combinatorics 31(4) (2024), #P4.52 22



Then the Fq-linear set LU ′′ in PG(2, q6), with

U ′′ = ϕ(U ′) = {(α0 + α1λ, β0 + β1λ− α1λ
2, γ0 + γ1λ) : αi, βi, γi ∈ Fq} ⊆ F3

q6

has the same rank, weight spectrum and weight distribution as LU ′ . Note that wLU′′
(E0) =

1. Choose a 1-dimensional Fq6-subspace Z 6= Fq6 of Fq12 . By Theorem 45, the Fq-linear
set LU of PG(2, q12), with

U = Cq,2,6(Z,U ′′)

has rank 12 and size q11 + q10 + 1. So, it is a linear set of 2-minimum size. Note that the
weight spectrum of LU is (1, 2, 7), and so there do not exist three points of complementary
weights. In particular, LU cannot be obtained from Construction 32.

In some cases, Theorem 45 gives us linear sets admitting points of complementary
weights, but with a different weight distribution than those of Construction 32, as stated
in the following theorem.

Theorem 49. Consider
U ′ = JVq,t(λ, t; k0, . . . , kd)

and let ϕi be the linear map swapping coordinates 0 and i ∈ {0, . . . , d} (with ϕ0 = id).
Consider

U = Cq,s,t(Z, ϕi(U
′)),

(1) If ki = k0, then there exists an Fq-linear set obtained from Construction 32 with the
same weight distribution as LU .

(2) If ki < k0 − 1, then there does not exist an Fq-linear set obtained from Construc-
tion 32 with the same weight distribution as LU .

Proof. Write n = st.
(1) If ki = k0, choose a primitive element µ of Fqn . Consider U2 = JVq,n(µ, n; k0 +

rt, k1, . . . , kd). Then LU and LU2 have the same weight distribution by Remark 34 (see
also [JVdV21, Remark 2.19]) and Construction 42 (3,4).

(2) Now assume that ki < k0 − 1, and suppose that there exists some Fq-subspace

U3 = JVq,n(µ, t′; k′0, . . . , k
′
d) ⊆ Fd+1

qn

such that LU and LU3 have the same weight distribution. Since LU has a unique point
of weight rt + ki by Construction 42 (3,4), we see that by Remark 34, k′0 = rt + ki.
Furthermore, the second largest weight of LU and LU3 is respectively k0 and k′1, hence
k0 = k′1. Let m′ denote the number of indices j with k′j = k0, i.e. k′1 = · · · = k′m′ > k′m′+1.
Then, using Remark 34 (see also [JVdV21, Remark 2.19]),

Nk0(LU3) = qk
′
0−k′1+1 q

m′ − 1

q − 1
= qrt+ki−k0+1 q

m′ − 1

q − 1
.
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On the other hand, by Construction 42 (4) and Remark 34 (see also [JVdV21, Remark
2.19]),

Nk0(LU) = qrtNk0(LU ′) = qrt
qm − 1

q − 1
,

with m the number indices j with kj = k0. Therefore,

qrt+ki−k0+1 q
m′ − 1

q − 1
= qrt

qm − 1

q − 1
.

Since qm−1
q−1

and qm
′−1

q−1
are coprime with q, this implies that ki = k0 − 1.

The case ki = k0 − 1 is a bit more complicated, and we will not discuss it here.

4.3 Regarding equivalence

We show that the two different types of Fq-subspaces that define the linear sets of d-
minimum size defined in Construction 32 and Theorem 45 are ΓL(d+ 1, qn)-inequivalent,
even if the associated linear sets have the same weight spectrum and distribution (see
Theorem 49 (1)), when the dimension of Z is the maximum possible. The trace function
Trqn/q of Fqn over Fq, defines a non-degenerate symmetric bilinear form as follows:

(a, b) ∈ Fqn × Fqn 7→ Trqn/q(ab) ∈ Fq.

Hence, for any subset S of Fqn we can define the orthogonal complement as

S⊥ = {a ∈ Fqn : Trqn/q(ab) = 0, ∀b ∈ S}.

Note that if S is an Fqt-subspace of Fqn , then S⊥ is an Fqt-subspace as well.
Given an ordered Fq-basis B = (ξ0, . . . , ξn−1) of Fqn , there exists a unique ordered

Fq-basis B∗ = (ξ∗0 , . . . , ξ
∗
n−1) of Fqn such that Trqn/q(ξiξ

∗
j ) = δij, for i, j ∈ {0, . . . , n − 1},

called the dual basis of B, see e.g. [LN97, Definition 2.30].

Lemma 50 ([NPSZ22, Corollary 2.7]). Let λ ∈ Fqn and suppose that B = (1, λ, . . . , λn−1)
is an ordered Fq-basis of Fqn. Let f(x) = a0 + a1x + · · · + an−1x

n−1 + xn be the minimal
polynomial of λ over Fq. Then the dual basis B∗ of B is

B∗ = (δ−1γ0, . . . , δ
−1γn−1),

where δ = f ′(λ) and γi =
∑n−i

j=1 λ
j−1ai+j, for every i ∈ {0, . . . , n− 1}.

Theorem 51. Suppose that n = (s+ 1)t, with s, t > 1. Define U ′ = JVq,t(µ, t; k0, . . . , kd)
as in Construction 32, with k0 < t− 1. Let ϕi be the linear map swapping coordinates 0
and i ∈ {0, . . . , d} (with ϕ0 = id) and define

U1 = Cq,s,t(Z, ϕi(U
′)),

as in Construction 42, with Z an Fqt-subspace of dimension s, not containing 1. Consider
U2 = JVq,n(λ, n;h0, k1, . . . , kd) as in Construction 32, with h0 = st + ki. Then the Fq-
subspaces U1 are U2 are ΓL(d+ 1, qn)-inequivalent.
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Proof. Suppose that ki < k0 − 1. Then, by Theorem 49, LU1 and LU2 have a distinct
weight distribution, hence U1 and U2 cannot be ΓL(d+ 1, qn)-equivalent. So suppose that
ki ∈ {k0−1, k0} and suppose by contradiction that U1 and U2 are ΓL(d+1, qn)-equivalent
via an element ϕ. Since h0 > ki, for every i ∈ {1, . . . , d}, the point E0 is the only point
in LU1 and in LU2 of weight h0. So, we have that ϕ(U1 ∩ E0) = U2 ∩ E0, that is

aSρ1 = S2,

for some a ∈ F∗qn and ρ ∈ Aut(Fqn), with

S1 = Z ⊕ 〈1, µ, . . . , µki−1〉Fq , and S2 = 〈1, λ, . . . , λh0−1〉Fq .

In particular, we have that aZρ ⊆ S2 and so (aZρ)⊥ ⊇ S⊥2 . Note that dimFqt
(aZρ) =

dimFqt
(Z) = s. This implies that dimFq((aZ

ρ)⊥) = n − st = t and hence (aZρ)⊥ is an

Fqt-subspace of Fqn of dimension one. Consider the ordered Fq basis B = (1, λ, . . . , λn−1)
of Fqn and its dual basis B∗ = (λ∗0, . . . , λ

∗
n−1). So we have that S⊥2 = 〈λ∗h0

, . . . , λ∗n−1〉Fq and
since k0 < t− 1, we have that h0 < n− 1. By Lemma 50 it follows that

λ∗n−2 = δ−1(an−1 + λ),

and
λ∗n−1 = δ−1,

where f(x) = a0 + a1x+ · · ·+ an−1x
n−1 + xn is the minimal polynomial of λ over Fq and

δ = f ′(λ). Now, since λ∗n−2, λ
∗
n−1 ∈ (aZρ)⊥ and since (aZρ)⊥ has dimension one over Fqt ,

it follows
λ∗n−2

λ∗n−1

= an−1 + λ ∈ Fqt ,

that is λ ∈ Fqt , a contradiction.

5 Below the De Beule-Van de Voorde bound

In this section, we will provide constructions of linear sets LU in PG(d, qn), with d > 2,
that are of (r, d)-minimum size but not of d-minimum size. They have maximum geometric
field of linearity Fq, and admit two subspaces of complementary weights.

For our aims, we will suppose that one of these subspaces intersects LU in a linear set
with greater field of linearity. This gives us the following constructions.

Theorem 52. Let n = st, with s, t > 1, and suppose that

• U1 is a k1-dimensional Fqt-subspace of Fd1+1
qn ,

• U2 is a k2-dimensional Fq-subspace of Fd2+1
qt ⊆ Fd2+1

qn .
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Define U = U1 × U2, and d = d1 + d2 + 1. Then LU is an Fq-linear set of PG(d, qn) of
rank k1t+ k2, with

|LU | = |LU1|+ qk1t|LU2 |.

Moreover, its weight distribution satisfies

Ni(LU) = Ni(LU1) + qk1tNi(LU2).

Proof. Take a vector u ∈ U1 and v ∈ U2 with (u, v) 6= 0. Then

wLU
(〈(u, v)〉Fqn

) = dimFq{α ∈ Fqn : α(u, v) ∈ U}.

Evidently, α(u, v) ∈ U if and only if αu ∈ U1 and αv ∈ U2. If v 6= 0, then αv ∈ U2 implies
that α ∈ Fqt , and since U1 is an Fqt-subspace, αu is automatically in U1. Therefore, every
point 〈v〉Fqn

of LU2 gives rise to the qk1t points {〈(u, v)〉Fqn
: u ∈ U1} of LU with the same

weight. If v = 0, then we just need that αu ∈ U1, hence in this way, every point of LU1

gives rise to one point of LU of the same weight. Since this accounts for all points of LU ,
the statement of the theorem follows.

Using the above theorem, we are able to obtain constructions of linear sets in PG(d, qn),
with d > 3, having maximum geometric field of linearity Fq that are (r, d)-minimum size
with 2 6 r < d and that are not d-minimum size.

Theorem 53. Let n = st, with s, t > 1, and suppose that

• U1 is a k1-dimensional Fqt-subspace of Fd1+1
qn , with k1 6 d1s,

• U2 is a k2-dimensional Fq-subspace of Fd2+1
qt , such that LU2 is an Fq-linear set of

proper d2-minimum size.

Define U = U1 × U2, d = d1 + d2 + 1, and k = k1t + k2. Then LU is an Fq-linear set of
(d2, d)-minimum size of size

|LU | = qk−1 + qk−2 + · · ·+ qk−d2 + qk1t + |LU1 |.

Hence, LU is not d-minimum size if k2 > d2 + 2. Furthermore, if d2 > 2, then Fq is the
maximum geometric field of linearity of LU .

Proof. The Fq-linear set LU2 ⊆ PG(d2, q
n) is of proper d2-minimum size, and so its size is

|LU2| = qk2−1 + · · ·+ qk2−d2 + 1.

By Theorem 52, LU has rank k = k1t+ k2 and size

|LU1 |+ qk1t(qk2−1 + · · ·+ qk2−d2 + 1) = |LU1|+ qk−1 + qk−2 + · · ·+ qk−d2 + qk1t.

Moreover there exists a (d2 − 1)-space Γ = PG(W,Fqn) of PG(d2, q
n), with W ⊆ Fd2+1

qn ,
meeting LU2 in a canonical subgeometry. Now, let W ′ = {0}d1+1×W . Then W ′ defines a
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d2-space of PG(d, qn) meeting LU in a canonical subgeometry. Identifying Fd+1
qn /W with

Fd1+1
qn we have that U = U1 +W is an Fq-subspace of Fd+1

qn /W with

U = U1 × U ′,

where U ′ is an Fq-subspace of Fqn of dimension k2−d2. So again, by Theorem 52, we have
|LU | = qk1t + |LU1|. Moreover, by (3), |LU1| 6 q(k1−1)t + . . .+ qt + 1, and since k2 > d2 + 1
it follows that

|LU1| < qk−d2−1 + · · ·+ qk−d + 1− qk1t.

This implies that LU is not of d-minimum size. Finally, the assertion on the geometric
field of linearity follows from Remark 23.

By the above corollary and Proposition 36, we get the following construction.

Corollary 54. Let n = st, with s, t > 1, and suppose that

• U1 = JVqt,n(λ, n; l0, . . . , ld1), and denote k1 = l0 + · · ·+ ld1,

• U2 = JVq,t(µ, t;m0, . . . ,md2), and denote k2 = m0 + · · ·+md2,

with LU2 satisfying the condition of Theorem 36. Define U = U1 × U2. Then LU is an
Fq-linear set of (d2, d)-minimum size, but not of d-minimum size. Moreover, if d2 > 2,
then Fq is the maximum geometric field of linearity of LU .

Proof. Note that

|LU1| = q(k1−1)t + · · ·+ q(k1−d1)t + 1 < qk−d2−1 + · · ·+ qk−d + 1− qk1t,

and then the assertion follows by Theorem 53.

Remark 55. Other examples of linear sets of (d2, d)-minimum size can be obtained by
using the minimum size linear sets constructed in Corollary 45 as LU1 or LU2 in Theorem
53.

Remark 56. It is natural to consider PG(d, qn), n not prime, and wonder what the maximal
value of d2 is such that the above corollary implies the existence of an Fq-linear set in
PG(d, qn) that is of (d2, d)-minimum size, but not of d-minimum size, and has maximum
geometric field of linearity Fq. So let t be the largest proper divisor of n. Note that
t >
√
n. We want to construct a set U2 = JVq,t(µ, t;m0, . . . ,md2) with d2 maximal, such

that it satisfies the conditions of Theorem 36. Hence, there must exist pairwise coprime
polynomials gi of degree mi − 1 such that (m0 − 1) + . . . + (md2 − 1) 6 t − 1. Let δ(x)
denote the maximum number of distinct monic irreducible polynomials over Fq such that
the sum of their degrees is smaller than x. Then for any m > 1, δ(qm) > qm−1

m
. Indeed,

consider the minimal polynomials of the elements of F∗qm . Since every element of F∗qm is
the root of a unique such polynomial, their degrees sum to qm − 1. Furthermore, the
maximum degree equals m, so there are at least qm−1

m
such polynomials. Hence, to answer

the original question, asymptotically, d2 = Ω(t/ logq(t)) = Ω(
√
n/ logq(n)).
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We conclude this subsection with examples of linear sets of (1, 2)-minimum size that
are not of (2, 2)-minimum size and have maximum geometric field of linearity Fq.

Proposition 57. Let n = st, with s > 1, and t > 2 prime. Suppose that the smallest
prime that divides s is at least t. Let

• U1 be a k1-dimensional Fqt-subspace of Fqn,

• U2 = JVq,t(µ, t;m0,m1), with t = m0 +m1.

Define U = U1 × U2. Then LU is an Fq-linear set of (1, 2)-minimum size, but not of
2-minimum size. Moreover, Fq is the maximum geometric field of linearity of LU .

Proof. By Theorem 52, LU is an Fq-linear set of PG(2, qn) of rank (k1 + 1)t having size

|LU | = q(k1+1)t−1 + qk1t + 1,

that is not of 2-minimum size. Since LU2 has a point of weight 1, there exists ϕ ∈ GL(2, qt),
such that the Fq-linear set LU ′ , with U ′ = U1×ϕ(U2) has E2 as a point of weight 1. Hence
F3
qn/E2 can be identified with F2

qn in an obvious way. Clearly, LU and LU ′ are GL(3, qn)-

equivalent. In this way, U ′/E2 can be identified as an Fq-subspace U = U1 × U ′2, where
U ′2 is an (t − 1)-dimensional Fq-subspace of Fqt . Again, by Theorem 52, we have that
|LU | = qk1t + 1 and hence LU is an Fq-linear set of (1, 2)-minimum size. Suppose now,
that LU = LW for some Fqr -linear set LW . If r < t, then by our hypothesis, r is coprime
with s and t, hence r is coprime with n = st, and Fqr is not a subfield of Fqn . Therefore,
r > t. Let ` be the line of PG(2, qn) having equation X0 = 0. Then

qt−1 + 1 = |LU2 | = |` ∩ LU | = |` ∩ LW |.

Since ` ∩ LW is an Fqr -linear set we have that |` ∩ LW | > qr + 1. So t − 1 > r, a
contradiction.

Remark 58. Choosing s, t be prime numbers with s > t > 2, Proposition 57 gives examples
of Fq-linear sets in PG(2, qst) having rank st and with size qst + qst−t + 1. Moreover, for
such a linear set, the maximum geometric field of linearity is Fq and there cannot exist a
line meeting it in a subline, since its size is less than qst + qst−1 + 1.
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