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Abstract

Lettericity measures the minimum size of an alphabet needed to represent a graph
as a letter graph, where vertices are encoded by letters, and edges are determined
by an underlying decoder. We prove that all graphs on n vertices have lettericity
at most approximately n − 1

2 log2 n and that almost all graphs on n vertices have
lettericity at least n− (2 log2 n+ 2 log2 log2 n).
Mathematics Subject Classifications: 05C35, 05C75 05C80

1 Introduction

Lettericity was first introduced by Petkovšek [15] to investigate well-quasi-order in the
induced subgraph order. In Section 5.3 of his paper, Petkovšek shows that there are
n-vertex graphs with lettericity at least 0.707n, and then Problem 3 of his conclusion
asks to “find the maximal possible lettericity of an n-vertex graph, and the correspond-
ing extremal graphs.” Despite significant recent interest in lettericity, both for its own
sake [5, 12, 11, 6, 4], and in its connections [3, 7, 8] to geometric grid classes of permu-
tations [1, 9, 2, 10], this question has remained unaddressed until the present work. Our
results demonstrate that the answer to the question is much greater than 0.707n. In par-
ticular, the greatest lettericity of an n-vertex graph lies between approximately n−2 log2 n
and n− 1

2
log2 n. We begin with some definitions.

For a finite alphabet Σ, we consider a set of ordered pairs D ⊆ Σ2 which we refer to as
a decoder. Then for a word w with letters w(1), w(2), . . . , w(n) ∈ Σ, we define the letter
graph of w with respect to D to be the graph ΓD(w) with the vertices {1, 2, . . . , n} and
the edges (i, j) for all i < j with (w(i), w(j)) ∈ D. If |Σ| = k then we say that ΓD(w) is
a k-letter graph. Finally, for any graph G, the least integer k such that G is (isomorphic
to) a k-letter graph is called the lettericity of G, denoted by `(G).

We include some additional terminology here that will aid in the subsequent discus-
sions. A word w is called a lettering of a graph G if ΓD(w) = G for some decoder D. We
further say that each letter a ∈ Σ encodes the vertices corresponding to the instances of a
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in the word w. More precisely, a encodes the set {1 6 i 6 n : w(i) = a} ⊆ V (ΓD(w)). The
set of of vertices encoded by a given letter a ∈ Σ must either form a clique, if (a, a) ∈ D,
or an anticlique (independent set), if (a, a) /∈ D. Thus letterings of graphs are special
types of cocolorings (a concept introduced by Lesniak-Foster and Straight [13]), and the
lettericity of a graph is bounded below by its cochromatic number. However, as we will
see, lettericity is typically much greater than cochromatic number.

A notable example of a class of graphs with lettericity 2 is the class of threshold
graphs [14]. These graphs can be defined in various ways, but for our purposes, the
most useful definition is as follows: a threshold graph is constructed by iteratively adding
either dominating vertices (adjacent to all previously added vertices) or isolated vertices
(adjacent to none of the previously added vertices). Thus, threshold graphs are precisely
the letter graphs on the alphabet Σ = {a, b} with the decoder D = {(a, b), (b, b)}. To
see this, simply encode vertices based on their order of addition to the graph, using a for
isolated vertices and b for dominating vertices.

Every n-vertex graph is an n-letter graph, as one can simply encode each vertex with
its own letter and then add the appropriate pairs to the decoder. From this perspective,
one ‘saves’ letters by encoding multiple vertices with the same letter. It isn’t difficult to
see that the first and last vertices can always be encoded by the same letter, provided
that no other vertices are encoded by that letter, and thus we can always save at least
one letter. In other words, we have the elementary bound `(G) 6 n − 1 for all n-vertex
graphs G. This gives rise to the following questions that we look to answer in this paper:

• How many letters can we save in all graphs?

• How many letters can we expect to save in a random graph?

In Section 2, we use a Ramsey-type approach to show that we can save at least
k ≈ 1

2
log2 n letters for every n-vertex graph, and thus the lettericity of every n-vertex

graph is bounded above by approximately n− 1
2

log2 n. In Section 3, we show almost all
n-vertex graphs have lettericity at least n− (2 log2 n+ 2 log2 log2 n).

Before getting to these results, the following proposition outlines the construction
that will be used throughout the paper. We establish the upper bound in Section 2
by exploring ways to find induced subgraphs satisfying the hypotheses of Proposition 1.
Then in Section 3, we will see that for almost all graphs, the only way to save letters is
by finding induced subgraphs that satisfy these hypotheses.

Proposition 1. Suppose G is a graph with n vertices containing an induced subgraph H
with 2k vertices that is a k-letter graph for a word of the form

w = `1 `2 · · · `k `π(1) `π(2) · · · `π(k)

for some permutation π of {1, . . . , k}. Then, w can be extended to a lettering of G by
inserting new letters into the middle of w, and thus `(G) 6 n− k.

Proof. Suppose H and w are as in the hypothesis and that D1 ⊆ {`1, `2, . . . , `k}2 is a
decoder for which

ΓD1(w) = H.
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Label the vertices of G−H as v1, v2, . . . , vn−2k and let λ1, . . . , λn−2k be a set of distinct
new letters disjoint from `1, . . . , `k. By choosing as our decoder the set D2 = {(λi, λj) :
1 6 i < j 6 n− 2k and vivj ∈ E(G)}, we see immediately that

ΓD2(λ1λ2 . . . λn−2k) = G−H.

Next define the word

w′ = `1 · · · `k λ1λ2 · · ·λn−2k `π(1) · · · `π(k),

and for each 1 6 i 6 k, let xi and yi be the vertices encoded by the left and right instances
of `i in w, respectively. Now define the sets

Dx = {(`i, λj) : 1 6 i 6 k, 1 6 j 6 n− 2k, and xivj ∈ E(G)},
Dy = {(λj, `i) : 1 6 i 6 k, 1 6 j 6 n− 2k, and vjyi ∈ E(G)}.

Letting D = D1 ∪D2 ∪Dx ∪Dy, it follows that ΓD(w′) = G, which proves the result.

2 Saving letters in all graphs

One way to satisfy the hypothesis of Proposition 1 is to take H to be a clique or anticlique.
Letting R(k) denote the kth diagonal Ramsey number, we know that every graph on at
least R(2k) vertices has such a subgraph, and so we obtain the following.

Proposition 2. For each k and any graph G on n > R(2k) vertices, G has an induced
subgraph with 2k vertices that is a k-letter graph on the word

w = `1 `2 · · · `k `π(1) `π(2) · · · `π(k)

for any permutation π of {1, . . . , k}. Thus, `(G) 6 n− k by Proposition 1.

As it is known that √
2
k
< R(k) 6 4k

for all k, Proposition 2 implies that for all graphs on n ≈ 42k vertices, we can save
k ≈ 1

4
log2 n letters. We show below that we can save twice this many letters in every

n-vertex graph.

Theorem 3. For every k and each graph G on n > 2(k− 1) + 22(k−1) + 1 vertices, G has
an induced subgraph with 2k vertices that is a k-letter graph on the word

w = `1 `2 · · · `k `k · · · `2 `1.

Thus, `(G) 6 n− k by Proposition 1.
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Proof. We use induction on k. For the base case of k = 1, we have a graph G on n > 2
vertices, and the desired induced subgraph can be obtained by taking any two vertices.

Now suppose the result holds for some k > 1 and that G is a graph on n > 2k+22k+1
vertices. By our hypotheses, we have that G has an induced subgraph H that is a k-letter
graph on the word w = `1 `2 · · · `k `k · · · `2 `1, say with decoder D. Since there are 22k + 1
vertices in G that are not in H, the pigeonhole principle tells us that two of these vertices,
call them u and v, must agree on all of the vertices in H. Let H ′ be the induced subgraph
of G on the vertex set V (H) ∪ {u, v}.

We claim thatH ′ is a letter graph on the word w′ = `1 `2 · · · `k `k+1 `k+1 `k · · · `2 `1. For
each 1 6 i 6 k, let xi denote the vertex in H that is encoded by the left occurrence of `i in
w, and similarly, let yi be the vertex that is encoded by the right occurrence of `i, (just as
in the proof of Proposition 1). Now let X = {(`i, `k+1) : xiu ∈ E(G), (equivalently xiv ∈
E(G))} and Y = {(`k+1, `i) : uyi ∈ E(G), (equivalently vyi ∈ E(G))}. Next, let Z be the
set {(`k+1, `k+1)} if uv ∈ E(G) and ∅ otherwise. Then it follows that H ′ is a letter graph
on the word w′ with decoder D′ = D ∪X ∪ Y ∪ Z, that is, ΓD′(w′) = H ′. This gives the
result.

3 Failing to save letters in almost all graphs

We now focus on demonstrating that almost all graphs have large lettericity, indicating
that there is little room for improvement on the upper bound given in Theorem 3. Recall
that the random graph G(n, 1/2) is the graph on n vertices where each edge appears
independently with probability 1/2. Thus, every labeled n-vertex graph occurs with equal
probability. We show that with probability tending to 1 as n → ∞, the lettericity of
G(n, 1/2) is at least n − (2 log2 n + 2 log2 log2 n). First, we prove two results that greatly
restrict the possible letterings of almost all graphs.

Proposition 4. For almost all graphs G, no three vertices can be encoded by the same
letter in a lettering of G.

Proof. Letting G = G(n, 1/2), we show that the probability that three vertices can be
encoded with the same letter in a lettering of G tends to 0 as n → ∞. Assume that we
have a lettering w of G using the alphabet Σ, and that three vertices are encoded by the
letter a ∈ Σ. Then there exist four possibly empty words w1, w2, w3, and w4, such that

w = w1 a w2 a w3 a w4.

Let x, y and z be the vertices encoded by the left, middle and right instances of a
in w, respectively. If a vertex is encoded by the instance of some letter in w1 or w4, then
it must agree on each of the vertices x, y and z. If a vertex is encoded in one of w2 or w3,
then it either must agree on y and z, or on x and y, respectively.

For any vertex v ∈ V (G)\{x, y, z}, there are four possible ways it can agree or disagree
with x, y, and z: it either agrees on all three vertices, agrees on {x, y} but not on z, agrees
on {y, z} but not on x, or agrees on {x, z} but not on y. Since G = G(n, 1/2), these four

the electronic journal of combinatorics 31(4) (2024), #P4.53 4



possibilities are equally likely, and only the last option prevents w from having a place
in which v can be encoded. Thus, the probability that v can be encoded in w is 3/4. It
follows that the probability that every vertex in V (G) \ {x, y, z} can be encoded in w
is (3/4)n−3.

Now let A(x,y,z) be the event that the vertices x, y and z can be encoded, in that order,
by the same letter in a lettering of G. We see from above that Pr[A(x,y,z)] 6 (3/4)n−3. (In
fact, the probability is 0 if x, y and z do not form a clique or anticlique.) Next, define
the event

A =
⋃

(x,y,z)

A(x,y,z),

where the union is taken over all sequences (x, y, z) of distinct vertices of G. Thus, A is
the event that any three vertices can be encoded by the same letter in a lettering of G.
We have that

Pr[A] 6
∑
(x,y,z)

Pr[A(x,y,z)] 6 n(n− 1)(n− 2) · (3/4)n−3,

and therefore Pr[A]→ 0 as n→∞.

Because of this result, we may henceforth assume that we are not able to encode three
or more vertices using the same letter. As a consequence, if we are to save letters, we
must do so in pairs. With this assumption, we see next that in any lettering of almost
every graph G, the letters that appear in pairs are crossing or nested. That is, for almost
all graphs G, if the letters a, b ∈ Σ both appear twice in a lettering w of G, then it
never happens that they appear separated as · · · a · · · a · · · b · · · b · · · , but rather they must
appear crossing as · · · a · · · b · · · a · · · b · · · or nested as · · · a · · · b · · · b · · · a · · · .

Proposition 5. For almost all graphs G, if two letters appear twice in a lettering of G,
they must appear in a crossing or nested pattern.

Proof. Letting G = G(n, 1/2), we show that the probability that G has a lettering in which
two pairs of letters appear in a separated pattern tends to 0 as n → ∞. This will yield
the result since the only other possibility is that the pairs of letters are crossing or nested.
Suppose that we have a lettering w of G over the alphabet Σ containing a and b given by

w = w1 a w2 a w3 b w4 b w5,

for some possibly empty words w1, w2, w3, w4, and w5. Let x, y, s, and t be the vertices
of G encoded in w by these instances of a and b, reading left to right. Fix a vertex in
V (G) \ {x, y, s, t}. This vertex can be encoded in w1, w3, or w5 only if it agrees on {x, y}
and on {s, t}. Further, it can be encoded in w2 or w4 only if it agrees on {s, t} or on {x, y},
respectively.

For each vertex v ∈ V (G) \ {x, y, s, t}, there are four possible ways it can agree
or disagree on the pairs {x, y} and {s, t}: it either agrees on both pairs, agrees only
on {x, y}, agrees only on {s, t}, or disagrees on both pairs. These possibilities are equally
likely because G = G(n, 1/2), and only the last case prevents w from having a place in
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which v can be encoded. Thus, the probability that v can be encoded somewhere in w
is 3/4. Hence, the probability that every vertex in V (G) \ {x, y, s, t} can be encoded in w
is (3/4)n−4.

Let B(x,y,s,t) be the event that there is a lettering of G in which the vertices x, y,
s and t are encoded in that order, x and y are encoded by the same letter, and s and
t are encoded by a second letter. Thus, this is the event that these four vertices can
correspond to a separated pattern encoded in the given order. From above, we have that
Pr[B(x,y,s,t)] 6 (3/4)n−4. (In fact, this probability is 0 if x and y do not agree on s and t,
and vice versa.) Next, define the event

B =
⋃

(x,y,s,t)

B(x,y,s,t),

where the union is over all sequences (x, y, s, t) of distinct vertices of G. Thus, B is the
event that a lettering of G has two pairs of letters in a separated pattern. We have that

Pr[B] 6
∑

(x,y,s,t)

Pr[B(x,y,s,t)] 6 n(n− 1)(n− 2)(n− 3) · (3/4)n−4,

and therefore Pr[B]→ 0 as n→∞.

By Propopsition 4, we know that for almost all graphs G on n vertices, if G has
a lettering with n− k letters, then it will have k letters that appear twice and n − 2k
letters that appear once. Suppose that the letters appearing twice are `1, `2, . . . , `k. By
Proposition 5, we know that for almost all graphs that have such a lettering, there is a
permutation π of {1, . . . , k} such that the subword of w containing all of these letters is

`1 `2 · · · `k `π(1)`π(2) · · · `π(k). (†)

Note that this is the same construction considered in Proposition 1.
It remains to analyze the probability that there is an induced subgraph that can be

lettered by a word such as that of (†). To this end, let G = G(n, 1/2) and k an integer
satisfying 2k 6 n. Further, let (vi) = (v1, . . . , v2k) be a sequence of distinct vertices of G
and π a permutation of {1, . . . , k}. We define C(vi),π to be the event that there exists a
decoder D ⊆ {`1, . . . , `k}2 such that the mapping vi 7→ i is an isomorphism between the
induced subgraph G[{v1, . . . , v2k}] and the letter graph ΓD(`1 · · · `k `π(1) · · · `π(k)).

To evaluate Pr[C(vi),π], for every pair i < j we handle the case of the `i’s and `j’s being
either crossing or nested in the word `1 · · · `k `π(1) · · · `π(k). If these letters are crossing,
then, as is indicated by the three lines in Figure 1, there are three potential edges that
must agree. That is, all three of these edges will be decided by the presence or absence
of (`i, `j) in the decoder, and hence they must all be edges or non-edges. With each edge
decided with probability 1/2, the probability that the three potential edges agree is 1/4.

If the letters `i and `j are nested, then we see in Figure 2 that there are two pairs
of potential edges that must agree. That is, the solid lines must agree since they are
both determined by the presence or absence of (`i, `j) in the decoder, and the dotted lines
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`i `j `i `j

Figure 1: The potential edges that must agree in a crossing pattern.

must agree because they are both determined by the presence or absence of (`j, `i) in the
decoder. Again, with each of these edges decided with probability 1/2, the probability that
both of these pairs of potential edges agree is 1/4.

`i `j `j `i

Figure 2: The potential edges that must agree in a nested pattern.

For each pair i < j, which of these two cases must be satisfied is determined by π, and
since each case has probability 1/4 of being satisfied, it follows that

Pr[C(vi),π] = (1/4)(
k
2) = 2−k(k−1).

Next, we define the event
C =

⋃
(vi),π

C(vi),π,

where the union is over all sequences (vi) of 2k distinct vertices of G and all permutations
π of {1, . . . , k}. Thus, C is the event that an induced subgraph of G can be encoded in
the form of (†). In light of the preceding arguments, we can regard C as the only event
in which k letters can be saved in a lettering of almost all graphs G. To obtain the main
result of this section, we simply need to minimize the value of k so that the probability
of C still goes to zero as n→∞.

Theorem 6. For almost all graphs G with n vertices, we have

`(G) > n− (2 log2 n+ 2 log2 log2 n).

Proof. It is clear from above that

Pr[C] 6
∑
(vi),π

Pr[C(vi),π] = n(n− 1) · · · (n− 2k + 1) · k! · 2−k(k−1).

Using the straightforward inequalities n(n− 1) · · · (n− 2k+ 1) 6 n2k and k! 6 kk, we see
that

Pr[C] 6 n2kkk2−k(k−1) = (n2k2−k+1)k.

Setting k = 2 log2 n + 2 log2 log2 n, simple computations show that Pr[C] tends to 0 as
n→∞, and therefore the result follows from the preceding arguments.
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