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Abstract

When searching for small 4-configurations of points and lines, polycyclic con-
figurations, in which every symmetry class of points and lines contains the same
number of elements, have proved to be quite useful. In this paper we construct and
prove the existence of a previously unknown (214) configuration, which provides a
counterexample to a conjecture of Branko Grünbaum. In addition, we study some
of its most important properties; in particular, we make a comparison with the
well-known Grünbaum–Rigby configuration. We show that there are exactly two
(214) geometric polycyclic configurations and seventeen (214) combinatorial poly-
cyclic configurations. We also discuss some possible generalizations.
Mathematics Subject Classifications: 51A45, 51A20, 05B30, 51E30, 05C62

1 Introduction

A breakthrough in the modern study of geometric configurations of points and lines came
with the seminal paper [17] of Grünbaum and Rigby in which the first geometric point-line
representation of a 4-configuration was constructed. This (214) configuration, which has
21 points and lines in which each point lies on 4 straight lines and each line passes through
four points, was based on the work of Felix Klein [19] on his famous quartic curve, and is
nowadays known as the Grünbaum–Rigby configuration; we denote it by GR(214). Later,
Branko Grünbaum discovered a large number of (n4) configurations. Some of them were
constructed in the spirit of GR(214) (later called celestial configurations), while others
were constructed by various techniques from smaller ones. In 2003, Boben and Pisanski
[6] initiated the theory of polycyclic configurations, having GR(214) and some other con-
figurations from another paper of Grünbaum (co-authored by Harold Dorwart) [13] as the
prime models of such configurations.
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An (nk) combinatorial configuration is a collection of n objects, called “points” and n
collections of “points”, called “lines”, such that each point is incident with k lines and each
line contains k points. Each combinatorial configuration is in one-to-one correspondence
to a bipartite graph in which each point and each line corresponds to a node of the
configuration and incident point- and line-nodes are connected by an edge of the graph;
this incidence graph is called the Levi graph of the configuration. If the points are distinct
points in some Euclidean space (usually the plane) and the lines are distinct straight
lines, then we call this a geometric configuration, or a (strong) geometric realization of
the corresponding combinatorial configuration.

A configuration is self-dual if there exists a color-exchanging automorphism of the
corresponding Levi graph, which exchanges the roles of points and lines. We reserve the
term “symmetry” to refer to the geometric symmetries of a particular geometric realization;
for example, the realization of the Grünbaum–Rigby configuration shown in Figure 1(a)
has seven-fold rotational symmetry.

A geometric configuration is polycyclic if the orbits of the points and lines under the
action of the maximal rotational symmetry group each have the same number of elements;
we call these orbits the symmetry classes of the configuration. A geometric configuration
has a polycyclic realization if the corresponding semi-regular automorphism can be realized
geometrically using k-fold rotational symmetry, where k is the order of the orbits of points
and lines.

The study of polycyclic configurations was independently pursued and further devel-
oped by Grünbaum [16] as well as Berman and her coauthors DeOrsey, Faudree, Jaksch,
Pisanski, Ver Hof and Žitnik (see, e.g. [2, 4, 5, 3]). It is closely intertwined with graph
theory as well; for details on this connection, see [20].

In their paper, Grünbaum and Rigby conjectured:

1. that no other (214) configuration exists, and

2. no (n4) configuration exists for n < 21.

It was a big surprise when Grünbaum himself disproved the second part of this conjecture
[15] by constructing a (204) configuration, which we denote by G(204). At that time, it was
widely believed that the GR(214) configuration was the only geometric 4-configuration
for n = 21, and that G(204) is the smallest geometric 4-configuration. However, a few
years later, Bokowski and his coauthors Pilaud and Schewe showed that there are no (n4)
configurations for n 6 17, that there are exactly two distinct (184) configurations [9, 10],
and that no geometric (194) configuration exists [7].

A number of months ago, the first author of this paper constructed a new (214)
geometric configuration, depicted in Figure 2, which provides a counterexample to the
first part of the Grünbaum–Rigby conjecture. We denote this configuration by B(214).
The main goal of this paper is to provide a proof of existence of this configuration; we
present both a synthetic and an analytic proof, since we believe that both have their
benefits, and may form a suitable basis for extending the research to configurations with
analogous structure. For the same reason, we also discuss some interesting structural
properties of this configuration.
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Figure 1: (a) The Grünbaum–Rigby (214) geometric configuration, denoted by GR(214),
and (b) its Levi graph. In the Levi graph, point-vertices are shown with circles and line-
vertices are shown with squares, and the colors correspond to the colors of the symmetry
classes of the points and lines of the configuration. We note that the colors are also
consistent with the self-dualities (in the sense that self-duality maps of the configuration
preserve the colors; these maps correspond to certain automorphisms of the Levi graph).

2 A comparison of the configurations GR(214) and B(214)

It is not hard to verify that B(214) is combinatorially distinct from GR(214). Namely,
one can compute the Levi graphs of both configurations. We used the computer algebra
system Sage to prove that the two 4-valent graphs on 42 vertices are non-isomorphic. For
instance, the Levi graph of B(214) has only 12 automorphisms, while the Levi graph of
GR(214) has 672 automorphisms (including bipartition-reversing automorphisms, which
correspond to self-dualities of these configurations).

The Levi graph of the Grünbaum–Rigby configuration, which we denote by L(GR),
can be described as the Kronecker cover over the line graph of the renowned Heawood
graph. Its automorphism group contains 672 elements. Half of them correspond to combi-
natorial self-dualities, while the other half correspond to combinatorial automorphisms of
GR(214). As for the latter, we know that the automorphism group of both the Heawood
graph and the Grünbaum–Rigby configuration is PGL(2, 7) of order 336 [17], and is a
subgroup of index 2 in the automorphism group of L(GR). We observe that out of the 336
combinatorial symmetries, only 14 are geometrically realizable in the standard polycyclic
realization; also, from the 336 combinatorial self-dualities, 14 are geometrically realizable.
This means that GR(214) shown in Figure 1 geometrically realizes 28 out of the 672 graph
automorphisms.
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Figure 2: A new (214) geometric configuration, denoted by B(214).

We used programs written in Sage to compute all semi-regular automorphisms of
L(GR) and the corresponding quotient graphs. The quotients that are bipartite corre-
spond to reduced Levi graphs.

Here we recall that an automorphism α of a graph G is called semi-regular if all of its
orbits are of the same size, say k. It defines a projection π from G to the quotient graph
B = G/α, π : G → B = G/alpha, that is a local isomorphism (also called acovering
projection). By assigning arbitrarily directions to edges of B, and by an appropriate
assignment of elements from Zk to the edges of G/α, a voltage graph is obtained, and Zk

is called the voltage group. A graph admitting a semi-regular automorphism α is called
polycirculant (with respect to α). Each quotient of a non-bipartite polycirculant graph is
non-bipartite. However, a quotient of a bipartite polycirculant graph may be non-bipartite
or bipartite. A bipartite quotient of a Levi graph is called a reduced Levi graph (RLG). The
semi-regular automorphism producing an RLG has each orbit monochromatic. Each orbit
corresponds either to a set of points or to a set of lines of the configuration. Reduced Levi
graphs were introduced in Grünbaum’s monograph [16]. There is a well-known procedure
for reconstructing G from its voltage graph. For more details, see [16, 20, 2]). Here we
only consider the case of RLGs.

Our computations show that there are 314 semi-regular automorphisms producing

the electronic journal of combinatorics 31(4) (2024), #P4.54 4



8 distinct quotient graphs of L(GR). However, only two of them are bipartite, hence
there exist only two non-isomorphic RLGs that can possibly correspond to polycyclic
realizations of of the Grünbaum-Rigby configuration.

The first RLG, on 6 vertices, is expected, since it can be deduced from Figure 1, and
is depicted in Figure 3. The associated voltage group is Z7, consistent with the seven-fold
rotational symmetry of the geometric Grünbaum–Rigby configuration.

2

1

3 2

1

3

Z7

Figure 3: The reduced Levi graph RLG(GR) with voltage group Z7 for the polycyclic
Grünbaum–Rigby GR(214) configuration with seven-fold rotational symmetry. The colors
for the symmetry classes match the colors from Figure 1.

However, the second one, depicted in Figure 4a, was quite unexpected. It has 14
vertices, and the corresponding voltage group is Z3. Initially, we wanted to know if
there existed a polycyclic geometric realization of the Grünbaum–Rigby configuration
with three-fold rotational symmetry. All our attempts to generate such a realization
based on the RLG shown in Figure 4a failed (see Section 6).

There is a simple algorithm that can produce a Levi graph from a reduced Levi graph.
For a reduced Levi graph with voltage group Zm, the notation L va means that there
is a symmetry class of points labeled v, with elements vi, i = 0, . . . ,m − 1; a symmetry
class of lines L, with elements Li, i = 0, . . . ,m − 1; and that each line Li is incident
with vertex vi+a, with index arithmetic taken modulo m. For convenience, we provide an
incidence table from the reduced Levi graph shown in Figure 4a, see Table 1.

3 A synthetic proof of the existence of B(214)

Theorem 1. There exists a self-dual geometric, polycyclic (214) configuration with three-
fold rotational symmetry.

Here we recall that a configuration C is called self-dual if there is an incidence-
preserving correspondence that maps the points of C onto its lines and vice versa [16, 20].
(Note that this is equivalent to the defnition given in the Introduction.)

Before proving this theorem, we need some more preliminaries.
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Figure 4: (a) The reduced Levi graph RLG(B) for the configuration B(214). The volt-
age group is Z3, expressing the fact that this configuration exhibits three-fold rotational
symmetry. Point orbits of B(214) are represented by circular nodes and line orbits by
rectangular nodes. The color-preserving rotational symmetry of order two of the graph
corresponds to a self-duality of the configuration. (b) A version of the RLG with generic
parameters.

r0 M0 M1 G1 P0 r1 M1 M2 G2 P1 r2 M2 M0 G0 P2

y0 M2 B1 C0 P0 y1 M0 B2 C1 P1 y2 M1 B0 C2 P2

g0 B0 C1 R1 P0 g1 B1 C2 R2 P1 g2 B2 C0 R0 P2

m0 Y2 R0 R1 P1 m1 Y0 R1 R2 P2 m2 Y1 R2 R0 P0

b0 C0 C2 Y1 G0 b1 C1 C0 Y2 G1 b2 C2 C1 Y0 G2

c0 B0 B2 G1 Y0 c1 B1 B0 G2 Y1 c2 B2 B1 G0 Y2
p0 R0 Y0 G0 M1 p1 R1 Y1 G1 M2 p2 R2 Y2 G2 M0

Table 1: The incidence table of B(214).

3.1 Quasi-configurations

Recall that an incidence structure C is a triple C = (P,B, I), where P is the set of points,
B is the set of lines (or blocks), and I ⊆ P × B is the incidence relation [20]. Given
an incidence stucture C = (P,B, I), assume that P is a disjoint union of subsets Pi of
cardinality pi (i = 1, 2, . . . ,m(P )), and L is a disjoint union of subsets Lj of cardinality
nj (j = 1, 2, . . . ,m(L)). We call C a (combinatorial) quasi-configuration of type((

p1q1
)(
p2q2

)
. . .

(
pm(P )
qm(P )

)
,
(
n1
k1

)(
n2
k2

) . . .
(
n
m(L)
km(L)

))
,
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if each point in Pi is incident with qi lines, and each line in Lj is incident with kj points.
(We note that here we adopt the term used by Bokowski and Pilaud [8], but with slightly
different meaning.)

Observe that a quasi-configuration with m(P ) = m(L) = 1 is a configuration in the
usual sense. In analogy with the case of configurations, if all the numerical parameters
of a quasi-configuration C are the same for the points and the lines, we use the simplified
notation ((

n1
k1

)(
n2
k2

) . . .
(
n
m(L)
km(L)

))
,

and we say that C is balanced (here we adopt the term introduced by Grünbaum [16]).
In particular, below we construct a quasi-configuration of type ((62)(94)), where the type
notation shows that it contains

• 6 points, each incident to 2 lines,

• 9 points, each incident to 4 lines, and conversely,

• 6 lines, each incident to 2 points and

• 9 lines, each incident to 4 points.

3.2 Self-reciprocity

It is clear that the notions of duality and self-duality of configurations applies also to
quasi-configurations. In particular, it is also clear that a self-dual quasi-configuration is
necessarily balanced. A stronger version of duality is when it is induced by reciprocation
with respect to a circle. (We note that, in general, reciprocation with respect to a circle
is a useful tool for producing the dual of a configuration [16]; it is a simple procedure
which means constructing the polar in the case where the conic of polarity is a circle.)
We say that a quasi-configuration C is self-reciprocal if there is a circle Ω such that
the reciprocation with respect to Ω sends C to its isometric copy. We distinguish three
particular cases of self-reciprocity. We call C perfectly self-reciprocal if it coincides with
its reciprocal. The Grünbaum–Rigby configuration provides an example of a perfectly
self-reciprocal configuration (further examples occur in [14], where this notion is applied
for the first time). Two slightly weaker versions are when for attaining coincidence one
has to apply a subsequent rotation or reflection on the reciprocal image. In these cases
we speak of a rotationally or reflexibly self-reciprocal configuration, respectively. Figure 5
shows an example of a polycyclic (244) configuration which is rotationally self-reciprocal.
One directly observes that, in addition, it is mirror symmetric (with 12 mirror lines); this
implies that it is reflexibly self-reciprocal as well. We remark that Branko Grünbaum
in his book [16] uses the term oppositely self-polar for a configuration with this latter
property; in his Figure 5.8.2 he presents precisely this configuration for an example.

Given a polycyclic (quasi-)configuration C realized with k-fold rotational symmetry
possessing any of the self-reciprocity properties mentioned above, any (say, the ith) orbit
of points with respect to Zk is located on a circle Γi concentric with Ω; furthermore,
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Figure 5: Example of a configuration which is both rotationally and reflexibly self-
reciprocal. The circle of reciprocation is shown by dashed line. The angle of rotation
for attaining coincidence is π/12. The reciprocal image will also coincide with the origi-
nal copy by reflecting it in the mirror line shown dashed (there are 12 such mirror lines).

the orbit of the corresponding polar lines has an incircle Γ′i (also concentric with Ω).
Obviously, Γi and Γ′i are inverse images of each other with respect to Ω, in other words,
Ω is the midcircle of these circles.

The mid-circle can be constructed in the following way. Take a ray starting from
the common center O, and let it intersect Γi and Γ′i in points P and P ′, respectively.
Take the Thales’ circle T with diameter PP ′, and construct a tangent line to T from the
point O. Let T be the point of tangency. Then the midcircle is obtained as a circle of
radius OT centered at O. We recall that this construction is based on some elementary
properties of inversion with respect to a circle [11], which can be summarized in the
following proposition.

Proposition 2. Let Ω be the circle of an inversion ϕ, and let Γ1 be a circle. Then the
following conditions are equivalent.

1. Γ1 is invariant under ϕ;

2. if Γ1 passes through a point P , then it also passes through ϕ(P );

3. Γ1 is orthogonal to Ω.

3.3 A quasi-configuration of type ((62)(94))

Before stating our proposition here, we recall that (following Grünbaum [16]) a config-
uration is called rigid if its geometric realizations form a single class under projective
transformations. We say that it is movable if it has more than one projectively non-
equivalent realization; that is, if four points of the configuration in general position can
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be fixed and a fifth point can be moved while maintaining incidence. Accordingly, given
a movable configuration C, the number of parameters that can be changed independently
when moving C is called the degree of freedom.

Proposition 3. There exists a self-reciprocal quasi-configuration of type ((62)(94)) with
three-fold rotational symmetry. It is movable, with one degree of freedom.

We denote this quasi-configuration by QC(B). It is depicted in Figure 6. We distinguish
the orbits of points and lines (w.r.t. its rotational symmetry group) by colors, namely,
we use green, magenta, purple, red and yellow. The points and lines will be denoted
accordingly by Xi and xi (i = 0, 1, 2), respectively, where X and x is the initial of the
name of the corresponding color. The corresponding orbit of points and lines will be
denoted by (X) and (x), respectively. As we shall see below, this quasi-configuration
forms a substructure of B(214); hence here we use for labelling its points and lines the
labels taken from Table 1.

Figure 6: The quasi-configuration QC(B). The circle of reciprocation is also shown (drawn
dashed).

Remark 4. Throughout the construction given in the proof below, the indices are meant
modulo 3. In addition, we use the convention that rotation either of a point Xi or of a
line xi by angle +120◦ (i.e., counterclockwise) increases i by one; the center of rotation
coincides with center O of the triangle R0R1R2.
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Proof. We give a construction for QC(B) in the following 11 steps.

1. Fix an equilateral triangle with red vertices Ri and magenta side lines mi = RiRi+1.

2. Take a yellow point Y2 on the line m0 such that it can be shifted freely in the
interior of the segment R1M01, where M01 denotes the midpoint of the side R0R1 of
the triangle R0R1R2. Take also the rotates of this point by angle ±120◦.

3. Take the purple line p2 := Y2R2 and its corresponding rotates.

4. Let A be an auxiliary point defined as the intersection A := Y0Y1 ∩ C(R1OR2),
where Y0Y1 is the segment connecting Y0 and Y1, and C(R1OR2) is an auxiliary
circle circumscribed on on the points R1, R2 and the center O.

5. Take the green line g1 := R2A and its corresponding rotates.

6. Take the purple point of intersection P0 := g0 ∩m2, and its rotates P1 and P2.

7. Take the circumcircle of the points P0, P1, P2, and the incircle of the triangle formed
by the lines p0, p1, p2. Construct the mid-circle of these circles; denote it by Ω.

8. Take the circumcircle γR of the points R0, R1, R2, and invert it in the circle Ω.
Denote the inverse circle by γr. Draw tangents to γr from the point P1, and choose
the one subtending the smaller angle with the line g1. Let it be a red line denoted
by r1; take its corresponding rotates r2 and r0.

9. Take the point of intersection G0 := p0 ∩ r2, and its rotates.

10. Take the circumcircle γY of the points Y0, Y1, Y2, and invert it in the circle Ω. Denote
the inverse circle by γy. Draw tangents to γy from the point P1, and choose the one
subtending the greater angle with the line g1. Let it be a yellow line denoted by y1;
take its corresponding rotates y2 and y0.

11. Take the point of intersection M0 := p2 ∩ r2, and its rotates.

The construction of QC(B) is thus complete. It is directly seen that this structure
is movable: indeed, it can be transformed into infinitely many projectively inequivalent
versions while preserving incidences, by shifting the point Y2 on the line m0 (within the
interval R1M01, as determined in step (2)). Thus, the degree of freedom is 1; using
the auxiliary elements in step (4) serves the very purpose of preventing larger degree of
freedom from appearing.

By an easy check one sees that each point has its dual counterpart and vice versa.
The duality is induced by reciprocation with respect to the circle Ω constructed in step
(7); thus, duality (P )↔(p) is defined there. The orbit (r) is defined in step (8) using the
same reciprocation, thus duality (R)↔(r) also holds. Similarly, step (10) defines duality
(Y )↔ (y). By comparing the definition of orbit (G) in step (9) with the definition and
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a property of orbit (g) in steps (5) and (6), and using the already established dualities,
one sees that duality (G)↔ (g) holds as well. Finally, duality (M)↔ (m) can be verified
similarly by a comparison of steps (1) and (11). Observe that coloring the points and
lines indicates their duality.

From the type ((62)(94)) of QC(B) one obtains that there are 48 incidences; due to
symmetry, this means 16 incidence types, i.e. combinations of colors of the form (X, x′).
From Figure 6 one can see that because of the presence of two trilaterals (with red vertices
and with magenta vertices) this number reduces to 14. 13 types of incidences are defined
directly in the construction; in the order of occurrence, these are: (R,m), (Y,m), (R, p),
(Y, p), (R, g), (P, g), (P,m), (P, r), (G, p), (G, r), (P, y), (M, p), (M, r). One observes that
by the definition of the points and lines, and their duality established above, 12 of these
incidences can be ordered into 6 dual pairs of the form ((X, x′), (X ′, x)). Finally, the last,
13th incidence (M, y) also holds, which is verified by duality since we have (Y,m).

3.4 Proof of Theorem 1

Proof of Theorem 1. Here we continue the construction given above with additional steps.

12. Define B0 as the point of intersection B0 := g0 ∩ y2, and similarly its rotates by
cyclic permutation of the indices.

13. Define the cyan line c0 := B0B2, and similarly its rotates by cyclic permutation of
the indices.

14. Take the circumcircle γB of the blue points B0, B1, B2, and invert it with respect
to the circle Ω. Denote the resulted circle by γb. Draw tangents to this circle from
the point Y2, and choose the one that is separated from the center O by the line p2.
Denote it b1, and take its rotates b2 and b0.

15. Define C0 as the point of intersection C0 := b0∩b1, and similarly its rotates by cyclic
permutation of the indices.

16. Take the point of intersection of c1 and m0, and denote it by Y ′2 .

Observe that the incidence structure obtained in steps 1–16 above is movable. In
fact, QC(B) is movable, as we have seen in the preceding subsection, and this
poperty has been preserved throughout the additional steps 12–16. In the following,
we utilize this property. Indeed, consider the mutual position of the points Y2 and
Y ′2 within the interval (R1M01).

17. Move Y2 along the given interval.

Now, one observes that while shifting Y2 along this interval, Y ′2 moves in the opposite
direction. In particular, both cases of the order of the following four points may occur,
such as (R1, Y

′
2 , Y2,M01) and (R1, Y2, Y

′
2 ,M01) (this is checked in a dynamic geometry

model). Hence, by continuity, an intermediate case must exist, where Y2 and Y ′2 will
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coincide. This is precisely the case where our movable structure obtained above becomes
equal to B(214).

This continuity argument is justified by the following observation. When building the
incidence structure through steps (1–16), in each step where a new point or line is defined,
its position is a continuous function of that of the already existing geometric constituents
used in the definition. This is in fact a simple observation, provided we restrict ourselves
to the domain (R1M01), where the first movable point Y2 is located.

Now we check the new incidences which occurred in this second part of our construc-
tion. Incidences (B, g), (B, y) and (B, c) exist by definition. Since orbit (b) is defined
by reciprocating (B), the dual incidences (G, b), (Y, b) also hold. Again, we have (C, b)
by definition. It follows the triangles B0B1B2 and C0C1C2 are dual to each other (by
reciprocating in Ω). This means, in particular, that orbits (C) and (c) are dual to each
other. From the continuity argument we infer that incidence (Y, c) holds. By duality,
(C, y) also holds.

What remain to be verified are incidences (C, g) and (G, c); in fact, either of them is
sufficient by duality. We choose (C, g). For illustration, we use Figure 7.

Figure 7: The configuration B(214) with the circle of reciprocation indicated. The mirror
line belonging to the self-reciprocation d given in Section 4 is also shown by a dashed line.
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Draw the auxiliary circle Γa through the points Y0, O, R1. Due to the rotational
symmetry, the angles R0Y2O and R1Y0O are equal. On the other hand, the angles R0Y2O
and OY2R1 are supplementary, thus so are the angles OY2R1 and R1Y0O. Hence the
quadrangle R1Y0OY2 is cyclic, which means that its vertex Y2 also lies on the circumference
of Γa.

Since its angle at vertex R1 is 60◦, the angle at the opposite vertex O is 120◦. Observe
that this latter angle is subtended by the arc Y2R1Y0. In addition, the angle Y0C1Y2 is
subtended by the same arc, and (since it is the point of intersection of two blue lines) it
is also 120◦; hence its vertex C1 lies on the circumference of Γa.

Consider now the angles OR1C1 and OY2C1. Since they are subtended by the same
arc (determined by C1 and O), while their vertex R1 resp. Y2 lie on the circumference of
Γa, they are equal. Take the vertices of the triangle determined by the green lines, and
denote them by U0, U1 and U2. Observe that the line OU1 bisects the angle at U1 of the
triangle U0U1U2, and so does the line OR1 the angle at R1 of the triangle R0R1R2; hence
both of these angles are 30◦. It follows that the triangles OR1U1 and OY2C1 are similar
to each other (these triangles are highlighted in Figure 8 by red and yellow, respectively).

Recall that by a basic theorem of Euclidean plane geometry, any two similar triangles
A1A2A3 and A′1A′2A′3 determine a unique similarity transformation which sends the vertex
Ai to vertex A′i for all i ∈ {1, 2, 3}. If the triangles are oriented alike, then this transfor-
mation is a dilative rotation [12]. In our case, we see that we have a dilative rotation %
such that its fixed point is the common vertex O of the red and yellow triangle considered
above, and it acts on the two other vertices as follows:

% : R1 7→ Y2, U1 7→ C1.

Taking into account the three-fold rotational symmetry, we see that % transforms the
equilateral triangle R0R1R2 into the triangle Y1Y2Y0 inscribed in it (in the sense that
the vertices of the latter are incident to the side lines of the former). Thus we conclude
that % acts on the triangle U0U1U2 in the same way, which means that this triangle is
transformed into the triangle whose side lines are the blue lines, vertices are the cyan
points, moreover, it is inscribed in the triangle U0U1U2. But the side lines of the triangle
U0U1U2 are the green lines, hence we see that the incidence (C, g) holds indeed.

Based on the construction above, here we provide the coordinates of the initial four
points determining the configuration. Assume that the red points are located as follows:

R0 = (sin(120◦), 0.5); R1 = (sin(−120◦), 0.5); R2 = (0,−1).

Then Y2 can be given (up to 15 decimals) as follows:

Y2 = (−0.031440363334572, 0.5).

4 Automorphims and self-dualities of B(214)

We denote the automorphism group of the Levi graph of B(214) by Aut L(B). By our
programs written in Sage (mentioned in Section 2) we know that it is isomorphic to the
dihedral group D6 of order 12 (see item 1 in Table 2).
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Figure 8: Illustration for the verification of incidence (C, g).

It is generated by two generators r, d such that it is given by the following presentation:

〈r,d | r6 = d2 = (rd)2 = 1〉. (1)

The corresponding Cayley graph of this group is depicted in Figure 9.
In our case, the generators take the following form:

r =(R0,M0, R1,M1, R2,M2)(Y0, G2, Y1, G0, Y2, G1)

(B0, C2, B1, C0, B2, C1)(P0, P2, P1)

(r0,m1, r1,m2, r2,m0)(y0, g2, y1, g0, y2, g1)

(b0, c2, b1, c0, b2, c1)(p0, p2, p1),

(2)

d =(R0, r1)(R1, r0)(R2, r2)(Y0, y1)(Y1, y0)(Y2, y2)

(P0, p1)(P1, p0)(P2, p2)(G0, g1)(G1, g0)(G2, g2)

(B0, b1)(B1, b0)(B2, b2)(C0, c1)(C1, c0)(C2, c2)

(M0,m1)(M1,m0)(M2,m2).

(3)

the electronic journal of combinatorics 31(4) (2024), #P4.54 14



1

r2

r4
d

r2d

r4d

r

r3

r5

rd

r3d

r5d

Figure 9: The Cayley graph of Aut L(B) corresponding to the presentation (1); the gen-
erator r is shown with gray arrows and the involutory generator d with dashed edges.
The red vertices represent purely combinatorial automorphisms which cannot be realized
geometrically (that is, using reciprocation and reflections or rotations).

Using Table 1 one can directly check that r and d are indeed Levi graph automorphisms
that generate the whole automorphism group of order 12.

On the other hand, taken to the second power

r2 =(R0, R1, R2)(r0, r1, r2)(Y0, Y1, Y2)(y0, y1, y2)(P0, P1, P2)(p0, p1, p2)

(G0, G1, G2)(g0, g1, g2)(B0, B1, B2)(b0, b1, b2)(C0, C1, C2)(c0, c1, c2)

(M0,M1,M2)(m0,m1,m2),

(4)

one obtains a (geometric) rotation of order 3, which generates the symmetry group
Sym B(214) = 〈r2〉 ∼= Z3 of B(214). We note that this verifies as well that B(214) is
a polycyclic configuration with respect to Z3.

The automorphism r generates the full automorphism group Aut B(214) ∼= Z6 of our
configuration. The other 6 elements of Aut L(B) are all (involutory) self-dualities of
B(214). Three of them are purely combinatorial self-dualities (see Figure 9). On the
other hand, d given by equality (3), and its two conjugates r2d and r4d are realized as
geometric transformations. Namely, they are reflexible self-reciprocations of B(214). The
circle of reciprocation is shown in Figure 7. The mirror line belonging to d is also shown in
the same figure; the mirror lines belonging to the two other self-reciprocations are rotates
of this line by angles ±120◦.

As it can directly be seen from Figure 9, one of the purely combinatorial self-dualities
is given as r5d = dr. Using equalities (2) and (3), for this product one obtains the
following expression:

dr =(R0,m2)(R1,m1)(R2,m0)(Y0, g0)(Y1, g2)(Y2, g1)

(P0, p0)(P1, p2)(P2, p1)(G0, y0)(G1, y2)(G2, y1)

(B0, c0)(B1, c2)(B2, c1)(C0, b0)(C1, b2)(C2, b1)

(M0, r1)(M1, r0)(M2, r2).

(5)
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Observe that the symmetry properties of the reduced Levi graph of B(214) show both
types of self-duality: indeed, its half-turn symmetry (i.e. rotational symmetry of order
two) shows self-reciprocity, while the mirror symmetry with respect to a horizontal axis
shows precisely the type of combinatorial duality given by the expression above (see the
colors of the nodes representing the point orbits and line orbits of the configuration).

We conclude this subsection with some questions related to the rank of self-duality.
Let C be a self-dual configuration, and let δ denote a self-duality map of C. The rank r(δ)
of δ is defined as its order, i.e. the smallest positive integer n such that δn is the identity.
A configuration may have more than one self-duality maps (in our case we have altogether
6, as we have seen above), thus the following definition makes sense. The rank r(C) of
a self-dual configuration C is the minimum value of r(δ) over all self-duality maps δ of
C. (We note that this notion was introduced by Grünbaum and Shephard [18] in case of
geometric objects for which self-duality can be defined, in particular, for polyhedra and
configurations; for further details related to configurations, see [16] and the references
therein).

As we have seen above, all the self-dualities of B(214) are involutory, thus its rank
r(B(214)) = 2. But as we have also seen, B(214) is reflexibly self-reciprocal; hence the
question arises that, in general, does the latter property imply the former? It is appro-
priate here to cite a conjecture by Grünbaum [16, Conjecture 5.8.1].

Conjecture 5. Every self-dual geometric configuration of rank 2 has a realization such
that its polar (in a suitable circle) is congruent to the original configuration.

(We note that “congruent” is meant here in the usual geometric sense, i.e. two geometric
configurations are called congruent if there is an isometry of the ambient space that maps
the one into the other.)

5 Analytic proof of the existence of the configuration B(214)

We use the reduced Levi graph shown in Figure 4a as a “recipe” to construct the configu-
ration analytically with homogeneous coordinates, using Mathematica. We are interested
in constructing a strong realization of the configuration, in which all the points and lines
are distinct.

There are a number of ways to walk through the reduced Levi graph. Here, we present
one which uses only meets and joins so that in the final steps, we are solving a system of
two polynomials in two unknowns. We begin by fixing the red points and magenta lines.
(For convenience, we use a rotated starting position for the red points from that used
in the previous section.) We make the following assignments, following the labels on the
reduced Levi graph shown in Figure 4b with the assignments from Figure 4a.

{a, c, d, e, f, g, q, a′, c′, d′, e′, f ′, g′, q′, t} = {1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 0}.

We place a yellow point Yi arbitrarily (using parameter x) on a magenta line mi−a, and
then use the red points Ri and yellow points Yi to define the purple lines pi. On the purple
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line pi, we place a green point Gi arbitrarily, using parameter z. The rest of the points
and lines are determined, as follows, in order (all indices taken mod 3):

Ri = (2 cos(2πi/3), 2 sin(2πi/3), 1)

mi = Ri ×Ri+a

Yi = (1− x)mi−c + xmi−c+a

pi = Yi ×Ri

Gi = (1− z)Ri + zYi

bi = Yi+e′ ×Gi

ci = Yi ×Gi+f ′

Ci = bi−g × bi−t
Bi = ci−g′ × ci
gi = Ci+f ×Bi

yi = Ci ×Bi+e

Mi = yi−c′ × pi−q′
ri = Gi+d ×Mi.

(6)

As we made these assignments, we eliminated any common numeric or polynomial
factors from the homogeneous coordinates. After these simplifications, we computed two
determinants: the reduced Levi graph says that we need Rd′ , Cf , B0 collinear (on g0) and
M0,Ma′ , Gd collinear (on r0). Define

det1 = det(Rd′ Cf B0)

= −6
√

3(x− 1)z
(
2x2z + x2 − 2xz − x+ z

) (
3x3z − x2z2 − 4x2z − x2 + xz2 + 3xz

−z2
)

and

det5 = det(M0 Ma′ Gd)

= 6
√

3
(
x2z − xz − x+ z

) (
2x2z + x2 − 2xz − x+ z

) (
3x6z3 + 6x6z2 − 7x5z3

−27x5z2 − 2x5 + 9x4z3 + 53x4z2 − 9x4z + 7x4 − 6x3z3 − 62x3z2

+25x3z − 11x3 + 2x2z3 + 44x2z2 − 28x2z + 10x2 − 18xz2 + 15xz − 5x

+3z2 − 3z + 1
)

These two determinants have a common factor

common = 6
√

3
(
2x2z + x2 − 2xz − x+ z

)
;

solving common = 0 for z in terms of x yields

z =
x− x2

2x2 − 2x+ 1
. (7)
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Performing this substitution into both M−q′ and Y0, for example, which both lie on the
purple line p0, shows that the two points coincide, which is forbidden in a strong realization
of the reduced Levi graph.

Reducing the two determinants into det1′ and det5′ respectively by eliminating the
common factor and solving the associated system

{det1′ = 0, det5′ = 0} (8)

over R results in a collection of solutions. Some of the solutions are degenerate,

{{x→ 0, z → 0} ,
{
x→ 1

2
, z → 0

}
,

{
x→ 1

2
, z → 2

3

}
, {x→ 1, z → 0}, {x→ 1, z → 1},

because these all immediately lead to coinciding points in the construction.
However, there are exactly two non-degenerate solutions over R, which Mathematica

can express exactly as roots of certain polynomials with integer coefficients: let

α(s) = 9s12 − 45s11 + 108s10 − 114s9 − 57s8+

390s7 − 668s6 + 684s5 − 468s4 + 217s3 − 66s2 + 12s− 1

β(s) = s12 + 9s11 + 15s10 − 36s9 − 33s8+

129s7 − 193s6 + 216s5 − 162s4 + 76s3 − 24s2 + 6s− 1

Both of these polynomials have exactly two real roots. The two solutions (x, z) to (8)
are

x = Root(α(s), 1) ≈ −1.66271

z = Root(β(s), 1) ≈ −5.40326

and

x = Root(α(s), 2) ≈ 0.518152

z = Root(β(s), 2) ≈ 0.611257

corresponding to whether the magenta points are outside or inside the circumcircle of the
red points. It is straightforward to check via computer algebra that these solutions do
not satisfy (7) and that the point sets corresponding to these solutions are all distinct.

Finally, we need to show that the purple points lie on the intersections of four lines. To
do so, we again compute two determinants corresponding to magenta, green and yellow
lines concurrent, and red, green, and yellow lines concurrent, which turn out to be even
higher-degree polynomials in x and z:

det3 = det(m−q g0 y0)

= −36
√

3(z − 1)
(
3x7z4 + 3x7z3 + 3x7z2 − 6x6z4 − 15x6z3 − 15x6z2

+5x5z4 + 31x5z3 + 27x5z2 − 2x5z − x5 + 2x4z4 − 40x4z3

−25x4z2 + 6x4z + 3x4 − 8x3z4 + 34x3z3 + 13x3z2 − 8x3z − 3x3 + 8x2z4

−20x2z3 − 3x2z2 + 6x2z + x2 − 4xz4 + 8xz3 − xz2 − 2xz + z4 − 2z3 + z2
)
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and

det4 = det(r0 g0 y0)

= −108(z − 1)3
(
3x12z5 + 3x12z4 + 3x12z3 − 9x11z5 + 9x11z4

+9x11z3 + 9x11z2 + 6x10z5 − 108x10z4 − 123x10z3 − 63x10z2 − 3x10z

+35x9z5 + 377x9z4 + 422x9z3 + 182x9z2 + 11x9z − x9 − 129x8z5

−782x8z4 − 821x8z3 − 306x8z2 − 17x8z + 4x8 + 246x7z5

+1112x7z4 + 1059x7z3 + 339x7z2 + 14x7z − 6x7 − 318x6z5 − 1145x6z4

−953x6z3 − 255x6z2 − 5x6z + 4x6 + 300x5z5 + 866x5z4 + 602x5z3 + 126x5z2

−x5z − x5 − 210x4z5 − 476x4z4 − 258x4z3 − 36x4z2 + x4z + 108x3z5

+182x3z4 + 68x3z3 + 4x3z2 − 39x2z5 − 44x2z4 − 8x2z3 + 9xz5 + 5xz4 − z5
)
.

Evaluating each of these determinants using the exact solutions found above (and the
power of Mathematica’s symbolic algebra computations) shows that both these determi-
nants evaluate to exactly 0, showing that the four lines r0, g0, y0, and m−q are concurrent,
at a point we label P0 (and by symmetry, the other two quadruples of lines are concurrent
at P1, P2).

6 Polycyclic realizations of the (214) Grünbaum–Rigby configu-
ration

The construction and investigation of B(214) can be generalized in several ways; here we
outline some possibilites.

6.1 Changing the voltage assignments in RLG(B)

We systematically explored all voltage assignments that gave rise to a Levi graph of some
combinatorial (214) configuration over the quotient graph RLG(B) with generic param-
eters shown in Figure 4b. Two of the authors independently wrote computer programs
(TP in Sage; LWB in Mathematica) that checked all possible values of the parameters

{a, c, d, e, f, g, q, a′, c′, d′, e′, f ′, g′, q′, t}

over Z3, and eliminated parameter lists that produced Levi graphs with girth less than
6 and isomorphic graphs. We found 17 such Levi graphs. Their parameters are shown
in Table 2. Line 1 in this table corresponds to RLG(B), while line 3 corresponds to
the Grünbaum-Rigby configuration with three-fold (rather than seven-fold) rotational
symmetry; that is, line 3 provides parameter values for the reduced Levi graph shown in
Figure 4b for which the corresponding Levi graph is isomorphic to the Levi graph of the
Grünbaum-Rigby configuration.

However, there is no strong realization of the reduced Levi graph with those param-
eters: that is, every realization of the Grünbaum-Rigby configuration over RLG(B) has
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symmetry classes of points which coincide with each other, which we demonstrate by the
following proposition.

Proposition 6. The Grünbaum-Rigby configuration admits only one strong realization
as a polycyclic geometric configuration.

The proof uses a computer but could, in principle, be determined by hand.

Proof. As we indicated above, there are only two non-isomorphic polycyclic reduced Levi
graphs for the Grünbaum-Rigby configuration. This gives rise to two polycyclic com-
binatorial realizations, one with seven-fold symmetry and the other one with three-fold
symmetry. The configuration with seven-fold symmetry is polycyclically geometrically
realizable in essentially only one way (see [1, 16]). A sketch of the argument is that
any polycyclic realization of the reduced Levi graph given in Figure 1 is a celestial con-
figuration with symbol m#(s1, t1; s2, t2; s3, t3), which must satisfy the cosine condition
and three other conditions, described in [16, Theorem 3.7.1]. However, the only solu-
tions to the cosine condition for m = 7 are cyclic permutations of m#(2, 1; 3, 2; 1, 3) and
m#(3, 1; 2, 3, 1, 2), which produce congruent geometric configurations.

For three-fold rotational symmetry, Mathematica-based symbolic calculations show
that the configuration is not geometrically realizable. To see this, use the same pathway
and point and line coordinate assignments through the reduced Levi graph described in
equation (6), only this time using the parameter assignments

{a, c, d, e, f, g, q, a′, c′, d′, e′, f ′, g′, q′, t} = {1, 2, 0, 1, 1, 2, 2, 1, 2, 0, 1, 1, 2, 2, 0}

given in Table 2 line 3. In this case, similarly to the previous construction, we define

det1 = det(Rd′ Cf B0)

=
(
2x2z + x2 − 2xz − x+ z

) (
3x4z2 − 6x3z2 − x2z3 + 6x2z2

−x2 + xz3 − 3xz2 + x− z3 + 2z2 − z
)

and

det5 = det(M0 Ma′ Gd)

=
(
12x10z5 + 3x10z4 + 12x10z3 − 60x9z5

−15x9z4 − 60x9z3 + 158x8z5 + 35x8z4

+128x8z3 − 16x8z2 − 4x8z − 4x8 − 272x7z5

−50x7z4 − 152x7z3 + 64x7z2 + 16x7z + 16x7

+334x6z5 + 44x6z4 + 96x6z3 − 112x6z2 − 32x6z

−24x6 − 302x5z5 − 20x5z4 − 8x5z3 + 112x5z2

+40x5z + 16x5 + 203x4z5 − 4x4z4 − 40x4z3

−72x4z2 − 28x4z − 4x4 − 100x3z5 + 13x3z4

+36x3z3 + 32x3z2 + 8x3z + 35x2z5 − 10x2z4

−16x2z3 − 8x2z2 − 8xz5 + 4xz4 + 4xz3 + z5 − z4
)
.
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Solving the system {det1 = 0, det5 = 0} leads to the five real solutions

{x = 0, z = 0}, {x = 0, z = 1}, {x = 1, z = 0}, {x = 1, z = 1},
{
x =

1

2
, z =

2

3

}
,

but all of these solutions lead to coinciding points and lines, and thus only a degenerate
geometric realization of the configuration.

Theorem 7. The configuration B(214) is the only (214) configuration with a nondegen-
erate Z3 geometric polycyclic realization.

Proof. As in the previous proposition, we analyzed all 17 parameter lists given in Table
2, using the same point and line coordinate assignments through the reduced Levi graph
described in equation (6) for each set of parameters. In each case, we assigned det1 =
det(Rd′ Cf B0) and det5 = det(M0 Ma′ Gd) and found all solutions to the system

{det1 = 0, det5 = 0}. (9)

The B configuration #1 and the GR configuration #3 have been analyzed above. Of
the remaining configurations, #4, #5, #6, #8, #10, #11, #12, #15, #16 only have
degenerate solutions to (9) (that is, all solutions lead to coinciding sets of points and
lines).

For the remaining configurations #2, 7, 9, 13, 14, 17, as in the analysis of B, we then
evaluated the two determinants

det3 = det(m−q g0 y0) and det4 = det(r0 g0 y0) (10)

at the nondegenerate solutions to equation (9). These two determinants must both eval-
uate to exactly 0 in order for the four lines mi−q, gi, yi, ri to pass through each purple
point Pi.

The determinants in equation (10) for configurations #2, 7, 14, 17 evaluated to num-
bers that were very far from 0 (on the order of 107). In contrast, the values of the
determinants for #9, #13 were numerically both between 0 and 1; however, computing
the values of the determinants exactly showed (eventually) that they were not identically
equal to 0 and thus, there is no nondegenerate geometric polycylic realization of either
configuration. Pictures of both of these configurations are shown in Figure 10.

Corollary 8. There are exactly two geometric polycyclic (214) configurations.

Proof. The configuration B(214) can be polycyclically geometrically realized with Z3 sym-
metry, and the configuration GR(214) can be polycyclically geometrically realized with
Z7 symmetry. Since the only two possible reduced Levi graphs have each been analyzed
and there are no other parameter values that lead to nondegenerate realizations, it follows
that these are the only two geometric polycyclic configurations.
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Figure 10: Configurations #9 (left) and #13 (right) have at least one nondegenerate
realization that satisfies Equation (9), which means that points Rd′ , Cf , B0 are collinear
(on the thick green line) and points M0,Ma′ , Gd are collinear (on the thick red line).
However, because the determinants in equation (10) are not identically equal to 0, the
purple points do not lie on the common intersection of four lines. In these drawings, the
purple points Pi are defined as the intersection of lines yi and gi, and the 0th element of
each class is shown large (for points) or thick (for lines).

item {a, c, d, e, f, g, q, a′, c′, d′, e′, f ′, g′, q′, t} |Aut| name self-dual? NDsols?
1 {1, 2, 0, 1, 1, 1, 2, 1, 2, 0, 1, 1, 1, 2, 0} 12 B y Y
2 {1, 2, 0, 1, 1, 1, 2, 1, 2, 0, 1, 1, 2, 2, 0} 6 y y
3 {1, 2, 0, 1, 1, 2, 2, 1, 2, 0, 1, 1, 2, 2, 0} 672 GR y n
4 {1, 2, 0, 1, 1, 1, 2, 1, 2, 0, 2, 2, 1, 2, 0} 12 y n
5 {1, 2, 0, 1, 1, 1, 2, 1, 2, 0, 2, 2, 2, 2, 0} 12 y n
6 {1, 2, 0, 1, 1, 1, 0, 1, 2, 2, 1, 1, 1, 2, 0} 6 y n
7 {1, 2, 0, 1, 1, 1, 0, 1, 2, 2, 1, 1, 2, 2, 0} 6 y y
8 {1, 2, 0, 1, 1, 1, 0, 1, 2, 2, 2, 2, 1, 2, 0} 12 y n
9 {1, 2, 0, 1, 1, 1, 0, 1, 2, 2, 2, 2, 2, 2, 0} 3 n y
10 {1, 2, 0, 1, 1, 2, 0, 1, 2, 2, 2, 2, 2, 2, 0} 6 y n
11 {1, 2, 0, 2, 2, 1, 0, 1, 2, 2, 2, 2, 2, 2, 0} 6 y n
12 {1, 2, 0, 2, 2, 2, 0, 1, 2, 2, 2, 2, 1, 2, 0} 6 y n
13 {1, 2, 0, 2, 2, 2, 0, 1, 2, 2, 2, 2, 2, 2, 0} 12 y y
14 {1, 2, 2, 1, 1, 1, 0, 1, 2, 2, 2, 2, 2, 0, 0} 6 y y
15 {1, 2, 2, 1, 1, 2, 0, 1, 2, 2, 2, 2, 2, 0, 0} 24 y n
16 {1, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 2, 0, 0} 12 y n
17 {1, 2, 1, 1, 1, 1, 0, 2, 1, 2, 2, 2, 2, 0, 0} 6 y y

Table 2: Parameters of Levi graphs of all 17 combinatorial configurations derived from
RLG(B), with parameters corresponding to those in 4b. Lines 1 and 3 (highlighted in gray)
correspond to B and GR respectively. The column |Aut| gives the number of automor-
phisms of the Levi graph. The column “self-dual?” indicates whether the configuration
is combinatorially self-dual, and the column “NDSols” indicates whether there are any
non-degenerate solutions to the system {det1 = 0, det5 = 0} (see text); the annotation
‘y’ says that there are non-degenerate solutions that do not lead to a full geometric re-
alization, while ‘Y’ says that there are non-degenerate solutions that do lead to a full
geometric realization.
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It is interesting that among the 17 non-isomorphic Levi graphs, 16 give rise to self-
dual combinatorial configurations. Only one Levi graph, defined by parameters in Table 2
line #9, gives rise to a pair of dual configurations, bringing the total of non-isomorphic
configurations to 18. A Levi graph admits a self-dual configuration if and only if it has
an automorphism that interchanges the sets of bipartition. One would expect that in
such a situation, the dual pair of configurations would give rise to two sets of parameters.
However, this is not the case here. Namely, the dual pair of configurations have isomorphic
underlying Levi graphs (with vertex colors reversed). On the other hand, there is no color-
preserving isomorphism that would map one (vertex-colored) Levi graph onto the other
one. The opposite is true in all other 16 cases.

7 Conclusions and open questions

Since two non-isomorphic geometric (214) configurations exist, and these are the only
(strongly) realizable polycyclic geometric (214) configurations, the natural question is:
Are there more of them? An over-ambitious project involves a solution to the following
formal problem.

Problem 9. Determine all geometric (214) configurations.

The complete solution to this problem seems to be out of reach with our current knowl-
edge about configurations. The brute-force approach does not seem feasible. Namely, no
one knows how many combinatorial (214) configurations exist. It is not known how many
connected bipartite graphs of girth at least 6 on 42 vertices exist. The number must be
large, since it is known that there exist almost two billion distinct quartic graphs of girth
at least 6 on 38 vertices. Since the numbers grow exponentially, bridging the gap between
38 and 42 seems to be intractable. One has to abandon the idea of determining first the
collection of all combinatorial (214) configurations and in the second step filtering out
configurations that admit geometric realization.

It seems wiser to set up a more modest goals that we state as a problem.

Problem 10. Determine all geometric (214) configurations with non-trivial geometric
symmetry.

Question 11. Does there exist a geometric (214) configuration that has no polycyclic
realization?

7.1 Changing the voltage group

Another way to generalize B(214) is to change the voltage group of RLG(B) from Z3 to
Zm, for some m > 3. This is equivalent to saying that one expects an infinite series of
configurations with rotational symmetry of order m, all with analogous structure to that
of B(214).

We made a number of experiments for constructing such examples, using both our
synthetic method in Section 3 and the procedure implemented in Mathematica described
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in Section 5. It is clear that there likely are a number of infinite families of similar con-
figurations. However, to find a proof we have to understand better the structure of these
configurations. This is a subject of future research. Based on preliminary experiments,
we conjecture

Conjecture 12. The following parameter values lead to geometric (7m4) configurations,
which can be realized polycyclically over Zm:

F1(m; a, b) = {a, c, d, e, f, g, q, a′, c′, d′, e′, f ′, g′, q′, t} =

{a,−a, a, b, b,−a,−2a, a,−a, a, b, b,−a,−2a, 0} (11)

for a > b,1 6 a, b 6 m/2, and

F2(m; a, b) = {a, c, d, e, f, g, q, a′, c′, d′, e′, f ′, g′, q′, t} =

{a, b, b, b, b, b, b, a, b, b, b, b, b, b, 0} (12)

for a > b, a 6= m/2, although there may be other constraints on a and b that have not yet
been identified.

We conjecture that there are other valid as-yet-unidentified parameter families as well.
Note that the configuration F1(3; 1, 1), with the parameters given in (11), is isomorphic

to B(214).
We have numerically verified the existence of configurations in both parameter families

for many values of m; they have been verified exactly for m = 4, 6 using the process given
in section 5 (with the corresponding parameter values, naturally). Figures 11 and 12 show
several examples of such configurations, in both conjectured parameter families. There
are many other such examples.

(a) F1(4; 1, 1) (b) F1(5; 2, 2) (c) F1(6; 2, 1)

Figure 11: Examples of configurations in family F1(m; a, b).
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(a) F2(4; 3, 1) (b) F2(5; 3, 1) (c) F2(6; 4, 1)

Figure 12: Examples of configurations in family F2(m; a, b).
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