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Abstract

The Turán number of a graph H, denoted by ex(n,H), is the maximum number
of edges in an n-vertex graph that does not contain H as a subgraph. For a vertex
v and a multi-set F of graphs, the suspension F + v of F is the graph obtained
by connecting the vertex v to all vertices of F for each F ∈ F . For two integers
k > 1 and r > 2, let Hi be a graph containing a critical edge with chromatic
number r for any i ∈ {1, . . . , k}, and let H = {H1, . . . ,Hk} + v. In this paper, we
determine ex(n,H) and characterize all the extremal graphs for sufficiently large n.
This generalizes a result of Chen, Gould, Pfender and Wei on intersecting cliques.

Mathematics Subject Classifications: 05C35

1 Introduction

Given a graph H, a graph G is called H-free if it contains no copy of H as a subgraph.
The Turán number ex(n,H) of H is the maximum number of edges in an H-free graph
on n vertices. Determining ex(n,H) is one of most important problems in extremal graph
theory and the Turán graph plays a key role. For two integers n and r with n > r > 2,
the Turán graph Tr(n) is an n-vertex complete r-partite graph with parts of size dn/re or
bn/rc. Let tr(n) denote the number of edges in Tr(n). The classical Turán’s theorem [17]
shows that ex(n,Kr+1) = tr(n) = (1− 1

r
+ o(1))

(
n
2

)
and the only extremal graph is Tr(n).

Let χ(H) denote the chromatic number of H. If there is an edge e of H such that χ(H−
e) = χ(H)− 1, then we say that H is edge-critical and e is a critical edge. The celebrated

Erdős-Stone-Simonovits Theorem [6, 7] states that ex(n,H) =
(

1− 1
χ(H)−1 + o(1)

) (
n
2

)
.

For an edge-critical graph H with χ(H) = r+ 1, Simonovits [16] proved that Tr(n) is also
the unique extremal graph for sufficiently large n.
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Theorem 1 (Simonovits [16]). Let H be an edge-critical graph with χ(H) = r + 1 > 3.
Then there exists some n0 such that ex(n,H) = tr(n) for all n > n0, and the unique
extremal graph is Tr(n).

Although the Turán numbers of non-bipartite graphs are asymptotically determined
by Erdős-Stone-Simonovits theorem, it is still a challenge to determine the exact Turán
numbers for many non-bipartite graphs. There are only a few graphs whose Turán num-
bers are determined exactly, including edge-critical graphs and some other specific graphs
(e.g. see [8, 10, 12, 13, 19, 20, 21, 22]). Among all the existing results, the Turán num-
ber of the graph consisting of some specific graphs that intersect in exactly one common
vertex is widely studied (e.g. see [4, 9, 14, 11, 18]).

In this paper, we mainly consider edge-critical graphs intersecting in a special vertex.
For a vertex v and a multi-set F of graphs, the suspension F + v of F is the graph
obtained by connecting the vertex v to all vertices of F for each F ∈ F . If F = {F}, then
we simply write F + v instead of F + v. We call the vertex v the center vertex of F + v.
If F is a multi-set consisting of k copies of Kr−1, then the graph F + v is known as a
(k, r)-fan, denoted by Fk,r. Erdős, Füredi, Gould and Gunderson [5] first considered the
Turán number of Fk,3 (also known as the friendship graph), and established the following
result.

Theorem 2 (Erdős, Füredi, Gould and Gunderson [5]). For every k > 1, and for every
n > 50k2,

ex(n, Fk,3) =

⌊
n2

4

⌋
+

{
k2 − k if k is odd,

k2 − 3
2
k if k is even.

For general r, Chen, Gould, Pfender and Wei [2] determined ex(n, Fk,r) for sufficiently
large n.

Theorem 3 (Chen, Gould, Pfender and Wei [2]). For every k > 1 and r > 2, and for
every n > 16k3r8,

ex(n, Fk,r) = tr−1(n) +

{
k2 − k if k is odd,

k2 − 3
2
k if k is even.

We further extend this result and determine ex(n,H) for H := F+v, where F consists
of k edge-critical graphs H1, H2, . . . , Hk with χ(Hi) = r for each 1 6 i 6 k. Let Gn,k,r be
a family of graphs, each of which is obtained from Turán graph Tr(n) by embedding two
vertex disjoint copies of Kk in one partite set if k is odd and embedding a graph with
2k−1 vertices, k2−3k/2 edges with maximum degree k−1 in one partite set if k is even.
Our main result is as follows.

Theorem 4. Suppose that k > 1 and r > 2 are integers. Let Hi be an edge-critical graph
with χ(Hi) = r for each i ∈ {1, . . . , k}, and let H := {H1, H2, · · · , Hk} + v. Then, for
sufficiently large n,

ex(n,H) = tr(n) +

{
k2 − k if k is odd,

k2 − 3
2
k if k is even.
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Moreover, the Gn,k,r is the family of extremal graphs for H.

This paper is organized as follows. In the remainder of this section, we describe
notations and terminologies used in our proofs. In Section 2, we make a reduction of
Theorem 4, and prove it assuming Theorem 8. We prove Theorem 8 in Section 3.

Natation. Let G be a graph. We use e(G), δ(G) and ∆(G) to denote the number
of edges, minimum degree and maximum degree in G, respectively. For S, T ⊆ V (G),
we use G[S] denote the graph induced by S. For v ∈ V (G), let NS(v) denote the set
of vertices in S adjacent to v and dS(v) = |NS(v)|. Let NS(T ) =

⋂
v∈T NS(v). Let

V − S = {v ∈ V : v /∈ S}. In particular, if S = V (G), then we substitute NG(v) and
dG(v) for NV (G)(v) and dV (G)(v), respectively. A matching in G is a set of edges from
E(G), no two of which share a common vertex. The matching number of G, denoted by
ν(G), is the maximum number of edges in a matching in G. An r-partition of G is a
partition of V (G) into r pairwise disjoint nonempty subsets V1, V2, . . . , Vr. For an integer
t, let [t] = {1, 2, . . . , t}.

2 Reduction to H-free graphs with large minimum degree

In this section, we make a reduction in preparation for the proof of Theorem 4. We first
introduce a function related to the number of edges in a graph with bounded matching
number and maximum degree. Let G be a graph with its matching number ν(G) and
maximum degree ∆(G). Define

f(ν,∆) = max {e(G) | ν(G) 6 ν,∆(G) 6 ∆} .

Abbott, Hanson and Sauer [1] studied this function for ν = ∆ = k − 1, and proved that

f(k − 1, k − 1) =

{
k2 − k if k is odd,

k2 − 3
2
k if k is even.

The extremal graphs are graphs with 2k − 1 vertices, k2 − 3k/2 edges with maximum
degree k− 1 if k is even, or two vertex disjoint copies of Kk if k is odd. For general ν and
∆, Chvátal and Hanson [3] established the following theorem.

Theorem 5 (Chvátal and Hanson [3]). For every ν > 1 and ∆ > 1,

f(ν,∆) = ν∆ +

⌊
∆

2

⌋⌊
ν

d∆/2e

⌋
6 ν∆ + ν. (1)

Definition 6 (Good partition). For two integers k, r > 2, call a partition V1, V2, . . . , Vr
of G k-good, if the following properties hold for each i ∈ [r]:

(i) ∆(G[Vi]) 6 k − 1,

(ii)
∑

j∈[r]\{i} ν(G[Vj]) 6 k − 1, and
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(iii) dVi(u) +
∑

j∈[r]\{i} ν (G[NG(u) ∩ Vj]) 6 k − 1 for each u ∈ Vi.

Chen, Gould, Pfender and Wei [2] characterised the properties of a k-good partition
of graphs by showing the following lemma.

Lemma 7 (Chen, Gould, Pfender and Wei [2]). Suppose that G has a k-good parti-
tion V1, V2, . . . , Vr. Let G′ be the minimal induced subgraph of G such that e(G′) −∑

16i<j6r |V ′i ||V ′j | is maximal, where V ′i = V (G′) ∩ Vi for each i ∈ [r]. Then the following
properties hold:

(i) e(G′)−
∑

16i<j6r |V ′i ||V ′j | 6 f(k − 1, k − 1);

(ii) For each i ∈ [r] and x ∈ V ′i , we have 0 < dG′(x) − |V (G′)\V ′i | 6 k − 1 −∑
j∈[r]\{i} ν(G′[V ′j ]);

(iii) If ν(G′[V ′i ]) > 2 for each i ∈ [r], then e(G′)−
∑

16i<j6r |V ′i ||V ′j | < f(k − 1, k − 1).

Now, we begin with a reduction of our main theorem via the existence of a k-good
partition, and prove Theorem 4 assuming Theorem 8. We leave the proof of Theorem 8
in the next section.

Theorem 8. For two integers k, r > 2, let Hi be an edge-critical graph with χ(Hi) = r for
each i ∈ [k], and let H := {H1, H2, . . . , Hk} + u. If G is an H-free graph with n vertices
and δ(G) > r−1

r
n− k, then G contains a k-good partition for sufficiently large n.

Proof of Theorem 4 given Theorem 8. Let Gn,k,r be the family of graphs defined in
Section 1. We first show that G is H-free for each G ∈ Gn,k,r. Otherwise, we consider
an embedding of H with the center vertex v into G. Without loss of generality, we may
assume that e(G[V1]) = f(k−1, k−1). Note that E(Hj+v)∩E(G[V1]) 6= ∅ for each j ∈ [k]
in view of χ(Hj) = r. It follows that v /∈ V1 as ∆(G[V1]) < k by the construction of Gn,k,r.
Suppose that v ∈ Vs for some s ∈ [r]\{1}. In this situation, we have E(Hj+v)∩E(G[V1])
are pairwise disjoint for any j ∈ [k]. This means that ν(G[V1]) > k, a contradiction. Thus,
G is H-free and e(G) = tr(n) + f(k − 1, k − 1), implying the lower bound.

In what follows, we prove that e(G) 6 tr(n) + f(k − 1, k − 1) for any H-free graph
G on n vertices. We first show that this is true if δ(G) > r−1

r
n − k. By Theorem 8 and

Lemma 7, there is a k-good partition V1, V2, . . . , Vr of G such that

e(G) 6
∑

16i<j6r

|Vi||Vj|+ f(k − 1, k − 1) 6 tr(n) + f(k − 1, k − 1),

as desired. Next, we aim to deal with small vertices. For a graph F and f ∈ V (F ),
we say f is a small vertex of F if d(f) < r−1

r
|V (F )| − k. We first delete a small vertex

in G. As long as there is a small vertex in the resulting graph, we delete it. We keep
doing this until the remaining graph G∗ (G∗ maybe empty) has no small vertices. If
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n∗ := |V (G∗)| <
√
kn/4, then

e(G) < e(G∗) +
n∑

i=n∗+1

(
r − 1

r
i− k

)

<
kn

8
+
r − 1

r

(n+
√
kn/4)(n−

√
kn/4)

2
−

(
n−

√
kn

4

)
k

<
r − 1

r

n(n− 1)

2
6 tr(n),

as required. Thus, we may assume that n∗ is sufficiently large and δ(G∗) > r−1
r
n∗ − k.

This implies that e(G∗) 6 tr(n
∗) + f(k − 1, k − 1) as G∗ is also H-free. It follows that

e(G) < e(G∗) +
n∑

i=n∗+1

(
r − 1

r
i− k

)

6 tr(n
∗) + f(k − 1, k − 1) +

n∑
i=n∗+1

(
r − 1

r
i− k

)
6 tr(n) + f(k − 1, k − 1), (2)

where the last inequality holds as tr(s − 1) + r−1
r

(s − 1) 6 tr(s). Thus, e(G) < tr(n) +
f(k − 1, k − 1).

Now, we prove the uniqueness of the extremal graph. Let G be an H-free graph with

e(G) = tr(n) + f(k − 1, k − 1). (3)

Then δ(G) > r−1
r
n − k by the above argument. It follows from Theorem 8 that G has

a k-good partition V1, V2, . . . , Vr. By Lemma 7, there exists a minimal induced subgraph
G′ of G such that

e(G)−
∑

16i<j6r

|Vi||Vj| 6 e(G′)−
∑

16i<j6r

|V ′i ||V ′j | 6 f(k − 1, k − 1). (4)

Without loss of generality, suppose that |V ′i | > 0 for 1 6 i 6 s and |V ′i | = 0 for s + 1 6
i 6 r. Then, for each i ∈ [s] and x ∈ V ′i

0 < dG′(x)− |V (G′)\V ′i | 6 k − 1−
∑

j∈[s]\{i}

ν(G′[V ′j ]),

implying that ν(G′[V ′i ]) > 1 and
∑

j∈[s]\{i} ν(G′[V ′j ]) 6 k− 2. In addition, by (3) and (4),
we have

r∑
i=1

e(G[Vi]) =
s∑
i=1

e(G′[V ′i ]) = f(k − 1, k − 1). (5)
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Case 1.
∑

j∈[s]\{i0} ν(G′[V ′j ]) = 0 for some i0 ∈ [s]. This implies that V ′j = ∅ for each

j ∈ [r] \ {i0} and G′ = G[V ′i0 ]. Thus, e(G[Vi0 ]) > e(G′) = f(k − 1, k − 1). It follows from
(5), the definition of good partition and the result of Abbott, Hanson and Sauer [1] that
G ∼= Gn,k,r ∈ Gn,k,r.

Case 2. 1 6
∑

j∈[s]\{i} ν(G′[V ′j ]) 6 k − 2 for each i ∈ [s]. Clearly, there exists an

i0 ∈ [r] such that ν(G′[V ′i0 ]) = 1; otherwise, we get a contradiction by Lemma 7 (iii) and
(4). Without loss of generality, suppose that ν(G′[V ′1 ]) = 1. Then, we have

s∑
i=1

e(G′[V ′i ]) 6
∑
26i6s

f (ν(G′[V ′i ]), k − 1) + f(1, k − 1)

6 f

(∑
26i6s

ν(G′[V ′i ]), k − 1

)
+ f(1, k − 1)

6 f(k − 2, k − 1) + f(1, k − 1)

6 f(k − 1, k − 1),

where the last inequality is strictly true for k > 5. This leads to a contradiction in view
of (5). It remains to consider the situation for k 6 4.

If k = 3, then s = 2 and G[V ′1 ] ∼= G[V ′2 ] ∼= K3. This together with (5) yields that G
is a graph formed by the complete r-partite graph with classes V1, . . . , Vr embedding two
triangles x1y1z1 and x2y2z2 in V1 and V2, respectively. Recall that V1, V2, . . . , Vr is a k-good
partition of G. But dG[V1](x1) + ν (G[NV2(x1)]) = 3 > k − 1, a contradiction to Definition
6 (iii). If k = 4, then G[V ′1 ] ∼= K1,3 and

∑s
i=2 ν(G[V ′2 ]) = 2. As the same argument of the

case k = 3, we can find a vertex x ∈ V1 such that dG[V1](x)+
∑s

i=2 ν (G[NVi(x)]) = 5 > k−1,
a contradiction to Definition 6 (iii). Thus, we complete the proof of Theorem 4.

3 H-free graphs with large minimum degree

In this section, we give a proof of Theorem 8. We first present the following useful lemmas
given by Roberts and Scott [15].

Lemma 9 (Roberts and Scott [15]). Let F be a graph with a critical edge and χ(F ) =
r+ 1 > 3, and let f(n) = o(n2) be a function. If G is an F -free graph with n vertices and
e(G) > tr(n)− f(n), then G can be made r-partite by deleting O(n−1f(n)3/2) edges.

Lemma 10 (Roberts and Scott [15]). Let r > 2 and t > 1 be integers. Suppose that the
graph G ⊆ Tr(rn) is Tr(rt)-free. Then e(G) 6 tr(rn)− n2/2 for sufficiently large n.

We also need another easy lemma about edge-critical graphs.

Lemma 11. Let G be an edge-critical graph with χ(G) = r > 2, and let G∗ = G + u. If
v1v2 is a critical edge of G, then both uv1 and uv2 are critical edges of G∗.
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Proof. By symmetry, it suffices to show that uv1 is a critical edge of G∗. Since χ(G) = r
and v1v2 is a critical edge of G, there is a partition (V1, . . . , Vr) of G such that Vi is an
independent set of G for each i ∈ [r − 1] and Vr = {v1}. Let G′ be the graph obtained
from G∗ by deleting the edge uv1. Clearly, (V1, . . . , Vr−1, Vr ∪ {u}) is an r-coloring of G′.
This means that uv1 is a critical edge of G∗ in view of χ(G∗) = r + 1.

Now, we are in a position to prove Theorem 8.

Proof of Theorem 8. Suppose that Hj is an edge-critical graph with a critical edge
ujvj and χ(Hj) = r for each j ∈ [k]. Let H := (H1, H2, . . . , Hk) + u and H∗j = Hj + u for
j ∈ [k]. By Lemma 11, we have uvj is a critical edge of H∗j . Then, by Theorem 1, there
exists a constant pj (or p∗j) such that Hj can be embedded in Tr−1((r − 1)pj) + e with
ujvj = e (or H∗j can be embedded in Tr(rp

∗
j) + e with uvj = e) for each j ∈ [k], where e

is any edge inside a vertex class of Tr−1((r − 1)pj) (or Tr(rp
∗
j)).

Let G be an H-free graph with maximum number of edges. This means that G + e
contains a copy of H for any e /∈ E(G). It follows that G contains a subgraph D which
is a copy of H − e0 for some e0 ∈ H. Without loss of generality, we may assume that
e0 ∈ H∗k and v0 is the center vertex of D. Let D′ denote the subgraph which is a copy
of (H1, . . . , Hk−1) + u in D with the center vertex v0. Note that δ(G) > r−1

r
n − k. Let

` = |V (D′)|. Choose a subset S ⊆ NG(v0)− V (D′) such that

|S| = r − 1

r
n− k − `. (6)

Clearly, G[S] is Hk-free as G is H-free. We show that G[S] is close to Tr−1(|S|). Note
that

δ(G[S]) > δ(G)− (n− |S|) > r − 2

r
n− 2k − ` = |S| − n

r
− k. (7)

This implies that

e(G[S]) >
|S|
(
|S| − n

r
− k
)

2
>
|S|(|S|+ 1)

2
−
|S|
(
n
r

+ k + 1
)

2

=
r − 2

r − 1

|S|(|S|+ 1)

2
− (k + `− 1) + (r − 1)(k + 1)

2(r − 1)
|S|.

For simplicity, let Ck,` = (k+`−1)+(r−1)(k+1)
2(r−1) . Since (1− 1

r−1) |S|(|S|+1)
2

> tr−1(|S|), we have

e(G[S]) > tr−1(|S|)− Ck,`|S|. (8)

For a partition (S1, S2, . . . , Sr−1) of G[S], we define an (r − 1)-partite graph

GS[S1, S2, . . . , Sr−1] = (S, {vivi′ ∈ E(G) : vi ∈ Si, vi′ ∈ Si′ , 1 6 i < i′ 6 r − 1}) .

Now we partition S into (S1, S2, . . . , Sr−1) such that e(GS[S1, S2, . . . , Sr−1]) is maximum.
By Lemma 9, for some constant c∑

16i6r−1

e(G[Si]) 6 c|S|1/2 6 cn1/2. (9)
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This together with (8) implies that ∣∣∣|Si| − n

r

∣∣∣ 6 ε1
n

r
(10)

for some ε1 ∈ (0, 10−6). Fix i ∈ [r − 1]. For xi ∈ Si and i′ ∈ [r − 1] with i′ 6= i, we have

dSi′
(xi) > δ(G[S])−

∑
q∈[r−1]\{i,i′}

|Sq|−cn
1
2 >

1

r
n−2k−`− r − 3

r
ε1n−cn

1
2 > (1−ε2)

n

r
(11)

for some ε2 ∈ (2ε1, 10−5).
Now, we show that E(G[Si]) is empty for each i ∈ [r − 1]. Suppose that there exists

an edge uv ∈ E(G[S1]). Pick B1 ⊆ (S1 − {u, v}) with |B1| = n
2r

. By (10) and (11), we
have

|NSi
(u) ∩NSi

(v)| > (1− 2(ε1 + ε2))
n

r
>

n

2r

for each 2 6 i 6 r − 1. We can pick a subset Bi ⊆ (NSi
(u) ∩NSi

(v)) with |Bi| = n
2r

for
each 2 6 i 6 r − 1. Let B =

⋃
i∈[r−1]Bi. Recall that G[S] is Hk-free. It follows from

Theorem 1 that GB [B1, B2, . . . , Br−1] is Tr−1((r − 1)pk)-free for some constant pk > 0.
By Lemma 10, we have

e(GB [B1, B2, . . . , Br−1]) 6 tr−1

(
(r − 1)n

2r

)
− n2

8r2
,

implying that there are at least n2

8r2
edges missing between vertex classes Si for i ∈ [r− 1].

This together with (9) shows that

e(G[S]) 6 tr−1(|S|) + cn
1
2 − n2

8r2
,

a contradiction to (8). Therefore E(G[Si]) = ∅ for each i ∈ [r − 1].
Since e(G[Si]) = 0, we can further improve |Si| for each i ∈ [r − 1] by showing that

|Si| 6 |S| − δ(G[S]) 6
n

r
+ k (12)

in view of (6) and (7). This further implies that

|Si| = |S| −
∑

i′∈[r−1]\{i}

|Si′ | >
n

r
− k(r − 1)− `. (13)

Moreover, for x ∈ Si and i′ ∈ [r − 1] \ {i}, it follows from (7) and (12) that

dSi′
(x) > δ(G[S])−

∑
q∈[r−1]\{i,i′}

|Sq| >
n

r
− k(r − 1)− `. (14)

Recall that D′ denote the subgraph which is a copy of (H1, . . . , Hk−1) + u in D. We
consider the vertices not in S ∪ V (D′). Let S0 = V (G)− S − V (D′). Then

|S0| = n− `− |S| = n

r
+ k. (15)
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For xi ∈ Si with i ∈ [r − 1], by δ(G) > (r − 1/r)n− k

dS0(xi) > dG(xi)− (|S ∪ V (D′)| − |Si|) > |Si| >
n

r
− k(r − 1)− ` = |S0| − kr − `. (16)

Let
a = kr + `, p∗ =

∑
i∈[k]

p∗i , (17)

and
S∗0 = {x ∈ S0 : dS0(x) > p∗(r − 1)a+ k}.

Claim 12. |S∗0 | 6 a(r − 1).

Proof. Suppose that |S∗0 | > a(r − 1) + 1. For each i ∈ [r − 1], let

Si0 =

{
v ∈ S∗0 : dSi

(v) >
|Si|
a+ 1

}
.

Notice that dS0(xi) > |S0|−a for xi ∈ Si by (16) and (17). In other words, there are at most
a vertices in S0 are not adjacent to xi. If X ⊆ S∗0 with |X| = a+ 1, then Si ⊆

⋃
x∈X N(x)

for i ∈ [r− 1]. This implies that |Si0| > |S∗0 |− a. Thus,
∣∣∣⋂i∈[r−1] S

i
0

∣∣∣ > |S∗0 |− a(r− 1) > 1.

We can choose a vertex v ∈ S∗0 such that for each i ∈ [r − 1]

dSi
(v) >

|Si|
a+ 1

. (18)

In the following, we aim to find a copy of H with a center vertex v.
For i 6= i′ ∈ [r − 1] and x ∈ Si, recall that dSi′

(x) > n/r − k(r − 1)− ` > |Si| − a by
(12), (14) and (17). This together with (18) shows that

NSi
(Y ∪ {v}) > NSi

(v)− a|Y | > |Si|
a+ 1

− aCY , (19)

where Y ⊆ S − Si and |Y | = CY is a constant. For sufficiently large n, by (19), we can
pick Y 1

1 ⊆ NS1(v) with |Y 1
1 | = p∗1, Y

1
i ⊆ NSi

(v) ∩
(⋂

i′∈[i−1]NSi
(Y 1

i′ )
)

satisfying |Y 1
i | = p∗1

successively for 2 6 i 6 r − 1. Note that the size of |Y 1
i | is to ensure that H∗1 can be

embedded in GY1∪Y j
0
[Y 1

0 , Y
1
1 , . . . , Y

1
r−1] + vx1. Fix i, we choose

Y j
i ⊆

NSi
(v) ∩

 ⋂
i′∈[i−1]

NSi
(Y j

i′ )

− ⋂
j′∈[j−1]

Y j′

i

satisfying |Y j
i | = p∗j successively for 2 6 j 6 k. For j ∈ [k], let Yj =

⋃
i∈[r−1] Y

j
i . Then

|Yj| = (r − 1)p∗j . Now, we find a copy of H∗j in G[Yj ∪ S0]. It follows from (16) that

|N (Yj) ∩NS0(v)| > |NS0(v)| −
∑
u∈Yj

(|S0| − ds0(u))

> p∗(r − 1)a+ k − p∗j(r − 1)a

> (p∗ − p∗j)(r − 1)a+ k.
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Thus, for j ∈ [k], we can pick xj ∈ N (Yj)∩NS0(v) such that x1, x2, . . . , xk are pairwise
distinct. Again by (16), for j ∈ [k], we have

|NS0(Yj)| > |S0| − p∗j(r − 1)a =
n

r
+ k − p∗j(r − 1)a.

This means that we can pick Y 1
0 ⊆ NS0 (Y1)−{v, x1, x2, . . . , xk}, with |Y 1

0 | = p∗1, and pick

Y j
0 ⊆ NS0 (Yj)−

 ⋃
j′∈[j−1]

Y j
0 ∪ {v, x1, x2, . . . , xk}


with |Y j

0 | = p∗j for j = 2, 3, . . . , k successively.

For j ∈ [k], we have chosen xj ∈ NS0(v) and subsets Yj, Y
j
0 . It is easy to see that

G[Yj ∪ Y j
0 ] contains a copy of Tr(rp

∗
j). This together with the choice of the edge vxj and

Theorem 1 shows that H∗j = Hj + u can be embedded in GYj∪Y j
0
[Y j

0 , Y
j
1 , . . . , Y

j
r−1] + vxj

such that u = v. Thus, we can get a copy of H in G, a contradiction.

Now, we consider the vertices in S0 with small degree in G[S0]. Let Z0 = S0 − S∗0 ,
Zi = Si for i ∈ [r − 1] and Z = Z0 ∪ Z1 ∪ · · · ∪ Zr−1. It follows from Claim 12 that

n

r
+ k = |S0| > |Z0| > |S0| − a(r − 1) >

n

r
+ k − a(r − 1). (20)

By (12), (13) and (17), we have

n

r
+ k > |Zi| = |Si| >

n

r
− a+ k (21)

for i ∈ [r − 1], and then

|V (G)− Z| 6

∣∣∣∣∣V (G)−
r−1⋃
i=0

Si

∣∣∣∣∣+ a(r − 1) 6 `+ a(r − 1). (22)

Recall that δ(G) > r−1
r
n − k and dZ0(x) 6 p∗(r − 1)a + k − 1 for x ∈ Z0. This together

with (21) and (22) shows that for x ∈ Z0 and i ∈ [r − 1],

dZi
(x) > dG(x)− |V (G)− Z| − dZ0(x)−

∑
i′∈[r−1]\{i}

|Zi′ |

>
r − 1

r
n− k − `− a(r − 1)− (p∗(r − 1)a+ k − 1)− (r − 2)

(n
r

+ k
)

>
n

r
− ((p∗ + 1)(r − 1) + 1) a− p∗(r − 1)k

>
n

r
− 2 ((p∗ + 1)(r − 1) + 1) a. (23)

For every i ∈ [r − 1] and every x ∈ Zi, by Claim 12 and (16), we have

dZ0(x) > dS0(x)− |S∗0 | >
n

r
− a+ k − a(r − 1) =

n

r
− ar + k. (24)
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Claim 13. For every x ∈ V (G) − Z, there exists an i = i(x) such that dZi
(x) < k.

Moreover, such an i is unique.

Proof. Suppose that there exists a vertex v ∈ V (G) − Z such that dZi
(v) > k for each

i ∈ {0} ∪ [r − 1]. Let dZî
(v) = min{dZi

(v) : 0 6 i 6 r − 1} for some î ∈ {0} ∪ [r − 1]. In

the following, we consider the case î = 0 (for other cases, i.e., î ∈ [r − 1], we can derive
a similar conclusion through analogous reasoning). By the pigeonhole principle, we have
dZ0(v) 6 dG(v)/r. Thus, for i ∈ [r − 1], we have

dZi
(v) > dG(v)− |V (G)− Z| − dZ0(v)−

∑
i′∈[r−1]\{i}

dZi′
(v)

> dG(v)− (`+ a(r − 1))− dG(v)

r
−

∑
i′∈[r−1]\{i}

|Zi′|

>
r − 1

r
dG(v)− r − 2

r
n− ar > n

2r2
. (25)

Now, we construct k r-partite graphs. Recall that |NZ0(v)| > k. We can pick k distinct
vertices x1, x2, . . . , xk in NZ0(v) and choose k pairwise disjoint subsets Y 1

0 , Y 2
0 , . . . , Y k

0 in
Z0 − {x1, x2, . . . , xk} with |Y j

0 | = n
4kr2

for j ∈ [k]. By (21), (23) and (25), we have

|NZi
(v) ∩NZi

(xj)| > dZi
(v)− (|Zi| − dZi

(xj)) >
n

4r2
. (26)

For i ∈ [r − 1], we can choose k pairwise disjoint Y 1
i , Y 2

i , . . ., Y k
i such that Y j

i ⊆
NZi

(v) ∩ NZi
(xj) and |Y j

i | = n
4kr2

for j ∈ [k]. This is possible, since we can choose

Y 1
i ⊆ NZi

(v) ∩ NZi
(x1). Suppose that Y 1

i , . . . , Y
j′−1
i have been chosen. Due to (26), we

choose
Y j′

i ⊆ (NZi
(v) ∩NZi

(x′j)) \
⋃

j∈[j′−1]

Y j
i .

Let Y j =
⋃r−1
i=0 Y

j
i for j ∈ [k]. Then, we obtain k r-partite graphs GY j [Y j

0 , Y
j
1 , . . . , Y

j
r−1].

Since G is H-free, there exists j0 ∈ [k] such that GY j0 [Y j0
0 , Y j0

1 , . . . , Y j0
r−1] is Tr(rp

∗
j0

)-free
by Theorem 1. Thus, by Lemma 10, we have

e(GY j0 [Y j0
0 , Y j0

1 , . . . , Y j0
r−1]) 6 tr

( n

4kr

)
− n2

32k2r4
.

This means that

e
(
GZ∪{v} [Z0 ∪ {v}, Z1, . . . , Zr−1]

)
6 tr(n)− n2

32k2r4
. (27)
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On the other hand, by (14), (21) and (24), we have

e
(
GZ∪{v} [Z0 ∪ {v}, Z1, . . . , Zr−1]

)
> e (GZ [Z0, Z1, . . . , Zr−1])

=
∑
x∈S

dZ0(x) +
r−2∑
i=1

∑
i<i′6r−1
x∈Si′

dSi
(x)

>
(n
r
− ar

) r−1∑
i=1

i|Si| = tr(n)− 2(a(r + 1)− k)

r
n,

a contradiction to (27).
Now, we prove the uniqueness of i = i(x) for x ∈ V (G)−Z. Suppose that there exists

x ∈ V (G)− Z and i, i′ ∈ {0} ∪ [r− 1] such that both dZi1
(x) and dZi2

(x) are less than k.
This means Zi1 ∪Zi2 has at least |Zi1|+ |Zi2 | − 2k+ 2 vertices that are not adjacent to x.
Thus dG(x) 6 n−(|Zi1 |+ |Zi2| − 2k) < (1−1/r)n−k in view of (21), a contradiction.

By Claim 13, for each x ∈ V (G)− Z, there is a unique i = i(x) such that dZi
(x) < k.

We can put x in Zi(x). Then, we get an r-partition (V0, V1, . . . , Vr−1) of G with Zi ⊆ Vi for
i ∈ {0} ∪ [r − 1]. For x ∈ V (G), we consider the degree of x in Vi with x /∈ Vi. Suppose
first that x ∈ Vi(x) for x ∈ V (G)− Z. For 0 6 i 6 r − 1 with i 6= i(x), by (20), (21) and
(22),

dVi(x) > dG(x)− dZi(x)
(x)− |V (G)− Z| −

∑
06i′6r−1
i′ /∈{i,i(x)}

|Zi′| >
n

r
− ar − k. (28)

Then, we bound dVi′ (x) for x ∈ Vi and i 6= i′. For i ∈ {0} ∪ [r − 1], it follows from (20)
and (21) that

n

r
+ k + `+ a(r − 1) > |Zi|+ |V (G)− Z| > |Vi| > |Zi| >

n

r
+ k − a(r − 1). (29)

Let x ∈ Vi and i′ 6= i, 0 6 i′ 6 r − 1. Combining (23), (24) and (28),

dVi′ (x) > dZi′
(x) >

n

r
− 2 ((p∗ + 1)(r − 1) + 1) a. (30)

Let b1 = k + `+ a(r − 1) and b2 = 2 ((p∗ + 1)(r − 1) + 1) a. Fixing i ∈ {0} ∪ [r − 1], (29)
and (30) can be reduced to

n

r
+ b1 > |Vi| >

n

r
+ k − a(r − 1) (31)

and
dVi′ (x) >

n

r
− b2 > |Vi′ | − (b1 + b2) (32)

for x ∈ Vi and i′ 6= i, 0 6 i′ 6 r − 1. By (31) and (32), we have

e (G [V0, V1, . . . , Vr−1]) =
r−2∑
i=0

∑
i<i′6r−1
x∈Vi′

dVi(x) >
(n
r
− b2

) r−1∑
i=1

i|Vi|

= tr(n)− 2(a(r − 1)− k + b2)

r
n. (33)

the electronic journal of combinatorics 31(4) (2024), #P4.55 12



In what follows, we prove that (V0, V1, . . . , Vr−1) is a k-good partition of G.
First, we show that (V0, V1, . . . , Vr−1) satisfies (1) of Definition 6. Note that Vi 6= ∅ for

0 6 i 6 r − 1 by (29). If ∆(G[Vi]) > k for some i ∈ {0, 1, . . . , r − 1}, then we can choose
x ∈ Vi and x1, x2, . . . , xk in NVi(x). As in the proof of Claim 13, we can find k r-partite
graphs and one of them is Tr(rp

∗
j)-free for some j ∈ [k] by Theorem 1. Thus, by Lemma

10, we have
e (G [V0, V1, . . . , Vr−1]) 6 tr(n)− εn2 (34)

for some ε > 0, a contradiction to (33).
Then, we show that (V0, V1, . . . , Vr−1) satisfies (2) of Definition 6. Otherwise, by

symmetry, suppose that
∑

i∈[r−1] ν(G[Vi]) > k. Let x1y1, x2y2, . . . , xkyk be the matching

M of G with xjyj ∈ Vi(xjyj) for some i(xjyj) ∈ [r− 1]. We use M to find k (r− 1)-partite
graphs. By (31) and (32), we have∣∣∣∣∣∣

⋂
j∈[k]

(NV0(xj) ∩NV0(yj))

∣∣∣∣∣∣ > |V0| − 2k(b1 + b2) > 0.

Choose a vertex v ∈
⋂
j∈[k](NV0(xj)∩NV0(yj)). For j ∈ [k] and q ∈ [r−1] with q 6= i(xjyj),

let Xj
q = NVq(v) ∩ NVq(xj) ∩ NVq(yj). Clearly, |Xj

q | > n/r − 3(b1 + b2) > n/(2r) + 2k by
(32). We first choose r−2 subsets Y 1

q with q ∈ [r−1] and q 6= i(x1y1) such that Y 1
q ⊆ X1

q

and |Y 1
q | = n

2kr
. Then, for j ∈ {2, 3, . . . , k}, we choose r − 2 subsets Y j

q with q ∈ [r − 1]

and q 6= i(xjyj) such that Y j
q ⊆ Xj

q\
⋃

s∈[j−1]
Y s
q and

∣∣Y j
q

∣∣ = n
2kr

. Finally, we choose

Y j
i(xjyj)

⊆ NVi(xjyj)
(v)\

{xj, yj} ∪
 ⋃
s∈[k]\{j}

Y s
i(xjyj)


with |Y j

i(xjyj)
| = n

2kr
for j ∈ [k]. Let Y j =

⋃
i∈[r−1] Y

j
i for j ∈ [k]. Then, we obtain k

(r − 1)-partite graphs Gj = GY j [Y j
1 , Y

j
2 , . . . , Y

j
r−1]. Since G is H-free, there exists some

j0 ∈ [k] such that Gj0 is Tr(rpj0)-free by Theorem 1. Thus, by Lemma 10, we have

e(Gj0) 6 tr

( n
2k

)
− n2

8k2r2
.

This means that

e (G[V0, V1, . . . , Vr−1]) 6 tr(n)− n2

8k2r2
,

a contradiction to (33).
In the end, we show that (V0, V1, . . . , Vr−1) satisfies (3) of Definition 6. Otherwise, by

symmetry, suppose that there exists v ∈ V0 such that dV0(v) +
∑

i∈[r−1] ν (G[NVi(v)]) > k.

Thus, we can pick z1, z2, . . . , zs in NV0(v) and (k − s)-matching xs+1ys+1, xs+2ys+2, . . .,
xkyk in

⋃
i∈[r−1]G[NVi(v)] such that xj and yj are in the same vertex class Vi(xjyj) for

s + 1 6 j 6 k. As the same methods used to verify (1) and (2) of Definition 6, we
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can show that e(G[V0, V1, . . . , Vr−1]) 6 tr(n) − εn2 for some ε > 0 by finding s k-partite
graphs Y1, Y2, . . . , Ys with vj ∈ V (Yj), and (k − s) (r − 1)-partite graphs Yk−s+1, . . . , Yk
with xj, yj ∈ V (Yj), a contradiction to (33). Thus, we conclude that (V0, V1, . . . , Vr−1) is
a k-good partition of G, completing the proof of Theorem 8.
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