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Abstract

Graph product structure theory expresses certain graphs as subgraphs of the
strong product of much simpler graphs. In particular, an elegant formulation states
that every planar graph is a subgraph of the strong product of a path and of a
bounded treewidth graph. Such formulations allow to lift combinatorial results for
bounded treewidth graphs to graph classes for which the product structure holds,
such as to planar graphs [Dujmović et al., J. ACM, 67(4), 22:1-38, 2020].

In this paper, we join the search for extensions of this powerful tool beyond
planarity by considering the h-framed graphs, a graph class that includes 1-planar,
optimal 2-planar, and k-map graphs (for appropriate values of h). We establish
a graph product structure theorem for h-framed graphs stating that the graphs
in this class are subgraphs of the strong product of a path, of a planar graph of
treewidth at most 3, and of a clique of size 3bh2 c + bh3 c − 1. This allows us to
improve over the previous structural theorems for 1-planar and k-map graphs. Our
results lead to significant progress over the previous bounds on the queue number,
non-repetitive chromatic number, and p-centered chromatic number of these graph
classes, e.g., we lower the currently best upper bound on the queue number of
1-planar graphs and k-map graphs from 115 to 82 and from b332 (k + 3bk2c − 3)c to

b332 (3bk2c+ bk3c − 1)c, respectively. We also employ the product structure machinery
to improve the current upper bounds on the twin-width of 1-planar graphs from
O(1) to 72. All our structural results are constructive and yield efficient algorithms
to obtain the corresponding decompositions.

Mathematics Subject Classifications: 05C75, 05C10, 05C76

aDepartment of Mathematics, University of Ioannina, Ioannina, Greece (bekos@uoi.gr).
bDepartment of Engineering, Roma Tre University, Rome, Italy (giordano.dalozzo@uniroma3.it).
cFaculty of Informatics, Masaryk University, Brno, Czech Republic (hlineny@fi.muni.cz).
dWilhelm-Schickard Institute for Computer Science, University of Tübingen, Tübingen, Germany
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1 Introduction

Graph product structure theory [19] was recently introduced and is receiving considerable
attention, as it gives deep insights that allow a host of combinatorial tools to be applied [22].
Despite being a relatively new development, it is having significant impact [35]. Initially, it
was introduced to settle a long-standing conjecture by Heath, Leighton and Rosenberg [26]
related to the queue number of planar graphs [19]. Recently, it has been further exploited
to solve several other combinatorial problems that were open for years, e.g., it was used to
prove that planar graphs have bounded non-repetitive chromatic number [19], to improve
the best known bounds for p-centered colorings of planar graphs and graphs excluding any
fixed graph as a subdivision [13], to find shorter adjacency labelings of planar graphs [9, 23],
and to find asymptotically optimal adjacency labelings of planar graphs [17, 25]. Moreover,
a hereditary variant of product structure theory has been investigated in [30].

In its simplest form, the product structure theorem states that every planar graph is
a subgraph of the strong product of a path and of a planar graph of treewidth at most
6 [19, 37]. The bound on the treewidth can be improved by allowing more than two graphs
in the strong product, as it is known that every planar graph is a subgraph of the strong
product of a path, of a 3-cycle, and of a planar graph of treewidth at most 3 [19] (see
also [31]). These theorems are attractive since they describe planar graphs in terms of
graphs of bounded treewidth, which are considered much simpler than arbitrary planar
graphs. Furthermore, they enable combinatorial results that hold for graphs of bounded
treewidth to be generalised for planar graphs and, more generally, for graphs where similar
structural theorems can be obtained. On the algorithmic side, Bose, Morin, and Odak
have recently shown that the graphs involved in the product structure theorem for planar
graphs can be computed in linear time [12], improving upon [34]. More precisely, in [12],
it is shown that the mapping from the input graph to a subgraph of the product can
be computed in linear time. Observe that, the graphs involved in the product structure
theorem for planar graphs are not prescribed a priori, but derived from the input (planar)
graph; however, Biedl, Eppstein, and Ueckerdt [8] have recently shown that the problem
of testing the embeddability of a graph in a host graph that is the strong product of a
given path P and a given graph H is NP-complete, even when H has small pathwidth or
tree-depth.

Analogous results are known for graphs of bounded Euler genus [19], apex-minor-free
graphs [19], graphs with bounded degree in proper minor-closed classes [18], and graphs in
non-minor closed classes [20]; see [22] for a survey. Related to our work are the structural
theorems for k-planar and k-map graphs (the former ones are the graphs that can be drawn
with at most k crossings per edge, whereas the latter ones are the contact-graphs of pairwise
interior-disjoint regions homeomorphic to closed disks such that at most k regions may
share the same point). In particular, it is known that every k-planar graph is a subgraph
of the strong product of a path, of a graph of treewidth at most 1

6
(k+ 4)(k+ 3)(k+ 2)− 1,

and of a clique on 6(k + 1)2 vertices [28], while every k-map graph is a subgraph of the
strong product of a path, of a planar graph of treewidth at most 3, and of a clique on
k + 3bk

2
c − 3 vertices [20].
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Our contribution. In this work, our focus is on the class of h-framed graphs, which were
recently introduced as a notable subclass of k-planar and a superclass of k-map graphs (for
appropriate values of k) [4]; a graph is h-framed, if it admits a drawing on the Euclidean
plane whose uncrossed edges induce a biconnected spanning plane graph with faces of
size at most h. Since any simple h-framed graph is O(h2)-planar, it follows from the
aforementioned product structure theorem for k-planar graphs that every simple h-framed
graph is a subgraph of the strong product of a path, of a graph with treewidth O(h6),
and of a clique of size O(h4). Dujmović, Morin and Wood [20] presented an improved
product structure theorem for h-framed graphs: Every h-framed graph is a subgraph of
the strong product of a path, of a planar graph of treewidth at most 3, and of a clique on
h+ 3bh

2
c − 3 vertices. In this work, we show a stronger structural result by showing that

every h-framed graph is a subgraph of the strong product of a path, of a planar graph of
treewidth at most 3, and of a clique on 3bh

2
c+ bh

3
c− 1 vertices, that is, our improvement is

on the size of the clique1. Recently, generalizing the result in [20], Distel et al. [15] showed
that any multigraph that admits an h-framed drawing on a surface of Euler genus g is a
subgraph of the strong product of a path, of a planar graph of treewidth at most 3, and
of a clique on max{2gbh

2
c, h+ 3bh

2
c − 3} vertices. Since any planar graph is a subgraph

of some triangulation (and thus of a 3-framed graph), for h = 3, Theorem 2 coincides
with the product structure theorem for planar graphs proved in [19]. This is an indication
that our theorem may be tight for the graphs in this family. Furthermore, we provide an
alternative formulation to the one of Theorem 2, which will allow us to derive improved
bounds on related problem as discuss below: Every h-framed graph is a subgraph of the
strong product of the bh/2c-power of a path, a planar graph with treewidth at most 3 and a
clique on max(3, h− 2) vertices; see Theorem 5. All our structural results are constructive
and yield efficient algorithms to obtain the corresponding decompositions. Our techniques
provide improved upper bounds on the queue number, on the non-repetitive chromatic
number, and on the p-centered chromatic number of h-framed graphs that are linear in
h; see Theorem 13, Corollary 19, and Lemma 20, respectively. Finally, by extending
the product structure machinery, we are able to give an efficient construction to obtain
an explicit, linear in h, upper bound on the twin-width of h-framed graphs, while the
currently best explicit upper bound derives from the one for k-planar graphs and it is
hence exponential in O(h2) [10, 11]; see Theorem 22.

Consequences on related graph classes. Since 1-planar and optimal 2-planar graphs
are subgraphs of 4- and 5-framed graphs, respectively [3, 7], and since k-map graphs are
subgraphs of k-framed graphs [4], the product structure theorems mentioned above imply
significant improvements on the currently best bounds for the following parameters (refer
to Table 1). For definitions, see Section 4.

• Queue number: Using Theorem 2, we improve the best known upper bound on the
queue number of k-map graphs from b33

2
(k + 3bk

2
c − 3)c [20] to b33

2
(3bk

2
c+ bk

3
c − 1)c

(Corollary 14), whereas, using Theorem 5, we lower the best known upper bounds on

1Note that we have obtained this result completely independently and without being aware of the result
in [20].
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h-framed/h-map 1-planar opt 2-planar

queue num
old b332 (h+ 3bh2 c − 3)c 115 132

new b332 (3bh2 c+ bh3 c − 1)c 82 82

non-repetitive

chr. num

old 44 · (h+ 3bh2 c − 3) 1792 2048

new 44 · (3bh2 c+ bh3 c − 1) 1536 1536

p-centered

chr. num

old (h+ 3bh2 c − 3)(p+ 1)χpl. 3-tr.
p 7(p+ 1)χpl. 3-tr.

p 8(p+ 1)χpl. 3-tr.
p

new (3bh2 c+ bh3 c − 1)(p+ 1)χpl. 3-tr.
p 6(p+ 1)χpl. 3-tr.

p 6(p+ 1)χpl. 3-tr.
p

twin-width
old − O(1) O(1)

new 11h+ 51
√
h+ 64 72 75

Table 1: Previous [20] and new bounds on the queue number, non-repetitive and p-centered
chromatic number, and twin-width for h-framed, 1-planar, optimal 2-planar, and k-map
graphs. We denote by χpl. 3-tr.

p the p-centered chromatic number of planar 3-trees.

the queue number of 1-planar and optimal 2-planar graphs from 115 and 132 [20],
respectively, both to 82 (Theorem 17).

• Non-repetitive chromatic number: Theorem 2 allows us to improve the best
known upper bound on the non-repetitive chromatic number of k-map graphs from
44 · (k+ 3bk

2
c− 3) [20] to 44 · (3bk

2
c+ bk

3
c− 1). In particular, for the class of 1-planar

graphs our improvement is from 1792 to 1536 (Corollary 19). The latter is a bound
that notably holds also for optimal 2-planar graphs, which forms an improvement
over the one of 2048 that was previously known [20].

• p-centered chromatic number: Theorem 2 allows us to improve the best known
upper bound on the non-repetitive chromatic number of k-map graphs from (k +
3bk

2
c − 3)(p + 1)χpl. 3-tr.

p [20] to (3bk
2
c + bk

3
c − 1)(p + 1)χpl. 3-tr.

p , where χpl. 3-tr.
p 6

(p + 1)(pdlog(p+ 1) + 2p + 1) denotes the p-centered chromatic number of planar
3-trees [13]. In particular, we lower the best known upper bounds on the p-centered
chromatic number of 1-planar and optimal 2-planar graphs from 7(p+ 1)χpl. 3-tr.

p and
8(p+ 1)χpl. 3-tr.

p [20], respectively, both to 6(p+ 1)χpl. 3-tr.
p (Corollary 21).

• Twin-width: Theorem 22 provides the first explicit bound of 11h + 51
√
h + 64

for the twin-width of (subgraphs of) h-framed graphs. This is best-possible up to
a multiplicative constant since by [1] there exist graphs on h vertices having the
twin-width at least (h− 1)/2 for every h, and such graphs are trivially subgraphs
of h-framed graphs. Specifically, consequent Corollary 29 improves the previous
best upper bound on the twin-width of 1-planar and optimal 2-planar graphs, from
O(1) [10] to 72 and 75, respectively (for more explicit bounds on the twin-width of
these classes, refer to [11] which discusses the stronger parameter reduced bandwidth).
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(a)

X
Y

(b)

Figure 1: Illustration of: (a) a 4-framed topological graph whose skeleton edges are black
and whose crossing edges are blue, and (b) the strong product X � Y of a planar graph X
(red) and a path Y (blue).

Our improvement for k-map graphs is limited to certain value of k, as these graphs
have bounded twin-width independently of k [10].

2 Preliminaries

For standard graph-theoretic terminology and notation we refer the reader, e.g., to [14].

Graphs. A graph is simple if it contains neither loops nor multi-edges. For a general
graph G (not-necessarily simple), let si(G) denote the simplification of G, i.e., the simple
graph obtained from G by removing all loops and replacing each set of parallel edges with
a single edge. For any i > 1, the i-th power Gi of a graph G is the graph with the same
vertex set as G, in which two vertices are adjacent if and only if they are at distance at
most i in G. Clearly, G ⊆ Gi. A graph H is a minor of a graph G, if H can be obtained
from a subgraph of G by contracting edges.

Topological graphs. A topological graph is a graph drawn on the plane. A plane graph
is a topological graph with no crossing edges. A graph is k-planar if it is isomorphic to a
topological graph in which each edge has at most k crossings. Furthermore, a k-planar
graph with the maximum number of edges w.r.t. its number of vertices is called optimal.
A k-map graph is one that admits a k-map, i.e., a representation where each vertex is a
region homeomorphic to a closed disk, such that regions have pairwise disjoint interiors,
no more than k regions share the same boundary point, and two regions touch if and only
if the corresponding vertices are adjacent.

Given a topological graph G, the subgraph sk(G) of G consisting of all its vertices
and uncrossed edges is the skeleton of G; refer to Figure 1a. A topological graph G
whose skeleton sk(G) is biconnected is called h-framed [4], if all the faces of sk(G) have
size at most h, and internally h-framed, if all the faces of sk(G), except for possibly one,
have size at most h. The importance of this class lies in the following connections with
k-planar and k-map graphs [4]. Optimal 1-planar and optimal 2-planar graphs are 4-
and 5-framed, respectively, while general 1-planar graphs can be augmented to 8-framed
graphs, if multi-edges are forbidden, or to 4-framed graphs, if multi-edges are allowed.
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Finally, note that any k-map graph is a subgraph of a k-framed (multi-)graph [4] and of a
2k-framed simple graph [4, Thm. 32].

Treewidth. Let (X , T ) be a pair such that X = {X1, X2, . . . , X`} is a collection of
subsets of vertices of a graph G, called bags, and T is a tree whose nodes are in one-to-one
correspondence with the elements of X . The pair (X , T ) is a tree-decomposition of G if
it satisfies the following two conditions: (i) for every edge (u, v) of G, there exists a bag
Xi ∈ X that contains both u and v, and (ii) for every vertex v of G, the set of nodes of T
whose bags contain v induces a non-empty subtree of T . The width of a tree-decomposition
(X , T ) of G is max`i=1 |Xi| − 1, while the treewidth tw(G) of G is the minimum width over
all tree-decomposition of G.

Quotient graph. For a graph G and a partition P of V (G), the quotient of G by P,
denoted by G/P , is a graph containing a vertex vP for each part P in P (we say that vP
stems from P ) and an edge (vP ′ , vP ′′) if and only if there exists a vertex in P ′ adjacent
to a vertex in P ′′ in G. Note that, G/P is a minor of G, if every part in P induces a
connected subgraph of G.

Strong product. The strong product of two graphs X and Y , denoted by X � Y , is
the graph whose vertex set V (X � Y ) is the Cartesian product V (X)× V (Y ), such that
there exists an edge in E(X � Y ) between the vertices 〈x1, y1〉, 〈x2, y2〉 ∈ V (X � Y ) if
and only if one of the following occurs: (a) x1 = x2 and (y1, y2) ∈ E(Y ), (b) y1 = y2 and
(x1, x2) ∈ E(X), or (c) (x1, x2) ∈ E(X) and (y1, y2) ∈ E(Y ); see Figure 1b. Dujmović et
al. [19], Dujmović, Morin and Wood [20] and Ueckerdt, Wood, and Yi [37] showed the
following main graph product structure results.

Theorem 1. Let G be a graph.

a. If G is planar, then G ⊆ P � H, for a path P and a planar graph H with
tw(H) 6 6 [37].

b. If G is planar, then G ⊆ P � H � K3, for a path P and a planar graph H with
tw(H) 6 3 [19].

c. If G is 1-planar, then G ⊆ P �H �K7, for a path P and a planar graph H with
tw(H) 6 3 [20].

d. If G is k-planar with k > 1, then G ⊆ P � H � K18k2+48k+30, for a path P and
a graph H with tw(H) 6 1

6
(k + 4)(k + 3)(k + 2)− 1 [20].

e. If G is a k-map graph, then G ⊆ P �H �K21k(k−3), for a path P and a graph H
with tw(H) 6 9 [20].

Layering. Consider a graph G. A layering of G is an ordered partition (V0, V1, . . . ) of
V (G) such that, for every edge (v, w) of G with v ∈ Vi and w ∈ Vj, it holds |i − j| 6 1.
If i = j, then (v, w) is an intra-level edge; otherwise, (v, w) is an inter-level edge. Each
part Vi is called a layer. Let T be a BFS tree of G rooted at a vertex r. The BFS layering
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of G determined by r is the layering (V0, V1, . . .) of G such that Vi contains all vertices of
G at distance i from r. Given a partition P of V (G) and a layering L of G, the layered
width of P with respect to L is the size of the largest set obtained by intersecting a part in
P and a layer in L. The layered width of P is the minimum layered width of P over all
layerings of G.

3 Computing the Product Structure

This section is devoted to the proof of a product structure theorem for h-framed graphs,
summarized in the next theorem; several applications of this result are presented in
Section 4.

Theorem 2 (Product Structure Theorem for h-Framed Graphs). Let G be a not-necessarily
simple h-framed graph with h > 3. Then, si(G) is a subgraph of the strong product
H � P �K3bh/2c+bh/3c−1, where H is a planar graph with tw(H) 6 3 and P is a path.

Note that, allowing multi-edges in the graphs supported by Theorem 2 may imply tighter
bounds in the corresponding product structure for graphs that are h-framed but whose
simplification is not. For instance, as already mentioned in Section 1, simple 1-planar graphs
can always be augmented to simple 8-framed graphs and to 4-framed multigraphs. Then,
Theorem 2 implies that every simple 1-planar graph is a subgraph of H�P�K3bh/2c+bh/3c−1,
with h = 4.

The algorithm supporting Theorem 2 recursively decomposes G into parts with special
properties, such that the resulting quotient graph will be H, and the additional properties
of the constructed partition will imply the claimed product structure. We start with a
technical setup followed by the core recursion in Lemma 4.

Layering G. Let T be a BFS tree of sk(G) rooted at an arbitrary vertex r incident to the
unbounded face of sk(G). For an arbitrary G′ and its implicitly fixed BFS tree T ′ (in our
case, G′ = sk(G) and T ′ = T ), we call a path P ⊆ G′ vertical if P is a subpath of some
root-to-leaf path of T ′. Let L = (V0, V1, . . . , Vb) be the BFS layering of sk(G) determined
by r. Observe that, if P is a vertical path in sk(G), then P intersects every part of L in
at most one vertex. Given L, we define a new ordered partition W = (W0,W1, . . . ,W`)
of the vertex set of G with ` =

⌈
b/bh

2
c
⌉
− 1, by merging consecutive bh

2
c-tuples of layers

of L. This is done as follows. For i = 0, 1, . . . , `, we let Wi :=
⋃bh/2c−1
j=0 Vibh/2c+j (assuming

Vx = ∅ if x > b). Then, W := (W0,W1, . . . ,W`) is a layering of G, as we prove below.

Property 3. W := (W0,W1, . . . ,W`) is a layering of G.

Proof. As for the edges of sk(G), we have that intra-level edges of L are also intra-level
edges of W , whereas inter-level edges of L are either intra-level edges or inter-level edges
of W. Next, we argue about the crossing edges of G. First, observe that each such an
edge is a chord in some face of sk(G). Also, every chord of a face f of sk(G) has its ends
at distance at most bh

2
c along f . This implies that G does not contain an edge with (u, v)

with u ∈ Wi and v ∈ Wj with |i − j| > 1, which in turn implies that W is a layering
of G.
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Partitioning G. The core of our algorithm is a construction of a special partition R of
V (G) such that H = G/R is a planar graph with tw(H) 6 3, and the layered width of R
with respect to W is not large. Our recursive decomposition of G is analogous to the one
in [19] (as applied to planar graphs); however several non-trivial changes are needed to
exploit the existence of the underlying (plane) skeleton of G. The algorithm starts from
the unbounded face and recursively “dives” into gradually-shrinking areas of G.

Central in our approach is the following notion. For a cycle C ⊆ sk(G), the subgraph
of G bounded by C, denoted by GC , is the subgraph of G formed by the vertices and edges
of C and the vertices and edges of G drawn inside C. Consider a subset U ⊆ V (G). For
the partition L (resp., the partition W), the width of U with respect to L (resp. to W),
denoted by λL(U) (resp. by λW(U)), is the largest size of a set obtained by intersecting U
and a part of L (resp. of W). We are now ready to present our main technical lemma.

Lemma 4. Let G be an n-vertex h-framed graph with h > 3 and let L be a BFS layering
of sk(G). Also, let C be a cycle in sk(G), and let GC be the subgraph of G bounded
by C. Further, for some k ∈ {1, 2, 3}, let P1, . . . , Pk be paths belonging to C such that
R0 = {Xi : Xi := V (Pi), 1 6 i 6 k} is a partition of V (C). Then, it is possible to
construct in O(n2) time a good partition R′ of V (GC), i.e., one that satisfies the following
properties:

1. R′ ⊇ R0, and for every part X ∈ R′ \R0, there exist q ∈ {1, 2, 3} and X ′ ⊆ X such
that2

• X \X ′ is a union of the vertex sets of at most q vertical paths of sk(G), and
so, in particular, λL(X \X ′) 6 q, and

• |X ′| 6 h− 3 if q = 1, |X ′| 6 b(h− 1)/2c − 1 if q = 2, and |X ′| 6 bh/3c − 1
if q = 3.

2. the quotient graph H ′ = GC/R′ is a planar graph with tw(H ′) 6 3, and

3. the vertices of H ′ that stem from Xi, with 1 6 i 6 k, are incident to the same face
of H ′ and induce a clique (i.e., either a vertex, or an edge, or a triangle).

Proof of Theorem 2. Let C denote the cycle bounding the unbounded face of sk(G), which,
by a possible homeomorphism of the sphere, may be assumed to satisfy |V (C)| > 3. Based
on the BFS tree T of sk(G) rooted in a vertex r ∈ V (C), we define the following partitionR0

of C: We split C into a path P1 only consisting of the vertex r, and two paths P2 and P3

of lengths at most bh−1
2
c and bh

2
c, respectively. Then, we set R0 = {V (P1), V (P2), V (P3)}

and apply the algorithm given in the proof of Lemma 4. This way we obtain a good
partition R′ of V (GC) = V (G) and graph H ′ := GC/R′ in O(|V (G)|2) time.

Note that, in general, GC 6= G as G may have edges drawn in the unbounded face
(bounded by C) of sk(G). However, by setting H = H ′, we guarantee all edges of G in the
unbounded face of sk(G) are “captured”, since the quotient graph H ′ anyway contains a

2Property 1 of Lemma 4 will imply that λW(X) 6 3bh2 c+ bh3 c − 1 in the proof of Theorem 2, but we
will also make use of the stated more detailed treatment.
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triangle on the vertices that stem from R0. In fact, we have just obtained the graph H
with the desired properties, i.e., H is planar and of tw(H) 6 3.

What remains to prove is that G indeed is a subgraph of the strong product H � P �
K3bh/2c+bh/3c−1 for some path P . Recall that the number of layers of the layering W is
`+ 1, and that W was obtained by merging consecutive bh

2
c-tuples of layers of L. We set

P to be the path on `+ 1 vertices denoted in order by p0, p1, . . . , p`. To a vertex v ∈ V (G),
we assign the pair (t, pi) where t ∈ V (H) if t stems from the part of R′ that v belongs to,
and v ∈ Wi ∈ W . This assignment is sound and unique.

If vv′ ∈ E(G) is any edge of G, and v and v′ are assigned the pairs (t, pi) and (t′, pj) as
above, then tt′ ∈ E(H) or t = t′ since H = G/R′ is the quotient graph, and pipj ∈ E(P )
or i = j sinceW is a layering of G. Using Property 1 of Lemma 4, we furthermore estimate,
for every part X ∈ R′ and its X ′ ⊆ X (cf. Property 1),

λW(X) 6 |X ′|+ λL(X \X ′) · bh/2c
6 max

(
h− 3 + bh/2c, bh/2c − 1 + 2bh/2c, bh/3c − 1 + 3bh/2c

)
6 3bh/2c+ bh/3c − 1 ,

and hence at most 3bh
2
c+ bh

3
c − 1 vertices of G are assigned to the same pair (t, pi). This

concludes the proof that si(G) ⊆ H � P �K3bh/2c+bh/3c−1.

We next present a variant of Theorem 2, which reduces the size of the clique in the
product by replacing the path with a power of it. The variant does not immediately follow
from the statement of Theorem 2. However, it can easily be derived by adopting in the
proof of Theorem 2 the layering L instead of the layering W .

Theorem 5. Let G be an h-framed graph (where G is not necessarily simple). Then si(G)
is a subgraph of the strong product of three graphs H � P bh/2c �Kmax(3,h−2), where H is a
planar graph with tw(H) 6 3 and P is a path.

Proof. Recall that L = (V0, V1, . . . , Vb) is a BFS layering of the skeleton sk(G), and thus
every edge of G has ends in parts Vi, Vj ∈ L such that |i − j| 6 bh/2c. Hence, we
may choose P as the path on b + 1 vertices (p0, p1, . . . , pb), use P bh/2c, and assign each
vertex v ∈ V (G) to the pair (t, pi) where t ∈ V (H) if t stems from the part of R′ that
v belongs to, and v ∈ Vi ∈ L. Now, the number of vertices of G assigned to the same
pair (t, pi) (where t stems from a part X) is at most λL(X) 6 |X ′| + λL(X \ X ′) 6
max(h − 3 + 1, bh/2c − 1 + 2, bh/3c − 1 + 3

)
= max(3, h − 2). This concludes that

si(G) ⊆ H � P bh/2c �Kmax(3,h−2).

3.1 Proof of Lemma 4

We prove Lemma 4 by providing a recursive procedure that we describe in the following.
The base case of the recursion occurs when V (GC) = V (C) (i.e., there are no vertices in the
interior of C and the edges in E(GC) \ E(C) are chords of C). In this case, the algorithm
returns the partition R′ = R0, which is clearly good since the graph H ′ is a plane clique
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Figure 2: Illustrations of graph C ∪D for the separable case of GC (Definition 6). The
number a of τ -faces is 4 in (a) and 1 in (b). (c) A case when Property 2 of Definition 6
is not met (by τ4).

of size k whose vertices stem from the parts of R0. Note that, if |E(GC) \E(C)| = 0, then
V (GC) = V (C), since GC cannot have isolated vertices.

In the recursive step of the algorithm, we assume that there exist vertices and edges
of GC that lie in the interior of C. Our aim is to recurse on instances that contain fewer
edges in the interior, but not on the boundary, of the cycle delimiting their unbounded
face. We first need to handle a possible degenerate case3 of GC . Recall that, since G is
h-framed, all bounded faces of GC ∩ sk(G) have length at most h.

Definition 6. We say that GC is separable if the following conditions hold (see Figure 2):

1. The plane graph GC ∩ sk(G) contains a bounded face σ0 that intersects C in a > 1
disjoint maximal subpaths (some of the paths may consist of single vertices). Denoting
by D the facial cycle of σ0, let τ1, . . . , τa be the bounded faces of the plane graph
C ∪D other than σ0.

2. For each τj , with j = 1, . . . , a, the boundary of τj is a cycle Cj of sk(G), at most two
parts of R0 intersect Cj, and every part of R0 intersecting Cj does so in a single
subpath.4

Separable case. Suppose that GC is separable and let Gj, j = 1, . . . , a, denote the
subgraph of GC bounded by the facial cycle Cj of τj

5. By definition, we have that
|E(Gj) \E(Cj)| ⊆ |E(GC) \E(C)| (even when a = 1). Since E(Cj) \E(C) 6= ∅, the latter
implies |E(Gj) \ E(Cj)| < |E(GC) \ E(C)|. Also, let Y denote the vertices of D that do
not belong to C, i.e., Y = V (D) \ V (C); refer to the hollow vertices of Figure 2. By the
previous, we have |Y | 6 |D| − 2 6 h− 2.

3Such a case does not explicitly occur in the original proof of [19], but the implicit case of a so-called [19]
“tripod” with degenerate legs is analogous to what we are defining here.
4A part of R0 indeed may intersect the boundary Cj of τj in two subpaths (see Figure 2c). This, however,
can happen only if k 6 2.

5Note that, if a = 1, we have |V (D) ∩ V (C)| > 2, since otherwise the face τ1 would not be bounded by a
cycle as required by Property 2 of Definition 6.
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For j = 1, . . . , a, let R0
j be the partition of V (Cj) consisting of the set Yj = Y ∩ V (Cj),

if it is not empty, and of the sets Xj
i = Xi ∩ V (Cj), i = 1, . . . , k, if Xj

i is not empty; by
Property 2 of Definition 6, R0

j consists of at most three parts. Therefore, by a recursive
application of our algorithm, each graph Gj, j = 1, . . . , a, admits a good partition
Rj ⊇ R0

j of V (Gj).
We construct a partition R′ of V (GC) by putting into R′ the parts of R0, the set Y (if

non-empty), and the recursively obtained parts of each Gj that do not touch Cj; formally,
R′ = R0 ∪ {Y } ∪

⋃
j=1,...,a(Rj \ R0

j), or R′ = R0 ∪
⋃
j=1,...,a(Rj \ R0

j) if Y = ∅. Note that
R′ is indeed a partition of V (GC), since each vertex of GC that lies in the interior of
C must belong either to Y or to a part X ∈ Rj \ R0

j , for some j ∈ {1, . . . , a}. In the
following, we show that the constructed partition R′ is good. To this aim, we will exploit
the next property.

Property 7. Under the conditions of Lemma 4, no vertex of any part from R′ \ R0 is
adjacent to a vertex of V (G) \ V (GC).

Proof. Since R0 partitions V (C), and C is a cycle in sk(G), the drawing of C is an
uncrossed simple closed curve in the topological graph G, and hence, by the Jordan
curve theorem, no edge of G can have one end in V (GC) \ V (C) and the other end in
V (G) \ V (GC).

Claim 8. The partition R′ constructed for the separable case of GC is good.

Proof. For our proof, we additionally use Property 7 mentioned above, which we can
further assume that it holds also for the recursive calls. First, we look at Property 1
of Lemma 4: this property holds true for every X ∈ R′ \ (R0 ∪ {Y }) by the recursive
construction, and for X = Y we pick any y ∈ Y and set Y ′ = Y \ {y}, and by the previous
we get |Y ′| 6 |Y | − 1 6 h− 2− 1 = h− 3 and Y \ Y ′ = {y} is a trivial vertical path.

It remains to analyze planarity and treewidth of the quotient graph H ′. Recall that
we have recursively obtained the planar quotient graphs Hj := Gj/Rj, for j ∈ {1, . . . , a},
and we may assume, from the recursive invocation of Property 3, that each Hj is a plane
topological graph with the vertices stemming from the parts of R0

j on the unbounded face.
For further reference, we call these vertices stemming from R0

j the connectors of Hj. By
Property 7 following a recursive invocation of Lemma 4, no vertices of Hj other than the
connectors will be adjacent to vertices of H ′ outside of Hj.

We start with drawing a plane (k+ 1)-clique Q on the vertices stemming from the non-
empty parts in R0 ∪ {Y }. If k = 2, then at most two of the graphs Gj with j ∈ {1, . . . , a}
intersect both parts of R0, and for them we embed the corresponding (at most two) plane
graphs Hj into the two triangular faces of Q, such that the vertices of Q are naturally
identified with the connectors of Hj . The remaining quotient graphs Hj are then embedded
into the drawing easily, since the connectors of each of them is identified with only one or
two vertices of Q. Likewise, the desired plane drawing of H ′ is trivial if k = 1. If k = 3,
then each pair of parts of R0 is intersected together by at most one of the graphs Gj , and
then we embed the plane quotient graph Hj into the corresponding triangular face of Q,

the electronic journal of combinatorics 31(4) (2024), #P4.56 11



σ0

P1

D
τ1

τ2

τ3
C

(a)

σ0

D

P2

τ1

e0

C

P1

(b)

σ0
D

τ1 τ2

τ3
C

e0
P2

P1

(c)

Figure 3: Illustrations of graph C ∪ D for the general case of GC , for (a) k = 1 and
(b-c) k = 2.

with the appropriate identification of the connectors of Hj as in the case of k = 2. Again,
the remaining quotient graphs Hj are embedded easily.

Altogether, we have obtained a plane drawing of H ′ such that the vertices stemming
from the parts of R0 are on the same face; in particular, for k = 3, this is the triangular
face of Q not containing the vertex which stems from the part Y . Moreover, the k parts
of R0 are indeed pairwise adjacent in GC already by edges of C. We have thus verified
Property 3 of Lemma 4, and it remains to verify Property 2 in the aspect of treewidth
of H ′. We have recursively obtained, for each j ∈ {1, . . . , a}, a tree-decomposition Tj of
the graph Hj, such that (by a folklore property of tree-decompositions) the clique of the
vertices which stem from R0

j is contained in a node νj of it. We create a new decomposition
T of H ′ from the disjoint union of Tj over j = 1, . . . , a by adding a new node ν, holding
the bag of vertices V (Q) and adjacent exactly to all νj. Further, for i = 1, . . . , k, we
rename each vertex of Tj that stems from Xj

i , with i = 1, . . . , a, as the vertex in Q that
stems from Xi and, for i = 1, . . . , a, we rename each vertex of Tj that stems from Yi as
the vertex in Q that stems from Y . This is a valid tree-decomposition by Property 7, and
it is of width at most 3 by Property 2 and the fact that |V (Q)| − 1 = k 6 3.

General case. Now we move to the general case of GC in Lemma 4. If k = 1, we pick
the bounded face σ0 of GC ∩ sk(G) incident to the single edge of E(C) \ E(P1); refer to
Figure 3a. The face σ0 then witnesses the separable case for GC , by Definition 6, which
is solved as above. If k = 2, then we pick e0 ∈ E(C) as one of the edges joining P1 and
P2 on C, and σ0 as the bounded face of GC ∩ sk(G) incident to e0; see Figures 3b and 3c.
Then we are back to the separable case for GC with σ0, by Definition 6.

In the remainder, we assume k = 3. First, we color every vertex v of GC by the color
i ∈ {1, 2, 3} if the (unique) path in the BFS tree T from v to the root r hits V (Pi) before
possibly hitting other parts of R0. In particular, the vertices of Pi are colored i. Our aim
is to find, in the plane graph F := GC ∩ sk(G), a bounded face σ1 containing vertices
of all the three colors on its boundary. There our arguments divert from those used
in [19]—since F is generally not a near-triangulation, and we additionally need that the
face σ1 intersects the boundary cycle C at most once (which requires additional care). We
exploit the following.
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Figure 4: Illustrations for the proof of Claim 9. (a) Graph F and a zone F1. (b) The
tri-colored triangle F3. (c) The desired face σ1 in F .

Claim 9. In the setting above, there exists a cycle R bounding a bounded face σ1 of F , such
that V (R) contains all three of our colors, and R intersects C in at most one connected
piece. Furthermore, the colors on R appear in three consecutive sections.

Proof. Our proof exploits the next definition.

Definition 10. A plane subgraph F1 ⊆ F is a zone of F if the following hold (see
Figure 4a): (i) every vertex in V (F1) ∩ V (C) is of degree at least 2 in F1, (ii) no vertex in
V (F ) \ V (F1) is adjacent to a vertex in V (F1) \ V (C), and (iii) in the plane drawing of F1

inherited from GC , every vertex from V (F ) \ V (F1) is drawn in the unbounded face of F1.

Note that, similarly to Definition 6, if a facial cycle D in F intersects C in two or more
places, then each of the remaining bounded faces of the plane subgraph C ∪D bounds a
zone of F . We say that the face of D divides F into these zones.

For our proof, we pick F1 as an inclusion-minimal zone of F such that V (F1) intersects
all three parts of R0 (i.e., F1 meets all three colors on C). We consider the graph
F2 := C ∪ F1, and denote by Wi ⊆ V (F2), where i ∈ {1, 2, 3}, the set of vertices of F2

colored i. By Definition 10, each set Wi induces a connected subgraph in F2, and so
contracting each of W1,W2,W3 into one vertex results in a tri-colored triangle F3 which
is a planar minor of F2; see Figure 4b. By planarity of F2, there is a face σ1 of F2 such
that the facial cycle R ⊆ V (F ) of σ1 contracts down to F3 (R is a cycle since the skeleton
sk(G) is 2-connected); see Figure 4c. If R intersected C in two or more places, then R
would divide F2 into strictly smaller zones which, by the minimality of F1, each intersects
at most two parts of R0. However, the same then holds for the zones into which σ1 divides
the whole F , and so such σ1 witnesses the case of separable GC already solved, as can be
easily checked from Definition 6.

Therefore, we have that V (R) contains all three of our colors, and R intersects C in
at most one connected piece. Furthermore, the colors on R appear in three consecutive
sections since the paths of the BFS tree T do not cross in the plane graph F . This
concludes the proof.

Next, consider the set V (R) ∩ V (C). If this set contains all three colors, then all three
colors occur on the path R0 := C ∩R, and one of them, say color 1, occurs only on internal
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vertices of R0 (and nowhere else on C). In this case, the face σ1 again witnesses the case
of separable GC with a = 1 which is solved as above. If, instead, the set V (R) ∩ V (C)
does not contain all three colors, then we choose on R representatives – vertices ti ∈ V (R)
of color i where i = 1, 2, 3, as in one of the following three possible cases of V (R) ∩ V (C)
(refer to Figure 5):

C.1 If V (R) ∩ V (C) contains two colors, say 1 and 2, we choose t1, t2 ∈ V (R) ∩ V (C) as
neighbors on C and t3 ∈ V (R) \ V (C) arbitrarily; refer to Figure 5a.

C.2 If V (R) ∩ V (C) contains one color, say 1, we choose t1 ∈ V (R) ∩ V (C) arbitrarily
and pick t2, t3 ∈ V (R) \ V (C) such that t2t3 ∈ E(R) (this is unique). Furthermore,
up to symmetry between the colors 2 and 3, we may assume that the distance on R
between t2 and V (C) is not smaller than the distance on R between t3 and V (C);
refer to Figure 5b.

C.3 If V (R) ∩ V (C) = ∅, then, up to symmetry between the colors, we may assume
that the color 3 occurs in V (R) no more times than each of the colors 1 and 2. We
then choose t3 ∈ V (R) arbitrarily (of color 3), and set t1 and t2 to the two (unique)
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Figure 5: Illustrations for the representatives t1, t2, and t3, and the vertical paths R1,
R2, and R3. The vertices of R bound the gray shaded region. R′ is depicted with black
thick edges.
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vertices colored 1 and 2 on R that are neighbors of vertices of color 3 on R; refer to
Figure 5c.

For i = 1, 2, 3, let Ri denote the unique vertical path in T from ti to V (Pi); see Figure 5.
Note that some vertices ti may lie on C, and then Ri = ti is a single-vertex path. Let Q
be the subpath of R with the ends t1 and t2 and avoiding t3. We define R′ ⊆ R as the
subpath or cycle (in the case R′ = R) obtained from R by deleting all internal vertices
of Q. Finally, we set R+ := R′ ∪ R1 ∪ R2 ∪ R3 which is a connected subgraph of F (R+

will play the same role here as the so-called tripods in [19]).
Observe that C ∪R+ is a 2-connected plane graph (in each of the three cases above).

Moreover, it contains a ∈ {2, 3} bounded faces τ1, . . . , τa, plus the bounded face σ1 in the
case of R′ = R; for the latter see Figure 5c. We denote by Cj, j ∈ {1, . . . , a}, the facial
cycle of τj. It is now important to notice that each cycle Cj intersects at most two parts
of R0, which follows from our “multi-colored” choice of t1, t2, t3 and R1, R2, R3 in all three
cases. Furthermore, every two parts of R0 are together intersected by at most one of Cj.

We next proceed similarly as in the separable case above. Let Gj ( GC , j ∈ {1, . . . , a},
be the strict subgraph of GC bounded by Cj , and letR0

j be the partition of V (Cj) consisting
of V (Cj) \ V (C) and of the non-empty parts X ∩ V (Cj) over X ∈ R0. So, |R0

j | 6 3.
Therefore, by a recursive application of our algorithm, we may assume that each graph Gj

admits a good partition Rj ⊇ R0
j of V (Gj), with j = 1, . . . , a.

We construct a partition R′ ⊇ R0 of V (GC) similarly as before; besides R0 we add the
set Z := V (R+) \ V (C) 6= ∅ as whole, and the recursively obtained parts of each Gj that
do not touch Cj . Formally, R′ = R0∪{Z}∪

⋃
j=1,...,a(Rj \R0

j). Note that R′ is a partition
of V (GC) —in particular, each vertex of GC which is not on C must belong either to Z or
to a part X ∈ Rj \ R0

j , for some j ∈ {1, . . . , a}, by induction. In the following, we show
that the constructed partition R′ is good.

Claim 11. The partition R′ constructed for the general case of GC is good.

Proof. Property 1 of Lemma 4 holds true for every X ∈ R′ \ (R0 ∪ {Z}) by recursion. For
X = Z we argue as follows. We choose Z ′ := Z\V (R1∪R2∪R3) ⊆ R′, and argue according
to the Cases (C.1)–(C.3) that we distinguished for V (R) ∩ V (C). In the Case (C.1), i.e.,
t1, t2 ∈ V (C), we have V (R1 ∪ R2) ∩ Z = ∅, and so Z \ Z ′ = V (R3) where R3 is vertical
in sk(G) and λL(Z \ Z ′) = 1. In this case we also have |Z ′| 6 |R| − 3 6 h− 3, as desired.
In the Cases (C.2) and (C.3), we similarly have that Z \ Z ′ is made of 2 and 3 vertical
paths, respectively, and the bounds on λL(Z \ Z ′) follow from that. In the Case (C.2) we
also get |Z ′| 6 b1

2
(|V (R)| − 1)c − 1 6 b1

2
(h− 1)c − 1 as desired, since the distance from t3

to V (C) on R is not more than 1
2
(|V (R)| − 1). In the Case (C.3) we have that there are

at most 1
3
|V (R)| vertices of color 3 on R (which stay in Z ′ except the end of R3), and so

|Z ′| 6 b1
3
|V (R)|c − 1 6 bh

3
c − 1.

We now turn the attention to the quotient graph H := H ′. Recall that we have
recursively obtained the planar quotient graphs Hj := Gj/Rj, for j ∈ {1, . . . , a}, and
we may assume, from the recursive invocation of Property 3, that each Hj is a plane
topological graph with the vertices stemming from the parts of R0

j on the unbounded face.
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We again call these vertices stemming from R0
j the connectors of Hj, and we have from

Property 7 that no vertices of Hj other than the connectors are adjacent to vertices of H
outside of Hj.

As previously, the graph H consists of a 4-clique Q on the vertices which stem from
the four parts of R0 ∪ {Z}, and of the union of the graphs Hj, with j = 1, . . . , a, after
identification of their connectors with the vertices of Q. Let z be the vertex of Q that stems
from the part Z and w1, w2, w3 be the vertices which stem from the parts X1, X2, X3 of R0.
As already noted, none of the graphs Hj contains all three w1, w2, w3 (as its connectors),
and for every pair from {w1, w2, w3}, say wc and wd, at most one of Hj, j ∈ {1, . . . , a},
contains both wc, wd among its connectors. In such case, Hj is to be embedded in the
triangular face {wc, wd, z} of Q. Furthermore, if some Hj, j ∈ {1, . . . , a}, contains only
one of w1, w2, w3 as its connector, say wb, then Hj can be embedded in any of the two
triangular faces of Q incident to the edge {wb, z}.

Altogether, we have obtained a plane drawing of H = GC/R′ such that the vertices
w1, w2, w3 stemming from the parts of R0 are on the same triangular face. We have thus
verified Property 3, and it remains to verify Property 2 in the aspect of treewidth of H.
Again, we have recursively obtained a tree-decomposition Tj of Hj for every j ∈ {1, . . . , a},
such that the clique of the vertices which stem from R0

j is contained in a node νj of it.
We create a new decomposition T of H from the disjoint union of Tj over j = 1, . . . , a
by adding a new node ν, holding the bag of vertices V (Q) and adjacent exactly to all
νj. Further, for i = 1, . . . , k, we rename each vertex of Tj that stems from Xj

i , with
i = 1, . . . , a, as the vertex in Q that stems from Xi and, for i = 1, . . . , a, we rename each
vertex of Tj that stems from Yi as the vertex in Q that stems from Y . This is a valid
tree-decomposition by Property 7, and it is of width 3 by Property 2 and the fact that
|V (Q)| − 1 = 3.

We conclude the proof of Lemma 4 by discussing the time complexity of our algorithm,
which follows the same ideas as the ones by Dujmović et al. [19] to compute the decompo-
sition deriving from their product structure theorem for n-vertex planar graphs6. To show
that a good partition of GC can be obtained in O(|V (GC)|2) time, it suffices to observe
that the non recursive work needed to compute the graphs on which the recursive calls are
applied can be easily implemented to run in O(|V (GC)|) time, by performing a visit of
the planar skeleton of the input h-framed graph and of its BFS tree (provided that GC is
a topological h-framed graph). Since the total number of recursive calls is at most linear
in |V (GC)|, the total running time is thus quadratic in |V (GC)|.

4 Consequences of the Product Structure

As mentioned in the introduction, Dujmović, Morin and Wood [20] have derived upper
bounds on the queue number, on the non-repetitive chromatic number, and on the p-

6Note that subsequent improvements have brought the running time of this procedure first to
O(n log n) [34] and finally to O(n) [12].
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centered chromatic number of k-planar and k-map graphs exploiting Theorem 1. In the
following, we present our improvements to each of these problems.

4.1 Queue number

A queue layout of a graph G is a linear order σ of the vertices of G together with an
assignment of its edges to sets, called queues, such that no two edges in the same set nest.
The queue number qn(G) of a graph G is the minimum number of queues over all queue
layouts of G. Dujmović et al. [19] proved the following useful lemma concerning the queue
number of graphs that can be expressed as subgraphs of the strong product of a path P , a
graph H, and a clique K` on ` vertices.

Lemma 12 (Dujmović et al. [19]). If G ⊆ P �H �K` then qn(G) 6 3` qn(H) + b3
2
`c.

Combining Lemma 12 and Theorem 1(d), together with the fact that the queue number
of planar 3-trees is at most 5 [2], Dujmović, Morin, and Wood showed the first constant
upper bound on the queue number of k-planar graphs [20], thus resolving a long-standing
open question. Analogously, by combining Lemma 12 and Theorem 2, we obtain the
following.

Theorem 13. The queue number of h-framed graphs is at most

b33
2

(3bh
2
c+ bh

3
c − 1)c.

Dujmović et al. [19] first showed the queue number of k-map graphs is at most
2(98(k + 1))3. Later, by combining Theorem 1(e) and Lemma 12, Dujmović et al. [20]
improved this bound to 32225k(k − 3). More recently, Dujmović, Morin and Wood [20]
have also observed that k-map graphs are k-framed and have exploited this observation to
further improve this bound to b33

2
(k+ 3bk

2
c− 3)c. By Theorem 13, we can further improve

these bounds by also leveraging the fact that these graphs are subgraphs of k-framed
graphs [4].

Corollary 14. The queue number of k-map graphs is at most

b33
2

(3bk
2
c+ bk

3
c − 1)c.

For h ∈ {4, 5}, Theorem 13 gives us an upper bound of 95. Since any 1-planar graph
can be augmented to a (not-necessarily simple) 4-framed graph [3], Theorem 13 improves
the currently best upper bound of 1-planar graphs from 115 [20] to 95. Since any optimal
2-planar graph is 5-framed, Theorem 13 improves the currently best upper bound on their
queue number from 132 [20] to 95. Next, we show a generalization of Lemma 12 that
allows further improvements.

Lemma 15. If G ⊆ H � P i �K` then qn(G) 6 i`+ (2i+ 1)`qn(H) + b `
2
c.
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Proof. For convenience, let Xj = H � P j �K`, with 1 6 j 6 i. Observe that the graphs
Xj, with 1 6 j 6 i, have the same vertex set and Xj ⊆ Xj+1, with 1 6 j < i.

Let P = (p1, p2, . . . , pz) and let 〈x1, x2, . . . , xq〉 be the vertex ordering of a qn(H)-queue
layout of H. We set Va,b := {va,b} × V (K`), where va,b denotes the vertex of V (H)× V (P )
that stems from the vertex xa of H and the vertex pb of P . Note that, the sets Va,b form
a partition of V (X1). The following property follows from the proof of Lemma 12 given
in [19].

Property 16 (Vertex order of Lemma 12). The queue layout of X1 in the proof of
Lemma 12 is such that, for any two vertices u ∈ Va,b and v ∈ Vc,d, it holds that u precedes v
in such a layout if and only if one of the following holds: Either b < d or b = d and a < c.

Our proof is by induction on i. In particular, we will show that Xi has a queue layout
whose vertex order σ satisfies Property 16 and uses at most i` + (2i + 1)`qn(H) + b `

2
c

queues. In the base case i = 1 and the result follows directly from Lemma 12.
Assume now that i > 1. Let ∆i be the graph obtained by removing from P i the edges

that it shares with P i−1, i.e., ∆i = (V (P ), E(P i) \ E(P i−1)). Clearly, two vertices are
adjacent in ∆i if and only if they are at distance i in P .

Observe now that Xi is the union of Xi−1 and H � ∆i � K`. By induction, Xi−1
admits a queue layout Γ whose vertex order satisfies Property 16 and uses at most
(i − 1)` + (2i − 1)`qn(H) + b `

2
c queues. Therefore, in order to prove the statement, it

suffices to show that the edges of H � ∆i � K` can be added in Γ by using at most
` + 2qn(H)` queues. To this aim, we classify the edges of this graph into three sets E|,
En, and E/. Namely, for each edge (u, v) with u ∈ Va,b and v ∈ Vc,d, we have that:

• (u, v) ∈ E|, if b = d;

• (u, v) ∈ En, if b < d and a < c; and

• (u, v) ∈ E/, if b < d and a > c.

First, we show that the edges in E| can be assigned to at most ` queues. For this, we
recall that the number of queues in a queue layout coincides with the size of its largest
rainbow [27], where a rainbow is a set of pairwise-nesting independent edges in a linear
order of the vertices. Namely, let (u, v) and (u′, v′) be two edges in E| with u ∈ Va1,b,
v ∈ Va2,b, u′ ∈ Va′1,b′ and v′ ∈ Va′2,b′ . Assuming w.l.o.g. that a1 6 a′1 holds, it follows that
these two edges nest in σ, only if b = b′, a1 = a′1, and a2 = a′2. Since each of the sets Va1,b
and Va2,b contains at most ` vertices and since the vertices in Va1,b precede the vertices of
Va2,b in σ, we have that the maximum rainbow formed by edges in E| has size at most `
in σ. Thus, ` queues suffice to embed all such edges in Γ [27].

Second, we that all the edges in En can be assigned to at most `qn(H) queues. Since
the proof that the edges in E/ can be assigned to at most `qn(H) queues is analogous,
this concludes the proof of the lemma. Consider a partition of En into sets Ei, with
1 6 i 6 qn(H), such that Ei contains all the edges (u, v) of En such u ∈ Va,c, v ∈ Vc,d,
and (a, c) belong to the i-th queue of H. Next, we show that the edges in each set Ei
can be assigned to at most ` new queues in Γ. Consider any two nesting edges (u, v) and
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(u′, v′) in Ei with u ∈ Va1,b1 , v ∈ Va2,b2 , u′ ∈ Va′1,b′1 and v′ ∈ Va′2,b′2 . By the definition of En,
we have that a1 < a2, a

′
1 < a′2, b1 < b2, and b′1 < b′2. Since (u, v), (u′, v′) ∈ E(∆i) they

have the same span and thus it follows that (u, v) and (u′, v′) nest in σ only if (i) b1 = b′1
and b2 = b′2 (that is, u and u′ (resp. v and v′) stem from the same vertex of ∆i) and (ii)
a1 = a′1 or a2 = a′2 (that is, at least one of the pairs u, u′ and v, v′ stem from the same
vertex of H) [19]. Since each of the sets Va1,b1 and Va2,b2 contains at most ` vertices and
since the vertices in Va1,b1 precede the vertices of Va2,b2 in σ, we have that the maximum
rainbow formed by edges in Ei has size at most ` in σ. Thus, ` queues suffice to embed all
such edges in Γ [27].

Lemma 15 in conjunction with Theorem 5 yields a quadratic (in h) upper bound on
the queue number of h-framed graphs. However, for h 6 5, it implies an improved bound
on the queue number of 1-planar and optimal 2-planar graph, which we summarize in the
following.

Theorem 17. The queue number of 1-planar and optimal 2-planar graphs is at most 82.

4.2 Non-repetitive chromatic number

An r-coloring of a graph G is a function φ : V (G) → [r]. A path (v1, v2, . . . , v2τ ) is
repetitively colored by φ if φ(vi) = φ(vi+τ ) for i = 1, 2, . . . , τ . A coloring φ of G is non-
repetitive if no path of G is repetitively colored by φ. Clearly, non-repetitive colorings
are proper, i.e., φ(u) 6= φ(v) if u and v are adjacent in G. The non-repetitive chromatic
number π(G) of G is the minimum integer r such that G admits a non-repetitive r-coloring.
In [21], Dujmović et al. developed the following lemma to upper-bound the non-repetitive
chromatic number of graphs that can be expressed as subgraphs of the strong product of
a path P , a graph H with tw(H), and a clique K` on ` vertices.

Lemma 18 (Dujmović et al. [21]). If G ⊆ P �H �K`, then π(G) 6 4tw(H)+1 · `.

Using Lemma 18 and Theorem 1(c), Dujmović, Morin and Wood [20] provide an
upper bound of 1792 and of 2048 on the non-repetitive chromatic number of 1-planar
and optimal 2-planar graphs, respectively. Since 1-planar and optimal 2-planar graphs
are 4-framed and 5-framed, respectively, we improve both bounds to 1536. By Lemma 18
and the product structure theorem for h-framed graph in [20], one can obtain an upper
bound of 44 · (h + 3bh

2
c − 3) for the non-repetitive chromatic number of the graphs in

this family. By Lemma 18 and Theorem 2, we can further improve this upper bound
to 44 · (3bh

2
c+ bh

3
c − 1). Also, since k-map graphs are subgraphs of k-framed graphs [4],

their non-repetitive chromatic number is also improved from to 44 · (k + 3bk
2
c − 3) to

44 · (3bk
2
c+ bk

3
c − 1). Specifically, we get the following.

Corollary 19. Let G be a graph.

• If G is 1-planar, then π(G) 6 44 · 6.

• If G is k-map, then π(G) 6 44 · (3bk
2
c+ bk

3
c − 1).

• If G is h-framed, then π(G) 6 44 · (3bh
2
c+ bh

3
c − 1).
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w
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G G′

Figure 6: Illustration of the operation of contracting two vertices u and v. The thick red
edges connected w to vertices in NG(u)∆NG(v).

4.3 p-centered chromatic number

For any c, p ∈ N with c > p, a c-coloring of a graph G is p-centered if, for every connected
component X of G, at least one of the following holds: (i) the vertices of X are colored
with more than p colors, or (ii) there exists a vertex v of X that is assigned a color different
from the ones of the remaining vertices of X. For any graph G, the p-centered chromatic
number χp(G) of G is the minimum integer c such that G admits a p-centered c-coloring.
The following lemma is implied by combining results by Pilipczuk and Siebertz [36], Debski
et al. [13] and Dujmović, Morin and Wood [20].

Lemma 20 ([13, 20, 36]). If G ⊆ P �H�K`, where H is a planar graph with tw(H) 6 3,
it holds that χp(G) 6 `(p+ 1)2(pdlog(p+ 1)e+ 2p+ 1).

By Lemma 20 and Theorem 1, Dujmović et, Morin and Wood [20] showed the following
upper bounds: χp(G) 6 7(p + 1)2(pdlog(p+ 1)e + 2p + 1) if G is a 1-planar graph,
χp(G) 6 8(p + 1)2(pdlog(p+ 1)e + 2p + 1) if G is an optimal 2-planar graph, χp(G) 6
(k + 3bk

2
c − 3)(p + 1)2(pdlog(p+ 1)e + 2p + 1) if G is a k-map graph, and χp(G) 6

(h+ 3bh
2
c − 3)(p+ 1)2(pdlog(p+ 1)e+ 2p+ 1) if G is an h-framed graph. By exploiting

Theorem 2 and Lemma 20, we get the next.

Corollary 21. Let G be a graph.

• If G is 1-planar or optimal 2-planar, then χp(G) 6 6(p+ 1)2(pdlog(p+ 1)e+ 2p+ 1).

• If G is k-map, then χp(G) 6 (3bk
2
c+ bk

3
c − 1)(p+ 1)2(pdlog(p+ 1)e+ 2p+ 1).

• If G is h-framed, then χp(G) 6 (3bh
2
c+ bh

3
c − 1)(p+ 1)2(pdlog(p+ 1)e+ 2p+ 1).

5 Bounding Twin-width

Besides the direct consequences of the product structure theorem(s) surveyed in Section 4,
the construction presented in Section 3 has another strong implication described next.
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Consider only simple graphs for the coming definition. A trigraph is a simple graph G
in which some edges are marked as red. The edges of G which are not red are sometimes
called (and depicted) black for distinction. With respect to the red edges only, we naturally
speak about red neighbors and red degree in G. However, when speaking about edges,
neighbors and/or subgraphs without further specification, we count both black and red
edges together as one edge set. For the next definition refer to Figure 6. Given a pair of
(possibly not adjacent) vertices u, v ∈ V (G), we define a contraction of the pair u, v as the
operation of creating a trigraph G′ which is the same as G except that u, v are replaced
with a new vertex w (said to stem from u, v) such that:

• the full neighborhood of w in G′ (i.e., including the red neighbors), denoted by NG′(w),
equals the union of the neighborhoods of u and v in G except u, v themselves, that
is, NG′(w) = (NG(u) ∪NG(v)) \ {u, v}, and

• the red neighbors of w in G′, denoted by N r
G′(w), inherit all red neighbors of u

and of v and add those in NG(u)∆NG(v), that is, N r
G′(w) =

(
N r
G(u) ∪ N r

G(v) ∪
(NG(u)∆NG(v))

)
\ {u, v}, where ∆ denotes the symmetric set difference.

A partial contraction sequence of a trigraph G is a sequence of successive contractions
G = Gk, Gk−1, . . . , G0 turning G into a trigraph G0, and its width is the maximum red
degree of any vertex in any trigraph along the sequence. We speak about a contraction
sequence of G if G0 is a single vertex, in which case k = n− 1. The twin-width of G is the
minimum width over all possible contraction sequences of G. To define the twin-width of
a graph G, we consider G as a trigraph with no red edges.

The question about the maximum possible twin-width of planar graphs has recently
attracted a lot of attention. After the first implicit (and astronomical) upper bounds on
the twin-width of planar graphs, e.g. [10], we have seen a stream of improving explicit
bounds [5, 11, 32], culminating with the current best upper bound of 8 by Hliněný and
Jedelský [29]. This is complemented with a nearly matching lower bound of 7 by Král’
and Lamaison [33], but determining the exact maximum value (7 or 8) is still an open
question. We deem important to mention that the techniques used in the literature either
exploit, more or less explicitly, the product structure machinery [5, 11, 32], or modifications
thereof [29].

Beyond planarity, the twin-width of k-planar graphs is bounded for any fixed k by
means of FO transductions [10]; however, such bound is not known as an explicit function.
Explicit exponential asymptotic bounds for the twin-width of k-planar graphs (of order
2O(k)) are presented in the aforementioned [11] (with a generalization to higher surfaces).
We give new explicit non-asymptotic bounds on the twin-width of (subgraphs of) h-framed
and 1-planar graphs, where the bound for h-framed graphs is linear in h.

Theorem 22. Let G be an h-framed graph with h > 4. Then the twin-width of any simple
spanning subgraph of G is at most 11h+ 51

√
h+ 64.

The basic idea of the proof is to use the same recursive decomposition procedure
that has been used to obtain the product structure in Lemma 4 to also obtain a good
contraction sequence of small red degrees. We, however, need some preparatory work. To
motivate it, we start with an informal outline of our proof:
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• We recall the BFS layering L = (V0, V1, . . . , Vb) of sk(G) as in Lemma 4. The crucial
point of the proof is the following; if the constructed sequence contracts only vertices
within a few (namely about

√
h, which is an optimum for the approach) consecutive

layers of L, then there will be only few other layers possibly containing red neighbors
of each contracted vertex. Planarity of the skeleton sk(G), in a suitable setup, then
restricts the number of possible red neighbors in each of the layers at every step of
the sequence.

• The precise way of bounding the number of possible red neighbors in one layer of a
graph along the contraction sequence closely follows the details of the decomposition
recursively constructed in Lemma 4, and is handled by Claim 28 and its recursive
proof. The definitions and statements preceding Claim 28 provide a technical
background for the proof.

• There is one notable detail concerning the construction of our contraction sequence.
While we are going to recursively contract parts of our graph (following the proof
of Lemma 4), we inevitably create some red edges incident to the boundary of the
recursively processed part(s). This is a problem for boundary vertices which also
appear in the boundaries of two simultaneously processed smaller parts — every
level of recursion then may add to the maximum red degree, eventually exceeding
any fixed bounds. To resolve this problem, our proof introduces specially protected
boundary vertices in Definition 25.

Consider some trigraph H. For a set X ⊆ V (H), a (partial) contraction sequence of H
is X-restricted if every step contracts only pairs coming from X (including the vertices
that stem from previous contractions in X). For a vertex partition P of H, a (partial)
contraction sequence is P-respecting if every step contracts only pairs coming from some
but one part X ∈ P. For two vertices u and v belonging to the same part X of P, the
vertex w stemming from the contraction of u and v is assigned to X after the contraction.
Naturally, if H1 is a trigraph resulting from a P-respecting partial contraction sequence of
H, then by a “partition P at H1” we mean the (unique) partition of V (H1) that stems from
the parts of P by the contractions. For an ordered vertex partition P = (X0, X1, X2, . . .)
of H, we say that H is m-narrow in P if for every edge (v, w) ∈ H and suitable i and j
we have that v ∈ Xi, w ∈ Xj, and |i− j| 6 m.

The proof of Theorem 22 will be formulated within the following special setup which
we outline already now for motivation. We assume fixed integer functions µ and ν (to be
exactly specified later, namely of order Θ(

√
h)) such that the following holds for all h > 4:

1 6 µ(h), ν(h) 6 bh/2c 6 µ(h) · ν(h)

Let Lν(h) = (L0, L1, L2, . . .) be the vertex partition of V (G) obtained from the above
BFS layering L of sk(G) such that L0 = V0 and the remaining parts in the partition are
obtained by joining ν(h)-tuples of consecutive layers of L, i.e., Li :=

⋃
j:(i−1)ν(h)+16 j 6iν(h) Vj

for i = 1, 2, . . . (note that Li = ∅ for all sufficiently large i). Consider now any simple
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spanning sub(tri)graph H ⊆ G, i.e., V (H) = V (G) and so the partition Lν(h) applies to H
as well as to G. We then have the following claim similar to Property 3:

Claim 23. The (tri)graph H is µ(h)-narrow in Lν(h).

Proof. Consider an edge e = (v, w) of H with v ∈ Li ∈ Lν(h) and w ∈ Lj ∈ Lν(h).
Edge e is at the same time an edge of G. If e belongs to sk(G), then we easily see that
|i − j| 6 1 6 µ(h) since L was a layering of sk(G). Otherwise, both ends v, w of e lie
on the boundary of some face of sk(G), and so the distance from v to w in sk(G) is at
most bh/2c. For a contradiction, on the other hand, suppose (up to symmetry) that
i− j > µ(h) + 1. Then a shortest path from v to w in sk(G) must intersect each of the
µ(h) parts Lj+1, . . . , Lj+µ(h) in at least ν(h) vertices by the definition of Lν(h). This in
turn means that the distance from v to w is more than µ(h) · ν(h) > bh/2c, which is a
contradiction to the previous.

A direct consequence of Claim 23 and of the definition of a contraction is the following.

Corollary 24. A contraction of a pair of vertices from Li in H may create red edges only
to the vertices of Li−µ(h) ∪ · · · ∪ Li ∪ · · · ∪ Li+µ(h) (a union of 2µ(h) + 1 layers of Lν(h)).

We say that a set W ⊆ M is [α, β]-near vertical with respect to a partition P of M
if the union of any 2µ(h) + 1 (consecutive or not) layers of P intersects W in at most
α ·ν(h) · (2µ(h)+1)+β vertices. To illustrate this notion in our case of the BFS layering L,
observe that if W = A ∪B ⊆ V (G) where the width of A with respect to L is λL(A) 6 α
and |B| 6 β, then W is [α, β]-near vertical in Lν(h), but the full scope of this definition is
broader.

We will exploit the following definition; refer to Figure 7.

Definition 25. Let H be a trigraph with a “boundary” set B ⊆ V (H), a set U := V (H)\B
of interior vertices, and vertices p, p′ ∈ B (p, p′ will be called the protected vertices of G).
Also, let P = (X0, X1, X2, . . .) be an ordered partition of V (H), such that H is µ(h)-narrow
in P .

We say that the triple (H,B,P) is marvelous if the set B can be partitioned into four
disjoint subsets B1, B2, B3, B4 ⊆ B, and there exists Y ⊆ U and an index ` > 0 such that

(I) each of the sets B1, B2 and B3 is [2, κ(h)]-near vertical with respect to P, with
κ(h) := bh−1

2
c − 1,

(II) the set B4∪ (U \Y ) is [3, σ(h)]-near vertical with respect to P , with σ(h) := bh
3
c− 1,

(III) H has no red edge with both ends in B ∪ (U \ Y ), and no red edge with an end
p or p′,

(IV) |Y ∩Xi| 6 8 for all 0 6 i 6 ` − 2, |Y ∩X`−1| 6 7, and |Y ∩Xi| 6 4 for all i > `,
and

(V) for all 0 6 i, j 6 `− 2, every vertex of Y ∩Xi has at most 4 red neighbors in Y ∩Xj .
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Figure 7: Illustration of Definition 25: A trigraph H with a distinguished vertex set
B (the “boundary”), further partitioned into B1, B2, B3, B4, and the special protected
vertices p and p′ with no incident red edges. The layers of the associated partition P of
V (H) are pictured horizontally. This informal illustration, in particular, features; vertices
y1, y2 ∈ Y ∩ X`−2 which have each 4 red neighbors in Y ∩ Xj for j 6 ` − 2, a vertex
u ∈ (U \ Y ) ∩X`−2 which has 8 red neighbors in Y ∩Xj for any j 6 `− 2, and vertices
b1 ∈ B1 and b3 ∈ B3 having each potentially up to 16µ(h) + 8 red neighbors in 2µ(h) + 1
consecutive layers of P ∩ Y .

Now we give two core technical statements regarding Definition 25.

Lemma 26. Given a marvelous triple (H,B,P), the maximum red degree of a vertex in
V (H) \B is at most

18ν(h)µ(h) + 3κ(h) + σ(h) + 9ν(h) + 12µ(h) + 6, (1)

and the maximum red degree of a vertex in B is at most 16µ(h) + 8.

Proof. Let P = (X0, X1, X2, . . .) and Y be defined as in Definition 25. By the conditions
(I) and (II) and the definition of near vertical, the number of potential red neighbors of a
vertex x in B ∪ (U \ Y ) = V (H) \ Y is at most 3 · [ 2ν(h) · (2µ(h) + 1) + κ(h)] + [ 3ν(h) ·
(2µ(h) + 1) + σ(h)] = 9ν(h) · (2µ(h) + 1) + 3κ(h) + σ(h). The number of potential red
neighbors of x in Y can be estimated as follows. By (IV), there are at most 7 such neighbors
in Y ∩ X`−1 (6 6 if j = ` − 1), and at most 8 in each Y ∩ Xi where j − µ(h) 6 i 6 j
since H is µ(h)-narrow. By (V), if j 6 `− 2, we moreover have at most 4 red neighbors
of x in each Y ∩Xi where j − µ(h) 6 i 6 min(`− 2, j + µ(h)). Again by (IV), we have
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at most 4 red neighbors of x in each Y ∩ Xi where ` 6 i 6 j + µ(h). Note that these
subcases altogether cover all values of i between j − µ(h) and j + µ(h). By a simple case
analysis, the sum of these upper estimates is maximized when i = j = `− 1, which gives
an upper bound of 8µ(h) + 6 + 4µ(h) = 12µ(h) + 6 potential red neighbors of x in Y in
the trigraph H. Together with the previous, it confirms (1).

Finally, for any vertex y ∈ B, we immediately get from (III), (IV) and H being µ(h)-
narrow, that the number of potential red neighbors of y is at most 8(2µ(h)+1) = 16µ(h)+8
in H.

Lemma 27. Let H be a trigraph with a “boundary” set B and a partition P such that
(H,B,P) is marvelous. Then there exists a U-restricted P-respecting partial contraction
sequence of H, with U := V (H) \ B, resulting in a trigraph H1 with a boundary set B
satisfying the following properties:

(a) H1 has no red edge with both ends in B, and no red edge with an end p or p′, and

(b) |U0 ∩X0
i | 6 4, for all i > 0, where U0 = V (H1) \ B and X0

i ⊆ V (H1) stems from
the part Xi ∈ P by contractions.

Furthermore, each triple (H ′, B,P ′), where H ′ is a trigraph occuring along the partial
contraction sequence and P ′ is the partition P at H ′, is marvelous.

Proof. We do the proof by induction on |U |. We pick the largest index k such that
|U ∩ Xk| > 4, and if k does not exist, we immediately stop with the empty sequence
and H1 = H satisfying the conclusion. Note that we may have k > ` since (IV) requires
only |Y ∩Xk| 6 4.

Now we contract any pair of distinct vertices u,w ∈ U ∩Xk with the same adjacency
to the protected vertices p, p′ in H, i.e., that NH(u) ∩ {p, p′} = NH(w) ∩ {p, p′}, and
that u,w ∈ Y if possible. This is always sound since there can be at most four different
adjacencies to p, p′. Denote by H ′ the trigraph resulting from the previous contraction
in H. Let the new vertex that stems from the contraction of u,w be x, and set U ′ :=
U \ {u,w}∪ {x} and Y ′ := Y ∪{x}. Clearly, this contraction does not create any red edge
incident to p or p′ by our choice of u,w, and also no red edge with both ends in B∪(U ′\Y ′)
since this set is not affected.

Let `′ := k+ 1 and P ′ = (X ′0, X
′
1, . . . ) be the partition P at H ′. Consider the following

properties of the triple (H ′, B,P ′), which are derived from those of Definition 25:

(I’) each of the sets B1, B2 and B3 is [2, κ(h)]-near vertical with respect to P ′,
(II’) the set B4 ∪ (U ′ \ Y ′) is [3, σ(h)]-near vertical with respect to P ′,

(III’) H ′ has no red edge with both ends in B ∪ (U ′ \ Y ′), and no red edge with an end
p or p′,

(IV’) |Y ′ ∩X ′i| 6 8 for all 1 6 i 6 `′ − 2, |Y ′ ∩X ′`′−1| 6 7, and |Y ′ ∩X ′i| 6 4 for all i > `′,
and

(V’) for all 1 6 i, j 6 `′ − 2, every vertex of Y ′ ∩ X ′i has at most 4 red neighbors in
Y ′ ∩X ′j.
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Conditions (I’) and (II’) are trivially inherited by H ′ (and U ′, Y ′) from H (and from
U, Y ), and validity of (III’) for H ′ has just been confirmed. (IV’) is valid by our choice
of k – in particular, |Y ′ ∩X ′k| 6 7 since we have contracted in this part. (V’) remains valid
since we have not contracted among the relevant parts X ′i = Xi for i ∈ {0, . . . , k − 1}.
Therefore, the triple (H ′, B,P ′) is marvelous, and we may apply the lemma inductively
since |U ′| < |U |.

We now return to the proof of the main result of this section.

Proof of Theorem 22. We start from the BFS layering L = (V0, V1, V2, . . .) of the skeleton
sk(G), as in Section 3, i.e., we choose a root r from the unbounded face of sk(G) and
define Vi ⊆ V (G) as the set of those vertices at distance i > 0 from r in sk(G). Then,
we define the ordered partition Lν(h) = (L0 = V0, L1, L2, . . .) of V (G) by setting Li :=⋃
j:(i−1)ν(h)+16 j 6iν(h) Vj for i > 1, as used above in Claim 23. Let H̄ be a simple spanning

subgraph of G.
In order to apply induction, which will in this case follow the recursive-decomposition

steps shown in the proof of Lemma 4, we strengthen the statement of Theorem 22 as
follows.

Claim 28. Let C be a cycle in sk(G) which has been encountered in the inductive proof of
Lemma 4, and let GC be the subgraph of G bounded by C and HC the subgraph of H̄ induced
on V (GC). Let p, p′ ∈ V (C) be arbitrary. Let U := V (GC) \ V (C). Let Lν(h)C denote Lν(h)

restricted to V (HC) = V (GC). Then there exists a U-restricted Lν(h)C -respecting partial
contraction sequence of HC, resulting in the trigraph H0

C and satisfying the following:

a) The maximum red degree in the sequence is as (1) in Lemma 26, and the maximum
red degree of vertices of V (C) is at most 16µ(h) + 8. There is no red edge in the
sequence incident to the protected vertices p, p′.

b)
∣∣(V (H0

C) \ V (C)) ∩ L′i
∣∣ 6 4, where L′i stems from Li in the sequence, holds for i > 0.

In this setting of Claim 28, from the inductive proof of Lemma 4, we get a subgraph
R ⊆ sk(G)∩GC such that X := V (R)\V (C) satisfies Property 1 of Lemma 4. Considering
the a > 2 bounded faces of C ∪R (which is 2-connected), we denote their bounding cycles
by D1, . . . , Da, and say that the cycle Di is nonempty if the interior of Di contains a
vertex of GC . Recall, from the separable case of Lemma 4, that a may be higher than 3.
We furthermore have for free (from the proof of Lemma 4) that for each nonempty Di we
may apply Claim 28 inductively, and we only need to appropriately choose the protected
vertices pi, p

′
i ∈ V (Di).

The purpose of choosing the pair of protected vertices in Claim 28 is to prevent
“recursive accumulation” of red degree in the boundary vertices. If p, p′ ∈ V (Di), then we
choose pi = p and p′i = p′. If V (Di) ∩ {p, p′} = ∅, then we choose pi and p′i as the ends
of the path Di ∩ C, and we take one or both of pi, p

′
i arbitrarily if Di ∩ C is one-vertex

or empty. If, up to symmetry, p ∈ V (Di) and p′ 6∈ V (Di), then we set pi = p and p′i as
one of the ends of Di ∩ C – we take an arbitrary of the two ends except the special case
described next; if p ∈ V (Di), p

′ ∈ V (Dj) and one end (or both ends) of Di ∩ C is an end
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B4

B3

B2

B1

p = p1
p′ = p′2

L`

≤ 8

≤ 8

H1
D1

H1
D2

p′1 = p2

U \ Y

Figure 8: Illustration of the proof of Theorem 22: This is the first step after a recursive
application of Claim 28 to D1 and D2 in HC ⊆ G, and outlining the setup required by
Lemma 27.

(ends) of Dj ∩ C, then we set p′i to the end shared with Dj ∩ C (and the possible other
shared end is symmetrically set to p′j). This way we ensure that every vertex of C is not
protected in at most one of the nonempty Di’s.

We continue in the proof of Claim 28 for HC as follows. Apply Claim 28 to (assumed
nonempty, up to symmetry) D1, and to D2. Then concatenate the partial contraction
sequence of HD2 after the one of HD1 . There is no confusion in this concatenation since
the sequences do not touch the vertices of V (D1) ∪ V (D2), and there is no edge from
V (HD1) \ V (D1) to V (HD2) \ V (D2) due to the plane skeleton sk(G). We denote the
respective trigraphs resulting in the sequences by H1

D1
and H1

D2
. In the concatented partial

contraction sequence, every interior vertex of HD1 and HD2 , and also every vertex of
V (C) thanks to the choice of protected vertices p1, p

′
1 and p2, p

′
2, stay with red degrees

as in Claim 28 a). For a vertex y ∈ (V (D1) ∩ V (D2)) \ V (C), the same holds since y has
at most 16µ(h) + 8 incident red edges from the current one of the two sequences, plus
possibly up to 4(2µ(h) + 1) = 8µ(h) + 4 red edges from H1

D1
by Claim 28 b), together

24µ(h) + 12 6 12ν(h)µ(h) + 12µ(h) + 6ν(h) + 6 compared to (1) in Lemma 26.
See Figure 8 for an illustration of the intermediate outcome.
Next, we are going to apply Lemma 27 to the resulting graphH := H1

D1
∪H1

D2
∪R∪C and

the sets B := V (C)∪V (D3)∪. . .∪V (Da), U = V (H)\B, Y := V (H1
D1
∪H1

D2
)\V (D1∪D2).

For that we verify the conditions of Definition 25: The protected vertices p, p′ are the same
as in Claim 28. The trigraph H is µ(h)-narrow in the partition that stems from Lν(h)C by
Claim 23. (I) and (II) follow from the course of induction in the claim and from Property 1
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B3

B2

B1

p = p1
p′ = p′2

p3
p′3

H1
D3

H2

U \ Y

≤ 8 ≤ 8

Figure 9: Illustration of the proof of Theorem 22: This is the (possible) second step
after the first step leading to a subtrigraph H2 and a subsequent recursive application
of Claim 28 to D3 in HC ⊆ G. Again, we have the setup required by Lemma 27 for the
next step, including a corresponding new definition of U and Y . Note that here we have
B4 = ∅ since a = 3 (meaning we are at the last step).

of Lemma 4, where the partition B = B1 ∪B2 ∪B3 ∪B4 is given by the paths P1, P2, P3

from Lemma 4 and by B4 = V (R) ∩B. (III) is true since the inductively obtained partial
contraction sequences do not touch C ∪R and since the protected vertices p, p′ of C have
been respected. (IV) is true for sufficiently large ` by Claim 28 b), and (V) follows the same
way. Let H2 denote the contracted trigraph resulting from this application of Lemma 27.

Subsequently, we apply Claim 28 to D3 (if a > 3 and nonempty, otherwise we skip),
and append the obtained partial contraction sequence from HD3 to H1

D3
after the previous

sequence ending with H2. Refer to Figure 9. We repeat (even for empty D3 if a > 3) an
analogous application of Lemma 27 to resulting H := H2 ∪H1

D3
∪R2 ∪ C where R2 is the

restriction of R to H2. In this we again, as above, satisfy the conditions of Lemma 27,
since the relevant conclusions for H2 are the same as we had for H1

D1
. We repeat possibly

again, until we exhaust all cycles up to Da, and satisfy the conclusions of Claim 28 by
Lemma 27.

Since we have finished the proof of Claim 28, we can now apply it to the unbounded
facial cycle C of sk(G), exactly as we have started with Lemma 4 previously. In the
resulting trigraph H0

C , we can then greedily contract the remaining vertices, and by
Claim 28 b) and Corollary 24, we in this final contraction sequence never exceed red degree
of |V (C)|+ 4(2µ(h) + 1) 6 2µ(h)ν(h) + 4µ(h) + 5 which conforms to (1) in Lemma 27.

At last, we precisely choose µ(h) :=
⌈√
bh/2c/2

⌉
and ν(h) := 2µ(h) in accordance

with the assumptions stated above. Based on (1) we estimate the sought twin-width of
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H̄ ⊆ G as follows:

18ν(h)µ(h) + 3κ(h) + κ′(h) + 9ν(h) + 12µ(h) + 6 (2)

= 36µ(h)2 + 3(b(h− 1)/2c − 1) + bh/3c − 1 + 30µ(h) + 6

6 36
(
bh/2c/2 + 2

√
bh/2c/2 + 1

)
+ 3b(h− 1)/2c+ bh/3c − 4 + 30

√
bh/2c/2 + 36

= 15bh/2c+ 3(h− 1) + bh/3c+ 102
√
bh/2c/2 + 68 6 11h+ 51

√
h+ 64.

Corollary 29. The twin-width of simple 1-planar graphs is at most 72, and that of simple
optimal 2-planar graphs is at most 75.

Proof. We treat these graphs as spanning subgraphs of h-framed graphs with h = 4 and
h = 5, respectively. From (2) we get a more precise estimate based on setting µ(h) = 1,
ν(h) = 2, κ′(h) = 0, and κ(h) = 0 for h = 4 and κ(h) = 1 for h = 5, leading to the
respectively claimed bounds of 72 and 75.

We point out that Theorem 22 implies an improvement on the twin-width of k-
map graphs only up to a certain k, as these graphs have bounded twin-width indepen-
dently of k [10].

6 Conclusions

In this paper we have provided a product structure theorem for h-framed graphs. Our
approach is constructive and can easily be implemented to run in quadratic time to obtain
the corresponding decomposition, provided that the input graph is a topological h-framed
graph.

A major open question is to obtain a speed-up in the construction; the recent algorithmic
advances in [12, 34] have the potential to lead to improvements in the running time. The
conference version [6] of this paper asked the question whether each k-planar graph is a
subgraph of the strong product of a path, a (planar) graph of constant treewidth H, and a
clique whose size is a function f of k. In a recent development, the question was answered
affirmatively if H is not required to be planar [16] and f(k) ∈ 2O(bk/2c!). This leaves open
the questions of whether H can be assumed to be planar and/or f can be bounded by a
polynomial function of k.
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