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Abstract

Nevo, Santos, and Wilson constructed 2Ω(Nd) combinatorially distinct simplicial
(2d − 1)-spheres with N vertices. We prove that all spheres produced by one of
their methods are shellable. Combining this with prior results of Kalai, Lee, and
Benedetti and Ziegler, we conclude that for all D > 3, there are 2Θ(NdD/2e) shellable
simplicial D-spheres with N vertices.

Mathematics Subject Classifications: 05E45, 52B22, 52B05

1 Introduction

The goal of this paper is to establish the asymptotics of the number of shellable D-spheres
with N vertices, as N grows to infinity. To achieve this, we show that the spheres produced
in [7, Construction 3] by Nevo, Santos, and Wilson are shellable.

It follows from Steinitz’s theorem (see [11, Chapter 4]) that all simplicial 2-spheres can
be realized as the boundary complexes of 3-polytopes. However, in higher dimensions,
there are many more simplicial spheres than the boundaries of polytopes. Let s(D,N)
denote the number of combinatorially distinct D-spheres with N vertices. For D > 4,
Kalai [5] proved that s(D,N) > 2Ω(NbD/2c). Pfeifle and Ziegler [9] then complemented

Kalai’s result by showing s(3, N) > 2Ω(N5/4). Later, Nevo, Santos, and Wilson [7] improved

the lower bound of s(D,N) for odd D > 3 to 2Ω(NdD/2e). In constrast to these bounds,
we know from works by Goodman and Pollack [4] as well as Alon [1] that there are only
2Θ(N logN) combinatorially distinct D-polytopes with N vertices for D > 4. See also a
recent preprint by Padrol, Philippe and Santos [8] for the current best lower bound.

An important and related result by Bruggesser and Mani [3] is that the boundary
complexes of simplicial polytopes are always shellable. This naturally leads to the study
of shellable spheres. How many shellable spheres are there? How does this number
compare to the number of polytopes? These questions were partially answered by Lee’s
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proof in [6] that Kalai’s spheres in [5] are all shellable. Let sshell(D,N) denote the number
of shellable D-spheres with N vertices. Lee’s result implies that

sshell(D,N) > 2Ω(NbD/2c). (1)

What about the Nevo–Santos–Wilson spheres? The main result of this paper is:

Theorem 1. The Nevo–Santos–Wilson spheres in [7, Construction 3] are all shellable.

On the other hand, Benedetti and Ziegler [2] proved that for D > 2, the number of
combinatorially distinct locally constructible (LC) D-spheres with M facets grows not
faster than 2D

2M . In addition, they proved that shellable spheres are LC. Meanwhile, the
Upper Bound Theorem for simplicial spheres by Stanley [10] asserts that a simplicial D-
sphere with N vertices has at most O(N dD/2e) facets. We make the following observation
by combining Theorem 1 with Benedetti and Ziegler’s results, the bounds in (1), and the
Upper Bound Theorem for simplicial spheres.

Corollary 2.

sshell(D,N) = 2Θ(NdD/2e) for all D > 3.

The structure of this paper is as follows. Several key definitions and facts related
to Nevo, Santos, and Wilson’s construction are provided in Section 2. Sections 3 and 4
contain a detailed proof of the shellability of the Nevo–Santos–Wilson spheres. Detailed
computations leading to Corollary 2 can be found at the end of Section 4.

2 Preliminaries

2.1 Basic definitions

We start with several essential definitions and notations in preparation for the rest of the
paper.

A simplicial complex ∆ on a finite vertex set V is a collection of subsets of V such
that if σ ∈ ∆ and τ ⊆ σ, then τ ∈ ∆. The elements of ∆ are called faces. The dimension
of each face σ is dimσ = |σ| − 1. Conventionally we call the 0-dimensional faces vertices,
and the 1-faces edges. The dimension of ∆ is dim ∆ = max{dimσ : σ ∈ ∆}. We say
∆ is pure if its maximal faces with respect to inclusion all have the same dimension. In
that case, these maximal faces are called facets and faces of one dimension less are called
ridges.

The simplex on V , denoted V , is the collection of all subsets of V . For a face σ ∈ ∆, σ
is the collection of all subsets of σ. Starting from the next section, we blur the difference
between a face σ ∈ ∆ and the simplex σ ⊆ ∆ and denote both as σ by abuse of notation.

For two integers n1, n2 such that n1 < n2, define [n1, n2] := {n1, . . . , n2} and [n1] :=
{1, . . . , n1} when n1 > 0. A path of length n−1 is a 1-dimensional pure simplicial complex
on the vertex set {v1, . . . , vn} whose facets are {vi, vi+1} for i ∈ [n − 1]. We denote this
path as P (v1, . . . , vn).
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Given a D-dimensional simplicial complex ∆, we can associate with ∆ its geometric
realization ‖∆‖ as follows. For each maximal face σ ∈ ∆, build a (|σ| − 1)-dimensional
geometric simplex with vertices labeled by elements in σ. Glue the simplices in a way that
every two simplices are identified along their common (possibly empty) face. We say that
∆ is a simplicial D-sphere (and respectively, a simplicial D-ball) if ‖∆‖ is homeomorphic
to a D-sphere (D-ball). In particular, whenever ‖∆‖ is homeomorphic to a D-manifold,
every ridge of ∆ is in at most two facets of ∆.

Let σ ∈ ∆. The star and link of σ in ∆ are respectively defined to be the subcomplexes

st∆ σ = {τ ∈ ∆ : τ ∪ σ ∈ ∆} and lk∆ σ = {τ ∈ ∆ : τ ∩ σ = ∅, τ ∪ σ ∈ ∆}.

If ∆ and Γ are simplicial complexes on disjoint vertex sets V and V ′, then the join of
∆ and Γ is the simplicial complex ∆ ∗ Γ = {F ∪ G : F ∈ ∆, G ∈ Γ}. When one of the
the complexes, say Γ, has only a single vertex v, then we call ∆ ∗ {v} (or simply, ∆ ∗ v)
the cone over ∆ with apex v.

Among the many equivalent definitions of shellability, we take the following one for
this paper (see for example [11, Remark 8.3(ii)]).

Definition 3. A pure D-dimensional simplicial complex ∆ is shellable if there exists a
total order of facets F1, . . . , Fn of ∆ such that for each i ∈ [2, n], for every j < i, there
exists some m < i with the property that Fi ∩ Fm is a (D − 1)-face containing Fi ∩ Fj.
We call such an order a shelling of ∆.

Every shelling of ∆ induces a shelling of st∆ σ and lk∆ σ. Moreover, the join of two
shellable complexes is shellable.

Simplicial complexes form a subclass of polyhedral complexes. A polyhedral complex
C is a collection of polytopes such that

• if P ∈ C and Q is a face of P , then Q ∈ C, and

• if P,Q ∈ C, then P ∩Q is a common face of P and Q.

For more information about polytopes and shellability, see [11]. Polyhedral complexes
naturally come with a geometric realization. All definitions from the beginning of this
section can be adapted to polyhedral complexes. For instance, a polyhedral complex is a
polyhedral D-sphere (polyhedral D-ball, respectively) if it is homeomorphic to a D-sphere
(D-ball).

Given a polyhedral D-ball C, define its boundary complex ∂C to be the subcomplex
of C whose facets are the (D− 1)-faces of C that are contained in exactly one facet of C.
A triangulation of a polyhedral complex C is a simplicial complex ∆ such that

• the geometric realization of ∆ coincides with C, and

• every face of ‖∆‖ is contained in a polytope of C.
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2.2 The Nevo–Santos–Wilson spheres

In this section, we present the key facts about [7, Construction 3] as well as introduce
some new definitions and notation. We closely follow Nevo, Santos, and Wilson’s paper
[7] and state their results without proof. The reader is encouraged to check their paper
for more details.

Remark. A word about notation: the construction below is based on the join of d paths,
each of length n−1. This join is a (2d−1)-dimensional complex. We let D := 2d−1 and
mention right away that each sphere produced in [7, Construction 3] is D-dimensional
and has N = dn+ dd(n− 1)/(d+ 2)e+ 1 vertices.

Let B be the join of d paths of length n− 1. Suppose d > 2 and n > 3 for nontrivial
results. For each ` ∈ [d], we denote the `-th path by P (1`, . . . , n`). Then each (2d − 1)-
simplex σ in the join B is of the form

σ = {i11, i1 + 11, . . . , idd, id + 1d}.

Notation. For simplicity, we omit parentheses and commas in the notation for simplices
when the meaning is unambiguous. Thus σ becomes i11i1 + 11 · · · iddid + 1d. On the other
hand, σ can be uniquely represented by a d-tuple of indices (i1, . . . , id) ∈ [n− 1]× · · · ×
[n− 1], or (i11, . . . , i

d
d) when we would like to clarify the coordinates with the superscripts.

We use these notations interchangeably. Let
∑
σ denote i1 + · · · + id, the index sum of

σ. For the rest of the paper, we reserve the letter σ for the (2d− 1)-simplices of B.

Each σ ∈ B can be visualized as a d-cube in the d-dimensional grid with side length
n− 1 that represents B. The left of Figure 1 illustrates the case of d = 3 and n = 5.

The join B is a simplicial (2d − 1)-ball. For each k ∈ [dd(n − 1)/(d + 2)e], define Bk

to be the union of all σ ∈ B such that
∑
σ ∈ [(k − 1)(d + 2), k(d + 2) − 1]. This is a

(2d− 1)-ball contained in B [7, Lemma 5.2]. Note that B =
⋃
k Bk. Figure 1 depicts the

union for the case of d = 3 and n = 5.

12      22       32      42      52 13     
 23     

 33     
 43     

 53
11

21

31

51

41

B1 consists of cubes with 
index sums in [0, 4]. B2 consists of cubes with 

index sums in [5, 9].

B3 consists of cubes 
with index sums 
in [10, 14].

Figure 1: A grid representing B for d = 3 and n = 5. It is the union of balls Bk for
k ∈ [3].
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The idea of [7, Construction 3] is to replace each Bk with a new ball B̃k with the same
boundary. For each k, a new vertex ok is introduced as follows (assuming Bk is not a
simplex):

• Consider the collections of (2d− 1)-simplices:

Lk :=
{
σ ∈ Bk :

∑
σ = (k − 1)(d+ 2)

}
, Uk :=

{
σ ∈ Bk :

∑
σ = k(d+ 2)− 1

}
.

We call them respectively the lower diagonal and upper diagonal of Bk. The cor-
responding cubes for k = 3 when d = 2 and n = 8 are indicated in Figure 2.

11         21         31         41         51         61         71         81

52

62

82

72

12

22

42

32

L3 consists of cubes 
with index sum 8.  

U3 consists of cubes 
with index sum 11.

C3 consists of 2-dimensional simplices
on the boundary of B3 that are not 
contained in U3 or L3

B1

B2

B3

B4

Figure 2: A grid representing B for d = 2 and n = 8.

For each σ ∈ Lk ∪Uk, define Dσ := σ∩ ∂Bk. Let Cσ be a new polyhedral cell whose
boundary complex is Dσ ∪ (∂Dσ ∗ ok). Let Fσ be the only subset of V (Dσ) not in
Dσ but such that all of its proper subsets are in Dσ. We call Fσ the missing face of
Dσ. Let Gσ := σ \ Fσ. There are two ways to triangulate Cσ without introducing
new vertices or changing the boundary of Cσ:

Tσ,1 = Fσ ∗ ∂(Gσ ∗ ok) and Tσ,2 = ∂Fσ ∗ (Gσ ∗ ok).

We use Tσ,j to mean either one of the two triangulations.

• Let Ck be the set of all (2d− 2)-simplices on the boundary of Bk not contained in
any σ ∈ Lk ∪ Uk. We call Ck the connecting path of Bk. The corresponding edges
for k = 3 when d = 2 and n = 8 are indicated in Figure 2.
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Let B̃k :=
⋃
σ∈Lk∪Uk Tσ,j ∪

⋃
τ∈Ck τ ∗ ok. In this way, 2|Lk∪Uk| different labeled balls

B̃k have been created, because there are two choices of Tσ,j for each σ ∈ Lk ∪ Uk. Let

B̃ :=
⋃
k B̃k. From B̃, we obtain a (2d − 1)-sphere B̃ ∪ (∂B̃ ∗ o) by introducing a new

vertex o and taking a cone over the boundary of B̃.
As shown in [7, Corollary 5.5], this construction yields 2Ω(Nd) combinatorially distinct

(2d−1)-spheres with N vertices. Indeed, there are at least 2
∑
k |Lk∪Uk| > 22Nd/3dd+1

labeled

N -vertex triangulations B̃∪(∂B̃∗o) of the (2d−1)-sphere. Since N ! = 2O(N logN), dividing
by N ! does not change the asymptotic order of the bound.

We end this section by providing a few explicit descriptions of B and the balls Bk.
These will come in handy for the proofs later.

Lemma 4. The set of facets of ∂B is⋃
σ=(i1,...,id)∈B

({σ \ i` + 1` : i` = 1} ∪ {σ \ i`` : i` = n− 1}).

Proof. Any τ := σ\ i`+1` is contained in (i11, . . . , i`−1`, . . . , idd). Therefore, τ ∈ ∂B if and
only if i` = 1. Similarly, any τ := σ \ i`` is contained in (i11, . . . , i` + 1`, . . . , idd). Therefore,
τ ∈ ∂B if and only if i` = n− 1.

Lemma 5. The set of facets of ∂Bk is⋃
σ=(i1,...,id)∈Lk

{σ \ i` + 1` : ` ∈ [d]} ∪
⋃

σ=(i1,...,id)∈Uk

{σ \ i`` : ` ∈ [d]} ∪ Ck,

and
Ck =

⋃
σ=(i1,...,id)∈Bk\(Lk∪Uk)

({σ \ i` + 1` : i` = 1} ∪ {σ \ i`` : i` = n− 1}).

Proof. The proof is similar to that of Lemma 5. Recall that σ ∈ Bk if and only if∑
σ ∈ [(k−1)(d+2), k(d+2)−1]. Therefore, σ′ := (i11, . . . , i`−1`, . . . , idd) does not belong

to Bk if and only if either i` = 1 or σ ∈ Lk, which forces
∑
σ′ =

∑
σ−1 < (k−1)(d+ 2).

Analogously, σ′ := (i11, . . . , i` + 1`, . . . , idd) does not belong to Bk if and only if either
i` = n− 1 or σ ∈ Uk, which forces

∑
σ′ =

∑
σ + 1 > k(d+ 2)− 1.

This also implies that if τ ∈ Ck, then since τ ⊂ σ for some σ such that (k−1)(d+2) <∑
σ < k(d+ 2)− 1, τ must be of the form σ \ i` + 1`, i` = 1 or σ \ i``, i` = n− 1.

Lemma 6. Let σ = (i1, . . . , id) ∈ Lk ∪ Uk. Then its missing face Fσ is

{i`` : i` = n−1}∪{i`+1` : ` ∈ [d]} if σ ∈ Lk, and {i`+1` : i` = 1}∪{i`` : ` ∈ [d]} if σ ∈ Uk.

Proof. This follows from the definition of Fσ and Lemmas 4 and 5.
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3 The shellability of B̃

3.1 Overview

To prove that the Nevo–Santos–Wilson spheres from [7, Construction 3] are shellable, we

first prove the shellability of the new ball B̃ obtained by modifying the join of paths B.
This is where the major work lies. We start by by outlining the ideas behind and the
structure of the proof.

Recall that, to better visualize the join B of d paths of length n − 1, we identify B
with a d-dimensional grid with side length n−1, where each d-cube in the grid represents
a (2d− 1)-simplex in B. We can examine the d-dimensional grid by “layers.” Each layer
is a (d− 1)-dimensional grid representing a join of d− 1 paths of length n− 1:

B =
⋃

i1∈[n−1]

i11i1 + 11 ∗ lkB i
1
1i1 + 11.

We can further divide each (d − 1)-dimensional grid lkB i
1
1i1 + 11 into layers of (d − 2)-

dimensional grids, and so on. Roughly speaking, to modify B, we can modify each layer
of the grid and stack the new layers together, with some caveats to be addressed soon.
This allows us to prove the shellability of B̃ by induction on d. We illustrate the process
in the following example before formalizing it.

Example 7. Return to the example for d = 3 and n = 5. On the left of Figure 3, the
balls B1, B2, and B3 are colored differently. Each Bk consists of cubes with index sums
in [5(k − 1), 5k − 1].

We divide the 3-dimensional grid into 4 layers of 2-dimensional grids, as shown in the
middle column. Let B(i1) denote the i1-th layer, i.e., lkB i

1
1i1 + 11. Moreover, let

B(i1)k := {τ ∈ lkB i
1
1i1 + 11 : i11i1 + 11 ∪ τ ∈ Bk}.

Then each B(i1)k consists of all 2-cubes with index sums in [5(k− 1)− i1, 5k− 1− i1]. It
is colored the same as the corresponding Bk in the 3-dimensional grid.

Repeat the process with the 2-dimensional grids. As shown on the right, we divide the
link of i11i1 + 11 into 4 layers of 1-dimensional grids B(i1)(i2). We have reached the base
case. Each B(i1)(i2)k consists of all 1-cubes with index sums in [5(k − 1) − i1 − i2, 5k −
1− i1 − i2].

Let B̃(i1) := lkB̃ i
1
1i1 + 11. Later, we will show that B̃(i1) can be obtained from

B(i1) following the same rules of modifying B. Assuming each B̃(i1) is shellable, then

i11i1 +11∗B̃(i1) is also shellable. The plan is to concatenate the shellings of i11i1 +11∗B̃(i1)

together: start with a shelling of 1121 ∗ B̃(1), then attach a shelling of 2131 ∗ B̃(2), and so
on.

There is one problem: some facets of B̃ do not belong to any i11i1 + 11 ∗ B̃(i1). For
example, consider σ = (2, 2, 1) = 213122321323 ∈ L2. Suppose it is replaced by the
triangulation Tσ,1, then one resulting facet is σ \21∪o2. Another example is 1112221323o1,

the electronic journal of combinatorics 31(4) (2024), #P4.58 7



12      22       32      42      52 13     
 23     

 33     
 43     

 53
11

21

31

51

41

12      22       32      42      52
13

23

33

53

43

12      22       32      42      52
13

23

33

53

43

12      22       32      42      52
13

23

33

53

43

12      22       32      42      52
13

23

33

53

43

11 21 *

41 51 *

31 41 *

21 31 *

11 21 *
12 22 *

13

23

33

53

43

13

23

33

53

43

11 21 *
22 32 *

13

23

33

53

43

11 21 *
32 42 *

13

23

33

53

43

11 21 *
42 52 *

13

23

33

53

43

21 31 *
12 22 *

13

23

33

53

43

21 31 *
22 32 *

13

23

33

53

43

21 31 *
32 42 *

13

23

33

53

43

21 31 *
42 52 *

...

...B(4)

B(3)

B(2)

B(1)

B(2)(1) B(2)(2) B(2)(3) B(2)(4)

B(1)(1) B(1)(2) B(1)(3) B(1)(4)

Figure 3: Dividing B into layers recursively.

with 1112221323 ∈ C1. We will characterize these extra facets in Lemma 12 and insert

them between the shellings of i11i1 + 11 ∗ B̃(i1).

Let d > 2, n > 3, and B be the join of d paths of length n−1. We extend the notation
in Example 7 to the general case. Let m ∈ [d]. Consider the join of m paths

B(i1) · · · (id−m) := lkB{i11, i1 + 11, . . . , id−md−m, id−m + 1d−m}.

When m = d, this is just B. For k ∈ [dd(n− 1)/(d+ 2)e], let B(i1) · · · (id−m)k denote the
union of all m-cubes (id−m+1, . . . , id) with index sums in

Im :=

[
(k − 1)(d+ 2)−

d−m∑
`=1

i`, k(d+ 2)− 1−
d−m∑
`=1

i`

]
.

Then B(i1) · · · (id−m) =
⋃
k B(i1) · · · (id−m)k. Just like in B, the lower and upper diagonal

cubes of B(i1) · · · (id−m)k are respectively those whose index sums attain the minimum and
maximum of Im. The connecting path consists of the (2m−2)-simplices on the boundary
of B(i1) · · · (id−m)k that are not contained in any lower or upper diagonal cubes. Lastly,
let

˜B(i1) · · · (id−m) := lkB̃{i
1
1, i1 + 11, . . . , id−md−m, id−m + 1d−m}.

Based on the inductive idea from Example 7, we would like to prove the statement
below, which directly implies the shellability of B̃.
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Proposition 8. Let m ∈ [d]. Then ˜B(i1) · · · (id−m) is shellable for all i1, . . . , id−m ∈
[n− 1].

The base case of m = 1 is immediately true. Since B̃ is a ball, the link ˜B(i1) · · · (id−1)
is a connected 1-dimensional simplicial complex, which is automatically shellable.

Remark 9. For the inductive step, we need to prove the following: let m ∈ [2, d] and

i1, . . . , id−m ∈ [n−1], assuming ˜B(i1) · · · (id−m+1) is shellable for all id−m+1 ∈ [n−1], then
˜B(i1) · · · (id−m) is shellable. For cleanliness of the write-up, we provide the proof for the

shellability of B̃ assuming B̃(i1) is shellable for all i1 ∈ [n− 1]. The proof for the general
case is analogous. The fact that Im is “shifted” does not matter in the proof; all we need
is that the difference of the endpoints of the interval is greater than the dimension of the
grid. To accommodate this, we use the relaxed assumption that the difference between
the index sum of the upper diagonal cubes and that of the lower diagonal cubes in Bk is
greater than d (instead of being equal to d+ 1).

In short, we aim to prove the next proposition in the rest of Section 3.

Proposition 10. Suppose B̃(i1) is shellable for all i1 ∈ [n− 1]. Then B̃ is shellable.

We claim that the order of facets below is a shelling of B̃.

Start with any shelling order of 1121 ∗ B̃(1).

Then list in any order facets of the form σ \ 21 ∪ ok for σ ∈ Lk ∪ Uk ∩ stB 1121 for all k.

Then list in any order facets of the form σ \ 11 ∪ ok for σ ∈ Lk ∪ Uk ∩ stB 1121 for all k.

Repeat for all k ∈ [dd(n− 1)/(d + 2)e] as k increases:

List the facets of the form σ \ 21 ∪ ok for σ ∈ (Bk \ (Lk ∪ Uk)) ∩ stB 1121

in the order ≺ defined in Section 3.3.

Repeat for all 2 6 i1 6 n− 1 as i1 increases:

List in any order facets of the form σ \ i1 + 11 ∪ ok for σ ∈ Lk ∪ Uk ∩ stB i
1
1i1 + 11 for all k.

Follow this by any shelling order of i11i1 + 11 ∗ B̃(i1).

Then list in any order facets of the form σ \ i11 ∪ ok for σ ∈ Lk ∪ Uk ∩ stB i
1
1i1 + 11 for all k.

Repeat for all k ∈ [dd(n− 1)/(d + 2)e] as k increases:

List the facets of the form σ \ n− 11 ∪ ok for σ ∈ (Bk \ (Lk ∪ Uk)) ∩ stB n− 11n1

in the order ≺ defined in Section 3.3.

Table 1: A shelling of B̃.
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Here, we do not claim that B̃ must contain σ \ i1 + 11 ∪ ok or σ \ i11 ∪ ok for every k
and every σ ∈ Lk ∪Uk ∩ stB i

1
1i1 + 11. In fact, whether it is a facet depends on the choice

of Tσ,j. We merely say that if it is a facet of B̃, it should be listed in the corresponding
slot in this order.

In Section 3.2, we analyze the facets of B̃ that are not contained in
⋃
i1∈[n−1] i

1
1i1 + 11 ∗

B̃(i1), showing that Table 1 is indeed the list of all facets of B̃. In Section 3.3, we define
a certain order ≺ for a specific subset of these facets. We leave the actual proof of the
fact that Table 1 provides a shelling of B̃ to Section 3.4.

3.2 Facets between layers

We first establish that, essentially, the links B(i1) are modified the same way as B is.

Lemma 11. Let i1 ∈ [n− 1]. Then B̃(i1) can be obtained from B(i1) following the same

steps of changing B to B̃ in [7, Construction 3].

More precisely, if σ ∈ stB i
1
1i1 + 11 is replaced by the triangulation Tσ,j, then σ \ i11i1 +

11 ∈ B(i1) is replaced by Tσ\i11i1+11, j. If a (2d− 2)-simplex τ ∈ Ck ∩ stB i
1
1i1 + 11 is coned

with ok, then τ \ i11i1 + 11 in the connecting path of B(i1)k is coned with ok.

Proof. Let σ ∈ Lk ∪ Uk ∩ stB i
1
1i1 + 11. Recall from Section 2.2 that Dσ = σ ∩ ∂Bk, Fσ is

the missing face of Dσ, and Gσ = σ \ Fσ. We extend these notations to σ \ i11i1 + 11. By
simple set-theoretic computations, one can check that

Dσ\i11i1+11 = (σ \ i11i1 + 11) ∩ ∂B(i1)k = lkDσ i
1
1i1 + 11,

Fσ\i11i1+11 = Fσ \ i11i1 + 11, and Gσ\i11i1+11 = Gσ \ i11i1 + 11.

Let X = Fσ ∩ i11i1 + 11 and Y = i11i1 + 11 \X. Then Fσ\i11i1+11 = lkFσ X and Gσ\i11i1+11 =
lkGσ Y . Observe that the triangulation

Tσ\i11i1+11, 1 = Fσ\i11i1+11 ∗ ∂(Gσ\i11i1+11 ∗ ok)
= lkFσ X ∗ ∂(lkGσ Y ∗ ok) = lkFσ X ∗ (∂ lkGσ Y ∗ ok ∪ lkGσ Y ∗ ∂ok)
= lkFσ X ∗ lk∂Gσ Y ∗ ok ∪ lkFσ X ∗ lkGσ Y

= lkFσ∗∂Gσ∗ok(X t Y ) ∪ lkFσ∗Gσ(X t Y )

= lkTσ,1 i
1
1i1 + 11.

Similarly, Tσ\i11i1+11, 2 = lkTσ,2 i
1
1i1 + 11.

Finally, for τ ∈ Ck ∩ stB i
1
1i1 + 11, τ \ i11i1 + 11 ∗ ok = lkτ∗ok i

1
1i1 + 11.

With this, we can characterize the facets of B̃ that are “between” the layers.

Lemma 12. Let F be a facet of B̃ \
⋃
i1∈[n−1] i

1
1i1 + 11 ∗ B̃(i1) that arises from σ =

(i1, . . . , id) ∈ Bk ∩ stB i
1
1i1 + 11 for some k.
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1. If σ ∈ Lk ∪Uk ∩ stB i
1
1i1 + 11, then F takes the following forms depending on Fσ and

the triangulation Tσ,j:

Tσ,j

Fσ ∩ i11i1 + 11
i11 i1 + 11 ∅ i11i1 + 11

Tσ,1 σ \ i1 + 11 ∪ ok σ \ i11 ∪ ok
σ \ i1 + 11 ∪ ok,

σ \ i11 ∪ ok
Does not exist

Tσ,2 σ \ i11 ∪ ok σ \ i1 + 11 ∪ ok Does not exist
σ \ i1 + 11 ∪ ok,

σ \ i11 ∪ ok

2. If σ ∈ (Bk \ (Lk ∪ Uk)) ∩ stB i
1
1i1 + 11, then F = σ \ i1 + 11 ∪ ok when i1 = 1 and

F = σ \ i11 ∪ ok when i1 = n− 1.

Proof. Case 1 is immediate from Lemma 11. The facets of Tσ,j \
(
i11i1 + 11 ∗ Tσ\i11i1+11, j

)
are those with exactly one of i11 and i1 + 11. The specific cases follow from the formulas
Tσ,1 = Fσ ∗ ∂(Gσ ∗ ok) and Tσ,2 = ∂Fσ ∗ (Gσ ∗ ok).

For case 2, by Lemma 5, Ck =
⋃
σ∈Bk\(Lk∪Uk)({σ\i`+1` : i` = 1}∪{σ\i`` : i` = n−1}).

Therefore, the only facets in
⋃
τ∈Ck τ ∗ok that are not covered by

⋃
i1∈[n−1] i

1
1i1 +11 ∗B(i1)

are those listed above.

3.3 The total order ≺

The goal of this section is to define an order ≺ for each of

{σ \ 21 ∪ ok : σ ∈ Bk \ (Lk ∪ Uk) ∩ stB 1121}

=
{

11 ∪ τ ∪ ok : τ ∈ lkB 1121,
∑

τ ∈ [(k − 1)(d+ 2), k(d+ 2)− 3]
}

and

{σ \ n− 11 ∪ ok : σ ∈ Bk \ (Lk ∪ Uk) ∩ stB n− 11n1}

=
{
n1 ∪ τ ∪ ok : τ ∈ lkB n− 11n1,

∑
τ ∈ [(k − 1)(d+ 2) + 1− n, k(d+ 2)− 2− n]

}
.

Let n1, n2 be positive integers. We consider the lexicographic order on the elements of
[n1]n2 . For A,B ∈ [n1]n2 , define A <lex B if the leftmost nonzero coordinate of B − A is
positive.

Notation. For a set S and a total order < on S, let S< denote the ordered set of elements
in S with respect to <, and let S<−1 denote the ordered set of elements in S with respect
to < in reverse.

Consider T := {τ = (i2, . . . , id) :
∑
τ ∈ [(k − 1)(d+ 2) + 1− a, k(d+ 2)− 2− a]} for

a fixed k and a ∈ {1, n}. We define a total order ≺ on T , which can then be extended to
the two sets above. We begin by visualizing this order through an example.
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Example 13. Consider an example for d = 4, n = 6, k = 2, a = 1. The pile of 3-cubes
at the top left corner of Figure 4 is B(1)2. The gray cubes are from the lower and upper
diagonals of B(1)2. The cubes in T = {τ = (i2, . . . , id) :

∑
τ ∈ [6, 9]} are transparent

with black outlines.
The order ≺ on T needs to be somewhat involved for the following reason. We plan

to insert this order (having added 11 and ok to each τ) after a shelling of 1121 ∗ B̃(1)
and some extra facets. Although we are not shelling the gray cubes but their related
triangulations, we can still visualize the rough locations of the triangulations by looking
at these original cubes. Supposing that the gray cubes are already in place as part of a
bigger complex, we want to fill in the transparent cubes in such a way that each new cube
intersects the existing complex nicely. Therefore, although T is in fact shellable, merely
inserting a shelling order of T would not suffice.

The top right corner shows T only. First, put {τ :
∑
τ = 9} in lexicographic order.

The 19 cubes are in blue and labeled by this order. We use the idea of “layers” again and
construct the rest of the order recursively.

13      23       33      43      53      6314     
 24     

  34     
 44     

 54     
 64

12

22

32

52

42

62

13      23       33      43      53      6314     
 24     

  34     
 44     

 54     
 64

12

22

32

52

42

62

11*
11*

13      23       33      43      53      63
14

24

34

54

44

64

11 *
22 32 *

13      23       33      43      53      63
14

24

34

54

44

64

11 *
12 22 *

11 *
32 42 *

13      23       33      43      53      63
14

24

34

54

44

64

13      23       33      43      53      63
14

24

34

54

44

64

11 *
42 52 *

13      23       33      43      53      63
14

24

34

54

44

64

11 *
52 62 *

14

24

34

54

44

64

11 *
12 22 *
13 23 *

14

24

34

54

44

64

11 *
12 22 *
23 33 *

14

24

34

54

44

64

11 *
12 22 *
33 43 *

14

24

34

54

44

64

11 *
12 22 *
43 53 *

14

24

34

54

44

64

11 *
12 22 *
53 63 *

24

25

20

26

27

21

1

28

29

22

2

30

31

23

3

32

TB(1)2

... ... ... ...

Figure 4: Order ≺ on T = {τ ∈ lkB 1121 :
∑
τ ∈ [6, 9]}.

On the second row, T is divided into 5 layers, T ∩ stB(1) i
2
2i2 + 12 for i2 ∈ [5]. In each

2-dimensional layer, the cubes already ordered (1 through 19) are now in gray. Starting
from T ∩ stB(1) 1222, arrange {τ :

∑
τ = 8} in lexicographic order. The corresponding

cubes are now in blue and labeled 20 through 23.
Next, divide T ∩ stB(1) 1222 into T ∩ stB(1) 1222i33i3 + 13 for i3 ∈ [5], shown on the
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last row. The cubes 1 through 23 are now gray. Starting from T ∩ stB(1) 12221323, put
{τ :

∑
τ = 7} in lexicographic order. There is only one such cube, which we label as 24.

Then we add the last cube in that layer to our order. Repeat the procedure for all other
T ∩ stB(1) 1222i33i3 + 13. After this, return to work on T ∩ stB(1) 2232: first order the cubes
with index sum 8, then divide it into layers T ∩ stB(1) 2232i33i3 + 13, and so on.

We can view the picture as a tree rooted at T . The order is given by traversing the
tree from top to bottom and left to right.

We now formalize this order and provide a simple algorithm to compare any two cubes
in T . We first address the weakened assumption given in Remark 9. That is, the difference
between the index sum of the upper diagonal cubes and that of the lower diagonal cubes
in Bk is greater than d. Therefore, we assume T = {τ :

∑
τ ∈ [t, t′]} for some t, t′ such

that t′ − t > d− 1.
For τ ∈ T , define I(τ) := t + d −

∑
τ . Then for τ ∈ T such that

∑
τ − t > d − 1,

I(τ) 6 1. For τ ∈ T such that
∑
τ − t < d − 1, I(τ) ∈ [2, d]. In particular, the smaller

I(τ) is, the closer τ is to the “upper diagonal” of T .
Let i1 ∈ {1, n− 1}. For m ∈ [2, d] and i2, . . . , im ∈ [n− 1], define Tm(i2, . . . , im) to be

an ordered set of cubes in {τ ∈ T : I(τ) ∈ [2, d]}∩ stB(i1) i
2
2i2 + 12 · · · immim + 1m as follows:

• If m = d, then Tm(i2, . . . , im) either contains only τ = i22i2 + 12 · · · immim + 1m when
I(τ) = m = d, or is empty when I(τ) 6= d.

• If m < d, then let

Tm(i2, . . . , im) := ({τ ∈ T : I(τ) = m} ∩ stB(i1) i
2
2i2 + 12 · · · immim + 1m)<lex

∪ Tm+1(i2, . . . , im, 1) ∪ · · · ∪ Tm+1(i2, . . . , im, n− 1).

We concatenate the ordered sets together:

T≺ := {τ ∈ T : I(τ) 6 1}<−1
lex
∪ T2(1) ∪ · · · ∪ T2(n− 1).

The lemma below provides an algorithm to compare two cubes in {τ ∈ T : I(τ) ∈
[2, d]}.

Lemma 14. The order on T (1, 2) ∪ · · · ∪ T (n − 1, 2) defined above is equivalent to the
following: let τ = (i2, . . . , id), τ

′ = (i′2, . . . , i
′
d) ∈ {τ ∈ T :

∑
τ − t < d− 1}.

• If I(τ) = I(τ ′), then τ precedes τ ′ if and only if τ <lex τ
′.

• If I(τ) < I(τ ′), then let m be the smallest in [2, d] such that im 6= i′m. Let ` =
min{m, I(τ)}. In this case, τ precedes τ ′ if and only if i` 6 i′`.

Proof. This follows by construction.

Finally, we extend ≺ on T to {11∪τ∪ok : τ ∈ T} and {n1∪τ∪ok : τ ∈ T} respectively
and keep the notation ≺ for the two sets.
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3.4 Minimal new faces of the shelling

So far, we have explained the geometric intuition behind the shelling of B̃ proposed
in Table 1. In Lemma 12, we characterized all facets of ∂B̃ that are not contained in⋃
i1∈[n−1] i

1
1i1 + 11 ∗ B̃(i1). In Section 3.3, we defined an order ≺ on {σ \ 21 ∪ ok : σ ∈

Bk \ (Lk ∪ Uk) ∩ stB 1121} and {σ \ n − 11 ∪ ok : σ ∈ Bk \ (Lk ∪ Uk) ∩ stB n − 11n1} for
every k.

In this section, we prove that the order of facets of B̃ in Table 1 is a shelling of
B̃. Recall the hypothesis of Proposition 10 that B̃i is shellable for every i1 ∈ [n − 1].

Therefore, there is nothing to check for 1121 ∗ B̃(1) at the beginning.

We focus on the rest of the facets F ∈ B̃. By Definition 3, it suffices to find for every
F an X(F ) ⊂ F such that

• X(F ) is not contained in any facet preceding F in Table 1 (X(F ) is a new face),

• for every x ∈ X(F ), F \x is contained in a facet F ′ preceding F (X(F ) is minimal).

Indeed, suppose G is a facet preceding F such that dim(F ∩G) < D − 1. Then F ∩G 6=
X(F ) because F ∩ G is not a new face. Take any x ∈ X(F ) \ (F ∩ G). There is a facet
F ′ preceding F such that the F \ x ⊆ F ′. Thus the ridge F ∩ F ′ = F \ x contains F ∩G.
The face X(F ) is called the minimal new face of F in the shelling. We find the minimal

new faces of the facets of B̃ \ 1121 ∗ B̃(1) in Lemmas 15-17 below.

Lemma 15. Let F be a facet of i11i1 + 11 ∗ B̃(i1) such that i1 ∈ [2, n− 1]. Then X(F ) =
i1 + 11 ∪ Y (F \ i11i1 + 11), where Y (F \ i11i1 + 11) is the minimal new face of F \ i11i1 + 11

in the shelling of B̃(i1).

Proof. No facet F ′ of i11i1 + 11 ∗ B̃(i1) can contain X(F ), otherwise Y (F ) ⊂ F ′ \ i11i1 + 11

contradicts Y (F ) being new. Any other facets preceding F miss i1 + 11, so X(F ) is a new
face.

If x ∈ Y (F \ i11i1 + 11), then F \ x ⊂ F ′ for some facet F ′ such that F ′ \ i11i1 + 11

precedes F \ i11i1 + 11 in the shelling of B̃(i1). It remains to show that F \ i1 + 11 ⊂ F ′

for some F ′ preceding F . We gather the case discussions in the table below for clarity.
Suppose σ = (i1, · · · , id).
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σ ∈ Lk
Tσ,1

F = σ

Let σ′ := (i1 − 11, . . . , idd) ∈ Uk−1.

Take F ′ = σ′ for Tσ′,1,

F ′ = σ′ \ i1 − 11 ∪ ok for Tσ′,2.

F = σ \ i`` ∪ ok,

i` 6= n− 1

Let σ′ := (i1 − 11, . . . , i` + 1`, . . . , idd) ∈ Lk.

Take F ′ = σ′ \ i1 − 11 ∪ ok for Tσ′,1,

F ′ = σ′ \ i` + 2` ∪ ok for Tσ′,2.

Tσ,2 Take F ′ = σ \ i1 + 11 ∪ ok.

σ ∈ Uk

Tσ,1 Take F ′ = σ \ i1 + 11 ∪ ok.

Tσ,2

F = σ \ i` + 1` ∪ ok,

i` = 1

Let τ := i1 − 11i11 · · · i`` · · · i
d
did + 1d ∈ Ck.

Take F ′ = τ ∪ ok.

F = σ \ i`` ∪ ok

If i` = n− 1, then let

τ := i1 − 11i11 · · · i` + 1` · · · iddid + 1d ∈ Ck.

Take F ′ = τ ∪ ok.

If i` 6= n− 1, then let

σ′ := (i1 − 11, . . . , i` + 1`, . . . , idd) ∈ Uk.

Take F ′ = σ′ \ i` + 2` ∪ ok for Tσ′,1,

F ′ = σ′ \ i1 − 11 ∪ ok for Tσ′,2.

σ ∈ Bk \ (Lk ∪ Uk)

F = σ \ i` + 1` ∪ ok,

i` = 1

Let σ′ := (i1 − 11, . . . , idd).

If σ ∈ Lk, then take F ′ = σ′ \ i1 − 11 ∪ ok for Tσ′,1,

F ′ = σ \ i` + 1` ∪ ok for Tσ′,2.

Otherwise, take F ′ = σ′ \ i` + 1` ∪ ok ∈ Ck ∗ ok.

F = σ \ i`` ∪ ok,

i` = n− 1

Let σ′ := (i1 − 11, . . . , idd).

If σ ∈ Lk, then take F ′ = σ′ \ i1 − 11 ∪ ok for Tσ′,1,

F ′ = σ \ i`` ∪ ok for Tσ′,2.

Otherwise, take F ′ = σ′ \ i`` ∪ ok ∈ Ck ∗ ok.

Lemma 16. Let F be a facet in case 1 of Lemma 12 such that F comes after i11i1 + 11 ∗
B̃(i1), so that F is either σ \ i11 ∪ ok with i1 ∈ [n − 1] or σ \ i1 + 11 ∪ ok with i1 = 1 for
some σ = (i1, . . . , id) ∈ Lk ∪ Uk ∩ stB i

1
1i1 + 11. Then X(F ) is the minimal new face of F

when we restrict the order in Table 1 to Tσ,j.

Proof. The minimality of X(F ) follows from its minimality in the restricted order to Tσ,j.
We now show that X(F ) is a new face. Recall that Tσ,1 = Fσ ∗ ∂(Gσ ∗ ok) and

Tσ,2 = ∂Fσ ∗ (Gσ ∗ ok). If F = σ \ i11∪ ok, then Tσ,j \F precedes F . So X(F ) = Gσ ∗ ok \ i11
for Tσ,1 and X(F ) = Fσ \ i11 for Tσ,2. If F = σ \ i1 + 11 ∪ ok with i1 = 1, then all facets
of Tσ,j \ F except σ \ i11 ∪ ok precede F . So X(F ) = Gσ ∗ ok \ i11i1 + 11 for Tσ,1 and
X(F ) = Fσ \ i11i1 + 11 for Tσ,2.

Suppose for contradiction that X(F ) is contained in a facet F ′ /∈ Tσ,j preceding F .
Suppose that F ′ arises from σ′ = (i′1, . . . , i

′
d) 6= σ. Then by Table 1, i′1 6 i1. Using

the explicit expressions of Fσ from Lemma 6, we finish the rest of the proof in the table
below.
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σ ∈ Lk
Tσ,1 Gσ = {i`` : i` 6= n− 1}

F ′ ⊃ X(F ) = Gσ ∗ ok \ i11
implies

∑
σ′ <

∑
σ.

But then σ′ /∈ Bk, contradicting ok /∈ F ′.

Tσ,2 Fσ = {i`` : i` = n− 1} ∪ {i` + 1` : ` ∈ [d]}

F ′ ⊃ X(F ) ∈ {Fσ \ i11, Fσ \ i11i1 + 11}

implies
∑
σ′ −

∑
σ 6 d− 1.

So σ′ ∈ Bk \ (Lk ∪ Uk).

σ′ \ i11 ∪ ok comes after F ,

which leaves F ′ = σ′ \ i` + 1` ∪ ok

for some i` + 1 = n− 1. But i` + 1` ∈ X(F ).

σ ∈ Uk
Tσ,1 Gσ = {i` + 1` : i` 6= 1}

Not applicable

since F = σ \ i1 + 1 ∪ ok

comes before i11i1 + 11 ∗ B̃(i1) for all i1 6= 1.

Tσ,2 Fσ = {i` + 1` : i` = 1} ∪ {i`` : ` ∈ [d]}

F ′ ⊃ X(F ) ∈ {Fσ \ i11, Fσ \ i11i1 + 11},

implies
∑
σ −

∑
σ′ 6 d− 1.

So σ′ ∈ Bk \ (Lk ∪ Uk).

σ′ \ i11 ∪ ok comes after F ,

which leaves F ′ = σ′ \ i`` ∪ ok

for some i` − 1 = 1. But i`` ∈ X(F ).

Lemma 17. Let F be a facet in case 1 of Lemma 12 such that F comes before i11i1 + 11 ∗
B̃(i1), so that F = σ\i1 +11∪ok with i1 6= 1 for some σ = (i1, . . . , id) ∈ Lk∪Uk∩stB i

1
1i1 +

11. Let Y (F ) be the minimal face of F that is not in Tσ,j \F . Then X(F ) = (F \Y (F ))\i11
if σ ∈ Lk and X(F ) = F \ Y (F ) if σ ∈ Uk.

Proof. The triangulations where F can arise are Tσ,2 for σ ∈ Lk and Tσ,1 for σ ∈ Uk.
We first show that X(F ) is a new face. Suppose for contradiction that X(F ) is

contained in a facet F ′ preceding F . Suppose that F ′ arises from σ′ = (i′1, . . . , i
′
d) 6= σ.

If F ∈ Tσ,2 for σ ∈ Lk, then X(F ) = Gσ ∗ ok \ i11 = {i`` : ` ∈ [2, d], i` 6= n − 1} ∪ ok.
But this means

∑
σ′ <

∑
σ, so σ′ /∈ Bk, contradicting ok ∈ F ′.

If F ∈ Tσ,1 for σ ∈ Uk, then X(F ) = Fσ = {i`` : ` ∈ [d]} ∪ {i` + 1` : ` ∈ [2, d], i` = 1}.
This means

∑
σ −

∑
σ′ 6 d, so σ′ ∈ Bk \ (Lk ∪ Uk). But then F ′ must be missing either

i`` for some i` = n− 1 or i` + 1` for some i` = 1.
Next, for every x ∈ X(F ), we find a facet F ′ preceding F containing F \ x. The

argument for the case of F ∈ Tσ,2 for σ ∈ Lk is identical to the case of Tσ,1, σ ∈ Lk in the
table of Lemma 15. The argument for the case of F ∈ Tσ,1 for σ ∈ Uk is identical to the
case of Tσ,2, σ ∈ Uk in the table of Lemma 15.

Lemma 18. Let F = a ∪ τ ∪ ok be a facet in case 2 of Lemma 12 that arises from
σ = (i1, . . . , id). Recall the definition of I(τ) from Section 3.3. Then

X(F ) = (a ∩ n1) ∪
⋃

`∈[2,d]

{i`` : i` = n− 1 or ` > I(τ)} ∪
⋃

`∈[2,d]

{i` + 1` : i` = 1 or ` 6 I(τ)}.
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Proof. Suppose F ′ is a facet containing X(F ) and F ′ arises from some σ′ = (i′1, . . . , i
′
d).

Then X(F ) ⊂ σ′. Because σ ∈ Bk \ (Lk ∪ Uk), if σ′ = σ, then F ′ misses at least an i`` for
some i` = n− 1 or an i` + 1` for some i` = 1. Therefore, σ′ 6= σ. Moreover, if i1 = 1 and
i′1 = n− 1, then F ′ comes after F . So assume i1 = i′1 for the discussion.

If I(τ) 6 1, then X(F ) = (a ∩ n1) ∪ {i` : ` > 2} ∪ {i` + 1` : i` = 1, ` > 2}. For all
` ∈ [2, d], i`− i′` ∈ {0, 1}. So

∑
σ−

∑
σ′ 6 d− 1. This means σ′ is also in Bk \ (Lk ∪Uk),

and F ′ = a∪ τ ′ ∪ ok. If I(τ ′) ∈ [2, d], then τ ≺ τ ′. If I(τ ′) 6 1, then again τ ≺ τ ′ because
τ ′ <lex τ . Therefore, F ≺ F ′.

For the rest of the proof, suppose I(τ) ∈ [2, d]. For every ` ∈ [I(τ) + 1, d], i′` − i` ∈
{−1, 0}. And for every ` ∈ [2, I(τ)− 1], i′` − i` ∈ {0, 1}. Thus∑

σ′ −
∑

σ ∈ [I(τ)− d, I(τ)− 2].

This means σ′ ∈ Bk \ (Lk ∪ Uk), and F ′ = a ∪ τ ′ ∪ ok for some I(τ ′) ∈ [2, d]. We compare
τ and τ ′ with respect to ≺.

First suppose I(τ ′) < I(τ). Note that I(τ) − I(τ ′) is not larger than the number of
` ∈ [2, I(τ)] such that i′` − i` = 1. Let `min be the smallest of such `, then `min 6 I(τ ′).
By the second bullet point of Lemma 14, this implies τ ≺ τ ′.

Suppose alternatively that I(τ ′) > I(τ). Let `min = min{` ∈ [2, d] : i′` 6= i`}. If
`min < I(τ), then it must be that i′`min

> i`min
. Or `min > I(τ). In both cases, τ ≺ τ ′

follows again from the second bullet point of Lemma 14.
Finally, suppose I(τ ′) = I(τ). This means there must be some ` < I(τ ′) such that

i′` − i` = 1, so that τ <lex τ
′. By the first bullet point of Lemma 14, τ ≺ τ ′.

Therefore, F ′ always comes after F in the order, proving that X(F ) is a new face.
To show the minimality of X(F ), we find a preceding facet F ′ containing F \ x for each
x ∈ X(F ).

If x = a = n1, then take F ′ = F \ a ∪ 11.

If x = i`` for some ` > 2, i` = n− 1, then take F ′ = σ \ i`` ∪ ok ∈ i11i1 + 11 ∗ B̃(i1).
If x = i`` for some ` > 2, ` > I(τ), and i` 6= n − 1, then consider σ′ = (i11, . . . , i` +

1`, . . . , idd). If σ′ ∈ Uk, then take F ′ = σ′ \ i` + 2` ∪ ok for Tσ′,1 and F ′ = σ′ \ i11i1 + 11 ∪ aok
for Tσ′,2. If σ′ ∈ Bk \ (Lk ∪Uk), then take F ′ = σ′ \ i11i1 + 11 ∪ aok. Since

∑
σ′ = 1 +

∑
σ,

F ′ = a ∪ τ ′ ∪ ok for some I(τ ′) < I(τ). Since I(τ) 6 `, I(τ ′) < `. Moreover, F <lex F
′.

Hence F ′ ≺ F always holds.

If x = i` + 1` for some ` > 2, i` = 1, then take F ′ = σ \ i` + 1` ∪ ok ∈ i11i1 + 11 ∗ B̃(i1).
If x = i` + 1` for some ` > 2, ` 6 I(τ), and i` 6= 1, then consider σ′ = (i11, . . . , i` −

1`, . . . , idd). If σ′ ∈ Lk, then take F ′ = σ′ \ i`− 1` ∪ ok for Tσ′,1 and F ′ = σ′ \ i11i1 + 11 ∪ aok
for Tσ′,2. If σ′ ∈ Bk \ (Lk∪Uk), then take F ′ = σ′ \ i11i1 +11∪aok. Since

∑
σ′ = −1+

∑
σ,

F ′ = a ∪ τ ′ ∪ ok for some I(τ ′) > I(τ) > ` > 2. Thus F ′ ≺ F .

4 The shellability of the sphere B̃ ∪ (∂B̃ ∗ o)

Observe that ∂B̃ = ∂B except when d+ 2 divides d(n− 1). See Figure 5 for an example
of d = 2, n = 7. In this case, the “uppermost right” cube (n− 1, . . . , n− 1) =: σmax is not
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included in any Bk. As a result, the ridges σmax \n− 1m for m ∈ [d] are not facets of ∂B̃.

Instead, ∂B̃ intersects the uppermost right cube at
⋃
m∈[d](σmax \ nm).

11         21         31         41         51         61         71

52

62

72

12

22

42

32

B1

B2

B3

61 71 62

61 71 72

71 62 7261 62 72

Figure 5: A grid representing B for d = 2 and n = 7. The facets 617172 and 716272 of ∂B
are not included in ∂B̃. The latter boundary contains instead 616272 and 617162.

Given any face of B, we can identify each of its vertices am with a + (m − 1)n. For
example, 716272 can be expressed as 7 13 14. When we compare two facets of ∂B with
respect to lexicographic order below, we mean comparing them using this identification.
Moreover, for a facet τ of ∂B, let σ(τ) be the unique facet of B containing τ .

To prove the shellability of ∂B̃ in both scenarios, we first find a shelling for ∂B that
ends with {σmax \ n − 1m : m ∈ [d]}, then replace it with {σmax \ nm : m ∈ [d]}<lex

and
prove that the order remains a shelling.

Define a total order ≺∂ on the set of facets of ∂B as follows: for any two facets τ, τ ′

of ∂B, write τ ′ ≺∂ τ if and only if

• σ(τ ′) = σ(τ) and τ ′ <lex τ , or

• σ(τ ′) <lex σ(τ).

Lemma 19. The order ≺∂ gives a shelling of ∂B.

Proof. Let τ = i11i1 + 11 · · · a · · · iddid + 1d where a = 1m or a = nm. We claim that

X := (a ∩ nm) ∪ {i` + 1` : ` < m, i` 6= 1} ∪ {i` + 1` : ` > m} ∪ {i`` : ` > m, i` = n− 1}

is a minimal new face of τ with respect to ≺∂. Any facet τ ′ such that σ(τ ′) <lex σ(τ)
must miss at least one i`+1`, so X /∈ τ ′. On the other hand, if σ(τ ′) = σ(τ) and τ ′ <lex τ ,
then τ ′ must be σ(τ) \ i` + 1` where i` = 1 or σ(τ) \ i`` where i` = n− 1 for some ` > m.
Thus τ ′ cannot contain X either. Lastly, for every x ∈ X, we find a τ ′ ≺∂ τ containing
τ \ x in the table below.
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x τ ′ containing τ \ x Justification

i` + 1`, ` ∈ [d], i` 6= 1 τ \ i` + 1` ∪ i` − 1` σ(τ ′) <lex σ(τ)

i` + 1`, ` > m, i` = 1 τ \ i` + 1` ∪ nm σ(τ ′) = σ(τ) and τ ′ <lex τ

i`` : ` > m, i` = n− 1 τ \ i`` ∪ nm σ(τ ′) = σ(τ) and τ ′ <lex τ

Proposition 20. The boundary of B̃ is shellable.

Proof. If d + 2 does not divide d(n− 1), then ∂B̃ = ∂B, so it is shellable by Lemma 19.
Suppose (d+ 2) divides d(n− 1). Then

∂B̃ = ∂B \
⋃
m∈[d]

(σmax \ n− 1m) ∪
⋃
m∈[d]

(σmax \ nm) .

Observe that {σmax \ n − 1m : m ∈ [d]} is terminal with respect to ≺∂. Remove these
facets from the order and attach {σmax \ nm : m ∈ [d]}<lex

.

To see that this is a shelling of ∂B̃, take τ = σmax \ nm. Then X := {n − 1` : ` ∈
[d]} ∪ {n` : ` > m} is the minimal new face of τ . Indeed, any facet τ ′ 6⊂ σmax misses at
least one n− 1`. If τ ′ ⊂ σmax and {n` : ` > m} ⊂ τ ′, then τ <lex τ

′.
Finally, for any ` ∈ [d], τ \ n− 1` ∪ n− 2m is a facet from ∂B \

⋃
m∈[d] (σmax \ n− 1m)

containing τ \n−1`. For ` > m, τ \n`∪nm ⊂ σmax contains τ \n` and is lexicographically
smaller than τ . This proves the minimality of X.

Therefore, ∂B̃ ∗ o is also shellable. Simply attaching a shelling of ∂B̃ ∗ o to a shelling
of B̃ gives a shelling of B̃ ∪ ∂B̃ ∗ o. This proves Theorem 1.

Combining Theorem 1 with the lower bound in (1), we obtain

sshell(D,N) > 2Ω(NdD/2e) for all D > 3.

On the other hand, we can compute an upper bound for sshell(D,N). As mentioned
towards the end of Section 1, this uses the result of Benedetti and Ziegler [2] on the
number of LC D-spheres with M facets along with the Upper Bound Theorem [10] for
simplicial spheres:

sshell(D,N) 6
O(NdD/2e)∑
M=1

2D
2M =

2D
2
(2D

2O(NdD/2e) − 1)

2D2 − 1
= 2O(NdD/2e).

This immediately leads to Corollary 2: the number of combinatorially distinct shellable
D-spheres with N vertices is asympotically given by

sshell(D,N) = 2Θ(NdD/2e) for all D > 3.
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