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Abstract

We explore how the asymptotic structure of a random permutation of [n] with
m inversions evolves, as m increases, establishing thresholds for the appearance and
disappearance of any classical, consecutive or vincular pattern. The threshold for
the appearance of a classical pattern depends on the greatest number of inversions
in any of its sum indecomposable components.

Mathematics Subject Classifications: 05A05, 60C05

1 Introduction

We consider permutations from an evolutionary perspective, in an analogous manner to
the Gilbert–Erdős–Rényi random graph [28, 29, 32]. Our model, which we call the uniform
random permutation, and denote σn,m, is a permutation drawn uniformly from the set of
permutations of [n] with exactly m inversions. We are interested in how, for large n, the
structure of σn,m evolves as the number of its inversions m increases from zero to

(
n
2

)
.

Specifically, for any classical, consecutive or vincular pattern π, we establish thresholds
for the appearance and disappearance of π in σn,m. These results build on our previous
work [11] on thresholds for patterns in random compositions.

A permutation or n-permutation is considered to be simply an arrangement of the num-
bers [n] := {1, 2, . . . , n} for some positive n. Let Sn denote the set of all n-permutations.
We often display an n-permutation σ using its plot, the set of points (i, σ(i)) in the Eu-
clidean plane, for i = 1, . . . , n. Sometimes we identify a permutation with its plot. If σ
is an n-permutation, we define its complement, denoted σ, to be the permutation such
that σ(i) = n + 1 − σ(i) for every i ∈ [n]. Thus the plot of σ is the reflection of the
plot of σ about a horizontal axis. See Figure 1 for the plots of an 8-permutation and its
complement.
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Figure 1: The permutation σ = 23175468 and its complement σ = 76824531.

An inversion in a permutation σ ∈ Sn is a pair i, j ∈ [n] such that i < j and
σ(i) > σ(j). We use inv(σ) to denote the total number of inversions in the permutation
σ, and use

Sn,m = {σ ∈ Sn : inv(σ) = m}

to denote the set of n-permutations with exactly m inversions. Thus σn,m is a permutation
chosen uniformly from Sn,m. The greatest possible number of inversions that can occur in
an n-permutation is

(
n
2

)
. Note that inv(σ) =

(
n
2

)
− inv(σ). Thus, σn,(n

2)−m
has the same

distribution as σn,m.

We consider three different forms of permutation pattern containment. For a very
brief introduction to permutation patterns, see [7]; for more extended expositions, see
either Bóna [15] or Kitaev [39].

A k-permutation π occurs as a consecutive pattern at position j in a permutation σ if
the consecutive subsequence σ(j) . . . σ(j+ k− 1) has the same relative ordering as π. For
example, the consecutive pattern 132 occurs three times in the permutation at the left of
Figure 1, at positions 1, 3 and 7. A permutation that doesn’t contain a pattern is said to
avoid it. See [25, 26, 27] for investigations of permutations avoiding consecutive patterns.

A permutation π occurs as a classical pattern in σ if σ has a (not necessarily consec-
utive) subsequence whose terms have the same relative ordering as π. For example, the
classical pattern 312 occurs twice in the permutation at the left of Figure 1, one occur-
rence consisting of the points at positions 4, 5 and 7, and the other consisting of the points
at positions 4, 6 and 7. For an extensive survey on classical patterns, see Vatter [48].

Finally, in a vincular pattern (see [2, 5, 10, 17, 18, 24, 35]) only some terms are
required to be adjacent. Consecutive terms in a vincular pattern that must be adjacent
are underlined. For example, the vincular patterns 312 and 312 each occur once in the
permutation at the left of Figure 1, the former consisting of the points at positions 4, 5
and 7, and the latter consisting of the points at positions 4, 6 and 7.

We take a dynamic (or evolutionary) view by considering a process on n-permutations,
namely a sequence of permutations σ0, σ1, σ2, . . . , σ(n

2)
, where σt+1 is obtained from σt, by

the addition of one inversion. In this context, a striking phenomenon is the abrupt ap-
pearance and disappearance of substructures. To quantify this, we introduce the concept
of a threshold. A function m? = m?(n) is a threshold in σn,m for (the appearance of) a
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property Q of permutations if

lim
n→∞

P
[
σn,m satisfies Q

]
=

{
0 if m� m?,

1 if m? � m� m+,

for some function m+ � m?, where, throughout this work, we write f � g to denote that
lim
n→∞

f/g = 0. We also write f ∼ g if lim
n→∞

f/g = 1.

We say that a property holds asymptotically almost surely (a.a.s) if asymptotically
the probability that it holds equals 1. Thus, above its threshold, a.a.s. Q holds, whereas
below its threshold, a.a.s. Q does not hold.

With a slight abuse of terminology, we also say that
(
n
2

)
−m ∼ m? is a threshold in

σn,m for the disappearance of a property Q if

lim
n→∞

P
[
σn,m satisfies Q

]
=

{
1 if m? �

(
n
2

)
−m� m+,

0 if
(
n
2

)
−m� m?,

for some function m+ � m?. We determine the thresholds for the appearance and
disappearance of patterns in σn,m.

Consecutive patterns

For a consecutive pattern, these thresholds depend on the number of inversions in the
pattern, and on the number of inversions in its complement, respectively. Specifically, we
have the following result.

Theorem 1. Let π be any consecutive permutation pattern of length k. If s = inv(π) and
s′ = inv(π), then for any positive constant a,

lim
n→∞

P
[
σn,m contains π

]
=


0 if m� n1−1/s,

1− e−as if m ∼ an1−1/s and s > 1,

1 if m ∼ a and s = 1,

1 if n1−1/s � m� n1+1/k,

lim
n→∞

P
[
σn,m contains π

]
=


1 if n1+1/k �

(
n
2

)
−m� n1−1/s′ ,

1 if
(
n
2

)
−m ∼ a and s = 1,

1− e−as
′

if
(
n
2

)
−m ∼ an1−1/s′ and s > 1,

0 if
(
n
2

)
−m� n1−1/s′ ,

as long as s > 0 and s′ > 0, respectively.

For example, the threshold for the appearance of consecutive pattern 2143 in σn,m is
m ∼

√
n, and the threshold for its disappearance is

(
n
2

)
−m ∼ n3/4.

Unfortunately, our methods do not enable us to show that σn,m a.a.s. contains a given
pattern for all values of m between the thresholds for its appearance and disappearance.
We defer further discussion of this challenge to Section 5.
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Figure 2: The sum decomposition of a decomposable permutation, and an indecom-
posable permutation.

Classical patterns

Given an n-permutation σ, we say that it is decomposable if there exists some k < n such
that

{σ(1), σ(2), . . . , σ(k)} = {1, 2, . . . , k}.
If a permutation is not decomposable, we say it is indecomposable. For example, Figure 2
displays the plot of a decomposable permutation at the left and the plot of an indecompos-
able permutation at the right. Any permutation that is decomposable can be expressed
as the combination of two or more shorter permutations. Given two permutations σ and
τ with lengths k and ` respectively, their direct sum σ ⊕ τ is the permutation of length
k + ` consisting of σ followed by a shifted copy of τ :

(σ ⊕ τ)(i) =

{
σ(i) if i 6 k,

k + τ(i− k) if k + 1 6 i 6 k + `.

For example, the permutation at the left of Figure 2 is 231⊕4213⊕1. Every permutation
has a unique representation as the direct sum of a sequence of one or more indecomposable
permutations, which we call its components. This representation is known as its sum
decomposition. Note that the complement of a decomposable permutation (with more
than one component) is indecomposable (having only one component), as illustrated in
Figure 2: the permutation at the right is the complement of the permutation at the left.

The threshold for the appearance of a classical pattern depends on the greatest number
of inversions in one of its components, and the threshold for its disappearance depends
on the greatest number of inversions in a component of its complement.

Theorem 2. Let π be any classical permutation pattern. If s is the greatest number of
inversions in a component of π, and s′ is the greatest number of inversions in a component
of π, then

lim
n→∞

P
[
σn,m contains π

]
=

{
0 if m� n1−1/s,

1 if n1−1/s � m� n,

lim
n→∞

P
[
σn,m contains π

]
=

{
1 if n�

(
n
2

)
−m� n1−1/s′ ,

0 if
(
n
2

)
−m� n1−1/s′ ,

as long as s > 0 and s′ > 0, respectively.
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Figure 3: The supercomponents of vincular patterns 23175468 and 23175468.

For example, the threshold for the appearance of classical pattern 23175468 = 231 ⊕
4213 ⊕ 1 (shown at the left of Figure 2) in σn,m is m = n3/4, since component 4213 has
four inversions and neither of the other two components have more.

Vincular patterns

A vincular pattern with sum decomposition α1⊕· · ·⊕αk, has a unique (possibly coarser)
representation as a direct sum β1 ⊕ · · · ⊕ β` for some ` 6 k, such that

(a) each βj = αij ⊕ αij+1 ⊕ · · · ⊕ αij+rj for some ij and rj, and

(b) αi and αi+1 are components of the same βj only if the last term of αi is required to
be adjacent to the first term of αi+1.

We say that β1, . . . , β` are the pattern’s supercomponents. For example, considering the
permutation shown at the left of Figure 2, the vincular pattern 23175468 has supercom-
ponent decomposition 231 ⊕ 42135, whereas 23175468 decomposes as 2317546 ⊕ 1. See
Figure 3 for an illustration, in which the adjacency criteria are shown by shading.

The threshold for the appearance of a vincular pattern depends on the greatest number
of inversions in one of its supercomponents.

Theorem 3. Let π be any vincular permutation pattern. If s is the greatest number of
inversions in a supercomponent of π, and s′ is the greatest number of inversions in a
supercomponent of π, then

lim
n→∞

P
[
σn,m contains π

]
=

{
0 if m� n1−1/s,

1 if n1−1/s � m� n,

lim
n→∞

P
[
σn,m contains π

]
=

{
1 if n�

(
n
2

)
−m� n1−1/s′ ,

0 if
(
n
2

)
−m� n1−1/s′ ,

as long as s > 0 and s′ > 0, respectively.

Background

There has not been a great deal of previous study of the structure of permutations with
a given number of inversions. Even the magnitude of |Sn,m| appears not to have been
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established for all ranges of m. Comtet [20, Section 7.4] proves that the number of
inversions in a random n-permutation satisfies a central limit theorem (see also [6, 31]).
Asymptotics for |Sn,m| have been determined when m 6 n (see [42]), when m ∼ an
(see [19, 40]), and when m ∼ an2 (see [40]). However, the gap n � m � n2 seems not
have been investigated.

Apart from the flawed preprint [8], the only prior work specifically on σn,m of which
we are aware is that of Acan and Pittel [1]. Their primary result is a determination of
the (sharp) threshold at which σn,m becomes indecomposable — at m ∼ (6/π2)n log n.
They make use of an implicitly defined Markov process that produces σn,m+1 from σn,m.
No explicit model of this evolutionary process is known. Kenyon, Král’, Radin and Win-
kler [38] compute the limit shapes of permutations when m ∼ an2, thus making it possible
to determine the expected density of any classical pattern in σn,m in this range.

The structure of a random permutation σn drawn uniformly from Sn has been rather
better studied. We mention just a few results. Janson, Nakamura and Zeilberger [37]
establish asymptotic normality for the distribution of any classical pattern, a result which
has been extended to every vincular pattern by Hofer [35]. Perarnau [44] investigates
consecutive pattern avoidance in σn. Bhattacharya and Mukherjee [13] determine the
number of inversions involving a given point of σn, proving convergence to a uniform
distribution (over a range dependent on the position) except in the case of the central
point (which satisfies a central limit theorem). Probably the most celebrated result in this
context is the establishment by Baik, Deift and Johansson [3] of the limiting distribution
of the length of the longest increasing subsequence in a random n-permutation. See [47]
for an extended exposition.

Outline

In Section 2, we consider inversion sequences of permutations, relating the presence of
a consecutive pattern in a permutation to the inversion sequences of the pattern and of
the host permutation. In Section 3, we apply our work on patterns in random composi-
tions [11] to inversion sequences and prove Theorem 1 on the thresholds for consecutive
patterns. Section 4 builds on this to prove Theorems 2 and 3 giving the thresholds for
classical and vincular patterns. Various consequences of these theorems are discussed. Fi-
nally, in Section 5, we present several open questions, including considering the challenge
of bridging the gap between the thresholds for a pattern’s appearance and its disappear-
ance, and briefly discussing the relationship between σn,m and Mallows permutations.

2 Permutations and inversion sequences

In the section, we introduce the representation of permutations as inversion sequences and
investigate the relationship between the containment of consecutive patterns in the two
representations. We start with the observation that the distribution of any consecutive
pattern in σn,m is independent of its position. This holds for any given n and m. As a
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σ = Ψ(σ) =

Figure 4: The bijection used in the proof of Proposition 4: the point marked
is replaced by that marked ; the consecutive pattern 2341 occurs at
position 3 in σ and at position 4 in Ψ(σ).

.

consequence, in subsequent arguments, we need only consider the occurrence of patterns
at position 1. This proposition first appeared in the unpublished preprint [8].

Proposition 4. For any consecutive permutation pattern π of length k and any i, j ∈
[n+ 1− k],

P
[
π occurs at position i in σn,m

]
= P

[
π occurs at position j in σn,m

]
.

This result follows from the existence of an operation that removes the last point from
a permutation and adds a new first point in such a way as to preserve the number of
inversions. This operation shifts patterns rightwards.

Proof. As illustrated in Figure 4, let Ψ : Sn,m → Sn,m be defined by

Ψ(σ) = Ψ(σ1σ2 . . . σn) = σ′ = σ′0σ
′
1 . . . σ

′
n−1,

where σ′0 = n+ 1− σn, and for 1 6 i < n,

σ′i =


σi + 1, if σ′0 6 σi < σn,

σi − 1, if σn < σi 6 σ′0,

σi, otherwise.

Note that σn contributes n− σn inversions to σ, and σ′0 contributes the same number of
inversions to σ′. For 0 < i < n, the point σ′i contributes the same number of inversions to
σ′ as σi does to σ. So inv(σ′) = inv(σ). Since Ψ preserves length and has a well-defined
inverse, it is a bijection on Sn,m.

If π occurs at position j 6 n− k in σ, then π occurs at position j+ 1 in Ψ(σ). Hence,
if 1 6 i, j 6 n+ 1− k, then π occurs at position i in σ if and only if π occurs at position
j in Ψj−i(σ).
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0 1 0 0 1 4 1 3 0

Figure 5: A permutation and its inversion sequence.

Key to our analysis is the representation of permutations as inversion sequences. Given
an n-permutation σ, its inversion sequence eσ is the sequence of integers

(
eσ(j)

)n
j=1

, where

eσ(j) =
∣∣{i : i < j and σ(i) > σ(j)}

∣∣
is the number of inversions involving σ(j) and the terms of σ preceding σ(j), or equiva-
lently the number of points to the upper left of (j, σ(j)) in the plot of σ. See Figure 5
for an example. Each permutation has a unique inversion sequence. Clearly, for each j,
we have 0 6 eσ(j) < j, and in fact integer sequences satisfying this condition whose sum
equals m are exactly the inversion sequences of n-permutations with m inversions. We
use En,m to denote the set of such inversion sequences.

Figure 6: The permutations σ = 71382654 and σ′ = 71682354.

Given an inversion sequence e, if e(j) < j − 1 then e+j denotes the inversion sequence
obtained from e by the addition of 1 to its jth term. Incrementing a term in the inversion
sequence of a permutation just switches the values of two terms. See Figure 6 for an
example, in which eσ = 01103234 and eσ′ = e+6

σ = 01103334.

Observation 5. Let σ be a permutation. Suppose eσ(j) < j − 1, and that σ′ is the
permutation with inversion sequence e+jσ . Let i < j be the index such that

σ(i) = max
{
σ(k) : k < j and σ(k) < σ(j)

}
.

Then, σ′(i) = σ(j) and σ′(j) = σ(i), and σ′(k) = σ(k) for each k 6= i, j.

If 0 6 m 6
(
n
2

)
, then we use en,m to denote an inversion sequence chosen uniformly

from En,m. We call en,m the uniform random inversion sequence. Since there is a bijection
between En,m and Sn,m, we know that en,m and eσn,m have the same distribution.

the electronic journal of combinatorics 31(4) (2024), #P4.6 8



If a consecutive permutation pattern π occurs at a position j 6= 1 in a permutation
σ, then it is not necessarily the case that eπ occurs at position j in eσ. However, if π
occurs at position 1 in σ, then eπ does occur at position 1 in eσ, as we prove below. For
example, the consecutive pattern 213 occurs at positions 1, 5 and 7 in the permutation
in Figure 5. However e213 = 010 only occurs at position 1 (and not at positions 5 and 7)
in its inversion sequence.

Proposition 6. Let π be any consecutive permutation pattern. If π occurs at position 1
in a permutation σ, then eπ occurs at position 1 in eσ.

Proof. If π has length k, then for each j ∈ [k],

eσ(j) =
∣∣{i : i < j and σ(i) > σ(j)}

∣∣ =
∣∣{i : i < j and π(i) > π(j)}

∣∣ = eπ(j).

In general, if a consecutive pattern π occurs in σ, then the corresponding terms of
eσ satisfy a chain of inequalities that depend only on π. We defer the determination
of the specific correspondence between patterns and inequalities to Proposition 30 in an
appendix, since this result is not needed to derive our main results. However, we do
require the following implication in the opposite direction to that in Proposition 6.

Proposition 7. Let π be any consecutive permutation pattern. If σ is a permutation and
eπ occurs at position j in eσ, then π occurs at position j in σ. Moreover, if π has length
k, then for all i < j and ` ∈ {j, . . . , j + k − 1}, we have σ(i) < σ(`).

Proof. We proceed by induction on the length of the pattern. If π has length 1, then
π = 1 and eπ = 0. Hence, eσ(j) = 0, so there is no point in the plot of σ to the upper left
of σ(j).

Suppose now that the proposition holds for patterns of length less than k, and that
π has length k. Let π′ be the permutation of length k − 1 that results from the removal
of the last point of π. If eπ occurs at position j in eσ then eπ′ also occurs at position j
in eσ. So, by the induction hypothesis, π′ occurs at position j in σ, with no point of σ to
the upper left of any of the k − 1 points σ(j), . . . , σ(j + k − 2) that form its occurrence.

Now eπ(k) < k. So at most k − 1 points of σ are to the upper left of σ(j + k − 1),
all of which must therefore be part of the occurrence of π′, forming an occurrence of π at
position j in σ.

Propositions 4 and 6 immediately imply the following result.

Proposition 8. For any consecutive permutation pattern π of length k and any j ∈
[n+ 1− k],

P
[
π occurs at position j in σn,m

]
= P

[
π occurs at position 1 in σn,m

]
= P

[
eπ occurs at position 1 in en,m

]
.

Thus, we can restrict our attention to the pattern eπ.
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1 1 3 0 0 3 1 1 2 5 0 1 0 0 0 2 1 0 3 1 1 2 2 0

Figure 7: The bar-chart representation of a 24-term composition of 30.

3 Compositions and inversion sequences

In this section, we introduce two models of random integer compositions. We then leverage
results from [11] concerning patterns in compositions to find the thresholds for consecutive
patterns in inversion sequences, and hence also for consecutive patterns in permutations.

An n-term weak composition of m, or just an n-composition of m, is a sequence of n
nonnegative integers that sum to m. See Figure 7 for an example. If C is a composition,
then we use C(i) to denote its ith term and ‖C‖ to denote the sum of its terms (or
weight). Let Cn denote the (infinite) set of all n-compositions, and let Cn,m denote the set
of all n-compositions of m. By a simple “stars and bars” argument, it can be seen that
the total number of distinct n-compositions of m is equal to

(
m+n−1

m

)
.

We say that a composition c of length k occurs as an exact pattern at position j in
another composition C if C(j − 1 + i) = c(i) for each i ∈ [k]. Equivalently, c occurs
at position j in C if C[j, j + k − 1] = c, where C[i, j] denotes the sub-composition
C(i), . . . , C(j). For example, the exact pattern 3112 occurs twice in the composition in
Figure 7, at positions 6 and 19.

We now present two models of random compositions. The first is the uniform random
composition Cn,m, chosen uniformly from Cn,m. For any C ∈ Cn,m, we have

P
[
Cn,m = C

]
=

(
m+ n− 1

m

)−1
.

It is easy to see that the distribution of any exact pattern in Cn,m is independent of
its position.

Proposition 9. Let c be any exact composition pattern of length k. Then, for any i, j ∈
[n+ 1− k],

P
[
c occurs at i in Cn,m

]
= P

[
c occurs at j in Cn,m

]
.

Proof. The probability of c appearing at position i in Cn,m is equal to(
(m− ‖c‖) + (n− k)− 1

m− ‖c‖

)
×
(
m+ n− 1

m

)−1
,

which doesn’t depend on i.
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Our second model, which is significantly easier to analyse, is the geometric random
composition Cn,p. If p ∈ [0, 1), then Cn,p is distributed over Cn so that for each C ∈ Cn,
we have

P
[
Cn,p = C

]
= qnp‖C‖,

where q = 1− p. Each term of Cn,p is sampled independently from the geometric distri-
bution with parameter q, that is, P

[
Cn,p(i) = k

]
= qpk for each k > 0 and i ∈ [n]. Note

that E
[
‖Cn,p‖

]
= np/q. To avoid unnecessary repetition, when considering Cn,p in this

work, q always denotes 1− p.
Thresholds are defined in our composition models in an analogous manner to σn,m. A

function m? = m?(n) is a threshold for a property Q in the uniform random composition
Cn,m if

lim
n→∞

P
[
Cn,m satisfies Q

]
=

{
0 if m� m?,

1 if m� m?.

Similarly, a function p? = p?(n) is a threshold for a property Q in the geometric random
composition Cn,p if

lim
n→∞

P
[
Cn,p satisfies Q

]
=

{
0 if p/q � p?/q?,

1 if p/q � p?/q?,

where q? = 1− p?.
In our previous work [11] on the evolution of random compositions, we investigate the

appearance of patterns in compositions. We use these results to determine the threshold
for the appearance of an exact pattern in Cn,m.

Proposition 10. If c is a non-zero exact composition pattern of length k with ‖c‖ = s,
then for any positive constant a,

lim
n→∞

P
[
Cn,m contains c

]
=


0 if m� n1−1/s,

1− e−as if m ∼ an1−1/s and s > 1,

1 if m ∼ a and s = 1,

1 if n1−1/s � m� n1+1/k.

Proof. This follows from two results in [11], Proposition 4.1:

lim
n→∞

P
[
Cn,p contains c

]
=


0 if p� n−1/s,

1− e−as if p ∼ an−1/s,

1 if n−1/s � p and q � n−1/k,

and Proposition 4.2:

If m ∼ np/q � 1 then P
[
Cn,m contains c

]
∼ P

[
Cn,p contains c

]
.
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If m < s, then Cn,m doesn’t contain c. If m is bounded and m > s > 1, then

P
[
Cn,m contains c

]
< n

(
m−s+n−k−1

m−s

)(
m+n−1

m

) ∼ m!

(m− s)!
n1−s � 1.

If m ∼ a and s = 1, then a.a.s. Cn,m contains exactly a occurrences of c, this being the
same as having the first few and last few terms equal to zero, and avoiding a finite number
of patterns, each of weight greater than one, whose non-zero terms are close together.

Clearly an inversion sequence is a special type of composition. We would like to
leverage our results on patterns in compositions in order to establish results concerning
inversion sequences, and hence permutations. To this end we determine when Cn,m is
a.a.s. an inversion sequence.

Proposition 11. The threshold for Cn,m to be an inversion sequence is given by

lim
n→∞

P
[
Cn,m ∈ En,m

]
=

{
1 if m� n,

0 if m� n.

The proof of this result requires the notion of an increasing property. We say that a
property Q of compositions is increasing if C satisfying Q implies that C+j satisfies Q,
for every j ∈ [n], where C+j denotes the composition obtained from C by the addition of
1 to its jth term.

Proof. We first establish the threshold for the geometric random composition Cn,p to be
an inversion sequence. Recall that C ∈ En,m if C(i) < i for each i ∈ [n].

Now, P
[
Cn,p(i) < i

]
= 1− pi. So

P
[
Cn,p is an inversion sequence

]
=

n∏
i=1

(
1− pi

)
.

By Euler’s Pentagonal Number Theorem (see [33]),

∞∏
i=1

(
1− pi

)
= 1 +

∞∑
k=1

(−1)k
(
pk(3k+1)/2 + pk(3k−1)/2

)
= 1− p− p2 + p5 + p7 − · · · .

If p� 1, then this converges to 1 as n tends to infinity, and so a.a.s. Cn,p is an inversion
sequence.

On the other hand,

P
[
Cn,p is an inversion sequence

]
= q

n∏
i=2

(
1− pi

)
6 q.

If q � 1, then this converges to 0 as n tends to infinity, and so a.a.s. Cn,p is not an
inversion sequence.

the electronic journal of combinatorics 31(4) (2024), #P4.6 12



Not being an inversion sequence is an increasing property. This enables us to transfer
the threshold from Cn,p to Cn,m by using [11, Proposition 2.8]:

If Q is an increasing property that has a threshold p? > n−1 in Cn,p, then
np?/q? is a threshold for Q in Cn,m, where q? = 1− p?.

The result follows.

This enables us to handle values of m � n. To extend our results to slightly greater
m, we require the following bound from [11] on the largest term in Cn,m. If max(C) is the
largest term in composition C, then a.a.s. max(Cn,m) does not grow faster than m

n
log n.

Proposition 12 ([11, Propositions 4.9–4.11 and 2.8]).

lim
n→∞

P
[

max(Cn,m)� m

n
log n

]
= 0.

Using this bound, we can establish that, under suitable conditions, if a pattern a.a.s.
occurs in Cn,m then it also a.a.s. occurs in (a suffix of) en,m.

Proposition 13. Suppose c is an exact composition pattern, and that m− � 1 and
m+ � n2/ log2 n are such that a.a.s. Cn,m contains c whenever m− � m � m+. Then,
a.a.s. en,m also contains c under the same conditions on m.

Proof. Suppose m� n2/ log2 n. Then,

m

n
log n �

√
m

n

log n

log n

n
=
√
m � n

log n
� n.

Let k satisfy m
n

log n � k �
√
m. Then, by Proposition 12, a.a.s. no term of Cn,m is

greater than k.

Suppose s� m. Thenm−(n)� m� m+(n) impliesm−(n−k)� m−s� m+(n−k).
So, if a.a.s. Cn,m contains c whenever m− � m� m+, then it is also the case that a.a.s.
Cn−k,m−s contains c whenever m− � m� m+

Now consider the suffix e′ = en,m[k + 1, n] of en,m. Clearly, e′(i) < k + i for each
i ∈ [n− k], and m−

(
k
2

)
6 ‖e′‖ 6 m, with

(
k
2

)
� m by the definition of k.

Hence,

a.a.s. Cn,m contains c whenever m− � m� m+

=⇒ a.a.s. Cn−k,‖e′‖ contains c whenever m− � m� m+

=⇒ a.a.s. e′ contains c whenever m− � m� m+

=⇒ a.a.s. en,m contains c whenever m− � m� m+,

as required.
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Having constructed the necessary framework, we now have all we need to prove our
first main result, determining the thresholds for consecutive patterns, which we restate
here.

Theorem 1. Let π be any consecutive permutation pattern of length k. If s = inv(π)
and s′ = inv(π), then for any positive constant a,

lim
n→∞

P
[
σn,m contains π

]
=


0 if m� n1−1/s,

1− e−as if m ∼ an1−1/s and s > 1,

1 if m ∼ a and s = 1,

1 if n1−1/s � m� n1+1/k,

lim
n→∞

P
[
σn,m contains π

]
=


1 if n1+1/k �

(
n
2

)
−m� n1−1/s′ ,

1 if
(
n
2

)
−m ∼ a and s = 1,

1− e−as
′

if
(
n
2

)
−m ∼ an1−1/s′ and s > 1,

0 if
(
n
2

)
−m� n1−1/s′ ,

as long as s > 0 and s′ > 0, respectively.

Proof. If m � n, then by Proposition 11, a.a.s. Cn,m is an inversion sequence. So, by
Propositions 8, 11 and 9, for any j ∈ [n+ 1− |π|],

P
[
π occurs at position j in σn,m

]
= P

[
eπ occurs at position 1 in en,m

]
∼ P

[
eπ occurs at position 1 in Cn,m

]
= P

[
eπ occurs at position j in Cn,m

]
.

Therefore P
[
σn,m contains π

]
∼ P

[
Cn,m contains eπ

]
.

From Proposition 10, if m � n1−1/s then a.a.s. Cn,m avoids eπ, and so a.a.s. σn,m

avoids π. The same proposition also gives us the probability at the threshold.

Whenever n1−1/s � m � n1+1/k, then, by Proposition 10, a.a.s. Cn,m contains eπ.
So, by Proposition 13, a.a.s. en,m contains eπ, and so a.a.s. σn,m contains π.

The threshold for the disappearance of π then follows from the fact that σn,(n
2)−m

has

the same distribution as σn,m.

Thus, m ∼ n1−1/s is the threshold for the appearance in σn,m of each consecutive
permutation pattern (of any length) with s inversions. See Table 1 for patterns of length
two, three and four. So, if 0 < γ < 1 and m ∼ nγ, then a.a.s. σn,m contains any
given consecutive pattern with fewer than 1/(1 − γ) inversions, but avoids any given
consecutive pattern with more than 1/(1 − γ) inversions. Note however that σn,m does
contain a consecutive pattern with m inversions, namely σn,m itself!

Consecutive patterns having the same length and number of inversions share thresholds
for both appearance and disappearance. Also, two patterns of different lengths with the
same number of inversions share their appearance threshold, but a.a.s. the shorter pattern
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Consecutive permutation patterns Corresponding inversion sequences

1 21, 132, 213, 1243, 1324, 2134 01, 001, 010, 0001, 0010, 0100
√
n 231, 312, 1342, 1423, 2143, 2314, 3124 002, 011, 0002, 0011, 0101, 0020, 0110

n2/3 321, 1432, 2341, 2413, 3142, 3214, 4123 012, 0012, 0003, 0021, 0102, 0120, 0111

n3/4 2431, 3241, 3412, 4132, 4213 0013, 0103, 0022, 0112, 0121

n4/5 3421, 4231, 4312 0023, 0113, 0122

n5/6 4321 0123

Table 1: Thresholds for the appearance in σn,m of short consecutive patterns.

disappears later than the longer one. On the other hand, given two patterns of the same
length with different numbers of inversions, a.a.s. the one with the fewer inversions both
appears and disappears first. For example, a.a.s. 2143, 32145, 4213, 42315 and 31425
appear in that order, but depart in the order 32145, 42315, 2143, 31425, 4213. However,
we note again that our methods do not enable us to show that σn,m a.a.s. contains a given
pattern for all values of m between the thresholds for its appearance and disappearance.

4 Classical and vincular patterns

In this section, we establish thresholds for classical and vincular patterns. We say that a
classical pattern π occurs at [i, j] in σ if σ(i) is the first term and σ(j) the last term in
an occurrence of π. Such an occurrence has width w = j + 1− i. We use σ[i, j] to denote
the permutation of [w] that has the same relative order as σ(i), . . . , σ(j).

We begin with two propositions concerning occurrences of indecomposable classical
patterns.

Proposition 14. Suppose α is an indecomposable classical pattern of length k > 2. If α
occurs at [i, j] in a permutation σ, with width w = j+1−i, then inv(σ[i, j]) > inv(α)+w−k.

Proof. If i < ` < j then σ(`) forms an inversion with some term in the occurrence of α.
Otherwise we would have α = β ⊕ γ, with β lying to the left and below σ(`) and γ lying
to the right and above σ(`). But α is indecomposable. Thus each of the w − k terms
of σ[i, j] not in the occurrence of α contributes at least 1 to the number of inversions in
σ[i, j].

With this in hand, we prove that containment of an indecomposable classical pattern
implies containment of a consecutive pattern with as many inversions whose length is
bounded. No attempt has been made to optimise the bound on the length.

Proposition 15. Suppose α is an indecomposable classical pattern of length k > 2 with
s inversions. If α occurs in a permutation σ, then σ contains a consecutive pattern with
at least s inversions of length at most ks.
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Proof. Suppose α occurs at [i, j] in σ with width w = j + 1− i > k. Let t = inv(σ[i, j]).
By Proposition 14, we have t > s+ w − k. Note that t > s > 1.

Let d = bt/sc and partition eσ[i,j] into d consecutive blocks of almost equal length, each
block having length either bw/dc or dw/de. Since t/d > s, by the pigeonhole principle,
there is a block b with ‖b‖ > s.

Now, w 6 k + t− s, and

d =

⌊
t

s

⌋
>

t

s
− 1 +

1

s
=

1 + t− s
s

.

So the length of each block is bounded above by⌈w
d

⌉
<

w

d
+ 1 6 1 +

(k + t− s)s
1 + t− s

= 1 + s+
(k − 1)s

1 + t− s
6 1 + s+ (k − 1)s = 1 + ks.

Thus, since this is a strict inequality, there is a consecutive subsequence of eσ[i,j] of length
no more than ks whose terms total at least s, and so σ contains a consecutive pattern
with at least s inversions of length at most ks.

We are now in a position to establish the thresholds for classical patterns in σn,m.

Theorem 2. Let π be any classical permutation pattern. If s is the greatest number of
inversions in a component of π, and s′ is the greatest number of inversions in a component
of π, then for any positive constant a,

lim
n→∞

P
[
σn,m contains π

]
=

{
0 if m� n1−1/s,

1 if n1−1/s � m� n,

lim
n→∞

P
[
σn,m contains π

]
=

{
1 if n�

(
n
2

)
−m� n1−1/s′ ,

0 if
(
n
2

)
−m� n1−1/s′ ,

as long as s > 0 and s′ > 0, respectively.

Proof. We first prove that below the threshold a.a.s. σn,m avoids π. Indeed, a.a.s. it
contains no indecomposable pattern with s inversions.

By Proposition 15, if σn,m were to contain an indecomposable pattern α of length k
then it would also contain some consecutive pattern of length at most ks with at least
s inversions. There are only finitely many such consecutive patterns. Now suppose that
m � n1−1/s. From Theorem 1, we know that a.a.s. Cn,m contains no fixed finite set
of consecutive patterns with s or more inversions. Thus Cn,m avoids α, and hence also
avoids π.

We now prove that above the threshold a.a.s. σn,m contains π. Suppose π has sum
decomposition π = α1 ⊕ · · · ⊕ αr.
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Let C = Cn,m. For 0 6 j 6 r, let ij = bjn/rc, and, for each j ∈ [r], let Cj =
C[ij−1 + 1, ij]. Thus, C1, . . . ,Cr is a partition of the terms of C, each Cj having length
nj ∈

{
bn/rc , dn/re

}
. Let mj = ‖Cj‖.

Since ‖C‖ is constant, the covariance between any two distinct terms of C is negative.
Indeed, straightforward calculations show that

Var
[
C(i)

]
=

(n− 1)m(m+ n)

n2(n+ 1)
, and Cov

[
C(i1),C(i2)

]
= −m(m+ n)

n2(n+ 1)
if i1 6= i2.

Hence,

Var
[
mj/nj

]
= Var

[
mj

]
/n2

j < nj Var
[
C(i)

]
/n2

j ∼
rm(m+ n)

n3
,

which tends to zero as long as m� n3/2. Thus (by Chebyshev’s inequality), for this range
of values for m the sum of terms in each Cj satisfies a law of large numbers.

Thus, for each j and any ε > 0, a.a.s. we have mj > (1 − ε)m/r. Therefore, if

m� n1−1/s, then mj � n
1−1/s
j for each j ∈ [r].

Thus, if n1−1/s � m� n, for each j ∈ [r], we have the following sequence of implica-
tions:

• By Proposition 10, a.a.s. Cnj ,mj
contains a consecutive occurrence of eαj

.

• Thus a.a.s. C = Cn,m contains consecutive occurrences of eα1 , . . . eαr in that order.

• Since, by Proposition 11, Cn,m is a.a.s. an inversion sequence, a.a.s. en,m contains
consecutive occurrences of eα1 , . . . eαr in that order.

• By Proposition 7, these correspond to occurrences of α1, . . . , αr as consecutive pat-
terns in σn,m, such that no point of σn,m is to the upper left of any point in any of
these occurrences.

• Thus a.a.s. π = α1 ⊕ · · · ⊕ αr occurs in σn,m.

The threshold for the disappearance of π then follows because σn,(n
2)−m

has the same

distribution as σn,m.

Unlike with consecutive patterns, classical patterns having the same length and num-
ber of inversions need share neither threshold. See Table 2 for an illustration of this.

We can say a little more about the appearance of classical patterns. As the random
permutation σn,m evolves, indecomposable patterns appear first as consecutive patterns.
Let us say that a component α of a classical pattern π is dominant if no other component
of π has more inversions than α. Then for an arbitrary classical pattern, we have the
following behaviour.

Proposition 16. Let π be any classical permutation pattern whose dominant components
have s inversions. If n1−1/s � m � n1−1/(s+1), then asymptotically almost surely, in
every occurrence of π in σn,m, each dominant component of π occurs consecutively.
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Pattern

n2/3 321654
(
n
2

)
− n8/9

n4/5 423165
(
n
2

)
− n8/9

n8/9 561324
(
n
2

)
− n4/5

n8/9 456123
(
n
2

)
− n2/3

Table 2: Thresholds in σn,m for the appearance and disappearance of four classical
patterns of length six with six inversions.

Proof. Suppose α is a dominant component of π. By Propositions 14 and 15, if there is a
nonconsecutive occurrence of α in σn,m, then there is an occurrence of some consecutive
pattern with at least s+1 inversions. If m� n1−1/(s+1) than a.a.s. this does not occur.

A direct application of Theorems 1 and 2 yields the threshold for the longest decreasing
subsequence in σn,m to have a given length.

Corollary 17. If ` > 2, then

lim
n→∞

P
[
σn,m contains ` . . . 21

]
=

{
0 if m� n1−1/(`

2),

1 if n1−1/(`
2) � m� n1+1/`.

Thus, if 0 < γ < 1 and m ∼ nγ, then the length ` of the longest decreasing subsequence
in σn,m depends on the value of the solution of the equation γ = 1− 1/

(
d
2

)
:

d =
1

2

(
1 +

√
9− γ
1− γ

)
.

If d is not an integer, then a.a.s. ` = bdc, and every longest decreasing subsequence occurs
consecutively. If d is an integer, then a.a.s. ` takes one of the two values d− 1 or d.

We can also determine the threshold for the occurrence of an inversion with a given
width.

Corollary 18. If w > 2, then

lim
n→∞

P
[
σn,m contains an inversion of width w

]
=

{
0 if m� n1−1/(w−1),

1 if n1−1/(w−1) � m� n1+1/w.

Proof. By Proposition 14, if an inversion of width w occurs at [i, j] in σ then σ[i, j] has
at least w − 1 inversions. So, by Theorem 1, below the threshold a.a.s. there is no
occurrence of an inversion of width w in σn,m. On the other hand, the first and last terms
of consecutive pattern π = 234 . . . w1 form an inversion of width w. Since inv(π) = w− 1,
by Theorem 1, above the threshold a.a.s. σn,m contains an occurrence of π and hence
also contains an inversion of width w.
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Another consequence of Theorem 2 is that if m grows sufficiently fast (e.g. m =
n/ log n), then a.a.s. σn,m contains any given classical pattern, or equivalently a.a.s. σn,m

is not contained in any permutation class Av(B) — consisting of permutations avoiding
the classical patterns in the set B.

Corollary 19. If n1−δ � m � n for every δ > 0, and π is any classical permutation
pattern, then asymptotically almost surely σn,m contains π.

The thresholds for vincular patterns generalise those for consecutive and classical
patterns. Recall the definition of a supercomponent of a vincular pattern from page 5.

Theorem 3. Let π be any vincular permutation pattern. If s is the greatest number
of inversions in a supercomponent of π, and s′ is the greatest number of inversions in a
supercomponent of π, then for any positive constant a,

lim
n→∞

P
[
σn,m contains π

]
=

{
0 if m� n1−1/s,

1 if n1−1/s � m� n,

lim
n→∞

P
[
σn,m contains π

]
=

{
1 if n�

(
n
2

)
−m� n1−1/s′ ,

0 if
(
n
2

)
−m� n1−1/s′ ,

as long as s > 0 and s′ > 0, respectively.

Proof. The proof is entirely analogous to that of Theorem 2, with “supercomponent”
replacing “component”. Versions of Propositions 14 and 15 are also required with “super-
component” replacing “indecomposable classical pattern”. We leave the (straightforward)
details to the reader.

5 Open questions

As noted in the introduction, our methods do not enable us to show that σn,m a.a.s.
contains a given pattern for all values of m between the thresholds for its appearance
and disappearance. This is because our approach builds on results concerning random
compositions, and the threshold for the disappearance of an exact pattern of length k in
Cn,m is m ∼ n1+1/k (Proposition 10). We also remarked that even the asymptotics of
|Sn,m| appear not to have been established when n � m � n2. When m ∼ an2, we do
know a bit more. Specifically, the permuton approach (see [38]) is sufficient to establish
that any classical pattern is present a.a.s. However, permutons tell us nothing about the
local structure (see [9, 16]), so cannot help with consecutive patterns.

Proposition 20. Let π be any classical permutation pattern, and suppose m ∼ an2 for
some constant a ∈ (0, 1

2
). Then lim

n→∞
P
[
σn,m contains π

]
= 1.

Nevertheless, there seems no reason to doubt that any pattern is a.a.s. present in
σn,m between its two thresholds. Somewhat surprisingly, there appears to be no simple
strategy for proving this.
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Conjecture 21. Let π be any consecutive permutation pattern, and let s = inv(π) and
s′ = inv(π). If n1−1/s � m and

(
n
2

)
−m� n1−1/s′ , then lim

n→∞
P
[
σn,m contains π

]
= 1.

Furthermore, it is natural to suppose that the expected number of occurrences in
σn,m of a given pattern is a unimodal function of m, first increasing and then decreasing.
Given a permutation pattern π, let En,m(π) denote the expected number of occurrences
of π in σn,m.

Conjecture 22. Let π be any consecutive permutation pattern. If n > |π|+ 2, then the
sequence En,0(π), En,1(π), . . . , En,(n

2)
(π) is unimodal.

Here are some further questions motivated by our considerations.

Question 23. What are the asymptotics of |Sn,m| when n� m� n2?

Question 24 (see Acan and Pittel [1]). Is it possible to define an explicit Markov process
that produces σn,m+1 from σn,m? Can this be achieved in a natural way?

Question 25. What is the length of the longest decreasing subsequence in σn,m for ranges
of m� n1−δ for every δ > 0?

The following two questions were addressed unsuccessfully in [8].

Question 26. Given k = k(n), what is the threshold in σn,m for each consecutive pattern
π of length k to be asymptotically equally likely to occur? That is, for each π ∈ Sk to
satisfy

P
[
π occurs at position 1 in σn,m

]
∼ 1/k!.

Question 27. Given w = w(n), what is the threshold for the two terms σn,m(1) and
σn,m(w) to be equally likely to form an inversion (of width w) as not? That is, for

lim
n→∞

P
[
σn,m(1) > σn,m(w)

]
= 1

2
.

Mallows permutations

One model that may help in addressing such questions is the Mallows permutation [41],
introduced as a statistical model for ranking data.1 The Mallows distribution on Sn with
parameter p ∈ [0,∞) — which we denote σn,p — assigns to each σ ∈ Sn the probability

P
[
σn,p = σ

]
=

(1− p)npinv(σ)∏n
j=1(1− pj)

.

1It is conventional to use q for the Mallows parameter. For consistency with the other models discussed,
we have chosen to use p here.
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Thus, in the Mallows inversion sequence en,p = eσn,p , each term independently satisfies a
truncated geometric distribution. Specifically, for each j ∈ [n] and k = 0, . . . , j − 1,

P
[
en,p(j) = k

]
=



(1− p)pk

1− pj
, if p /∈ {0, 1},

1, if p = 0 and k = 0,

0, if p = 0 and k > 0,

1/j, if p = 1.

If p = 1, then σn,p is simply a uniformly chosen random n-permutation σn. Moreover,
the identity σn,1/p = σn,p enables us to restrict our attention to p 6 1.

Of particular relevance to our concerns is the work of Crane and DeSalvo [22] on
consecutive pattern avoidance in σn,p (see also [23]). Other research of interest (some
restricted to constant p) includes the longest increasing subsequence in σn,p [4, 12, 43],
growth rates for Mallows permutations avoiding classical patterns [45], the number of
descents (consecutive 21 patterns) in σn,p [34], and work on Mallows processes [21].

As with σn,m (see Conjecture 22), it is to be expected that the mean number of
occurrences in σn,p of a given pattern is unimodal in p. Given a permutation pattern π,
let En,p(π) denote the expected number of occurrences of π in σn,p.

Conjecture 28. If π is any consecutive permutation pattern, then the function En,p(π)
is unimodal in p.

However, the relationship between σn,p and σn,m appears to be poorly understood
from an evolutionary perspective. Indeed, only very recently has the expected number of
inversions of a Mallows permutation been published for the full range of values of p = p(n).
Note that E

[
‖en,p‖

]
∼ E

[
‖Cn,p‖

]
if this expectation grows subquadratically.

Proposition 29. If 0 6 p < 1 and a > 0 is constant, then

E
[
inv(σn,p)

]
∼


p

1−pn, if 1− p� n−1,

c(a)n2, if 1− p ∼ an−1,

1
4
n2, if 1− p� n−1,

with

c(a) =
1

a
− 1

a2
Li2(1− e−a),

where Li2(z) is the dilogarithm function. The constant c(a) satisfies lim
a→0

c(a) = 1
4
, and for

large a, we have c(a) ∼ 1/a.

Proof. Let q = 1 − p. When q � n−1, we show that E
[
en,p(j)

]
is close to p/q for most

values of j.
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Suppose first that p� 1, and j > 2 + log1/p(n+ p2). Then,

E
[
en,p(j)

]
=

j−1∑
k=0

kqpk

1− pj
=

p

q
− jpj

1− pj
>

p

q
− npj

1− pj
>

p

q
− p2.

Thus,
(
1− o(1)

)
np/q < E

[
‖en,p‖

]
< np/q.

Now suppose that q = ω/n, where 1 � ω � n, so that n−1 � q � 1 and p ∼ 1.
Suppose also that

j >
log(nqω + 1)

− log(1− q)
∼ 2n

logω

ω
.

Then,

E
[
en,p(j)

]
=

j−1∑
k=0

kqpk

1− pj
= q−1 − 1− j

(
1

1− (1− q)j
− 1

)
> q−1 − 1− n

(
1

1− (1− q)j
− 1

)
> q−1 − 1− q−1

ω
.

Thus,
(
1− o(1)

)
n/q < E

[
‖en,p‖

]
< n/q.

Proofs for the other ranges of values of p (p constant, q ∼ an−1 and q � n−1) can be
found in Pinsky [46, Proposition 1.2 and Theorem 1.3].

The situation for random permutations is in contrast with that for random graphs [14,
30, 36], where the connection between results concerning Gn,p and those concerning Gn,m

has been very well studied. The relationship between σn,p and σn,m deserves further
investigation.

6 Appendix: inversion sequence inequalities

In this appendix, we establish the correspondence between an occurrence of a consecutive
pattern in a permutation σ and the inequalities satisfied by terms of eσ. If π(i) = h then
we write π−1(h) = i.

Proposition 30. If π is a consecutive pattern of length k, then π occurs at position j in
a permutation σ if and only if, for each h ∈ [k − 1],

eσ
(
j − 1 + π−1(h)

)
− eπ

(
π−1(h)

)
> eσ

(
j − 1 + π−1(h+ 1)

)
− eπ

(
π−1(h+ 1)

)
.

For example, as illustrated in Figure 8, the consecutive pattern 4132 occurs at position
7 in a permutation σ if and only if

eσ(8)− 1 > eσ(10)− 2 > eσ(9)− 1 > eσ(7).
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a1 = 2
a2 = 0

a3 = 1

Figure 8: An occurrence of the consecutive pattern 4132 at position 7 in a permu-
tation.

Proof. To abbreviate, for each i ∈ [k], let ej+σ (i) = eσ(j − 1 + i). Suppose π occurs at
position j in σ. For each i ∈ [k], let Pi be the ith point from the left in the occurrence of
π in σ. Then, by definition, for each i, the inversion sequence entry ej+σ (i) is the number
of points in σ above and to the left of Pi. Also, eπ(i) is the number of points above and to
the left of Pi in the occurrence of π. Thus, N(i) := ej+σ (i)− eπ(i) is the number of points
above Pi that are to the left of the occurrence of π.

Now, for each h ∈ [k], let P ′h = Pπ−1(h) be the hth point from the bottom in the
occurrence of π. Also, if h 6= k, let ah = N

(
π−1(h)

)
−N

(
π−1(h + 1)

)
, which is thus the

number of points to the left of the occurrence of π that lie above P ′h but below P ′h+1. See
Figure 8 for an example, each ah being the number of points in the adjacent rectangle.

Since each ah counts the number of points in a well-defined region of σ, each ah is
nonnegative. But ah equals the difference between the left and right hand sides of the
inequality in the statement of the proposition, so this inequality holds for each h ∈ [k−1]
as required.

Suppose now that ρ is a consecutive pattern of length k that is distinct from π. We
need to prove that the series of inequalities satisfied by the entries in eσ when π occurs
at position j in σ are never all satisfied when ρ occurs at position j.

Suppose s is the least index such that the relative order of the first s points of π differs
from that of the first s points of ρ. Let r < s be an index such that the relative order of
π(r)π(s) differs from that of ρ(r)ρ(s). We may assume that π(r) < π(s) but ρ(r) > ρ(s).

π

r s

R
S

ρ

r s

S

T

Figure 9: An illustration of the second part of the proof of Proposition 30.

Let R be the number of points in π above and to the left of π(r) that are not above
and to the left of π(s), and let S be the number of points in π above and to the left of
π(s) that are not above and to the left of π(r). See the left of Figure 9 for an illustration.
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Now, if π occurs at position j in σ, then

ej+σ (r) − R > ej+σ (s) − S.

Now consider the points in ρ above and to the left of ρ(s) that are not above and to the
left of ρ(r). Note that this includes every point counted by S, because the first s − 1
points of π and the first s− 1 points of ρ have the same relative order. Let S+T be their
total number. See the right of Figure 9 for an illustration. Now, if ρ occurs at position j
in σ, then

ej+σ (s) − (S + T ) > ej+σ (r).

Note that T > 1 because ρ(r) is itself counted by T .

Thus, if π occurs at position j in σ, then

ej+σ (r) − ej+σ (s) > −S + R > −S.

However, if ρ occurs at position j in σ, then

ej+σ (r) − ej+σ (s) 6 −S − T < −S,

which is the negation of the inequality for an occurrence of π. Hence, for any host
permutation σ, there is at least one inequality satisfied by the entries in eσ when π occurs
at position j in σ that is not satisfied when ρ occurs at position j, and vice versa.
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[29] P. Erdős and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad.
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