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Abstract

The dichromatic number of an oriented graph is the minimum size of a partition
of its vertices into acyclic induced subdigraphs. We prove that oriented graphs with
no induced directed path on six vertices and no triangle have bounded dichromatic
number. This is one (small) step towards the general conjecture asserting that for
every oriented tree T and every integer k, any oriented graph that does not contain
an induced copy of T nor a clique of size k has dichromatic number at most some
function of k and T .

Mathematics Subject Classifications: 05C15, 05C20

1 Introduction

In this paper, we only consider graphs or directed graphs (digraphs in short) with no loops,
no parallel edges or arcs, and no anti-parallel arcs. In particular our digraphs contain no
cycle of length 2. Note that this class of digraphs is usually referred to as oriented graphs,
but we will use the term digraphs in this paper for the sake of brevity.

Given an undirected graph G, we denote by ω(G) the size of a maximum clique of
G and by χ(G) its chromatic number. A class of graphs C is χ-bounded if there exists a
function f , such that every graph G in C satisfies χ(G) 6 f(ω(G)).

Given a graph (resp. a digraph) H, we denote by Forbind(H) the class of graphs (resp.
digraphs) that do not contain H as an induced subgraph (resp. induced subdigraph). A
celebrated and still wide open question in the area of graph colouring is the following
conjecture of Gyárfás [11] and Sumner [19] (see [17] for a survey on χ-boundedness).
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Conjecture 1 (Gyárfás-Sumner). For any forest F , Forbind(F ) is χ-bounded.

In this paper, we study an analogue of this conjecture for digraphs. For a digraph
D we denote by ω(D) the clique number of the underlying graph of D and by #»χ(D) its
dichromatic number, that is the minimum integer k such that the set of vertices of D can
be partitioned into k acyclic subdigraphs. A class of digraphs C is #»χ -bounded if there
exists a function f such that every digraph D in C satisfies #»χ(D) 6 f(ω(D)).

Conjecture 2 (Aboulker, Charbit, Naserasr [4]). For any oriented forest
#»

F , Forbind(
#»

F )
is #»χ -bounded.

It is enough to prove it for oriented trees (the proof is the same as for the undirected
case, and can be found in [18], Proposition 1.6). An oriented star is an oriented tree with
at most one non-leaf vertex. Chudnovsky, Scott and Seymour [8] proved it for oriented
stars as well as for two of the four possible orientations of the path on 4 vertices: →←←
and ←→→ (they actually prove that for any integer k and any oriented graph ~H where
~H is either an oriented star or →←←, or ←→→, any digraph in Forbind( ~H) with clique
number at most k can be partitioned into a bounded number of stable sets, which is
clearly stronger). Cook, Masař́ık, Pilipczuk, Reinald and Souza [9] proved it for the two
other orientations of the paths on 4 vertices: →→→ and→←→. Nothing more is known.

Proving the conjecture for directed paths is already a very challenging case. In this
paper, we go a step further in this direction by proving the following, where

#»

P6 denotes
the directed path on 6 vertices.

Theorem 3. For every D ∈ Forbind(
#»

P6) with ω(D) 6 2, #»χ(D) 6 382.

Note that we did not try to optimise the bound.

Context and Related Works It has been a central question in graph theory over the
past 40 years to understand what substructures are forced by large chromatic number.
Or equivalently, which forbidden substructures imply bounded chromatic number. The
notion of χ-boundedness deals with this question.

Similarly, the notion of #»χ -boundedness deals with the analogous question for digraphs
and dichromatic number: a class C is #»χ -bounded if for every k there exists a value
φk such that any digraph in C with dichromatic number larger than φk must contain
some orientation of a clique (or tournament) on k vertices. It turns out that the acyclic

tournament on k vertices (denoted by
#   »

TTk) is sufficient to characterise this notion: indeed

every tournament on 2k vertices contains
#   »

TTk, and therefore a class C is #»χ -bounded if
and only if for every k there exists a value ck such that any digraph in C of dichromatic
number at least ck contains a

#   »

TTk.
More generally, given a class of digraphs C, a digraph H is a hero in C if there is a

constant cH such that digraphs of C that do not contain H as an induced subdigraph have
dichromatic number at most cH . The discussion above is that a class C is #»χ -bounded if
and only if for every integer k,

#   »

TTk is a hero in C, and Conjecture 2 can be rephrased as :
for every oriented forest

#»

F , for every integer k,
#   »

TTk is a hero in Forbind(
#»

F ). Additionally,
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a result of [13] implies that if H is not an oriented forest, then no digraph is a hero in

Forbind(H) except for K1 (the digraph on one vertex) and
#   »

TT2.
In a seminal paper, Berger et al. [5] give a simple inductive characterisation of heroes

in the class of tournaments (these contain, of course,
#   »

TTk, but many more). Note that if
a class of digraphs C contains all tournaments, then a hero in C is, in particular, a hero
in tournaments, but a hero in tournaments does not need to be a hero in C. Every class
considered in the following contains all tournaments.

Let Kk be the digraph on k vertices with no arc and observe that the class of tourna-
ments is the same as Forbind(K2). Harutyunyan et al. [12] extended the above result of
Berger at al. [5] by proving that, for every k > 3, heroes in Forbind(Kk) are the same as
heroes in tournaments.

Following these works, a systematic study of heroes in classes of digraphs of the form
Forbind(

#»

F ) where
#»

F is an oriented forest has been initiated in [4]. In particular, it is

proved that if
#»

F is not a disjoint union of oriented stars, then the only possible heroes in
Forbind(

#»

F ) are the transitive tournaments. On the other hand, it was conjectured in [4]

that if
#»

S is a disjoint union of oriented stars, then heroes in Forbind(
#»

S ) are the same as
heroes in tournaments, but this turned out to be false. In the paragraph below, we give
a quick overview of the results on this particular question.

The result of Chudnovsky et al. [8] mentioned earlier implies that transitive tourna-

ments are heroes in Forbind(
#»

S ) for any disjoint union of oriented stars
#»

S . In [2], it is

proved that heroes in Forbind(
#»

P3) are the same as heroes in tournaments. Denote by

K1 +
#   »

TT2 the disjoint union of K1 and
#   »

TT2 and observe that Forbind(K1 +
#   »

TT2) is the

class of oriented complete multipartite graphs. Heroes in Forbind(K1 +
#   »

TT2) have been
investigated in [2] where it is proved that they form a strict super class of transitive
tournaments, and a strict subclass of heroes in tournaments (which disproved the afore-

mentioned conjecture of [4]). Finally, heroes in Forbind(
#»

K1,2) (where
#»

K1,2 denotes the
oriented star on three vertices with a vertex of out-degree 2, digraphs in this class are
called locally-out tournaments) were studied in [1] and [18] (they are still conjectured to
be the same as heroes in tournaments).

A digraph is t-chordal if all its induced directed cycles have length t. Surprisingly,
for every t > 3, the class of t-chordal digraphs has been proved [6] to not be #»χ -bounded.
Note that t-chordal digraphs are defined by forbidding an infinite number of digraphs,
contrary to results mentioned above.

An oriented chordal graph is an orientation of a chordal graph. This is again a class
of digraphs with a distinct flavour, obtained by taking all possible orientations of a class
of (undirected) graphs. Heroes in oriented chordal graphs have been fully characterised
in [3].

2 Definitions

Let D be a digraph. We denote by V (D) its set of vertices and by A(D) its set of arcs.
For X ⊂ V (D) we define N+(X) = {y ∈ V (D) \ X, ∃x ∈ X such that xy ∈ A(D)} and
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N−(X) = {y ∈ V (D) \X, ∃x ∈ X such that yx ∈ A(D)}. A subdigraph of D is a digraph
obtained from D by removing some arcs and some vertices (with all arcs incident to these
vertices). If only vertices are removed, it is an induced subdigraph. For a given set of
vertices X ⊆ V (D), we denote by D[X] the induced subdigraph obtained by removing
V (D) \X. Given a set of digraphs H, we say that a digraph D is H-free if it contains no
induced subdigraph isomorphic to some member of H. We denote by Forbind(H) the class
of H-free digraphs. We say that D is triangle-free if ω(D) 6 2. Given a digraph H we
say that D does not contain (or has no) H if D does not contain H as a (not necessarily
induced) subdigraph.

We write x → y when xy ∈ A(D). A trail of a digraph D is a sequence of vertices
x1x2 . . . xp such that xixi+1 ∈ A(D) for each i < p and each arc is used once (but vertices
can be used several times). It is closed if x1 = xp and its length is its number of arcs. We
say odd closed trail for a closed trail of odd length. A trail (resp. closed trail) in which
vertices are pairwise distinct is called a directed path (resp. directed cycle). The directed

path of length k − 1 is denoted by
#»

Pk.
A k-dicolouring of D is a partition of V (D) into k sets V1, . . . , Vk such that D[Vi]

is acyclic for every i = 1, . . . , k. The dichromatic number of D, denoted by #»χ(D) and
introduced by Neumann-Lara [15] is the minimum integer k such that D admits a k-
dicolouring. We will sometimes extend #»χ to subsets of vertices, using #»χ(X) to mean
#»χ(D[X]) where X ⊆ V (D). For a set C of digraphs we write #»χ(C) to denote the maximum
of #»χ(D) over all elements D in C, and write #»χ(C) =∞ if this is not bounded.

3 Preliminaries

A set of vertices X is dipolar if for every x ∈ X, N+(x) ⊆ X or N−(x) ⊆ X. This notion
was first introduced in [4] under the name “nice set” and has been renamed “dipolar set”
in [9]. The main tool using dipolar sets is the following lemma. We include its proof
because it is short and enlightening for people unfamiliar with the dichromatic number.

Lemma 4 (Lemma 17 in [4]). Let C be a class of digraphs closed under taking induced
subdigraph. Suppose that there exists a constant c such that each digraph D ∈ C has a
dipolar set S such that #»χ(S) 6 c. Then #»χ(C) 6 2c.

Proof. Let D ∈ C be a minimal counter example, that is: #»χ(D) = 2c + 1 and for every
proper subdigraph H of D, #»χ(H) 6 2c. By the hypothesis, D admits a dipolar set S,
such that #»χ(S) 6 c. Set S+ = {x ∈ S | N−(x) ⊆ S} and S− = {x ∈ S | N+(x) ⊆ S}.
By definition of a dipolar set, S = S+ ∪ S−.

The key observation is that any directed cycle that intersects S and V (D)\S intersects
both S+ and S−. Hence, by minimality of D, we can dicolour V (D) \ S with 2c colors.
We can then extend this dicoloring to D by using colours 1, . . . , c for S+ and c+ 1, . . . , 2c
for S− \ S+.

The strategy to prove our result is to show that every digraph in our class has a
dipolar set with dichromatic number at most 191 and then apply Lemma 4. The next two
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results give simple techniques to bound the dichromatic number of a digraph, they will
be extensively used to prove that the dichromatic number of some dipolar set is bounded.
The first one is well known and is a special case of a much stronger result proved in [7].
We give the proof anyway for sake completeness.

Proposition 5. If a digraph D does not contain odd directed cycles as subdigraphs, then
#»χ(D) 6 2.

Proof. Let D be a digraph with no odd directed cycle and since the dichromatic number
of a digraph is the maximum of the dichromatic number of its strong components, we can
assume without loss of generality that D is strongly connected. In that case, we prove
that the underlying graph G of D is in fact bipartite. Assume by contradiction G contains
an odd cycle C = c1 → c2 → . . .→ c2k+1 → c1. For i = 1, . . . , 2k + 1, let Pi be a shortest
directed path from ci to ci+1 (indices being taken modulo 2k + 1). Observe that either
Pi = cici+1, or ci+1ci ∈ A(D), in which case Pi has odd length, for otherwise Pi ∪ {ci+1ci}
is an odd directed cycle. Hence the union of the Pi for i = 1 . . . 2k+ 1 forms a closed odd
trail, which contains an odd directed cycle, a contradiction.

The next result is the dichromatic version of the celebrated Gallai [10], Hasse [14],
Roy [16] and Vitaver [20] Theorem asserting that the chromatic number is upper-bounded
by the largest size of a directed path. In a nutshell: the dichromatic number is upper-
bounded by the largest size of a directed path of some feedback arc set.

Proposition 6. Let D be a digraph. Given a total ordering of the vertices of D, we say
that an arc xy is forward if x precedes y in this ordering, and backward otherwise. The
two following propositions are equivalent

• #»χ(D) 6 k

• There exists an ordering of the vertices of D such that there exists no directed path
on k + 1 vertices consisting only of backward arcs.

Proof. One direction is easy : if #»χ(D) 6 k then there exists a partition (C1, C2, . . . Ck) of
V (D) with Ci inducing an acyclic digraph. We construct an order on V (D) by putting
all vertices of Ci before all vertices of Ci+1 for each i and within each class we use a
topological sort. It is clear that in the resulting order, there can be no path on more
than k vertices where all arcs go backward since a backward arcs goes from one class to
a previous one.

For the converse direction, assume that D has an ordering on its vertices such that
there exists no directed path on k + 1 vertices consisting only of backward arcs and let
us prove that D is k-dicolourable. For every x ∈ V (D), define f(x) to be the maximum
number of vertices in a path consisting only of backward arcs and ending in x. By
definition 1 6 f(x) 6 k. Define Ci = f−1(i) and let us prove that Ci does not contain any
backward arc. Assume by contradiction xy is such an arc. Then there exists a path on
i vertices ending in x consisting only of backward arcs, which implies that f(y) > i + 1,
contradiction. So each Ci induces an acyclic digraph, and thus #»χ(D) 6 k.
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The last lemma of this section is used to find induced directed paths.

Lemma 7. Let D be a triangle-free digraph, C a (not necessarily induced) odd directed
cycle of D and d ∈ N(C). Then there exists consecutive vertices a → b → c of C such
that

• either d→ a→ b→ c is an induced
#»

P4,

• or a→ b→ c→ d is an induced
#»

P4,

• or d→ a→ b→ c→ d is a C4 (in particular, d ∈ N+(C) ∩N−(C)).

Proof. Assume a ∈ N−(C). Let us denote by x1, . . . , x2k+1 the vertices of C (i.e. ∀i 6 2k,
xixi+1 ∈ A(D) and x2k+1x1 ∈ A(D)). Assume without loss of generality that ax1 ∈ A(D).
Let 1 6 p 6 k be the maximum integer such that ax2p+1 ∈ A(D). Since the digraph is
triangle-free, ax2k+1 /∈ A(D), so p 6 k. It is straightforward to see that b = x2p+1,
c = x2p+2, d = x2p+3 satisfies either the first or third item of the lemma. By reversing the
arcs of the digraph, the same proof works if a ∈ N+(C).

We will often use this lemma the following way : if a ∈ N−(C) \ N+(C) (resp.
a ∈ N+(C) \N−(C)), then the first (resp. the second) output holds.

4 Proof of Theorem 3

For a subset X of vertices, we define recursively the sets N+
k (X), N−k (X) and Nk(X) by

N+
0 (X) = N−0 (X) = N0(X) = X, and for k > 1 :

N+
k (X) = N+(N+

k−1(X)) \
⋃
i<k

Ni(X)

N−k (X) = N−(N−k−1(X)) \
⋃
i<k

Ni(X)

Nk(X) = N+
k (X) ∪N−k (X)

In other words, N+
k (X) is the set of vertices y such that there exists a vertex x ∈ X with

a directed path from y to x of length k, but there is no directed path of length at most
k− 1 from y to x nor from x to y. Note that there can be a path of length at most k− 1
linking x and y in the underlying graph, that is, a path containing →← or ←→ at some
point.

We gather in the following claim several straightforward facts that we will use in the
proof.

Claim 8. For any X ⊂ V , the following hold

1. N+
1 (X) = N+(X), N−1 (X) = N−(X) and N1(X) = N+(X) ∪N−(X)

2. There are no arcs between X and Nk(X) for k > 1.
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3. If x ∈ Nk−1(X), then either N+(x) ⊆
⋃

i6kNi(X) or N−(x) ⊆
⋃

i6kNi(X).

4. If v ∈ N+
k (X) (respectively N−k (X)), there exists a directed path v0v1 . . . vk (respec-

tively vkvk−1 . . . v0) such that vk = v and vi ∈ N+
i (X) for every i > 0.

Items 1, 2 and 3 follow from the definition and item 4 is easy to prove by induction on k.

Let now D be a triangle-free digraph in Forbind(
#»

P6). Let C be a (not necessarily
induced) odd directed cycle of D of minimum length (we may assume it exists by Propo-
sition 5). During the proof, for simplicity, we write C for V (C), D[C] for D[V (C)] and
Nk(C) for Nk(V (C)).

We are going to prove that the set

S = C ∪N(C) ∪N2(C) ∪N3(C)

is dipolar and has dichromatic number at most 191, which implies Theorem 3 by Lemma 4.

Claim 9. S is dipolar. Moreover, #»χ(N3(C)) 6 2.

Proof. To prove that S is dipolar, we need to prove that for every vertex x in S, either
N+(x) or N−(x) is contained in S. Note that by Claim 8 item 3, this is trivial if x ∈
C ∪N1(C) ∪N2(C).

Assume now that x ∈ N+
3 (C) and let us prove that N+(x) ⊆ N1(C) ∪ N2(C), which

will imply both parts of the claim, since this proves that N+
3 (C) is an independent set.

By Claim 8 item 4, there exists a directed path v0 → v1 → v2 → v3, where v3 = x and
vi ∈ N+

i (C). If v1 ∈ N+(C) \ N−(C), then, by Lemma 7, there exists a, b, c ∈ C such

that abcv1 is an induced
#»

P4. Since there is no arc between C and N2(C) ∪ N3(C) (by

Claim 8 item 2) and D is triangle-free, a → b → c → v1 → v2 → v3 is an induced
#»

P6, a
contradiction.

So we can assume v1 ∈ N+(C) ∩ N−(C). Consider y ∈ N+(x), and let us prove
that y ∈ N1(C) ∪ N2(C). Let t be the in-neighbour of v0 in C and observe that t →
v0 → v1 → v2 → v3 → y is a

#»

P6 and the only way for it not to be induced (because of
(Claim 8 item 2)) is that y is adjacent with one of {t, v0, v1}. If y is adjacent with t or
v0, then y ∈ N1(C). If y is adjacent with v1, and since v1 ∈ N+(C)∩N−(C), we get that
y ∈ N2(C). We thus have proven that y ∈ N1(C)∪N2(C). Similarly, if x ∈ N−3 (C), then
N−(x) ⊆ N1(C) ∪N2(C), which concludes the proof of this claim.

Claim 10. #»χ(D[C]) 6 3.

Proof. By minimality of C, removing a vertex from D[C] yields a digraph with no odd
directed cycle, which thus has dichromatic number at most 2 by Proposition 5.

Set C = x1x2 . . . x2k+1x1.

Claim 11. #»χ(N+(C) \N−(C)) 6 4 and #»χ(N−(C) \N+(C)) 6 4.
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Proof. Let us prove that #»χ(N+(C) \N−(C)) 6 4. We first prove that N+(x1) ∪N+(x2)
intersects all odd directed cycles of N+(C) \ N−(C). Suppose that it is not the case,
and let C ′ be such an odd directed cycle. Let i > 3 be minimum such that xi has an
out-neighbour in C ′ (so that x1, . . . , xi−1 don’t). Since C ′ ⊂ N+(C) \ N−(C), xi does
not have an in-neighbour in C ′, so by Lemma 7 applied to C ′, there are 3 consecutive
vertices a, b, c of C ′, such that xi → a → b → c is an induced

#»

P4. By the choice of i, we
then have that xi−2 → xi−1 → xi → a → b → c is an induced

#»

P6, a contradiction. Now,
N+(C)\N−(C) can be partitioned into two stable sets and a digraph with no odd directed
cycle, and thus be 4-dicoloured. By directional duality, #»χ(N−(C) \N+(C)) 6 4.

Claim 12. #»χ(N+
2 (C) \N−2 (C)) 6 2 and #»χ(N−2 (C) \N+

2 (C)) 6 2.

Proof. We prove that #»χ(N+
2 (C) \ N−2 (C)) 6 2. Assume by contradiction this is not the

case, so that by Proposition 5 we get an odd directed cycle C ′ in N+
2 (C) \N−2 (C). Let u

be a vertex in N+(C) ∩N−(C ′), which is non empty by definition of N+
2 (C).

If u ∈ N+(C) \ N−(C), then by Lemma 7, there exist a, b, c ∈ C such that a → b →
c → u is an induced

#»

P4, which along with a vertex v ∈ N+(u) ∩ V (C ′) and the out-

neighbour of v in V (C ′) forms an induced
#»

P6, a contradiction (remember that by Claim
8 Item 2, there is no arc between C and C ′).

Thus u ∈ N+(C) ∩ N−(C) and since V (C ′) is disjoint from N−2 (C), u has no in-
neighbour in V (C ′). Hence, by Lemma 7 applied on C ′, there exist a, b, c ∈ V (C ′) such

that u → a → b → c is an induced
#»

P4, which along with any v ∈ N−(u) ∩ C and the

in-neighbour of v in C forms an induced
#»

P6, a contradiction.

Claim 13. #»χ(N+(C) ∩ N−(C)) 6 30. Moreover, if for every x ∈ C, both N+
2 (x) and

N−2 (x) are stable sets, then #»χ(N+
2 (C) ∩N−2 (C)) 6 30.

Proof. The same proof works for the two assertions of the claim. Let ` ∈ {1, 2} and observe
that, by hypotheses (triangle-free for ` = 1, or the assumption of the second sentence for
` = 2), for every x ∈ C, both N `+(x) and N `−(x) are stable sets. In particular, the result
holds if C has length 5, so we may assume assume it has length at least 7.

Let X = (N `+(C) ∩ N `−(C)) \ N `({x1, . . . , x6}). It is enough to prove that #»χ(X) 6
30− 12 = 18.

For each vertex v ∈ X, choose (arbitrarily) a vertex xi (resp. xj) in C such that
there is a directed path of length l from v to xi (resp. from xj to v). Set out(v) = i and
in(v) = j so that we define two functions out and in from X to {1, . . . , 2k + 1}.

In the case where ` = 2, let p+v (resp. p−v ) be a vertex such that v → p+v → xout(v)
(resp. xin(v) → p−v → v). In the rest of the proof, v → p+v → xout(v) is understood as
v → xout(v) in the case where ` = 1.

For i ∈ [0, 5], let Xi = {v ∈ X | out(v) = i mod 6} and then define Xi,> = {v ∈
Xi | out(v) > in(v)} and Xi,< = {v ∈ Xi | out(v) < in(v)}. It is enough to prove that
#»χ(Xi,>) 6 2 and #»χ(Xi,<) 6 1 for i = 0, . . . , 5.

So now i is fixed and we define a total order ≺ on Xi the following way: we say first
that u ≺ v when out(u) < out(v) and then extend arbitrarily this partial ordering to a
total ordering of Xi.
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We first prove that #»χ(Xi,>) 6 2 using Proposition 6 applied to the reversal of≺ defined
above. Suppose then by contradiction that there exist a, b, c ∈ Xi,> such that a ≺ b ≺ c
and ab, bc ∈ A(D). Since N `−(x) is a stable set for every x ∈ C, out(a) 6= out(b) and
out(b) 6= out(c) and thus

out(c) > 6 + out(b) > 12 + out(a) > 12 + in(a)

If in(a) has the same parity as out(a) (and thus as out(b) and out(c)), then x1 → x2 →
· · · → xin(a) → p−a → a → b → c → p+c → xout(c) → · · · → x2k+1 → x1 is an odd closed
trail (it does not need to be a directed cycle because p−a = p+c is possible) and otherwise,
x1 → x2 → · · · → xin(a) → p−a → a → b → p+b → xout(b) → · · · → x2k+1 → x1 is
an odd directed cycle. In both cases we get an odd directed trail that has strictly less
vertices than C, and since an odd closed trail contains an odd directed cycle, we get our
contradiction. Thus #»χ(Xi,>) 6 2.

We now prove that #»χ(Xi,<) 6 1. Suppose that there exist a, b ∈ Xi,< such that b ≺ a
and ab ∈ A(D). Thus out(b) + 6 6 out(a) < in(a). If out(a) and in(a) do not have the
same parity, then xout(a) → xout(a)+1 → · · · → xin(a) → p+a → a → p−a → xout(a) is an
odd closed trail. Otherwise out(a) and thus out(b) have the same parity as in(a), and
then xout(b) → · · · → xin(a) → p−a → a → b → p+b → xout(b) is an odd directed cycle.
In both cases it has strictly less vertices than C, a contradiction. Thus #»χ(Xi,<) 6 1 by
Proposition 6.

Let
#»

C3,2 be the digraph with vertices u, v1, v2, w1, w2 and arcs uv1, v1v2, v2w2, uw1, w1w2

(so
#»

C3,2 is the digraph consisting of two directed paths from u to w2, one being u→ v1 →
v2 → w2, and the other u→ w1 → w2). Observe that if G ∈ Forbind(

#»

C3,2), then for every
x ∈ V (G), N+

2 (x) and N−2 (x) are stable sets. Hence, by the previous claims, we get that

for every triangle-free digraphs G ∈ Forbind({
#»

P6,
#»

C3,2}), the set Q∪N(Q)∪N2(Q)∪N3(Q),
where Q is an odd directed cycle of G of minimum length, is dipolar and has dichromatic
number at most 3 + 4 + 4 + 2 + 2 + 2 + 30 + 30 = 77. Hence, by Lemma 4 we get that:

Claim 14. Triangle-free digraphs in Forbind({
#»

P6,
#»

C3,2}) have dichromatic number at most
144.

We are now able to prove the last bit of the proof.

Claim 15. #»χ(N+
2 (C) ∩N−2 (C)) 6 144.

Proof. By Claim 14, we may assume that N+
2 (C) ∩ N−2 (C) contains

#»

C3,2 as an induced
subdigraph. Thus there exists u, v1, v2, w1, w2 ∈ N+

2 (C) ∩ N−2 (C) such that uv1, uw1,
v1v2, w1w2, v2w2 are arcs of D. Moreover, there exists r, s ∈ C, and t ∈ N+(C) such that
rs, st, tu ∈ A(D). Now, since r → s → t → u → v1 → v2 is not induced, t and v2 are
adjacent, and since r → s → t → u → w1 → w2 is not induced, t and w2 are adjacent.
Hence t, v2, w2 forms a triangle, a contradiction.

Altogether, we get that #»χ(S) 6 3 + 4 + 4 + 30 + 2 + 2 + 144 + 2 = 191, and thus
#»χ(D) 6 382.

the electronic journal of combinatorics 31(4) (2024), #P4.60 9



Acknowledgement

This research was partially supported by the ANR project DAGDigDec (JCJC) ANR-
21-CE48-0012, by the ANR project Digraphs ANR-19-CE48-0013, and by the group
Casino/ENS Chair on Algorithmics and Machine Learning.

References

[1] P. Aboulker, G. Aubian, and P. Charbit. Decomposing and colouring some locally
semicomplete digraphs. Eur. J. Comb., 106:103591, 2022.

[2] P. Aboulker, G. Aubian, and P. Charbit. Heroes in oriented complete multipartite
graphs. Journal of Graph Theory, 105(4):652–669, 2024.

[3] P. Aboulker, G. Aubian, and R. Steiner. Heroes in orientations of chordal graphs.
SIAM Journal on Discrete Mathematics, 36(4):2497–2505, 2022.

[4] P. Aboulker, P. Charbit, and R. Naserasr. Extension of Gyárfás-Sumner conjecture
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