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Abstract

This is a sequel to the second and third author’s Mixed Dimer Configuration
Model in Type D Cluster Algebras where we extend our model to work for quivers
that contain oriented cycles. Namely, we extend a combinatorial model for F-
polynomials for type D,, using dimer and double dimer configurations. In particular,
we give a graph theoretic recipe that describes which monomials appear in such
F-polynomials, as well as a graph theoretic way to determine the coefficients of
each of these monomials. To prove this formula, we provide an explicit bijection
between mixed dimer configurations and dimension vectors of submodules of an
indecomposable Jacobian algebra module.

Mathematics Subject Classifications: 13F60, 16G20

1 Introduction

After the positivity conjecture for the coefficients of Laurent polynomials for cluster vari-
ables was resolved in [22, 23], many researchers have worked on trying to provide combi-
natorial interpretations for these coefficient sequences. Many particular classes of cluster
algebras have been studied with this goal in mind. For example, cluster algebras com-
ing from surfaces, first defined by [13], have combinatorial interpretations for the cluster
variables [16, 34]. In their model, each cluster variable has an associated graph called a
snake graph and then the cluster expansion is given by some weighted generating func-
tion indexed over matchings on the snake graph. Since defining these snake graphs for
cluster algebras from surfaces, many others have studied when such a construction holds
in other contexts. For example, snake graphs have been defined for cluster-like algebras
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called quasi-cluster algebras arising from non-orientable surfaces [55], cluster algebras
from unpunctured orbifolds [3] and super cluster algebras [41].

In this paper, we return to a classical case - cluster algebras of type D,, or in other
words, cluster algebras arising from a once-punctured n-gon. There are a few reasons that
this is of interest. Firstly, there are some limitations to the snake graph formulation of
cluster algebras from surfaces. For example, oftentimes there are nontrivial coefficients in
the Laurent expansions for cluster variables that are given by the Euler characteristic of
the quiver Grassmannian that are not recorded in a single snake graph. In addition to this,
there are deep representation theoretic connections with the lattice of perfect matchings
of snake graphs and the submodule lattice of a fixed indecomposable representation of
the quiver of a given dimension vector that could use further exploring. For instance, a
connection to between these lattices and the weak Bruhat order was recently discovered
in [40].

With the above as our inspiration, we further explore the connection between dimer
configurations, representation theory and cluster algebras with the goal of providing a
combinatorial interpretation for Laurent expansions of cluster variables that utilizes a
mixture of dimer configurations and double dimer configurations. We ramp up previous
work on quivers of type D, to the more complicated representation theoretic setting of
allowing cycles in our quiver. More specifically, we focus on a single and double dimer
configuration interpretation of the F-polynomial associated to a cluster variable or module
over the associated Jacobian algebra. We provide a weighted generating function in terms
of dimers and double dimers on a certain graph to give the F-polynomial for a particular
cluster variable. We obtain the exact monomials by creating a bijection between these
dimers and particular dimension vectors of submodules of a fixed indecomposable Jacobian
algebra module and the coefficients are given by the Euler characteristic of the space of
possible submodules with this given dimension vector.

We begin this paper by reviewing cluster algebras from surfaces and representations
of quivers in type D,, in Section 2. We then describe our dimer theoretic interpretation of
the F-polynomial in Section 3 and our main result is Theorem 4.1 found in Section 4. Our
results depend on a classification of the possible crossing vectors that can appear in type
D,, cluster algebras (which are notably no longer in bijection with positive roots when the
quiver contains an oriented cycle). For a full catalog of such vectors, see Appendix A.

Acknowledgements: The authors would like to thank Aaron Chan for helpful in-
sights into the representation theoretic side of our paper, the referees for carefully reading
our paper and providing suggested edits, as well as the support of the NSF, grants DMS-
1745638 and DMS-1854162.
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2 Preliminaries

This section split into three subsections: Section 2.1 discusses the surface model for
type D,, cluster algebras, which involves tagged triangulations of once-punctured n-gons,
Section 2.2 defines F-polynomials associated to cluster variables and Section 2.3 defines
the relevant representation theoretic notions we will need throughout the paper.

2.1 Cluster Algebras from Punctured Surfaces

In this section, we give a brief review of the cluster algebra structure on triangulated
surfaces as defined by Fomin, Shapiro and Thurston in [13]. Since our focus is type
D,, cluster algebras, our exposition in this section will emphasize the role of punctures
following both [13] and [7]. More specifically, we will focus on the once-punctured disk; a
helpful exposition of material for the single puncture case is given in [5].

Definition 2.1. A marked surface is a pair (S,M) where S is a connected oriented
Riemann surface and M is a finite set of marked points such that there is at least one
marked point on every boundary component of S. If a marked point is in the interior of
S, we call it a puncture.

Definition 2.2. An arc « is a curve in S, considered up to isotopy, such that
1. its endpoints are in M
2. 7 is disjoint from JS, except for possibly its endpoints;
3. 7 does not cut out an unpunctured monogon or an unpunctured bigon.

We say that two arcs 7,0 are compatible if, up to isotopy, they do not intersect.
More formally, let e(y,d) denote the minimal number of crossings between any isotopic
representative of v and §. Then v and § are compatible if e(v,d) = 0. Maximal sets of
pairwise compatible arcs are called ideal triangulations of (S, M). For an example, see
the right side of Figure 1 for an ideal triangulation of the once-punctured pentagon. The
elements of an ideal triangulation 7', called ideal triangles, may not always have three
distinct sides. Namely, we may have the case of triangles called self-folded triangles.
We refer to the inner arc of a self-folded triangle as a radius and the outer edge wrapping
around the puncture enclosing the radius as a loop. In Figure 1, the arcs 4 and 5 create
a self-folded triangle, where 5 is the radius and 4 is the loop.

Ideal triangulations are connected by “quadrilateral flips;” where the quadrilateral
flip for any arc v € T is given by the unique arc 7' # v that completes T\ {7} to a
triangulation. For example, the resulting triangulation on the right in Figure 2 is the
mutation of arc 3 in Figure 1. This “quadrilateral flip” provides the cluster structure on
triangulations of surfaces. In order to define the cluster structure, we associate a directed
graph called a quiver to a triangulation as follows.

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(4) (2024), #P4.61 3



Figure 1 — The quiver associated to a triangulation of the once-punctured pentagon.
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Figure 2 — The mutation in direction 3 of quiver and triangulation from Figure 1.

Definition 2.3. Let T' = {7, 72, ..., 7,} be an ideal triangulation of (S,M). We define
a quiver Qr = (Qo, Q1) with the vertex set Qo = {1,2,...,n} such that each vertex i is
in correspondence with the arc 7, € T and with arrow set )1 drawn in clockwise order
for each ideal triangle of T'. Given a self-folded triangle with radius r and loop ¢, draw
arrows connecting r and ¢ to the adjacent arc(s), but not connecting r to /.

Definition 2.4. Given a quiver (), for each vertex i € (g, we can associate an indeter-
minate x;, which we refer to as a cluster variable. Collecting all such indeterminates
together, we get X = {x1,...,2,}, which we call a cluster, and we refer to the pair
(X, Q) as a seed.

In this paper we focus on the case of seeds determined by triangulations 7. To each
arc 7; in a triangulation 7', we associate the indeterminate x;, and then we collect all
such indeterminates together to get the cluster Xr = {z1,...,z,}. By constructing the
corresponding quiver Q7 using Definition 2.3, we obtain the pair (X, Q) = (Xr,Qr) as a
seed corresponding to triangulation 7.

Example 2.1. Consider the once-punctured pentagon triangulation on the right of Figure
1. Here, X7 = {21, x9,...,25}. The associated quiver Qr is given on the left of Figure 1.

Since two distinct quivers (or triangulations) admit different seeds, we next describe a
mutation rule that details how cluster X and quiver () change as we transform from one
seed into another.
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Definition 2.5. For each 1 < k < n, define the mutation in direction k of the seed
(X,Q) by u(X,Q) = (X \ {zx}) U{zr}, u(Q)) where zy is a rational function in X
and (@) is another quiver on n vertices. More concretely,

® TpT) = H T; + H ;5
i—keQ1 k—j7€Q1

e 11;:(Q) is obtained from transforming @) by the following three step process:

— For any arrow incident to k, reverse the orientation;
— For any two path ¢ - k — j, draw an arrow ¢ — j;
— Delete any created 2-cycles.

Example 2.2. For the quiver and triangulation from Example 2.1, if we mutate the quiver
T1X4T5 + To

€3

in direction 3, we obtain the quiver shown in Figure 2. Moreover, x3 =

Remark 2.1. When we want to emphasize the cluster variable x. associated to arc vy
being mutated rather than the index of the mutation direction k£ with respect to a given
cluster, we will use the notation i, or u, instead of the aforementioned j.

Definition 2.6. Let X denote the union of all clusters obtainable by a sequence of
mutations starting from a fixed initial seed (X, Q). The cluster algebra A = A(X, Q)
is the algebra generated by & over some ground ring R i.e. A(X, Q) = R[X].

Cluster algebras from surfaces have topological formulations that are helpful for un-
derstanding the algebra. Let (S,M) be an unpunctured marked surface and let 7" be a
triangulation of (S,M). Let Q1 be the quiver associated to the triangulation 7" and let
Xr be the initial cluster associated to T'. In the cluster algebra A = A(Xp, Qr), there
are bijections

{cluster variables of A} «— {arcs of (S,M)}

{clusters of A} <— {triangulations of (S,M)}.

Moreover, let v € T be an internal arc that is not in a self-folded triangle and let 7' be
the arc obtained by flipping v in 7. Then, cluster mutation p,(X7) in direction v is
compatible with flip 1, (7) in a quadrilateral of the arc ~, that is,

proy (X7) = (X7 \ {2}) U {2}

corresponds to

uy(T) = (T\ {vH u{'}
After observing the above correspondence, when (S, M) is unpunctured, all triangula-

tions are connected by flips and arcs are in bijection with cluster variables of the associated
cluster algebra. However, the above correspondence becomes more complicated if (S, M)
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Figure 3 — A self-folded triangle (on the left) corresponds to a combination of an arc and
a notched arc (in the middle). A notched arc can be interpreted as a “lollipop” as shown
on the right.

contains a puncture. For example, the radii of self-folded triangles are not mutable and
as a consequence, our set of arcs is not in direct bijection with cluster variables in the as-
sociated cluster algebra. To deal with these complications, Fomin, Shapiro, and Thurston
introduced a decoration one can place on arcs called a tag that allows us to fix the prob-
lem of having immutable arcs. When one of the endpoints of an arc is a puncture, we
can choose to decorate it with a notch X or leave it plain. We let ’yN denote the notched
version of the arc . Using this notation, we are able to replace self-folded triangles with
pairs of parallel arcs where one is plain and the other is notched at the puncture, see
Figure 3. Since we are only considering a once-punctured surface, the only arcs that can
be notched are arcs with one endpoint at the unique puncture; that is, an arc whose
endpoints are not the puncture are equal to their plain version.

In order to define a tagged triangulation, we must define what it means for two arcs
to be compatible with this new decoration. We define this notion specifically for the case
of a once-punctured surface.

Definition 2.7. Let v,d be two tagged arcs. Then define the crossing number e (,9)
as follows:

1. if both arcs are plain, then ¢ (v, §) = e(7, 8);
2. if both are notched, then e¥(v,48) = 0;

3. if exactly one is notched, say ~, then eM(fy, d) = e({,0) where £ is the loop around
the puncture.

With that, we say two tagged arcs «, d are compatible if eM(’y, 9) = 0. A maximal set
of pairwise compatible tagged arcs form a tagged triangulation.

With these definitions, we are now able to state the following result:

Theorem 2.1. [13] Let (S,M) be any marked surface except a once-punctured surface
with empty boundary. Let T" be a triangulation of (S, M) and Q7 its associated quiver.
Let X7 be the initial cluster associated to 7', in A = A(X7, @r), there are bijections

{cluster variables of A} «— {tagged arcs of (S, M)}
{clusters of A} +— {tagged triangulations of (S,M))}.
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Using this theorem, we can define a vector associated to each tagged arc of (S, M)
that will index our cluster variables.

Definition 2.8. Let T'= {r,...,7,} be a triangulation of a marked surface (S, M) and
let 7 be an arc not in 7. The crossing vector associated to v, denoted d., € Z%, is
the vector defined by d; = e (7i,7) for 1 <@ < n. That is, d, is the vector that records
the number of times  crosses the arcs of T'.

In this paper, we will use initial triangulations that are ideal - as it makes the represen-
tation theory simpler. However, in light of the above theorem, we make sure to examine
the full set of cluster variables by considering tagged arcs. We will make sure these cases
are always explicitly stated.

In order to properly analyze all type D,, cluster algebras, we heavily rely on Vatne’s
classification of all type D,, quivers given in [49]. Note that we will take these notations
for the remainder of the paper.

Theorem 2.2. [49] When the underlying quiver is mutation-equivalent to the type D,
Dynkin quiver, there are four forms the quiver can take. Namely, all type D, quivers
must be of types I, II, III and IV as shown in Figure 4, where the subquivers labeled
Q,Q',Q",...,QW are type A, quivers (that need not be acyclic). In type I, the arrows
between a and ¢ and between b and ¢ can be oriented in either direction.

We use this classification and the correspondence between cluster variables, tagged arcs
and crossing vectors as initial data in our combinatorial model. To this end, we cataloged
all families of arcs that can appear on the once-punctured disk in Appendix A. The catalog
is an exhaustive list of all the crossing vectors that can appear in each type, with respect
to Vatne’s classification, of any ideal initial triangulation of the once-punctured disk.
The Appendix boils down to understanding when crossing vectors are fully supported on
oriented cycles on the quiver and which vectors degenerate to the acyclic case. Moreover,
we emphasize which crossing vectors are composed of 0’s and 1’s and which crossing
vectors have 2’s as this distinction complicates both the combinatorics and representation
theory, as we will be associating representations to each crossing vectors by insisting that
the dimension vector of the representation and the crossing vector coincide.
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Figure 4 — Vatne’s classification of the four types of quivers in type D,,.

2.2 Principal Coefficients

Each crossing vector indexes a cluster variable associated to an arc . In this paper, we will
give a combinatorial interpretation of the F-polynomial associated to a cluster variable
7, i.e. indexed by some vector d.. In order to do this, we need to associate coefficients
to our cluster algebra by adding what are called frozen vertices to the associated quiver.
These are additional vertices of the quiver that record the dynamics of mutation without
being mutable themselves. This follows the definitions and results about cluster algebras
with coefficients as in [21].

Definition 2.9. A framed (principal extension) quiver () is a quiver on 2n vertices
where there are n mutable vertices {1,...,n} and n frozen vertices {n + 1,...,2n} such
that each n + 4 — ¢ and no frozen vertices are connected in any other way.

Once we have the definition of a framed quiver, we associate an indeterminate x;
to each mutable vertex ¢ € @y and another indeterminate w,,; to each frozen ver-
tex n 4+ j € Qp. Each set of 2n indeterminates form an extended cluster X =
{Z1,..., Tp, Tps1, ..., T2n}. The pair (X, Q) is called an extended seed.

Remark 2.2. The choice of frozen vertices in the quiver gives rise to cluster algebras
with principal coefficients. We take this definition for our purposes in order to most
conveniently define the F-polynomial to an associated cluster variable.

One remarkable property proven about cluster algebras is the Laurent Phenomenon.
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Theorem 2.3. [10, Theorem 3.1] Any cluster variable z € A can be expressed as

. N(zq,...,xy)
i .. - gdn
where N(z1,...,2,) € Zlzply,. .., 25,1, ..., 2,) and is not divisible by any z;. The
denominator vector of x is the vector d = (dy,...,d,).

Remark 2.3. Given the notation of d  for the crossing vector, the reader might be
tempted to equate this with the denominator vector defined as part of Theorem 2.3. In
fact, when Q)7 is acyclic i.e. there are no internal triangles in the triangulation 7', the
crossing vector and denominator vector are the same. However, when ()7 contains an
oriented cycle, these vectors may not coincide. For example, see Figure 21 in [13].

Now, to define the F-polynomial, we need to define a new set of variables. To this
end, fix an initial seed (X, @), define the new variables for 1 < j < n

ij = Tpy; ﬁ x?ﬁ{iHJ'EQl}.
i=1
Using these new variables, we are ready to define the F-polynomial and also g-vectors.
Although we state it as a definition, the following is also a theorem that cluster variables
with principal coefficients have this form.

Definition 2.10. [21, Definition 3.3/Proposition 7.8] Let 1 < ¢
primitive polynomial Fy € Z[uy, ..., u,| and a unique vector g,
that the cluster variable z € A(X, Q) is given by

< n, there exists a unique
= (91,--.,9n) € Z™ such

x=F(gr,. . Yn)af -]

The polynomial Fy is called an F-polynomial and g, is called a g-vector.

2.3 The Jacobian Algebra and Quivers with Potential Representations

In this section, we review some representation theory that will dictate the behavior of our
combinatorial model for the F-polynomial. Namely, we will define the Jacobian algebra
of a triangulation of a punctured surface, first defined by Labardini-Fragoso in [52]. For
this section, assume that k is an (algebraically closed) field.

Definition 2.11. Recall that we denote @ = (Qo, Q1) to be a quiver where @)y is the set

of vertices of ) and () is the set of arrows of (). For i 2 J in @1, let s(¢) = i denote
the source of the arrow ¢ and let t(¢) = j denote the target of ¢. Let ay,...,a € Q1. A
path of length p in () is a sequence o = a; - - - a, where t(;) = s(a;41) forall 1 <i < p.

Definition 2.12. Let ¢; denote the path of length 0 at vertex i. Let o = ay - - - oy, denote
a path of length p and 3 = ;- -- 3, denote a path of length ¢. The concatenation of
paths aeg; is given by
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0 otherwise

£ .
aei:{a if (o) i

Similarly, the concatenation of ;« is given by

a if s(ay) =1
g0 = .
0 otherwise

In general, the concatenation of af is given by

aﬁz{al...%@l...@q if ¢(a,) = s(B1)

0 otherwise

Definition 2.13. The path algebra of @, denoted k() is the k-algebra with basis paths
in @), including paths of length 0, and multiplication given by concatenation of paths.

Example 2.3. Consider the following quiver:

L> 2
|#

«—~—3

>
o

Then the path algebra k(@ will be an infinite-dimensional algebra because of the ori-
ented cycle afyd. The basis will consist of elements such as

{81’ €2,83,8&4, Q, 67 e 5’ aﬁa 5,77 757 50&, OQB’Y, 6767 75057 604ﬁ,
a0, Byda, yoaB, dafy, afyda, BydaB, yoaBy, daByd, . .. }.

Definition 2.14. Let R be the ideal of k() generated by the arrows of (). More generally,
denote by Rf) the ideal of the path algebra k() generated by paths of length m in Q. A
two-sided ideal I of k() is admissible if there exists m > 2 such that Rg cJIcC Ré. If
@ is a quiver and [ is an admissible ideal of k@, then the pair (@, I) is a bound quiver.

Example 2.4. Let (S, M) be an unpunctured marked surface and consider a triangulation
T of (S,M). It is possible to associate an admissible ideal to the triangulation 7', [52, 53].
Let Ir to be the ideal of k@ generated by all 2-paths a8 such that s(8) = t(«), but that
a and ( arise from two different marked points in (S,M); this ideal is admissible. On
the level of the quiver Q)r, the ideal consists of all 2-paths in ()7 coming from the same
triangle in 7T'.

The admissible ideal referred to in Example 2.4 comes from a potential associated to
a triangulation of a surface. We now define a potential of a quiver that arises from a
triangulation of a surface.
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Figure 5 — A triangulation with overlayed arc v, quiver with potential and an the inde-
composable quiver with potential representation M, as given in [29]

Definition 2.15. Let & = a;3--- o, be a path in (). We say that « is a cycle when
s(ar) = t(oy).

Definition 2.16. A potential W on (@ is a possibly infinite linear combination of cycles
in k@Q. We call the pair (Q, W) a quiver with potential.

Definition 2.17. Two potentials W and W’ on @ are cyclically equivalent when
W — W' lies in the closure of the span of all elements of the form ay - -, — ag - - - a0y,
where o - - oy, is a cycle.

Definition 2.18. When a quiver comes from a triangulation T of a once-punctured
surface, define the potential associated to 7' by

W(T) =) W -Ww?,

where the sum is taken over A - a clockwise oriented triangle in the quiver i.e. an internal
triangle in T; W2 is the potential given by the cycle created by the triangle A; and WP
is the potential given by the counterclockwise cycle around the puncture as in [52].

Example 2.5. Consider the ideal triangulation 7' of the punctured pentagon and its
associated quiver Q7 in Figure 5. The potential is given by W (T') = bed+ fgh+eij—def,
where W2 = bed+ fgh+eij which corresponds to the internal triangles formed by the arcs
2,4 and 3; 4, 6 and 5; and 3, 5 and 7 respectively. Additionally, W? = def corresponds
to the counterclockwise cycle 3, 4 and 5 coming from the puncture.

Definition 2.19. Let C' = o; - - - o, be a cycle in (). Then the formal cyclic derivative
of C' with respect to «; is

For brevity, let 0(C) denote the set of all cyclic derivatives for each arrow in the cycle
C'. The cyclic derivative extends linearly to linear combinations of cycles in (). Note that
the cyclic derivatives of two cyclically equivalent potentials W and W’ on @ are equal.
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We are now ready to define a representation of a quiver with potential. We begin by
defining quiver representations and then explain how to incorporate the data of a potential
into this representation theoretic framework.

Definition 2.20. Given a quiver (), a representation M of Q is a pair M = (M,, M,)
where

e M, is an assignment of k-vector space M, to each a vertex a € Qo;

e M, is an assignment of a k-linear map ¢, to each arrow ¢ € Q.

Now that we have defined representations of quivers, we use potentials to
re-contextualize this setting in terms of the Jacobian algebra.

Definition 2.21. Let W be a potential on (). The Jacobian ideal of W is the ideal
generated by all cyclic derivatives dg(W) for ¢ € Q.

With that, we define a quotient of the path algebra by this ideal.

Definition 2.22. Let I be the Jacobian ideal of a potential W in ). The Jacobian
algebra is the quotient k@ /I. If W is a potential consisting of a sum of all cycles in @
(up to cyclic equivalence), we refer to the corresponding Jacobian algebra as the Jacobian
algebra of ().

Both Definition 2.21 and 2.22 are well-defined up to cyclic equivalence. This is because
the cyclic derivative of two cyclically equivalent potentials W and W’ on () are equal; hence
giving that the Jacobian ideals of W and W' are also equal. Moreover, since the Jacobian
ideals of cyclically equivalent potentials W and W’ on @ are equal, the Jacobian algebras
of W and W’ are also equal.

Remark 2.4. A quiver with potential (Q), W) is a bound quiver (@, I) using the admissible
ideal I generated by cyclic derivatives (with respect to each arrow of @)1) of the potential
W. Note that this ideal is admissible since each cycle in W has positive length, and
therefore, the ideal generated by a combination of these cycles must have bounded length.

Example 2.6. Consider the quiver from Example 2.3. Endow this quiver with the po-
tential W = afvd. The Jacobian ideal is given by

I = (0a(aB70), 05(af6), Oy (aByd), s(afy6)) = (876,70, 0B, apy).
The Jacobian algebra k@ /I is a finite-dimensional k-algebra with basis
{515 €2,€3,8&4, 0, B: Y5 55 CKB, 577 767 504}

Definition 2.23. Let (Q,W) be a quiver with potential, and k@ /I be the associated
Jacobian algebra of () with respect to the potential W. A representation M of (Q, W)
is a pair M = (M,, M,) given by two pieces of data
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e M, is an assignment of a k-vector space M, to each a vertex a € Q;

o My is an assignment of a k-linear map ¢, to each arrow ¢ € )1 such that this
assignment respects the relations in /. That is, for a relation R = >, o, -+ - o, in
I, the associated maps pr =), Pa;, O O Pa, = 0.

A representation M of (Q, W) is also equivalently a module over kQ/I.

We say such a module is indecomposable if it cannot be expressed as the direct sum
of proper submodules. Studying indecomposable Jacobian algebra modules is equivalent
to studying representations of the quiver with potential. From the above, we have an
equivalence of categories, precisely written as follows:

Theorem 2.4. [54, Theorem 1.6] Let A = k@ /I, where @ is a finite connected quiver and
I an admissible ideal of k(). There exists an equivalence of categories between modules
over A and finite-dimensional representations of the bound quiver (@, I).

Example 2.7. Consider the Jacobian algebra computed in Example 2.6. An example of
an indecomposable Jacobian algebra module is given by the diagram below.

k —L

)

Note that the assignment of linear maps gives that a path given by the composition
of any three consecutive arrows is 0 which is forced by the relations in the Jacobian ideal.

o

0

Example 2.8. Consider another quiver () shown below:

3 5
T Ta
2 4

Then define the potential W = o386 + 6. Taking cyclic derivatives of W, we obtain
the Jacobian ideal I = (34, d«, 0, €0, af+~¢). An example of an indecomposable module
over the Jacobian algebra k@) /I, or equivalently, a representation of (@), W) is given by

k
Tl
k

Note that in Example 2.8, we needed to make one of the arrows between non-zero
vector spaces the zero map in order for it to satisfy the relations in the Jacobian ideal.

i

1

v’

g

\

k <
(10" o nt
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Namely the arrow 3 % 4 was 0. We call such an arrow in a Jacobian algebra module
singular. Such arrows will become relevant when defining our dimer model in Section 3.

We now explain how to uniquely associate a quiver with potential or Jacobian algebra
module to an arc in a triangulated surface following [29]. In particular, we emphasize that
an arc overlayed on a triangulation of a surface uniquely determines an indecomposable
Jacobian algebra module.

Let T be an ideal initial triangulation of a surface (S,M) and let (Qr, Wr) be its
associated quiver with potential. Overlay a plain oriented arc v ¢ T on (S,M) and we
explain how to produce a quiver with potential representation M,. The dimension vector
of this representation is simply given by the crossing vector of ~; that is,

dim(M,); = #{intersections with v with arc 7, € T}/ ~

where ~ is up to isotopy. The maps are given by comparing the segments of v between
arrows of the quiver. Let o : © — k € )1, and let rq,...,r, be the intersections of ~
with 7, € T and let ¢, ..., ¢ be the intersections of v with 7, € T'. Let [r,, ¢»] denote the
segment of v between the intersection points r, and ¢,. The map ¢, given by the matrix
Ny, = (nap) € Matgys s44(Z) is defined by

1 if either the interior of [r,, ¢ is contained in one triangle of T, or if

there is a segment [gp, q] of 7 that surrounds the puncture clockwise
Nap =

)

such that the interior of [r,, gy] is contained in one triangle of 7.

0 otherwise.

Example 2.9. Consider the triangulation, and quiver with potential Wy = bed + fgh +
er) — def from Example 2.5 in Figure 5. Its Jacobian ideal is given by

I = {(cd,db,bc — ef,ij — fd,gh — de,hf, hg,je,ei).

Consider the red arc v overlayed on T" with the specified orientation. It crosses arcs, 2,
4,5, 3,2, 10of T in order — giving that the crossing vector of v or the dimension vector of
M,isd=(1,2,1,1,1,0,0). The maps between the 1-dimensional vector spaces are all the
identity except the arrow 4 — 3 because the interior of the segment [rq,¢;] is contained
in two triangles. This gives that this arrow is singular.

The arrow 2 — 1 is given by the matrix (0 1) as the segment [rq, ¢1] is not contained in
a single triangle whereas the segment [rq, ¢o] is. Similarly, the arrow 2 — 4 is given by the
matrix (1 0) as the segment [ry, ¢1] is contained in a single triangle whereas the segment
[r1, 2] is not. The arrow 3 — 2 is given by the matrix (1 1)7 as [go, 1] is contained in a
single triangle and [gs, ¢1] surrounds the puncture clockwise (as a segment of arc 2) and
the interior of [go, r;] is contained in a single triangle. The full representation is shown on
the right of Figure 5.
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When 7 is notched, the process for producing an indecomposable quiver with potential
representation from 'yM is quite similar to the above. The dimension vector is given by
the crossing vector as before as defined in Definition 2.7. The maps are slightly modified,
imagining replacing the notched arc with a lollipop as in the rightmost picture in Figure
3. See the exposition in [5] for details.

As one last piece of representation theory that we will use, it is a theorem of Derksen,
Weyman, and Zelevinsky [51] that the F-polynomial, as in Definition 2.10, can also be
expressed in terms of finite dimensional modules over the Jacobian algebra. This formu-
lation motivates our usage of the term submodule indexing vectors in the next section.
See Theorem 7 for more details.

3 Dimer Configurations

In this section, we describe a combinatorial model for how to obtain the F-polynomial
associated to any type D, cluster algebra. We remark that for computational purposes,
we choose an index-shift: taking indices 0,1,...,n — 1 rather than 1,2,...,n as in our
previous sections. Our model assigns a planar, bipartite graph to a type D,, quiver. Each
of the vertices in the graph correspond to a 2k-gon, we call a tile, where k is the degree
of the vertex in the quiver and each arrow in the quiver gives an assignment of how to
attach the tiles together. We use the data of the quiver () and a crossing vector d to
assign a minimal mixed dimer configuration to this graph. From this assignment, we
create a poset of mixed dimer configurations each of which corresponds to a monomial
of the F-polynomial associated to d and whose coefficient is determined by the number
of cycles appearing in the mixed dimer configuration. Our methods extend our previous
model for the acyclic case [50], where we were able to utilize Thao Tran’s work [1], to the
non-acyclic case.

Let @Q = (Qo, Q1) be any type D,, quiver. Recall there are four types of quivers that
are mutation equivalent to the type D, Dynkin diagram categorized by Vatne in Figure
4. Let A(Q) be the associated cluster algebra. We first define the base graph associated

to Q.

3.1 Defining the Base Graph

Definition 3.1. Let i € @)y be a vertex of degree k in our quiver. Associate a 2k-gon
called tile 7 to this vertex. Since each tile is an even-sided polygon, it admits a bipartite
coloring. We attach the tiles based on this black and white coloring with the following
convention:

If 7,7 € Qo such that ¢ — j € (), attach tiles ¢ and j by the convention that we
“see white on the right.” Call the resulting graph G, an uncontracted base graph
associated to Q.
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Figure 6 — A quiver, its uncontracted and contracted base graphs.

Example 3.1. Consider the D; quiver on the left of Figure 6. An associated uncontracted
base graph is given by the middle of Figure 6.

Remark 3.1. For an n-cycle in (), there is a more efficient process to obtain an uncon-
tracted base graph. Namely, begin constructing the graph with an “n-star” i.e. n line
segments attached at one of their endpoints and use these edges to create the rest of the
tiles for vertices in the n-cycle in ). If the n-cycle is clockwise, the vertex of the n-star
is white. If the n-cycle is counterclockwise, the vertex of the n-star is black.

Remark 3.2. Note that the construction for an uncontracted base graph is not unique
up to graph isomorphism. For example, in Example 3.1, since the tile 2 is an octagon,
there are different choices of edges to attach the tiles 0, 1, 3 and 5 to such a large polygon.
For example, we could have attached the tiles 3 and 5 to bottom of the octagon, shifting
the tiles 3, 4, and 5 clockwise around the octagon by two edges. We resolve this lack
of uniqueness when we decrease the size of these larger polygons via the following local
graph moves.

From this graph G, we create a refinement of this graph via a local move called
double-edge contraction that will result in a graph comprised of only squares and
hexagons.

Definition 3.2. Double-edge contraction is a graph transformation that takes two
edges in a graph G and contracts them to a point. Locally, the transformation is:

O — e —O O

® — O — o [

In G, for any tile i that is a 2k-gon for k > 3, perform double-edge contraction on any
edges that are boundary edges i.e. edges that only belong to tile i and neighbors no other
tiles. Repeat this process as many times as possible. Call the unique resulting graph G
the base graph associated to Q.

Example 3.2. Taking the uncontracted base graph from Example 3.1, we perform double
edge contraction which turns the octagon tile 2 into a square, and the hexagons 3 and 5
into squares. The resultant base graph is illustrated on the right of Figure 6.

Remark 3.3. Although this refinement of the uncontracted base graph G to the base
graph G does not affect the combinatorics of our model, it yields a graph that is easier to
work with in practice.
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3.2 Minimal Mixed Dimer Configuration

We now associate a minimal mixed dimer configuration to the base graph G of a quiver
@. In order to define minimal mixed dimer configurations, we first define single dimer,
double dimer, and mixed dimer configurations. We tie this back to cluster algebras by
using another piece of global data - the crossing vector d associated to a cluster variable
z in A(Q). The complete catalog of all crossing vectors in type D,, cluster algebras can
be found in Appendix A.

For the following definitions, suppose that G is an arbitrary planar bipartite graph.

Definition 3.3. A dimer configuration, also known as a (perfect) matching, is a
subset D C E(G) such that every vertex v € V(@) is contained in exactly one edge e € D.

For example, consider the red edges in the following graph:

Definition 3.4. A double dimer configuration D’ of GG is a multiset of the edges of
G such that every vertex v € V(G) is contained in exactly two edges e, e’ € D’.

For example, consider the red edges in the following graph:

Definition 3.5. Let d be an n-tuple whose entries are each 0, 1, or 2, i.e. d € {0,1,2}".
A mixed dimer configuration D of GG is a multiset of the edges of GG such that every
vertex v € V(@) is contained in zero, one, or two edges in D. Furthermore, we say that
D satisfies the valence condition with respect to d if each vertex incident to tile 7 is
contained in at least d; edges in D. In particular, the cases we will need are

e Each vertex incident to tile ¢ with d; = 2 is contained in two edges in D.

e Bach vertex incident to tile ¢ with d; = 1 is contained in at least one edge in D.

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(4) (2024), #P4.61 17



Example 3.3. Let d = (dy, dy,ds,d3) = (2,2,1,0). An example of a mixed dimer config-
uration that satisfies the valence condition with respect to d can be seen by the red edges
highlighted in the following graph:

The crossing vector d associated to some arc v in the once-punctured n-gon will be
what determines the mixed dimer configurations in our model. Note that d is also the
dimension vector of a unique representative of an isomorphism class of an indecomposable
quiver with potential representation, M., .

With this, in order to define the minimal mixed dimer configuration, we present lem-
mas about the structure of crossing vectors d that will imply the well-definition of our
construction. We postpone the proofs of Lemma 1 and Lemma 2 until Appendix B. For
the following lemmas, let T" be a triangulation of the once-punctured n-gon and ) be the
corresponding quiver.

Lemma 1. Suppose 7 is some arc not in T and let d = cross(7). Q**D  the induced
subquiver using vertices i € Qg with d; > 0, is connected.

Lemma 2. Suppose v is some arc not in T' such that there exists some arc T € T that
v crosses twice. Let d = cross(7y). QP2 the induced subquiver using vertices i € Qq
with d; = 2, 1s a connected tree.

Now, we aim to define a minimal mixed dimer configuration associated to (@, d). Let
G(Q) = G be the base graph obtained by the process described in Definitions 3.1 and 3.2.
Let v be an arc such that cross(y) = d and let M, be the corresponding indecomposable
representation.

Definition 3.6. We begin by addressing the nuance in the non-acyclic case. As we saw in
Example 2.8, some of the arrows in M, may be 0 between nonzero vector spaces. In order
to correctly model the combinatorics, our model must consider these singular arrows in
the definition of the minimal mixed dimer configuration. For any singular arrow ¢ — j
in M,, we will include the edge straddling tiles ¢ and j, which we denote as e; ;, as one
of the edges in our minimal mixed dimer configuration. Define the set of such edges we
distinguish in this way as Z = U €ij-
i—j singular

Let GG; be the induced subgraph of GG using tiles ¢ with d; > 1. Traversing clockwise
along the boundary of the graph GG, distinguish the edges that go black to white clockwise,
call this set of edges D(G). If d contains no 2’s, then define D(G1) U Z = D_(d).

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(4) (2024), #P4.61 18



If d contains at least one 2, then let G5 be the induced subgraph of G using tiles ¢ with
d; = 2. Traversing clockwise along the boundary of the graph G,, distinguish the edges
that go black to white clockwise, call this set of edges D(G2). Define D(G;)UD(Gy)UZ =
D_(d). We refer to D_(d) as the minimal mixed dimer configuration associated

to (Q,d)

Figure 7 — Phases of distinguishing the edges in the minimal mixed dimer configuration
for Example 3.2 following the above methods, as described in Example 3.4.

’/ 0/1_\> 2/ 3\4

—

Figure 8 — An arc v, drawn in pink, overlayed on a triangulated hexagon, its quiver and
corresponding representation M, used in Example 3.4. Arrows 1 — 0 and 5 — 3 are
singular since these represent zero maps in M.

Example 3.4. Taking the base graph from Example 3.2, and d = (1,1,2,1,1,1), the
minimal mixed dimer configuration D_(d) is shown in Figure 7. The leftmost graphic
shows the set Z = e5 3 U ey, reflecting the singular arrows 5 — 3 and 1 — 0. The middle
graphic represents then adding the edges in D(G1). The rightmost figure is the addition
of the edges in D(G2) i.e. is the minimal mixed dimer configuration for this choice of
(@, d). To see the triangulation, arc and representation that is used to determine these
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singular arrows, see Figure 8. Here if we let r; denote the intersection of v and 7 and ¢;
denote the intersection of v and 7y, we note that the segment [r1, ¢1| along v does not cut
out a single triangle hence why the map corresponding to the arrow 1 to 0 must be zero
in M,. We analogously see the arrow 5 to 3 must represent the zero map in M,. The
construction of the remaining linear maps is similar to that in Example 2.9.

Observe that the definition of the minimal mixed dimer configuration D_(d) is well-
defined. By Lemma 1, we have that G is connected; moreover, by Lemma 2, we have
that Go is connected. Hence, D(G}), D(G2) are well-defined respectively.

3.3 Poset of Mixed Dimer Configurations

We now create the poset of mixed dimer configurations where each of the mixed dimer
configurations appearing in this poset corresponds to a monomial that appears in the
F-polynomial associated to d. Namely, the minimal element of this poset corresponds
to the minimal mixed dimer configuration defined in Section 3.2 and we define the poset
relation as in Section 3.4 of [50]. For more details and motivation, please refer to [50].

Definition 3.7. Fix a type D,, quiver () and a base graph G = G(Q). Let d € {0, 1,2}"
and let D, D" be two mixed dimer configurations on G with valence condition given by d.
We say D covers D’, D < D', if there exists a tile 7 of G such that D’ is obtained from
D by “flipping” tile ¢ of D i.e. exchanging highlighted edges black to white clockwise on
tile 2 in D to white to black clockwise as shown in Figure 9. Implicit in this definition is

Figure 9 — An example of an allowable flip.

Definition 3.8. Let (P, <) be the poset of mixed dimer configurations that satisfy
the valence condition and are reachable via a sequence of flips from D_(Q,d). For two
such mixed dimer configurations D and D’, we say that D < D’ if there exists a sequence
of allowable flips from D to obtain D’. Here, a flip in a mixed dimer configuration is
allowable if we exchange the edges along a tile as in Figure 9, i.e. we exchange a set of
edges going black to white clockwise on a single tile for a set of edges that go white to
black clockwise, extending accordingly in the presence of multiple edges. See Definition
26 in [50] for more details.

The poset P turns out to have more elements than the number of monomials in the
F-polynomial associated to d. As in [50], we put another condition on mixed dimer con-
figurations that accurately reflects the cluster combinatorics by disallowing some mixed
dimer configurations. We will let (P, <) C (P, <) be the subposet of mixed dimer config-
urations that satisfy the valence condition, are reachable via a sequence of allowable flips
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from D_, and satisfy a condition known as being “node monochromatic” which we define
in the next section.

3.3.1 Node Monochromatic Mixed Dimer Configurations

As in the acyclic case, we must define a special set of vertices of G that we call “nodes” to
disallow certain mixed dimer configurations. These nodes allow us to disallow configura-
tions that connect nodes of different color in order to correctly model the F-polynomial.
In order to create paths in a mixed dimer configuration, we must have valence 2 on some
vertices in D_(d). Hence, the definition of these nodes is only relevant when there is at
least one 2 present in d.

Recall Vatne’s classification of type D,, quivers, described in Theorem 2.2, which states
that any type D, quiver consists of a type D,, part and at least one type A,, part. We
first define nodes on the type D,, part of the quivers. In types I, IT and III, we define both
red and blue nodes; whereas in type IV, we just define blue nodes. After this, we define
green nodes on the type A, part of the quiver, which applies to all types.

Remark 3.4. In the support of d-vectors that contain a 2, types II and III degenerate
to type I quivers when considering the induced subgraph on the quiver. In particular,
the type D, parts of these quivers are acyclic on the support of d. For details of how
these types reduce to type I, refer to the classification of crossing vectors in these types
found in Figures 24 and 25 in Appendix A. So, in types I, I and III, nodes are defined in
the same way and are very similar to the 6 nodes of three colors: red, blue and green as
defined in [50]. Namely, two pairs of these nodes are defined on the type D,, part of the
quiver, since tiles are disconnected in the induced base graph of the support of d.

However, in type IV quivers, the type D,, part of the quiver that contains the central
cycle is always fully supported in d when there is a 2 in the vector. So, in this case, we
must define the nodes in a different way. We define 4 nodes of two colors: blue and green
in this case because the type D, part of the induced subgraph is connected in this case.
Hence, rather than having two pairs of nodes on the type D,, part, we only have one pair
of nodes in the type D,, part.

Let d be a crossing vector associated to a cluster variable z in A(Q). Let Q*"P be the
induced subquiver of ) using vertices ¢ € ) with d; > 0 i.e. supported on d. Suppose
that @ is type I, IT or III. If @Q®"PP contains an oriented cycle, then this cycle is necessarily
in a type A,, part of the model i.e. some Q) using Vatne’s notation. By the surface
model, the type D,, part of the quiver in QQ*"PP reduces to the case where we have a fork
as in the classical Dynkin diagram. This allows us to define two pairs of nodes: two red
nodes u, v and two blue nodes w, x. Let a and b be the two forking vertices and let ¢ be
the vertex that is connected to the rest of the type A,, part of the quiver. Define the red
nodes u, v to be placed on the two vertices of tile a that are not shared with tile c. Define
the blue nodes w, x to be placed on the two vertices of tile b that are not shared with tile
c. See Figure 10.

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(4) (2024), #P4.61 21



a c

a
A%

c

X

b b c
W

Q supp

Figure 10 — The blue and red nodes on the tiles a and b in types [, 1T and III.

Now, we define the blue nodes in type IV quivers. In the base graph, we create a
k-star that corresponds to the vertex shared by all the tiles in the k-cycle. Define the
vertex in the k-star to be the node w. In the minimal mixed dimer configuration, there is
a unique vertex that is connected to w using the edges in D_. Namely, by the definition
of the Jacobian ideal of relations I, the arrow a — b connecting the central k-cycle to
the type A,, spike must be a singular arrow - and we define x to be the vertex on tile a
adjacent to w but not shared by b.

~

Figure 11 — The blue nodes on the tiles a and b in type IV.

Finally, to define the last pair of green nodes, we focus on the type A,, part of the
quiver in any type. Let ¢ be the vertex in QQ°"PP connected to the maximal number of
vertices j with d; = 0 or 1. If ¢ is not part of an oriented cycle, we define the green nodes
as in the acyclic case [50]. If 7 is part of an oriented cycle in Q*"PP, then define the green
nodes v, > as in Figure 12.
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Figure 12 — The green nodes based on various tiles in or not in Q*"PP. The leftmost column
shows the case when j € Q%"PP and k &€ Q*"PP; the center column shows the case when
j & Q°"PP and k € Q*"PP; and the rightmost column shows the case when j, k € QQ%"PP.

Definition 3.9. A mixed dimer configuration D of G is node-monochromatic if any
path consisting of edges in D between nodes connects nodes of the same color. If there
exists a path consisting of edges in D between nodes of different colors, we say D is node-
polychromatic. We define (P, <) to be the subposet of (P, <) consisting of mixed dimer
configurations that satisfy the valence condition, are reachable via a sequence of allowable
flips from D_, and are node-monochromatic.

Proposition 3.1. D_ isin P, i.e. is a mixed dimer configuration on the base graph that
satisfies the valence condition and is node-monochromatic.

Proof. First note that D_ trivially satisfies the condition that it is reachable by a sequence
of allowable flips from D_ by taking the empty sequence. Note that D_ also satisfies the
valence condition by construction. By definition of D_, the sets D(G4), D(G2) will satisfy
the valence condition and for any k-cycle fully supported in d, the vertex corresponding
to the k-star is matched by the edges in Z corresponding to the unique singular arrow
in that k-cycle. So, it suffices to show that D_ is node-monochromatic by showing that
there are no paths between nodes of different colors. If the associated quiver is acyclic,
D_ is node-monochromatic, see Proposition 3.4.1 of [50]. So, we need to show D_ is node-
monochromatic if our induced subquiver with respect to d contains an oriented cycle.

If the oriented cycle appears in the type A,, part of our induced subquiver, then by
definition of the green nodes in Figure 12, these green nodes must be connected in D_.
In particular, these sets of nodes cannot be connected to red or blue nodes as any such
path would imply a vertex of degree 3 in D_. If the oriented cycle appears in the type D,,
part of the subquiver, then this quiver must be type IV. In this case, the blue nodes are
connected in D_ by definition, which again implies that they cannot connect to the green
nodes as any such path would imply a vertex of degree 3 in D_. Therefore, D_ must be
node-monochromatic. O
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In the acyclic case, refer to Example 3.4 and Figure 1 in [50] to see an example of
this poset P. We provide another example when () contains an oriented cycle before
proceeding stating our main result in the following section.

Example 3.5. In Vatne type IV where the central cycle is a 3-cycle, consider the Dy
quiver shown in Figure 6 with d = (1,1,2,1,1,1). The base graph and minimal mixed
dimer configuration with the nodes is given by:

and the poset P of node monochromatic mixed dimer configurations is given in Figure
13.

Now, with these definitions and this running example, we have the ingredients to state
our main result. Namely, we will show that the elements of this poset P give the non-zero
monomials in the F-polynomial associated to d.

4 Main Theorem

In this section, we connect the representation theory and combinatorics presented in
the previous sections together in our main result. In particular, we give the generating
function for cluster variables in terms of mixed dimer configurations indexed by certain
dimension vectors of modules of the associated Jacobian algebra.

Theorem 4.1. Given any quiver () of type D,, and crossing vector d, we let F; denote the
F-polynomial corresponding to the cluster variable with crossing vector d. This expression
is based on the appropriate cluster algebra of type D,, and assuming an initial seed defined
by the choice of quiver @) and the standard initial cluster of {xg, z1,...,z,_1}. Following
the conventions of Definition 2.10, the F-polynomial Fy is an element of Z[ug, uy, . . ., t,—1].

Furthermore, let D_ = D_(Q,d) be the minimal mixed dimer configuration, as de-
fined in Section 3.2. Let P be the poset of mixed dimer configurations that satisfy the
valence condition, are reachable via a sequence of allowable flips from D_, and satisfy
the node monochromatic condition as defined in Definition 3.9. Then the expansion of
F-polynomial F,; can be expressed as a weighted multi-variate rank-generating function
on the poset (P, <) determined by D_:
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Figure 13 — Poset of mixed dimer configurations in Example 3.5. The tiles enclosed by
cycles are shaded grey for emphasis.
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Fy= ) 2ugult -,
DeP
where the sum is taken over mixed dimer configurations D obtained by flipping tile ¢
t;-times (keeping track of multiplicities) and ¢ is the number of cycles in D.

Example 4.1. Consider the quiver and d-vector from Example 3.5. Each element of the
poset P in Figure 13 correspond to a monomial in the F-polynomial:

Fy=1+u; +us + ujus + ugs + w1t + Ugts + UslgUs + Ui UsUs + 2UgUsUs + UpUaUs
2 2
+ 2U 1 UgUaUs + UgU2ULUs + U USUs + UpUg UaUs + U UU U4 U5 + UG UG ULAUs

2 2 2 2
+ UpULU2UL U5 + UUL U U5 + U USFU3ULUS + UoUL U U4 U5 + UU U USUAUS.

To highlight one of the monomials in the poset, notice the term 2u;usus corresponds
to traversing up the poset P on the left by flipping tiles 1,2 and then 5. There is one
cycle in the mixed dimer configuration enclosing the face 2 which gives the coefficient 2!.

In order to prove Theorem 4.1, we rely on representation theory. In the acyclic case
[50], we proved this result by creating a bijection between mixed dimer configurations and
vectors that parameterize subrepresentations of a fixed indecomposable quiver represen-
tation of dimension vector d. In particular, we utilized a combinatorial categorization of
these vectors created by Tran [1]. The acyclic case is particularly nice because the inde-
composable quiver representations are indexed by positive roots of the D,, root system.
As mentioned previously, when () contains an oriented cycle, positive roots no longer are
in bijection with the cluster variables. We instead rely on the surface model with the
crossing vectors cataloged in Appendix A.

To an arc v in a triangulated surface, one can associate an indecomposable Jacobian
algebra module M, whose dimension vector d, is given by enumerating the crossings of v
with the arcs of the triangulation. With this, we mimic the work of Tran to parameterize
e vectors that index sub-modules of M, we call submodule-indexing vectors. We then
prove Theorem 4.1 by creating a bijection between these submodule-indexing e vectors
and mixed dimer configurations. To state this theorem, we define a few properties on
arrows given by [1] in Definition 4.1. Define a partial order < on Z" via

d <aifa—d eZl.

Definition 4.1. Let d € {0,1,2}" and e such that 0 < e; < d; for each 1 < i < n. An
arrow j — k € () is acceptable with respect to (d, e) if e; — e, < max(d; — dy,0).
An arrow j — k is called critical with respect to (d, e) if either

(dj,e;) =(2,1) and (dg,ex) = (1,0)

or

(dig,ex) = (2,1) and (d;,e;) =(1,1).
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Let C ={i € Qo : (di,e;) =(2,1)} and let v(C) be the number of critical arrows that
have a vertex in C. For a connected component S of C, define v(S) to be the number of
critical arrows having a vertex in S.

With these definitions, we are going to define a set of vectors e we call submodule-
indexing that satisfy certain conditions. In [1], analogous conditions gave a criterion
for indexing dimension vectors of subrepresentations of a given indecomposable acyclic
quiver representation. Note that in the new cases of non-acyclic quivers, singular arrows
can play a special role.

Definition 4.2. Let d € {0,1,2}". We say that a vector e € {0,1,2}" is submodule-
indexing with respect to d if

1. 0<e<d;
2. Any arrow j — k € (7 that is not singular, is acceptable; and
3. v(C) < 1.

Remark 4.1. We refer to condition 2 from Definition 4.1 as the acceptability condition
and condition 3 as the criticality condition.

Now we are ready to state a bijection between mixed dimer configurations and these
submodule-indexing vectors.

Theorem 4.2. Let T be an ideal triangulation of a once-punctured n-gon. Let (Qr, Wr)
be the associated quiver and let Jp be the associated Jacobian algebra. Let M be an
indecomposable Jr-module associated to an arc v with dimension vector d. Then there
exists a bijection between

{mixed dimer configurations D in P} +— {e submodule-indexing with respect to d}

where P is the poset defined in Definition 3.9 and is order-preserving where the set on
the right has a natural partial ordering defined right above Definition 4.1.

We first work to prove Theorem 4.2 by demonstrating a map in both directions. The
map taking mixed dimer configurations to submodule-indexing e-vectors is given by taking
the superimposition of the mixed dimer configuration with D_ and deleting cycles created
by this multigraph. The tiles that these cycles are formed on correspond to the entries in
e. The map taking a submodule-indexing vector e to a mixed dimer configuration is given
by taking a sequence of “weighted flips” from the minimal mixed dimer configuration on
tiles that are in supp(e). We first describe the latter map by weighting the edges of the
base graph G via

w(e) := #{edges on e in D_}
for all e € E(G).
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Definition 4.3. The weights of the edges are transformed via the following prescription

after flipping a tile.
) !
7.\
—>+1 +1 e i
-1 -1
T <0

+1
+1 +1

R — ;
—> -1 i -1 —_—
o@o

This is known as a weighted flip.

Remark 4.2. Implicit in this definition is the fact that our weights will stay non-negative
when we perform the flips given in Definition 3.7. However, in the context of this direc-
tion of the bijection, we will allow for weighted flips at any tile; meaning that we now
allow the weight of an edge to be negative. Following the conventions placed in [50], we
emphasize the deficits which arise when we flip edges that are not in a given mixed dimer
configuration, we distinguish edges of negative weight in yellow and call them “antiedges.”
Allowing weights to be negative in intermediate steps of a sequence of flips simplifies the
proof as we do not need to prove a sequence of allowable flips exists to obtain a mixed
dimer configuration from a submodule-indexing vector e. Namely, we just show that af-
ter flipping in any order, the mixed dimer configuration we obtain has all non-negative
weighting and belongs to the poset P.

Theorem 4.3. Let v be an arc superimposed on a triangulated once-punctured n-gon
and let ) be the quiver associated to this triangulation. Let d be the crossing vector of
the arc v. Let G be the base graph constructed using the data of () and d as described in
Definition 3.1 and 3.2. Suppose that e is a submodule-indexing vector. Then there exists
a unique way to produce a mixed dimer configuration D in poset P via the following
procedure:

1. Weight the edges of the base graph by w(e) for e € D_. Take the positive entry e;, >
0 in e of minimal index, and flip tile ¢; e;; — number of times. Transform its edge
weights as prescribed in Definition 4.3. Let D; be the mixed dimer configuration
obtained.

2. From Dy, take the next positive entry e;, > 0 in e of minimal index, and flip tile 75
e;,— number of times. Again, transform its edge weights as prescribed in Definition
4.3 to arrive at the mixed dimer configuration Dj.

3. Iterate this process until we have exhausted all positive entries in e. The resulting
mixed dimer configuration D will only have non-negative weights, i.e. no yellow
edges will remain. Moreover, it will be an element of P.
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Before proving Theorem 4.3, let’s first see an example of this algorithm.

Example 4.2. Suppose d = (0,1,2,1,2,2,1,1,0) and the submodule-indexing vector
e =(0,0,0,0,0,2,1,0,0). The minimal mixed dimer configuration and steps of flipping
tiles 5 twice, then 6 once is shown in Figure 14.

Figure 14

In order to prove Theorem 4.3 and eventually Theorem 4.2, we need to create a
dictionary between mixed dimer configurations and conditions on e vectors. We have
the following sequence of lemmas that allows us to relate edges distinguished on a mixed
dimer configuration with coordinates of a vector. These lemmas mimic arguments found
in [50] for the acyclic case, but we note the special features that arise when there are
cycles in the quiver, and the special role of singular arrows in particular.

Lemma 3. Let Q) be a type D,, quiver and let d be the dimension vector of an indecom-
posable Jacobian algebra module M. Let e such that 0 < e < d and let D be the mixed
dimer configuration obtained by flipping tile k e, number of times from D_. For any
non-singular arrow i — j € @1, let m;; be the number of edges distinguished in D on the
edge between tiles © and j. Then

m;; = max(di - dj, 0) + (ej - €i> =Ny .

Proof. We proceed by induction on |e| := Z;S er. When |e| =0, i.e. e =(0,0,...,0),
the associated mixed dimer configuration is D_. By definition of D_, we only distinguish
internal edges if Gy C G or G, C G. If d; > 0 and d; = 0, then i € Gy, but j ¢ G.
Since ¢ — j is oriented black to white with respect to 4, then m; ; = d; = max(d; — 0,0).
If 5 — 4, then the edge straddling ¢ and j is oriented white to black clockwise with
respect to tile <. By definition of D_, we will not distinguish that edge giving that
Nji = max(dj - dz‘, O) =0= mj;.

Suppose up to k € N, our formula holds. Now, suppose |e| = k+ 1, and choose € with
e| = k, such that e can be obtained by adding 1 to the i*" entry of . In other words, the
tile 7 has been flipped from the associated mixed dimer configuration associated to é to
obtain the mixed dimer configuration associated to e.

If © — j, then the edge straddling tiles ¢ and j is oriented black to white clockwise on
tile 7. As tile ¢ has been flipped, e; = €; — 1 and the number of edges distinguishing on
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the edges straddling ¢+ and j decreases by 1 from the dimer configuration associated to é.
Therefore,

n;; = max(di — dj, 0) + (6]' — (61' -+ 1)) = max(dl- — dj, O) -+ (ej — 67;) — 1.

Therefore, performing a flip at tile 7 decreased both n; ; and m;; by 1. If j — 7 in @,
then the edge straddling tiles ¢ and j is oriented white to black clockwise on tile 7. As
tile 7 has been flipped, e¢; = ¢; + 1 and the number of edges distinguishing on the edges
straddling ¢ and j increases by 1 from the dimer configuration associated to . Therefore,

Nji = max(dj - di, O) + (62‘ +1— €j) = max(di - dj, 0) + (61' - ej) + 1.
Therefore, performing a flip at tile ¢ increased both n;; and m;; by 1. n

Lemma 4. (Analogous to Lemma 8 for singular arrows). Following the notation of
Lemma 3, we can make an analogous statement for singular arrows i — j € Q1. Namely,

mi,j —-1= max(di — dj, 0) + (€j — 61‘) = nm-.

Proof. When an arrow ¢ — j in singular, we add an extra distinguished edge straddling
tiles ¢ and j in D_ that is not a boundary edge going black to white clockwise in G or
(G5. Hence, the formula from Lemma 3 can be modified by subtracting 1 to reflect this
extra edge. O

Corollary 4.1. The values n;; := max(d; — d;,0) + (e; — e;) all satisfy n;; > 0 if and
only if all weights on interior edges on the mixed dimer configuration D associated to e
are nonnegative. In particular, all arrows i — j are acceptable with respect to (d,e) if
and only if all weights on interior edges are nonnegative on the mixed dimer configuration
D associated to e.

Lemma 5. (Analogous formula to Lemma 8 with boundary edges). Let @ be a type D,
quiver and let d be the dimension vector of an indecomposable Jacobian algebra module
M. Let e such that 0 < e < d and let D be the mized dimer configuration obtained by
flipping tile k e number of times from D_. Let the outer face of our graph G be indexed
by oo. We assign an arrow to each of the boundary edges of G with the convention that
we “see white on the right.” To each of these boundary edges, assign a weight to the edge
a on tile i as follows:

Nioo(@) = max(d;,0) —e; if i — oo about a
Neoi(a) = max(—d;, 0) +e; if oo — i about a.

Let my; oo () (respectively my ;(a)) be the number of edges distinguished on o on tile i
in D where i — 0o about o (respectively oo — i about o.) Then for any boundary edge o
on tile i,

Nioo() = Mioo(a) and negi(a) = Mmoo ().

)
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Proof. As in the proof of Lemma 3, we proceed by induction on |e|. Suppose |e| = 0,
then the associated mixed dimer configuration is D_. Let a be a boundary edge on a
tile 4. If ¢ — oo across the edge «, then m; (o) = max(d;,0) = d;. Moreover, the
edge « is oriented black to white clockwise giving that it is distinguished d;-times in D_.
Therefore, m; () = d; = n;00(a). If 0o — i across the edge «, we have my ;(a) =
max(—d;,0) = 0. Moreover, the edge « is oriented white to black clockwise giving that it
is never distinguished in D_. Therefore, m; () = 0 = d; = n; oo ().

Suppose up to k € N, our formula holds. Now, suppose |e¢| = k + 1, and choose & with
€| = k, such that e can be obtained by adding 1 to the i*! entry of &. In other words,
the tile ¢ has been flipped from the associated mixed dimer configuration associated to e
to obtain the mixed dimer configuration associated to e. Suppose that «, 5 are boundary
edges on tile ¢ where co — i across the edge o and ¢ — oo across the edge 5. After
flipping tile ¢, the w(f) decreases by 1 and w(«) increases by 1. Since €; = e; + 1, m; ()
is transformed by

Mico(f) = max(d;,0) — (e; + 1) = max(d;,0) —e; — 1,
and M ;(«) is transformed by
Moo,i(@) = max(—d;,0) + e; + 1.

Hence, we have that n; , m; « and respectively 1. ;, Mmoo ; are transformed in the same
way after a flip at tile 4. m

We need one more technical lemma regarding the graphical structure of a quiver )
mutation-equivalent to a type D,, Dynkin diagram and the possible subquivers arising as
the support of a submodule-indexing vector e.

Lemma 6. Suppose Q) is a quiver mutation-equivalent to an orientations of a type D,
Dynkin diagram and e is a choice of submodule-indexing vector with respect to d for some
d-vector d that is not fully supported by only 1’s on any cycle of Q. Then Q) is guaranteed
to contain a vertex j with the property that e; > 0 and such that for any arrow pointing
t — J, we have e; > e;.

Proof. If the given submodule-indexing vector e contains a 2, then let ()¢ denote the
subquiver of ) containing exclusively the vertices ¢ such that e; = 2. By Lemma 2, the
subquiver (¢ must be a tree and therefore must contain a source. Letting j denote the
vertex of such a source, we see that vertex j vacuously satisfies e; > e; for any arrow
pointing 7 — j.

On the other hand, if the given submodule-indexing vector e contains no 2’s, then we
let Q¢ denote the subquiver of () given by the support of ¢, i.e. containing exclusively the
vertices ¢ such that e; = 1. By assumption, the subquiver ()¢ again must be a tree and
therefore must contain a source, and we can choose vertex j just as above. O

With these lemmas, we are now ready to prove Theorem 4.3.
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Proof. Suppose e is submodule-indexing and let D be the mixed dimer configuration
produced as prescribed in the statement of Theorem 4.3. In order to show that D € P,
we must show that D is a mixed dimer configuration reachable via a sequence of flips from
D_ and is node-monochromatic. We first show that D is reachable via a sequence of flips
from D_ by induction on |e|. For the base case, we agree to associate the submodule-
indexing vector ¢ = (0,0,...,0) to the minimal mixed dimer configuration D_ which is
reachable by an empty sequence of flips from D_.

Suppose that for any nonzero submodule-indexing vector e with |e| = k, the associated
mixed dimer configuration D is reachable via a sequence of flips from D_. Now suppose
that |e| = k41 and that we have added 1 to the ith entry of e. As e is submodule-indexing,
any arrow involving vertex ¢ must be acceptable with respect to (d,e) i.e. e —e; <
max(d; — d;,0). By Lemma 3, we have that n;; = m;; which implies that the number
of edges straddling tiles ¢« and j must be non-negative. Moreover, by Lemma 5, since
0 < e < d, we have that for any boundary edge « on tile i, n; o () = max(d;,0) — e; =
d; —e; > 0 giving that m; o (), the number of edges on « in D is non-negative. Similarly,
Neoi(a) = max(—d;,0) +e; = 0+ ¢; > 0 giving that mq (), the number of edges on «
in D is non-negative. If 1 — j is a singular arrow, the number of edges straddling ¢ and
J will have only increased by 1, so m;; > 0 as well. Hence, the resulting mixed dimer
configuration D has edges with all non-negative weights.

We now show that there exists some order in which we can read the entries of e which
will yield a mixed dimer configuration with non-negative weights at each flip along the
way in the sequence. Even though we constructed e inductively in a way such that the last
entry increased by one is the i*" entry, it is not necessarily the case that the corresponding
mixed dimer configuration D is reachable by a flip sequence ending in a flip of tile i.

Instead, here we invoke Lemma 6 with j denoting the label of the vertex whose exis-
tence is posited by the lemma. If d is fully supported by 1’s on a cycle of @), then there
exists some singular arrow a — b with d, = d, = 1. In this case, let j be the vertex b. We
let €’ be the result of subtracting the j® unit vector from e. Then, for any non-singular
arrow i — j, we have nj; = max(d; — d;,0) + (¢; — 1 — ¢;) must be nonnegative. If
the arrow is the reverse orientation j — 7, then n}; = max(d; — d;,0) + (e; —e; + 1) is
also nonnegative. Moreover, on the boundary, we also have n} = d; — ¢; and n{; = ¢;
are nonnegative. In the case of a fully supported cycle with only 1’s and singular arrow
a — j, by Lemma 4, we have that m,; — 1 = max(d, — d;,0) + e; — e,. Since e, < 1,
e; < 1, their difference is at most -1 implying that n,; = e; — e, + 1 is nonnegative.

Therefore ¢ corresponds to a mixed dimer configuration D’. Since |¢/| = k, by the
inductive hypothesis, D’ is reachable by a sequence of allowable flips from D_. This gives
that D itself is reachable from D_ by a sequence of allowable flips, where we tack on a flip
of tile j. This last flip is allowable since both D’ and D are mixed dimer configurations,
i.e. with nonnegative weights on edges, and the difference e — ¢’ is the j* unit vector.
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We now show D is a node monochromatic mixed dimer configuration. We again
proceed by induction on |e|. By Proposition 3.1, we have that D_ is node-monochromatic,
establishing the base case. So suppose that up to k € N, we have that when |e| = k, the
resulting mixed dimer configuration D is node-monochromatic. Now take e with |e| = k+1
where we have added 1 to the i entry of e. We may assume that D was obtained via
a sequence of k + 1 allowable flips from D_. We claim that the only way we could have
produced a path connecting nodes of different colors is if there is more than one critical
arrow in ) with respect to (d, e).

If @Q*'PP is acyclic, then we employ the proof of Theorem 4.2.2 from [50]. Moreover,
in type IV where we have full support on the central m-cycle, we may also employ the
argument in the acyclic case when the type A,, part of the quiver has no oriented cycles.
This is because such a path connecting blue to green nodes can only occur on an acyclic
subquiver of (Q*"PP. Namely, a path only occurs in a mixed dimer configuration when there
are valence 2 tiles and must end after a consecutive tile has valence 1. In any d-vector in
type IV with a 2, the central k-cycle is fully supported where the d-vector entries are all
1. Hence, a path connecting the type D,, part of the quiver to the type A,, part of the
quiver will only use the tile with the blue nodes and the consecutive tile whose d-vector
entry is 2 and no other tiles on the m-cycle - reducing to the acyclic case.

So it suffices to show that D is node-monochromatic when QQ*"PP contains an oriented
cycle on the type A,, part of the quiver. First note that in types I, IT and III, the red or
blue nodes cannot be connected without creating two critical arrows. Let p,q,r be the
forking vertices in the type D,, part of @Q°"PP. Then, for any orientation of the fork, paths
between red and blue nodes create two critical arrows as shown in Figure 15.

Suppose that the cycle is on the type A,, part of the quiver and we aim to show that
the green nodes cannot attach to either the red or blue nodes without having more than
one critical arrow. Note that it suffices to show that there is no connection between the
blue nodes and green nodes as in types I, II and III, the blue nodes and red nodes are
symmetric and type IV has no red nodes. Suppose that tile a has the two blue nodes w,x
and let b be the vertex connecting the type D, part of the quiver to the type A,, part
of the quiver. Suppose that the 3-cycle that has full support occurs at the set vertices
1, j, k read in cyclic order in the type A,, part of the quiver. In order to connect the green
nodes to the blue nodes, we must have flipped tiles connecting the 3-cycle ¢, j, k with the
vertices in the type A,, part of the quiver connecting to tile b, then tile b. For example,
if b is directly attached to tile i, then we first flip tile ¢, then b as shown in Figure 16:

With this, we see that this implied that the quiver must have had more than one critical
arrow with respect to (d, e) as the arrow b — a has (dp, €;) = (2,1) and (dg, e,) = (1,0)
and the arrow ¢ — j has (d;,e;) = (2,1) and (dj,e;) = (1,0). Similarly, if a — b, we
would flip tiles b, then a giving that the arrow a — b is critical with (d, ) = (2,1) and
(do,eq) = (1,1) with ¢ — j has (d;,e;) = (2,1) and (d;, e;) = (1,0) still critical. The same
argument holds if the 3-cycle 4, j, k was not directly adjacent to b using a flip sequence
along the vertices connecting b to the 3-cycle ¢, j, k.
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(2,1)

p — q

—_—

q r .
(2,1) (1,0) (2,1) (1,0) (1,1)

_— _

q r q
(2,1) (1,1) (2,1)

Figure 15 — No paths between red and blue nodes can occur when e satisfies the criticality
condition.

Therefore, even when there is a cycle in QQ*"PP we see that node monochromatic
paths imply that the quiver must have had more than one critical arrow with respect
to (d,e). Hence, the dimer D associated to a submodule-indexing vector must be node
monochromatic implying that D € P as desired. O

To complete the proof of Theorem 4.2, we now describe the other side of the bijection
i.e. the map taking mixed dimer configurations to submodule-indexing e-vectors.

Theorem 4.4. Let v be an arc superimposed on a triangulated once-punctured n-gon
and let ) be the quiver associated to this triangulation. Let d be the crossing vector of
the arc v. Let G be the base graph constructed using the data of () and d as described in
Definition 3.2. Suppose D is a mixed dimer configuration in P i.e. is node monochromatic.
There exists a unique way to produce a submodule-indexing vector e. The process is given
by the following procedure:

1. Superimpose D with D_ on the base graph G to obtain the multigraph D LI D_.
In this superimposition, if D and D_ have any edge e € D N D_ in common on G,
delete one copy of e from D LI D_. Call the resulting multigraph D;.

2. Using the edges D, create a cycle of maximal length ¢; > 2, call it C;. For all
faces 7 enclosed by (', add +1 to v; in v and delete C; from D;. Call the resulting
multigraph Dy = Dy \ C4.
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Figure 16

3. Examine Dy and if there are any cycles of length 5 > 2. find a cycle of maximal
length and call it C5. For all faces ¢ enclosed by Cj, add +1 to v; and delete Cy
from D,.

4. Tterate this process of deleting cycles of of largest length and adding 1’s to the vector
v until nothing is left besides 2-cycles. The resulting vector v corresponds to e.

Before proving Theorem 4.4, we compute a example of this side of the bijection.

Example 4.3. In this example, let d = (0,1,2,1,2,2,1,1,0) and consider the base graph
shown in Figure 17. We consider a mixed dimer configuration D and we show that its
associated e-vector is given by e = (0,0,0,0,0,2,1,0,0). When we superimpose D with
D_ and delete any paired sets of edges in their intersection, we obtain D;. In this case, C}
is the cycle around the tiles labeled 5 and 6. This indicates that v = (0,0,0,0,0,1,1,0,0)
at this step. After we delete the edges used to make this cycle, we obtain D; \ C; and
see a cycle around the tile 5. This gives that v = (0,0,0,0,0,2,1,0,0) at this step and
we see are left with an empty disjoint union of two cycles after this deletion. Hence,
v =(0,0,0,0,0,2,1,0,0) = e is the submodule-indexing vector associated to D which is
illustrated in Figure 18.

Figure 17 — On the left, we have the mixed dimer configuration D in blue and on the
right, we have the minimal mixed dimer configuration D_ in red.
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Figure 18 — On the left, we have the superimposition of D with D_ after deleting any
pairs of edges in the intersection, D;. After deleting the cycle around tiles 5 and 6, we
obtain D, illustrated on the right.

Now we prove Theorem 4.4.

Proof. Suppose D is a non-minimal mixed dimer configuration in the poset P and initialize
v =1(0,0,...,0). To begin the algorithm, we must find a cycle of maximal length strictly
larger than 2. In the superimposition of D LI D_ we call D, we obtain that each vertex
that was previously valence 2 is now valence 4 in Dy and each vertex that was valence 1
is now valence 2 in D;. Because D # D_, there must exist some cycle of length at least
4 in their superimposition as D differs from the minimal mixed dimer configuration by at
least one flip. Hence, there exists some cycle of maximal length ¢; > 4.

We claim that after each deletion of a maximal length cycle, the vector v is a
submodule-indexing vector with respect to d. To do this, we proceed by induction on
n, the number of deletions of cycles required so that DL D_ is a (possible empty) disjoint
union of 2-cycles.

When n = 0, we agree to associate D_ to e = (0,0,...,0) which is submodule-
indexing. Suppose that D’ is a mixed dimer configuration that requires i — 1 iterations
of our algorithm to obtain the associated resultant vector v’. Suppose further that this
vector v’ is submodule-indexing. Now suppose that D is a mixed dimer configuration that
requires one more application of our algorithm than D’ i.e. D takes i iterations and the
resulting vector is called v. Namely, we have v is obtained from adding 1’s to v’ to the
tiles enclosed by cycle C;. After the it" iteration of the algorithm, we have 0 < v, < dj,
for every k, is satisfied as the only way a cycle can enclose tile j in the superimposition of
D and D_ isif D differs from D_ at a tile j. This precisely happens when a flip occurred
at tile 7 and implicit in an occurrence of a flip is that d; > 0. In v — ¢/, the only new 1’s
occur if C; enclosed those corresponding tiles, v; < d; for all j enclosed by C;. This gives
that 0 < v < d.

To show that v is acceptable and satisfies the boundedness condition on the number of
critical arrows, we need to induct on the number of tiles enclosed by C;. We first show that
v is acceptable. If C; enclosed a single tile, call it j, then to verify that the acceptability
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condition is satisfied, it suffices to check that any non-singular arrows involving vertex j.
Note that v; = 1 or 2 because j could have been enclosed in a previous cycle in an earlier
iteration. Suppose that j is the tail of an arrow i.e. we have some arrow k — j € (). If
v < 1, then acceptability is satisfied as vy — v; < 0. If v, = 2, then d; = 2. Moreover,
acceptability is satisfied as long as v; # 1 and d; = 2. However, by Lemma 3, this implies
that my; < 0 contradicting Corollary 4.1. Now suppose j is the head of an arrow i.e.
there is an arrow j — k € 1. Then if v, = 2, then acceptability is satisfied as v; —v;, < 0.
If 0 < vp < 1, then the only case that 7 — k fails acceptability is when v, = v; — 1 and
d; = dj. However, by Lemma 3, this implies that my ; < 0 contradicting Corollary 4.1.

Now, assume that if C; enclosed k cycles, then the resulting v is submodule-indexing.
Now, suppose that C; encloses k + 1 tiles, ¢y, ..., txy1. We aim to show that v+e;, =y
is submodule-indexing. It suffices to show that any non-singular arrow with vertex #;.1
satisfies the acceptability condition. Since, t;,; is enclosed by C; and may have been
enclosed by another cycle in a previous iteration, we have that y, ., > 1. Suppose that
txy1 is the tail of an arrow i.e. we have some arrow j — 11 € Q1.

If y; < 1, then acceptability is satisfied as y; — 1, < 0. If y; = 2, then dj, = 2.
Moreover, acceptability is satisfied as long as y, # 1 and dy = 2. However, by Lemma 3,
this implies that m;, , < 0 contradicting Corollary 4.1. Now suppose {3, is the head
of an arrow i.e. there is an arrow t;41 — j € (1. Then if y; = 2, then acceptability
is satisfied as y;, ., —y; < 0. If 0 < y; < 1, then the only case that t;,1 — j fails
acceptability is when y; = 3, ., — 1 and d; = d;. However, by Lemma 3, this implies that
my; < 0 contradicting Corollary 4.1.

Therefore, we have shown that if C; encloses k + 1 cycles, the resulting vector y is
submodule-indexing. By induction, we have that after the i*" step of our algorithm, v is
submodule-indexing. Therefore, any vector obtained via this algorithm must satisfy the
acceptability condition. Hence, the resultant e must be acceptable.

Now, we show that v satisfies the criticality condition. In order to do this, we again
induct on the number of steps needed to complete our algorithm as well as induct on the
number of tiles enclosed by cycle C; at each step. Suppose that C; encloses a unique tile
j giving that v = e;, the unit vector with a 1 in the 5™ position. Note that if d; # 2, no
critical arrows can be formed as C == {i € Q : (di,&;) = (2,1)} = 0. So, suppose that
d; = 2. Then, as (d;,v;) = (2,1), 7 € S and the only way that the criticality condition
could have failed is if this created two critical arrows i.e. the quiver and associated pair
(d,e) is

k+—j—1¢
(1,0) « (2,1) — (1,0)

where we must have v, = 0 = v, as the only tile enclosed by a cycle is 5. Note that since
the subgraph G5 associated to all tiles with d entry 2 is connected which means that j
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must be the unique tile in G5. Moreover, since both critical arrows would need to have
source 7, it is impossible that 7, k, £ form a 3-cycle in the sense of the quiver. Hence, we
are reduced locally to the acyclic case and can import the argument for the base case
found in Theorem 4.2.3 of [50].

Now, suppose that if C; encloses k tiles, the resulting vector v satisfies the criticality
condition. We now aim to show that if C'; encloses k 4 1 tiles, then the resulting vector
w = v + ¢; satisfies the criticality condition. Note that by our inductive assumption,
(v,d) has at most one critical arrow. Suppose that (w, d) created 0 critical arrows. Since
w only differs from v in the j*® entry, it suffices to only check any arrows involving j.
Moreover, we need to show that two critical arrows cannot be created by adding +1 to v
to obtain w. The only ways that this could happen is if j is the unique vertex in C, i.e.
d; is the unique 2 in d and the quiver and associated pair (d, e) has one of the following
local orientations:

p — J — ¢ (i)
(1,0) « (2,1) < (1,1)
p — j — q (ii)
(1,1) = (2,1) — (1,0)
p — j — q (iii)
(1,0) < (2,1) — (1,0)
p — J — ¢ (iv)

(1,1) = (2,1) « (1, 1)

Note that case (iv) will not be possible as if w, = w, = 1, this means that both p and
q were enclosed by (' in which case, since j is in between these vertices, this could not
happen without having enclosed j as well by the connectedness of the tiles enclosed by
Ch.

Moreover, the orientation in case (iii) occurred in the base case. Namely, since C
enclosed a connected set of tiles, p and ¢ cannot both be terminal vertices. Therefore, it
suffices to analyze cases (i) and (ii). Since these cases are symmetric, we focus on case

(i).

Note that if 7, p, g are not in a cycle in the quiver, then we are reduced to the acyclic
case. Therefore, we rely on the proof of Theorem 4.2.3 in [50]. If j,p,q indeed are in
a cycle in the quiver, then it is either a 3-cycle in the type D, part of the type II the
spike of a type IV surface, the 4-cycle in the type III surface or is in the type A,, part of
any type D, quiver. Note that, j, p,q cannot be in a larger central cycle in the type IV
surface, if there is a 2 in the d-vector, it occurs at the attaching spike of the quiver rather
than in the central cycle.
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If 5, p, q forms a 3-cycle in the type D, part of the type II surface or a 4-cycle in the
type D, part of the type III surface, then the nodes u,v and w,x are on tiles p,q and
this degenerates into the acyclic case. If the quiver is type IV, then the blue nodes are
on tile p. Namely, the node w is on the white vertex on the edge straddling p and ¢. In
order for w, = 1 and w, = 0, there must have existed a previous cycle enclosing tile g
and not tile p. However, by definition of D_, tile ¢ would have only have been enclosed
by a previous cycle if j also was — as the only edge distinguished in D_ on tile ¢ is the
straddling p, g representing the singular arrow p — ¢. Hence, this case is also impossible.
Similarly, if j, p, g forms a 3-cycle in the type A,, part of the quiver. In order to flip the
tile ¢, we must flip the tile p giving that w, = 1 and w, = 0 is impossible. Therefore, w
satisfies the criticality condition if (v, d) created 0 critical arrows.

If (v,d) created one critical arrow either k — ¢ with (dg,vx) = (2,1) and (dg,ve) =
(1,0) or k' — ¢ with (d,vir) = (1,1) and (dy,ve) = (2,1), the only way for the w to
create another critical arrow is if we added 1 to the source of an arrow whose sink is in
C. Namely, w; = 1 because if w; = 2, then no more critical arrows could be created.
Therefore, w satisfies the criticality condition if (v, d) created one critical arrow. Thus, v
is submodule-indexing as desired. O]

Now that we have demonstrated the map in both directions, we show that the maps
described in Theorem 4.3 and Theorem 4.4 are inverses of one another to complete the
proof of Theorem 4.2.

Proof. By definition of the algorithm in Theorem 4.4, we see that the number of steps in
the algorithm exactly equals |e|, where e is the resulting vector associated to the dimer D.
Therefore, we will induct on |e|, i.e. the number of steps needed to perform the algorithm
in Theorem 4.4, to show that the maps described in Theorems 4.4 and 4.3 are inverses of
one another.

First suppose that |e|] = 0. Then, by both the algorithm for Theorem 4.4 and for
Theorem 4.3, we have that e is associated to D_ and vice versa. Suppose that some
m € N, when |e| = k < m, i.e. when we perform the first k& steps of the algorithm in
Theorem 4.4, the maps are inverses of one another. Let ¢’ be such that |¢/| = m. Then
define e to be the resulting vector from adding 1 to the i*" entry of ¢/, so |e| = m + 1.

Applying Theorem 4.3 to e and €', let D' be the mixed dimer configuration corre-
sponding to € and D be the mixed dimer configuration associated to e. Note that as
le| = m + 1, we had to perform m + 1 flips from D_ to obtain D and by assumption, we
had to perform one more flip at tile 7 to obtain D from D’.

We aim to show that using the algorithm in Theorem 4.4, the vector e is the vector
associated to D. If we take the superimposition of D L D’, note that will consist of
all 2-cycles and exactly one 4-cycle enclosing tile 7. This implies that D L D_ will also
have at least one cycle containing 7. Moreover, D LI D_ will have exactly one more cycle
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containing i than that of D’LID_. Hence, the corresponding vector obtained by performing
the algorithm in Theorem 4.4 must be ¢’ + ¢; which is exactly e.

Next we show the reverse direction. Suppose that given a mixed dimer configuration
D, using the algorithm in Theorem 4.3, we obtain e such that |e| = m + 1. Let D’ be the
mixed dimer configuration associated to €', where €’ is the result of subtracting 1 from
the i*" entry of e. By the algorithm in Theorem 4.4, we must have enclosed the tile i in
dimer D e; number of times and (e; — 1) number of times in dimer D’. By our inductive
assumption, let ¢’ be the vector associated to D’. Note that the order in which we flip
tiles in the algorithm in Theorem 4.3 does not matter, so to obtain the mixed dimer
configuration D from D', it suffices to flip the tile i. Therefore, we see that the mixed
dimer configuration associated to e prescribed by the algorithm in Theorem 4.3 is exactly
the mixed dimer configuration D we began with. Therefore, we conclude that these maps
are indeed inverses of each other.

[]

Example 4.4. Examples 4.2 and 4.3 demonstrate each side of the bijection are inverses
of one another.

Now that we have established the connection between mixed dimer configurations and
submodule-indexing vectors, we provide the connection between submodule-indexing vec-
tors and representation theory. Ultimately, this gives the connection to the F-polynomial
through representation theory as stated in Theorem. The following theorem is adapted
from [51] and [1].

Theorem 4.5. Let T be an ideal triangulation of a once-punctured n-gon and Jr be
its associated Jacobian algebra. Let M, be an indecomposable Jr-module associated to
an arc v with dimension vector d. Let Gr.(M) be the variety of all submodules of M
with dimension vector e known as the quiver Grassmannian. Let y denote the Euler

characteristic. Then .

Fy= Y x(Gr(M)) [ ui,

i=1
where the sum ranges over e € Z" with 0 < e < d.

The following lemma, proven in [1], helps to determine when there is a subrepresen-
tation of a given dimension.

Lemma 7. Let M' and M" be vector spaces of dimensions d' and d”, respectively, and
v M — M" be a linear map of mazimal possible rank min(d',d"). Let € and " be two
integers such that such that 0 < e < d and 0 < " < d". Then the following conditions

are equivalent:

1. There exist subspaces N' C M’ and N" C M" such that dim(N') = €', dim(N") =
e”, and Yp(N') C N”.

2. ¢ — ¢’ <max(d —d",0).
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For a representation of a quiver Q) = (Q, ¢)1) with dimension vector d, we determine
when there is a subrepresentation with a given dimension vector e. We do this by adapting
an argument in [1] relying on Lemma 7 and Theorem 4.5.

Theorem 4.6. Recall from Definition 4.1 that C' = {i € Qo : (di,e;) = (2,1)}. For
vectors d and e = (ey,...,e,), the coefficient of the monomial uf'us®---uSr in Fy is

n
nonzero if and only if
1. 0<e<d,
2. all arrows in () are acceptable, and

3. v(S) < 1 for all connected components S of C.

If all of the conditions above are satisfied, then the coefficient of ui'u3® - - - u" is 2¢, where

c is the number of connected components S such that v(S) = 0.

Proof. We may restrict attention to e € Z™ which satisfy the first two conditions of
Definition 4.2. Otherwise, ignoring singular arrows, Theorem 4.5 and Lemma 7 imply
that the coefficient of u&in Fy is 0. If d € {0,1}", then Theorem 7 follows from Theorem
7.4 of [1] and [51] in the acyclic case. The non-acyclic case reduces to the acyclic proof
because the support of quiver will be acyclic when d € {0, 1}".

If d; > 2 for some i, then we show that e indexes a subrepresentation if and only if
e < d satisfies the criticality condition. Throughout this proof, we only consider arrows
in ()1 which are not singular. Note that ); can only contain singular arrows when there
are some d; > 2. By Lemma 2, the 2’s in the d-vector form a connected tree, so we may
choose an indexing of d collecting all the 2’s together such that

C_Z:Qp—i_"'—i_grfl+2§r+”'+2§m72+§m71+§m7

for some 1 < p < r < m — 2, where ¢, is the standard basis vector with i*® entry 1 and
all other entries 0.

An indecomposable representation M = (M;) with dimension vector d, considered up
to isomorphism, can be selected in which we insist that the maps between M; and M;
where d; = d; are identity maps. We denote maps in the representation as ; ; where 1
denotes the index of the source and j the index of the target of the map.

To compute x(Gr.(M)), we will construct all possible subrepresentations with di-
mension vector e. When a representation N = (1V;) has a dimension vector e < d, the
condition that each Nj; is a subspace of M; is satisfied. Therefore, to check that N is a
subrepresentation of M, it suffices to check that

for all 2 and j adjacent in Q).
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Then for any ¢ ¢ C, there is only one possible subspace of M; of dimension ¢;. For a
connected component S of C| if 7, j are vertices in S and i — j, then condition (1) above,
together with the fact that e < d and that we’ve set maps between the same-dimensional
vector space to be the identity, we have that N; = N;. Therefore, when a subspace of
dimension 1 is chosen for one vertex of the component S, all vertices in that component
must be assigned the same subspace.

If p<i,j <nwithi— j € @ are such that at least one of 7,5 are not in C' and
greater than or equal to r and less than or equal to m — 2, then it is straightforward to
check that ¢; ;(N;) C N;. For example, if r < i < m — 2 and i ¢ C, then by definition
of C, since d; = 2, we have that e;, = 0 or e; = 2. If ¢; = 0, then N; = 0 s0 ¢, ;(N;) = 0.
If e, = 2, since ¢ — j is acceptable, by Lemma 7, we have that e; = d;, so N; = M;
which contains ¢; j(N;). Therefore, it only remains to show that the property (1) holds for
(1,7) = (r—1,r) ifr € C, and that the property holds for (i, j) = (m—2,m—1), (m—2,m)
itm—-2eC.

We will consider which 1-dimensional subspaces can be assigned to each component.
To do this, we construct three distinct 1-dimensional subspaces of the 2-dimensional
space M,,_5. For 1-dimensional M; and 2-dimensional M} with j — &k € Q1, let Vi =
Im(pjr). In the case that k — j € @y, let Vi = Ker(¢g,;). Then view Vi,_1,y in
M,,_ pushing it through the identity maps between the vertices r,r+1,...,m — 2. This
gives that Vi_1,y in My,_o, Vimm—2y, and Vi1 ;m—2) are three distinct 1-dimensional
subspaces of M,,_s by the indecomposability of M.

We call a pair of vertices (i,j) a critical pair when the arrow between them in Q)
is a critical arrow. Note that when (i,7) = (r — 1,7) is a critical pair, property (1) is
satisfied for N,_; and N, if and only if N, = V1,3 When (i,j) = (m —2,m) is a
critical pair, property (1) is satisfied if and only if Ny,—o = Vi m—2;. Analogously, when
(i,7) = (m —2,m — 1), (1) is satisfied if and only if Np,_o = Vim—1,m—2}.

Let S again be a connected component of C'. Recall that once a subspace of dimension
1 is chosen for one vertex of S, all vertices must of S must be assigned the same subspace.
We consider cases for the number of critical arrows in S. If v(S) = 0, then any 1-
dimensional subspace of k? may be assigned to all of the vertices of S. This corresponds
to P!, and x(P') = 2. Namely, each connected component S of C' will contribute a copy
of P*. Next suppose that v(S) = 1. If (m — 2,m) is a critical pair and m — 2 € S, then
the chosen subspace for S must be V,, ,,,—2. Similarly, if (m —2,m — 1) is a critical pair
and m —2, € S, then the chosen subspace assigned to the vertices of S must be V,;,_1 ;,,—2.
Since there is no choice of subspace, the Euler characteristic is 1. Finally, if v(S5) > 2,
there is no 1-dimensional subspace which can be assigned to the vertices of S which will
satisfy condition (1). This implies that the Euler characteristic is 0. [

With this, the only thing that remains to show to prove Theorem 4.1 is to verify
that the number of cycles on a mixed dimer configuration D associated to a submodule-
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indexing vector e is given by the number of connected components .S of C' such that with

v(S) = 0.

Proof. First note that we cannot have a cycle on a tile that is a dimer configuration, i.e.
we need d; = 2 in order for 7 to potentially be enclosed by a cycle. Also, note that there
are no cycles in D_ by the convention of the black and white coloring in the definition of
D_, so in order for tile ¢ to be enclosed by a cycle, we must have that e; > 1. This tells
us that the set of all tiles that can potentially be enclosed by a cycle are contained within

S={ie@ : (d,e)=(21)}.

Fix D associated to (d,e). Let C' be a connected component of S. Suppose that
v(C) # 0, that is, there is some ¢ € C such that ¢ is the vertex of a critical arrow.
Namely, this ¢ must be connected to a tile outside of S by definition of the d, e coordinates
of the other vertex of the critical arrow. Let ¢’ be the other vertex of the critical arrow
involving c¢. Note that if ¢ — ¢ about the edge «, then (dy,es) = (1,0) and we have
that n.s = max(d. — dv,0) + (e« —e.) =1 —1=0. If ¢ — ¢ about the edge «, then
(de,ews) = (1,1) and we have that n. . = max(d, — d.,0) + (e. — e~) = 0. Therefore, by
Lemma 3, the edge o cannot have an edge from D which tells us that no cycle in D can

enclose tile ¢. This tells us that if a cycle encloses any tile or collection of tiles in C', then
v(C) =0.

Now, suppose that C' is a connected component of S with v(C) = 0, i.e. no critical
arrows involve any vertex ¢ from C. Suppose that C' is comprised of the tiles i,...,m
where 7 is the minimal tile in C' and i’ is the maximal tile in C' with respect to the indexing
in (). We aim to show that there exists a cycle in D enclosing all of C'. Note that for
i < j <4 —1, we have that (dj,e;) = (2,1), so there are no edges in D are on the edge
straddling tiles j and j + 1 by Lemma 3 since n; ;13 = 0. This implies that if we can show

that all the boundary edges of C' are in D, that there is a cycle enclosing all of C'in D.

Note that as e; = 1 for all # < j < ¢/, we have that each of the tiles in C' have been
flipped exactly once from D_ using our bijection of adding 1’s to the e-vector coinciding
with flipping the corresponding tile from Theorem 4.4. Note that if a boundary edge «
on tile ¢ is oriented black to white clockwise with respect to Go, then by definition of D_,
a must have two edges distinguished in D_. After one flip at tile ¢, w(«) decreases by
1. This gives that this edge now appears distinguished as a single edge in D. On the
other hand, if « is oriented white to black clockwise with respect to G5, then by definition
of D_, a has no edges distinguished in D_. After performing a flip on tile ¢, we have
that w(«) increases by 1. This gives that o now has exactly one edge distinguished in D.
Hence, all the boundary edges on C' have exactly one edge on them in D.

Now, we need to show that the cycle closes up on the interior edges of G, i.e. if ¢+ > 0
and/or i’ < m—1, we need to verify that the edges straddling tiles 7,7 —1 and ¢’,i'+1 have
one edge distinguished in D. Note that as 4,7 € C with v(C) = 0, no arrow involving
1 or ¢ is critical. By the structure of d € ®,, we have that d;_y > 1 and d,,41 > 1.
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Seeking a contradiction, suppose that n; ;1 = 0. Then, max(d; — d;_1,0) = e; — e;_1, i.e.
max(2 —d;—1,0) =1 —e;_1. Since e;_1,d;—; € {0,1,2}, this only occurs if either d;_; =1
giving that e;_; = 0 or if d;_; = 2 giving that e¢;_; = 1. In the first case, this gives that the
arrow ¢ — ¢ — 1 is critical which contradicts that v(C') = 0. In the second case, i — 1 € C
which contradicts the minimality of 7. Hence, n;;_; > 0 and by Lemma 4.4, this means
there must be an edge straddling tiles 7,2 — 1 in D. Note that this same argument holds
for showing that there must be an edge in D straddling tiles ¢’,7" + 1. Therefore, we see
that one cycle is formed around all of C' when v(C') = 0. Hence, the number of cycles in
D is exactly the number of connected components C' of S with v(C) = 0. O

Therefore, we have shown that the F-polynomial is indeed given by the mixed dimer
configuration generating function given in Theorem 4.1.

4.1 g-Vectors

As detailed in [21], see Definition 2.10 above, a cluster variable can be reconstructed from
an F-polynomial, but only if it is also accompanied by the extra data of a g-vector. In our
prequel to this paper [50], we were able to define a weighting scheme on the edges of the
base graph and then show that the g-vector can be realized using weight of the minimal
mixed dimer configuration in the case of an acyclic quiver of type D,,. We conjecture that
a similar weighting scheme exists in the non-acyclic case, which would lead to a similar
interpretation for g-vectors, in order to have a full dimer theoretic interpretation of the
Laurent expansions for these cluster variables.

Conjecture 4.1. The g-vector associated to @ and d-vector, denoted g = ¢(@Q,d), is
given by
wt(D_)
g = deg <—d)
if
where deg(zi°z$t - 20" ") == (ag,ai,...,a,_1) and wt(D_) is some weighting scheme

given on the base graph.

Based on preliminary computations, it appears that this weighting scheme must be
different than the one in [50] to account for singular arrows. We also conjecture that the
edge weights may have to be allowed to be more complicated terms than just a single z;,
which differs from the acyclic case. The proof of our result for g-vectors in the acyclic
case also relies on a classification of g-vectors found in [1], that we would have to extend
to the non-acyclic case.

4.2 Cluster algebras associated to Grassmannians and Positorids

Given the results of this paper, one direction for future research explores how shedding
light on the D,, case can help us to study cluster algebras associated to coordinate rings
of the Grassmannian [42] or other Positorid varieties [38]. For such cluster algebras,
one can associate a planar bicolored graph embedded in a disk known as a plabic graph
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and using this model, a finite subset of their generators admit a graphical combinatorial
interpretation. More specifically, the Laurent expansion of the subset of cluster variables
given by twists of Pliicker coordinates can be expressed in terms of (almost) perfect
matchings of this plabic graph as in [39, 31, 30, 32, 2]. Recent work of the Elkin along
with the second and third authors [6] provided related combinatorial interpretations to
twists of non-Pliicker coordinates as well using double and triple dimer models. Since
the cluster algebra associated to the Grassmannian of 3-planes in 6-space coincides with
the type D, cluster algebra, it is a natural question to related the mixed dimer model of
the current paper to the double dimer model of [6]. Furthermore, in [37], K. Serhiyenko,
M. Sherman-Bennett, and L. Williams show that for n > 5, cluster algebras of type D,
arise as coordinate rings of Schubert varieties, special cases of Positroid varieties that
are more general than Grassmannians. Hence, the mixed dimer model and the related
representation theoretic arguments of the current paper provides insight that can be used
to study combinatorial interpretations for additional plabic graphs.

A Classification of d-vectors

In this appendix, we classify all crossing vectors, d-vectors, in all non-acyclic type D,
cluster algebras. To accomplish this, we rely on the surface model for type D, cluster
algebras - a once-punctured disk with n marked points. We split our work into four types
following Vatne’s classification of type D,, quivers [49]. In each type, we rely on computing
the crossing vector associated to an arc 7 in a triangulation of the once-punctured disk

with n marked points by keeping track of the arcs that + crosses in the given triangulation
[13].

If v crosses any arc in a triangulation twice, we streamline the Vatne categorization to
make our catalog more concise. To this end, we describe the precise situations where this
can occur. Any arc of the triangulation that is crossed twice by v must be a peripheral
arc i.e. not incident to the puncture. Moreover, if we follow the path of ~, out of all the
peripheral arcs that are crossed twice, there is a unique peripheral arc that is closest to
the puncture, up to isotopy. Without loss of generality, we let ¢ denote this arc. This arc
splits the triangulation into two parts. On one side of ¢, the sub-triangulation is that of a
unpunctured polygon i.e. has corresponding sub-quiver @)’ is of type A,, with vertex c is
one of its endpoints. On the other side of ¢, the sub-triangulation is that of a punctured
bi-gon, with arcs a and b incident to the puncture such that the only peripheral arc that
7 crosses is ¢ (following Vatne’s labeling of vertices in Figure 4 that we repeat here for
convenience). Arc v must cross arcs a and b along its path, and hence the corresponding
sub-quiver consists of a fork of a and b attached to ¢, with any of the four orientations on
the edges a — ¢ and b — ¢ depending on the four possible triangulations of the bigon.
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Figure 19 — A copy of Figure 4 put in the Appendix for convenience.

With these observations above, the types II and III surfaces degenerate to the type I
surface. Moreover, arc v must cross at most three other arcs, each of which corresponds
to a vertex of the quiver. Either the vertices a,c,d and not b or the vertices b, ¢, d and
not a, which implies the type D,, parts of both of these surfaces degenerate to the fork in
the type D,, part of the type I surface.

Furthermore, we can streamline these types of surfaces even more so. Observe that if
an arc vy is supported on some subset of a, b, ¢, but not d or some subset of a, b, d, but not
¢, we can treat the arcs d, ¢ respectively as boundary arcs and the arc can be considered
a type I arc.

The last reduction we make reduces case work for the type A parts of the surfaces.
Namely, we rely on sectioning off the triangulations of our once-punctured disk into its
type A,, parts. In our catalog, we focus on the general structure of the d-vectors and
leave space for all potential type A,, crossing vectors that correspond to triangulations of

polygons.

With those reductions, we begin by cataloging the type I surface. There are nuances
between the orientation of the arrows between a, b, ¢ with what the surface model looks
like; however, there are six families of arcs that are produced in any type I case.

Lemma 8. Consider any orientation of the quiver corresponding to the type I surface.
Suppose that first three coordinates of the d-vector are given by a,b, c respectively. The
fourth coordinate is the first coordinate in the type A,, part of the surface. Then, there
are six families:

(0,0,0,type A), (0,0,1,type A), (1,1,1, type A),

(0,1,1, type A), (1,0,1,type A), (1,1,2, type A).
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In order to see the proof of this lemma, we systematically go through the possibilities
for arcs when the arrows between a and ¢ and b and ¢ are pointed in the same direction
and when they are pointing in opposite directions.

A.0.1 TypelA

Let type IA be the orientation of the type I quiver where a — ¢ and ¢ — b. We begin
by categorizing the families of arcs that do not cross any arc in a triangulation twice.
Namely, we analyze the possibilities for the support of a, b, c.

Family I. Any arc that does not cross the type D,, part of the surface i.e. the arcs a,b, ¢
will be of the form: d = (0,0, 0, type A4,,).

Family II. Arcs that emanate from the marked point y and wrap clockwise around the
puncture: d = (0,0, 1, type A).

Family III. Arcs that emanate from the marked point x and wrap counterclockwise
around the puncture: d = (1,1, 1, type A).

Family IV. Arcs going into the puncture, notched dpq and untagged d are given by:
dx = (0,1,1,type A) and d = (1,0, 1, type A).

These are all the families of arcs that cross existing arcs in the triangulation at most
once, pictured in Figure 20.

Figure 20 — Examples of arcs in families for surface TA: I, II, IIT and IV from left to right
drawn in red.

We now consider when arcs can cross multiple times i.e. where 2’s can appear in the d-
vectors. Up to isotopy, the only type D,, arc that can be crossed twice is ¢; namely, a and b
cannot be crossed twice. Observe that arcs whose endpoints only involve marked points in
the “type D,,” part i.e. endpoints of arcs a, b, c cannot cross any arc twice, so at least one of
the endpoints must be involved the “type A,,” part i.e. a marked point in the triangulation
of the n-gon. In particular, any such arc must wrap counterclockwise around the puncture.

This gives the last family of arcs in Type 1A: d = (1, 1,2, type A, + type Ag), where we
split up our arc into two pieces: «, an arc in the n-gon involving the crossings that appear
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before the first crossing of ¢ and 3, an arc in the n-gon involving the crossings that appear
after the second crossing of c. See Figure 21.

Figure 21 — Example of arc in that cross twice in surface type IA drawn in red, where
a, f components are drawn dashed in gray.

Remark A.1. We note that for crossing vectors d of this format, a quiver theoretic
formula for F-polynomials was explored by unpublished work of the second author and
Lauren Williams where the F-polynomial was conjecturally written as a difference. The
contributions being subtracted therein appear to correspond to the node polychromatic
mixed dimer configurations that appear in the larger poset P defined in Definition 3.8
but not poset P from Definition 3.9.

A.0.2 TypelIB

Let type IB be the orientation of the type I quiver where a — ¢ and b — ¢. We begin
by categorizing the families of arcs that do not cross any arc in a triangulation twice.
Namely, we analyze the possibilities for the support of a, b, c.

Family I. Any arc that does not cross the type D,, part of the surface i.e. the arcs a, b, ¢
will be of the form: d = (0,0, 0, type A).

Family II. Arcs that emanate from the marked point y and wrap clockwise around the
puncture: d = (0,1, 1, type A).

Family III. Arcs that emanate from the marked point z and wrap counterclockwise
around the puncture: d = (1,0, 1, type A).

Family IV. Arcs going into the puncture, notched dyq and untagged d that involved
at least one endpoint in the “type A,,” part of the surface: dy = (0,1, 1,type A) and
d=(1,0,1,type A).

We also have two additional arcs that are the notched versions of the arcs a,b which

give two additional d-vectors: d = (0,1,0,...,0) and dyx = (1,0,...,0).
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These are all the families of arcs that cross existing arcs in the triangulation at most
once, pictured in Figure 22.

Figure 22 — Examples of arcs in families for surface IB: I, II, III and IV from left to right
drawn in red.

We now consider when arcs can cross multiple times i.e. where 2’s can appear in

the d-vectors. As in Type [A, we see again that the only family d-vector in this case is:
d=(1,1,2,type A, + type Ag), where o, § are defined as in Type 1A. See Figure 23.

S

Figure 23 — Example of arc in that cross twice in surface type IA drawn in red, where
a, f components are drawn dashed in gray.

’

A.0.3 Typell

The surface model in type II has two potential type A,, parts corresponding to the quivers
@', Q" i.e. two triangulations of polygons P’, P”. We begin by cataloging the families of
arcs that do not cross any arc in a triangulation twice. We index the d-vectors as follows:
the first four coordinates in order are a, b, ¢, d, the next set of coordinates are indexed by

arcs in the polygon P’ and the last set of coordinates are indexed by arcs in the polygon
P

Recall any arc that crosses an arc in the triangulation more than once or any arc that
is supported on some subset of a, b, ¢, but not d or some subset of a, b, d, but not ¢, are
previously cataloged in the type I surface. So, it suffices to catalog any arcs in the type II
surfaces that are supported on both ¢ and d. It turns out that there are only two families
of arcs that are supported on both ¢ and d shown in Figure 24.

Family I. Arcs that start in one polygon and end in the other, wrapping clockwise around
the puncture. These arcs cannot start or end at the marked points x or y:
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d=(1,1,1,1,type A, type A).

Family II. Arcs that start in one polygon and end in the other, wrapping counterclockwise
around the puncture. These arcs cannot start or end at the marked points x or y: d =
(0,0,1,1,type A, type A).

Figure 24 — Examples of arcs in families I and II from left to right in the type II surface
drawn in red.

A.0.4 Type Il

Similarly to type II, the surface model in type III has two potential type A,, parts cor-
responding to the quivers @', Q" i.e. two triangulations of polygons P’, P”. We begin
by cataloging the families of arcs that do not cross any arc in a triangulation twice. We
index the d-vectors as follows: the first four coordinates in order are a, b, ¢, d, the next set
of coordinates are indexed by arcs in the polygon P’ and the last set of coordinates are
indexed by arcs in the polygon P”.

We index the d-vectors as follows: the first four coordinates in order are a, b, ¢, d, the
next set of coordinates are indexed by arcs in the polygon P’ and the last set of coordinates
are indexed by arcs in the polygon P”. Recall that any arc that crosses an arc in the
triangulation twice has already previously been cataloged in type I. Additionally, if an
arc is supported on some subset of a,b, ¢, but not d or some subset of a, b, d, but not c,
it has also has been previously cataloged in type I. So, it suffices to catalog any arcs in
the type I1I surfaces that are supported on both ¢ and d. It turns out that there are only
two families of arcs that are supported on both ¢ and d shown in Figure 25.

Family I. Arcs that start in one polygon and end in the other, wrapping clockwise around
the puncture. These arcs cannot start or end at the marked points x or y:
d=1(1,0,1,1,type A, type A).

Family II. Arcs that start in one polygon and end in the other, wrapping counterclockwise
around the puncture. These arcs cannot start or end at the marked points x or y: d =
(0,1,1,1,type A, type A).
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Figure 25 — Examples of arcs in families I and II from left to right in the type III surface
drawn in red.

A.1 TypelV

The surface model in type IV has consists of a central n-cycle for n > 3 and can have
k < n “spikes” i.e. k attached triangulated polygons labeled P;, P, ..., P,. We refer to
the inner punctured disk that corresponds to the central n-cycle as D. For notational
convenience, we index the d-vectors based on their support and only specify where the
non-zero entries occur.

In order to catalog arcs in a type IV surface, we need to develop more notation. Let
the attached polygons of the surface be labeled in clockwise cyclic order Py, Ps, ..., Py.
Let ay,as,...,a; be the arcs that are shared by the punctured disk D and a polygon P,
- where a; is the label of the arc between D and P;. Let the triangles in D be labeled
such that in clockwise cyclic order, the triangle in D using arc a; read b;,a;,b;11. Call
the vertices that are the start and end of each a; “gluing vertices.” To demonstrate this
notation, see Figure 26. With this notation, we are ready to catalog more families of arcs.
We begin by cataloging the families of arcs that do not cross any arc in a triangulation
twice.

Figure 26

Family I. Arcs that are completely contained in a single polygon P: see the leftmost
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figure in the top row of Figure 27. We have

J— type A vector if in P
o otherwise.

Family II. Arcs that start and end in different polygons P, P; where ¢ < j that wrap
clockwise around the puncture. In addition, disallow arcs that start of end at a gluing
vertex. See the second from the left figure in the top row of Figure 27. For coordinates «
representing an arc in the sub-triangulation of D, we have

J 1 ifa=by1,bie, ..., b or a = a; or a;
(6% .
0 otherwise.

For coordinates [ representing an arc in the sub-triangulation of one of the petal polygons,
we have

type A vector if Bin P, or P,
dg = .
0 otherwise.

Family III. Arcs that start and end in different polygons P;, P; where ¢ < j that wrap
counterclockwise around the puncture. In addition, disallow arcs that start of end at
a gluing vertex. See the third from the left figure in the top row of Figure 27. For
coordinates « representing an arc in the sub-triangulation of D, we have

i — 1 fa=0by,...,bi,bj41,...b or = q; or a;
“ 0 otherwise.

For coordinates /3 representing an arc in the sub-triangulation of one of the petal polygons,
we have

type A vector if Bin P; or P;
dg = ]
0 otherwise.

Family IV. Arcs that begin at a gluing vertex on P; and wrap counterclockwise around
the puncture ending in a non-gluing vertex in P;. See the rightmost figure in the top row
of Figure 27. For coordinates a representing an arc in the sub-triangulation of D, we have

d. — 1 ifOt:bl,...,bifl,ijrl,...,bkOI'Oé:Gj
“ 10 otherwise.

For coordinates [ representing an arc in the sub-triangulation of one of the petal polygons,
we have

type A vector if fin P;
dg = :
0 otherwise.

If such an arc began at the other gluing vertex on P;, the support of d includes a 1 on the
index corresponding to the arc b;.
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Family V. Arcs that begin at a gluing vertex on P, and wrap clockwise around the
puncture ending in a non-gluing vertex in P;. See the leftmost figure in the bottom row
of Figure 27. For coordinates « representing an arc in the sub-triangulation of D, we have

d. = 1 ifOé:bH_l,...,bjOI'Oé:(lj
“ 10 otherwise.

For coordinates [ representing an arc in the sub-triangulation of one of the petal polygons,
we have

type A vector if §in P;
dg = )
0 otherwise.

If such an arc began at the other gluing vertex on P;, then b;;; = 0 rather than 1.

Family VI. Arcs that begin at the gluing vertex between P; and P;_; on P; and traverse
clockwise around the puncture ending in P;. See the center figure on the bottom row of
Figure 27. We have

Oé:

1 if a## by, or a=q; J type A if fin P,
or =
0 otherwise g 0 otherwise.

Family VII. Similarly to Family VI, arcs that begin at the gluing vertex between P,
and P;; on P; and traverse counterclockwise around the puncture ending in P;. See the
rightmost figure on the bottom row of Figure 27.

0 otherwise.

1 ifa#b;, ora=aq; type A if §in P,
"= i or dg =
0 otherwise

Remark A.2. Families I through VII are all shown in Figure 27.
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Family II P, Family III

Family I

Family V Family VI p; Family VII

Figure 27 — Families I through VII shown in order left to right in the first row and left
to right in the second row. Examples of arcs in these families are drawn in red and the
gluing vertices are shown in green.

Family VIII. Arcs and their notched versions that are coming into the puncture from a
non-gluing vertex from polygon P;. See the leftmost figure in Figure 28. We have

1 ifk=ua; 1 ifk="0by,...,b,, or k=aq;
di = § type A if k in P, ;o dx, = type A if kin P,
0 otherwise 0 otherwise.

Family IX. Notched arcs coming into the puncture from gluing vertices. See the second
from the left figure in Figure 28. We have

dn — 1 if k # b; in the wheel
)10 otherwise

Family X. Arcs that start and end at gluing vertices must stay inside D up to isotopy.
See the third from the left figure in Figure 28. This gives for some ¢,m € {1,2,...,k},

g - 1 ifa=by,...,b,
“ 10 otherwise.
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We can now consider when arcs cross arcs in the triangulation more than once. The
only way this can happen is if the arcs starts and ends in the same polygon. Notably,
neither the start or end point can be a gluing vertex. This yields one final family of arcs:

Family XI. Arcs that begin in polygon P, wrap around the puncture then return to
P;. See the rightmost figure in Figure 28. For coordinates a representing an arc in the
sub-triangulation of D, we have

1 ifa=by,... b
do =<2 fa=uq
0 otherwise.

For coordinates (3 representing an arc in the sub-triangulation of P;, we have

type A if §in P,
dg = { type A if S in P,

0 otherwise.

P; P
Family VIII Family @ Family X

Figure 28 — Families VIII through XI shown in order left to right. Examples of arcs in
these families are drawn in red and the gluing vertices are shown in green.

B Proofs of Lemmas

Now that we have categorized all of the possible d—vectors, we first prove the lemmas
used in Definition 3.6 as well as make some observations about how the structure of these
vectors streamlines some of our case work.

Lemma 3.1. Suppose 7 is some arc not in 7" and let d = cross(7y). Q***P@ the induced
subquiver using vertices ¢ € (o with d; > 0, is connected.

Lemma 3.2. Suppose v is some arc not in 7" such that there exists some arc 7 € T that
7 crosses twice. Let d = cross(y). Q%P2 the induced subquiver using vertices i € Qg
with d; = 2, is a connected tree.

ot
ot
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Proof. We aim to prove Lemma 1. Suppose that d = cross(y) = (74, Veas - - -5 V2,) and
suppose that Q*'PP has two connected components R, R’. Without loss of generality,
suppose that the vertices of the quiver R correspond to the section of v on the interval
(t1,t,) and the vertices of the quiver R’ correspond to the section of v on the interval
(ty,te) for 1 < p < p <L As RNR =0, r # ' implying that p # p/. If r,7’ are
two sides of the same triangle, there is an arrow in () connecting these two vertices.
Since 7,7’ € Q%"PP this would imply Q*'PP must be connected in this case. If r, 7’ are
not in any triangle together, then there exists a sequences of arcs in 1" corresponding to
Yy < Veper < -7+ <M, The continuity of the image of v guarantees there is a sequence
of arrows in () connecting r to r’ implying that Q"PP is connected. m

Proof. We aim to prove Lemma 2. Suppose 7 is an arc that crosses some arc in the
triangulation twice. Without loss of generality, v is type IA or B Family V or type IV
Family XI (note that type IT and III degenerate to the type IV case). In any case, let 7, be
the arc in the triangulation that connects the type D,, part of the surface to the type A,,
part of the surface that has both of 4’s endpoints. By the classification of d-vectors, we
know that 7, must be crossed twice. If 7 crosses no other arcs twice, then we are done and
(Q%"PP2 is a connected tree with a single vertex. If v crosses another arc in the triangulation
twice, then the segments of the arc a and  must both cross this arc. Namely, by the
symmetry of «, 8 such an arc must be attached by a sequence of of arcs 7,...,7, such
that some 7; and 7. are in the same triangle. Therefore, the vertices 1,...,r, ¢ must be
connected. We now argue that (Q®"PP2 cannot have any oriented cycles. Note that in

order for ()*"PP2 to have a cycle in the type A,, part of the quiver, v must cross all arcs of
an internal triangle twice. However, it is impossible up to isotopy for an arc to cross more
than one arc of an internal twice. In the type D,, part of the surface, we saw that in types
IT and III, a 2 can only appear on one of vertices in {a,b,c,d}. In type IV, the type D,
part of the surface that contains a cycle is the wheel triangulation. Up to isotopy, there is
no way to cross the spokes of the wheel twice which implies that we cannot have 2’s form
a cycle on this part of the surface. Hence, the subquiver (Q"PP2 is 2’s form a connected
tree as desired. O]
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