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Abstract

A connected 1-factorisation is a 1-factorisation of a hypergraph for which the
union of each pair of distinct 1-factors is a connected hypergraph. A uniform 1-
factorisation is a 1-factorisation of a hypergraph for which the union of each pair of
distinct 1-factors is isomorphic to the same subhypergraph, and a uniform-connected
1-factorisation is a uniform 1-factorisation in which that subhypergraph is con-
nected. Chen and Lu [Journal of Algebraic Combinatorics, 46(2) 475–497, 2017]
describe a family of 1-factorisations of the complete 3-uniform hypergraph on q+1
vertices, where q ≡ 2 (mod 3) is a prime power. In this paper, we show that their
construction yields a connected 1-factorisation only when q = 2, 5, 11 or q = 2p for
some odd prime p, and a uniform 1-factorisation only for q = 2, 5, 8 (each of these
is a uniform-connected 1-factorisation).

Mathematics Subject Classifications: 05C70, 05C65, 05E18

1 Introduction

A 1-factor of a graph G is a spanning 1-regular subgraph of G, and a 1-factorisation of
G is a collection of edge-disjoint 1-factors of G that partition the edge-set of G. It is
natural to ask: under what conditions does the complete graph on n vertices (Kn) admit
a 1-factorisation? It is clear that n must be even. By Kirkman’s 1847 construction of
1-factorisations of Kn for all even integers n 󰃍 2 [8], this condition is sufficient.

Given a 1-factorisation of a graph G, a well-studied problem is to ask if the union of
each pair of its 1-factors is isomorphic to the same subgraphH of G. Such a 1-factorisation
is called a uniform 1-factorisation (U1F) of G and the subgraph H is called the common
graph. Furthermore, a uniform 1-factorisation in which the common graph is a Hamilton
cycle is called a perfect 1-factorisation (P1F). In the 1960’s, Kotzig [9] posed a question
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which has become known as Kotzig’s perfect 1-factorisation conjecture, namely that for
each even integer n, the complete graphKn admits a perfect 1-factorisation. Three infinite
families of perfect 1-factorisations of complete graphs are known to exist, covering orders
n = p + 1 and n = 2p where p is an odd prime [3]. Perfect 1-factorisations of complete
graphs are also known to exist for all even orders up to n = 56 and some other sporadic
orders, however the conjecture remains open. For an updated overview of the problem,
we recommend a survey by Rosa [1] and a paper on the number of non-isomorphic P1Fs
of K16 by Gill and Wanless [7]. Recently, Davies, Maenhaut, and Mitchell [6], have
generalised the notions of uniform and perfect 1-factorisations of graphs to the context of
hypergraphs.

A hypergraph H consists of a non-empty vertex set V (H) and an edge set E(H) in
which each element of E(H) is a non-empty subset of the vertex set V (H). The complete
k-uniform hypergraph of order n, denoted Kk

n, is the hypergraph with n vertices, in
which the edges are precisely all the k-subsets of the vertex set. A spanning 1-regular
subhypergraph of a hypergraph is known as a 1-factor. A partition of the edge set of a
hypergraph H into 1-factors is called a 1-factorisation of H, and such a 1-factorisation
having α 1-factors is often denoted by F = {F1, . . . , Fα}. An obvious necessary condition
for the existence of a 1-factorisation of the complete k-uniform hypergraph on n vertices
is that k|n. Baranyai [2] showed that for k 󰃍 3, this condition is also sufficient.

A path between two vertices, x and y, of a hypergraph H is an alternating sequence
of vertices and edges [x = v1, e1, v2, e2, . . . , vs, es, vs+1 = y], such that v1, v2, . . . , vs+1 are
distinct vertices of H, and e1, e2, . . . es are distinct edges of H such that {vi, vi+1} ⊆ ei
for 1 󰃑 i 󰃑 s. If every two vertices of a hypergraph H have a path between them, we
say that H is connected. A Berge cycle in a hypergraph H, is an alternating sequence of
vertices and edges (v1, e1, v2, e2, . . . , vm, em), such that [v1, e1, v2, e2, . . . , vm] is a path in H,
{v1, vm} ⊆ em, and em ∈ E(H) \ {e1, e2, . . . , em−1}. Note that each edge ei may contain
vertices other than vi and vi+1 including vertices outside of {v1, . . . , vm}. A Hamilton
Berge cycle in a hypergraph H is a Berge cycle in H for which {v1, . . . , vm} is the vertex
set of H.

In [6], Davies et al. generalised uniform and perfect 1-factorisations of graphs to the
context of hypergraphs in several different ways, leading to the following definitions. A
connected 1-factorisation (C1F) is a 1-factorisation of a hypergraph for which the union
of each pair of distinct 1-factors is a connected hypergraph. A uniform 1-factorisation
(U1F) is a 1-factorisation of a hypergraph for which the union of each pair of 1-factors is
isomorphic to the same subhypergraph, called the common hypergraph, and a uniform-
connected 1-factorisation (UC1F) is a U1F in which the common hypergraph is connected.
A Hamilton-Berge 1-factorisation (HB1F) is a 1-factorisation of a k-uniform hypergraph
for which the union of each k-set of 1-factors has a Hamilton Berge cycle. In addition to
showing some existence results of these generalisations, they also classified some known
1-factorisations as being C1Fs, HB1Fs, and U1Fs [6]. Of these known 1-factorisations,
the infinite family of symmetric 1-factorisations of K3

q+1 for q ≡ 2 (mod 3) found by Chen
and Lu [4] is the subject of this paper. We denote this 1-factorisation by Fq, see §2.2.
Davies et al. [6], showed that for q = 2, 5, 8 these 1-factorisations are C1Fs, U1Fs, UC1Fs,
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and HB1Fs, and that the 1-factorisations when q = 11, 32 are C1Fs and HB1Fs.
The main results of this paper determine when Fq is a C1F or a U1F.

Theorem 1. Fq is a connected 1-factorisation if and only if q ∈ {2, 5, 11} or q = 2p for
some odd prime p.

Theorem 2. Fq is a uniform 1-factorisation if and only if q ∈ {2, 5, 8}, and in these
cases it is a uniform-connected 1-factorisation.

2 Preliminaries

Throughout this paper, q denotes a prime power that satisfies q ≡ 2 (mod 3). Let F = Fq

be the finite field of order q, let F∗ = F\{0}, and let V = F∪{∞} be the vertex set of the
complete 3-uniform hypergraph of order q + 1, K3

q+1. We will work with a particular 1-
factorisation ofK3

q+1, originally given by Chen and Lu [4]. To describe this 1-factorisation,
we first recall the action of the group PSL(2, q) on the projective line PG(1, q).

2.1 The action of PSL(2, q) on the projective line

Recall that V = F∪ {∞} can be identified with the projective line PG(1, q). (In homoge-
neous coordinates, identify ∞ with [1 : 0]T and x ∈ F with [x : 1]T .) The group PSL(2, q)
is a quotient of SL(2, q) :

PSL(2, q) =

󰀝󰀕
α β
γ δ

󰀖
| α, β, γ, δ ∈ F; αδ − βγ = 1

󰀞
/ ∼,

where two matrices are equivalent by ∼ if one is a scalar multiple of the other. The group
PSL(2, q) acts faithfully on PG(1, q) :

󰀕
α β
γ δ

󰀖
.

󰀗
x
y

󰀘
=

󰀗
αx+ βy
γx+ δy

󰀘
.

It is often more convenient to think of this action in terms of fractional linear trans-
formations on F ∪ {∞}. We may also write this as:

tα,β,γ,δ(x) :=
αx+ β

γx+ δ

for x ∈ F ∪ {∞}, where α∞+β
γ∞+δ

= α
γ
for γ ∕= 0, α∞+β

δ
= ∞ for α ∕= 0, and ω

0
= ∞ for

ω ∈ F∗.
Recall that the action of PSL(2, q) on PG(1, q) is transitive. Note that we may think of

PSL(2, q) as a subgroup of PGL(2, q) = GL(2, q)/ ∼, and the action given above extends
to one of PGL(2, q). Under this (extended) action, the stabiliser of the point ∞ is a
subgroup. Indeed, it is the group of the invertible linear transformations of F ∪ {∞} :

PGL(2, q)∞ = {gα,β := tα,β,0,1 | α ∈ F∗, β ∈ F}.
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2.2 The construction of Chen and Lu

The following construction was given by Chen and Lu [4, Example 5.1, Lemma 5.2]. We
present it here in a format convenient for our purposes. Let f : V → V be the map
defined by

f(x) =
1

1− x
for x ∈ V \ {1,∞} and f(1) = ∞ and f(∞) = 0.

For any α ∈ F∗ and β ∈ F define gα,β : V → V as gα,β(x) = αx + β for x ∈ F and
gα,β(∞) = ∞. Set mα,β := gα,β ◦ f ◦ g−1

α,β. Here gα,β ∈ PGL(2, q) and the conjugation
makes sense in this group, so that mα,β ∈ PSL(2, q). Then

mα,β(x) = β +
α2

α + β − x
for x ∈ F \ {α + β} and mα,β(α + β) = ∞, mα,β(∞) = β.

Note that m1,0 = f and m2
α,β = m−1

α,β. In particular, mα,β ∈ PSL(2, q) has order 3 for
any α ∈ F∗ and β ∈ F. It has no fixed points on V = PG(1, q). We also note that in the
notation of [4], f = t0,1,−1,1 and mα,β = t−β,α2+αβ+β2,−1,α+β.

It follows that the sets

Fα,β :=
󰀋󰀋

x,mα,β(x),m
−1
α,β(x)

󰀌
| x ∈ F ∪ {∞}

󰀌

are 1-factors of K3
q+1 on V. Set

Fq = {Fα,β | α ∈ F∗, β ∈ F}.

By [4, Lemma 5.2] Fq is a 1-factorisation of K3
q+1 for q 󰃍 5 if q ≡ 2 (mod 3). In fact

for q = 2 it is the trivial 1-factorisation of K3
3 . Recall also that Fq has q(q−1)

2
1-factors.

In particular, each is represented by exactly two (α, β) pairs: Fα,β = F−α,α+β. Using the
notation of [4], Fηi,β is Fi,β in our notation, and their PG

(q+1;3,
q(q−1)

2
)
is our Fq.

Remark 3. Observe that f = m1,0 having no fixed points implies that no x ∈ F satisfies
x2 − x+ 1 = 0.

In the language of the action of PSL(2, q) on PG(1, q), each 1-factor Fα,β ∈ Fq is the
set of orbits of 〈mα,β〉 on V = PG(1, q). The elements mα,β ∈ PSL(2, q) are exactly the
conjugates of f = m1,0 in PGL(2, q) by the stabiliser PGL(2, q)∞. Each subgroup 〈mα,β〉
is isomorphic to the cyclic group of order 3.

3 Connected 1-Factorisations of Fq

In this section we prove Theorem 1.1, noting that F2,F5,F8, F11 and F32 were shown to
be C1Fs in [6]. The graph theoretic properties of the factorisation Fq can be rephrased
in terms of the action of PSL(2, q) on PG(1, q). We explain this first. Note that whenever
we refer to the action of a group on PG(1, q), we understand this to mean that the group
is embedded into PSL(2, q) or PGL(2, q), and the action is the one described in §2.

the electronic journal of combinatorics 31(4) (2024), #P4.62 4



Lemma 4. The 1-factorisation Fq is a connected 1-factorisation if and only if the sub-
group Hα,β,γ,δ = 〈mα,β,mγ,δ〉 acts transitively on PG(1, q) for each (α, β), (γ, δ) ∈ F∗

q ×Fq

such that 〈mα,β〉 ∕= 〈mγ,δ〉. Such a subgroup Hα,β,γ,δ has at least four elements of order 3.

Proof. As seen above, two vertices of V are in the same edge of Fα,β if and only if they
are in the same orbit under the action of 〈mα,β〉 on PG(1, q). Similarly, the union of two
1-factors Fα,β ∪ Fγ,δ is connected if and only if the subgroup Hα,β,γ,δ acts transitively
on PG(1, q). Indeed, for x, y ∈ V a path from x to y along edges from Fα,β and Fγ,δ

corresponds to an element w ∈ PSL(2, q) such that w(x) = y and w = mi0
α,β ◦m

i1
γ,δ ◦ · · · ◦

miℓ
γ,δ ∈ Hα,β,γ,δ, where ik ∈ {−1, 0, 1} for 0 󰃑 k 󰃑 ℓ.

Furthermore Fα,β ∕= Fγ,δ exactly if 〈mα,β〉 ∕= 〈mγ,δ〉. In this case mα,β,m
−1
α,β,mγ,δ,m

−1
γ,δ

are four distinct elements of Hα,β,γ,δ that each have order 3.

According to Lemma 4, the subgroups of PSL(2, q) are relevant for deciding whether
Fq is a C1F or not. These have been classified by Dickson [5, Chapter XII.]. We recall
the following theorem, summarising the portion of the classification that is relevant to us.

Theorem 5. [5, §260, pp285-286], see also [12, Theorem 6.25, 6.26] Let q = pr ≡ 2
(mod 3) where p is a prime. Then we have the following.

(a) The group PSL(2, q) has exactly q(q−1)
2

cyclic subgroups of order 3.

(b) A subgroup isomorphic to PSL(2, ps) exists in PSL(2, q) for any divisor s of r.

(c) If q is odd, then a subgroup isomorphic to A4 exists in PSL(2, q).

(d) If q is even, i.e. q = 2r with r odd, then the subgroups of PSL(2, q) either have an
order that is a divisor of q, are isomorphic to PSL(2, 2s) where s is a divisor of r,
or are cyclic or dihedral.

We are now ready to show which q will result in Fq not being a C1F.

Lemma 6. Let q = pr ≡ 2 (mod 3) where p is a prime. If either q > 11, or p = 2 and r
is composite, then Fq is not a C1F.

Proof. Since each 1-factor in Fq corresponds to a 3-element subgroup in PSL(2, q), part
(a) of Theorem 5 implies that every subgroup of PSL(2, q) of order 3 corresponds to a
1-factor, i.e. is of the form 〈mα,β〉 for some (α, β) ∈ F∗

q × Fq. Lemma 4 then implies that
Fq is not a C1F if PSL(2, q) has a subgroup H that has at least two subgroups of order
3, but does not act transitively on PG(1, q). Indeed the two distinct subgroups of order 3
would be 〈mα,β〉 and 〈mγ,δ〉 for some (α, β), (γ, δ) ∈ F∗

q×Fq. Together they would generate
a Hα,β,γ,δ 󰃑 H that does not act transitively on PG(1, q).

We now show that if q > 11 or q = 2r and r is composite, then PSL(2, q) has a
subgroup H such that H has at least two distinct subgroups of order 3 but its order is not
divisible by q + 1, and hence it does not act transitively on PG(1, q). Consider first the
case where q is odd and q > 11. Part (c) of Theorem 5 implies that the group PSL(2, q)
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has a subgroup H isomorphic to A4. This H has (four) distinct subgroups of order 3,
and has order 12, which is not a multiple of q + 1. Therefore Fq is not a C1F. In the
case that q = 2r where r is composite, let s be the smallest prime divisor of r. Part (b)
of Theorem 5 implies that PSL(2, q) has a subgroup H isomorphic to PSL(2, 2s). This
subgroup H has 2s−1(2s − 1) distinct subgroups of order 3 by Theorem 5 (a). It also has
order |H| = (22s − 1)2s [5, §239, p. 261]. Since q = 2r, we know that q + 1 is coprime
to 2s. Furthermore, r is divisible by s, hence 22s − 1 < 2r = q, so q + 1 does not divide
22s − 1. Thus q + 1 is not a divisor of |H|. This completes the proof.

Remark 7. Note that while the proof of Dickson’s classification of subgroups of PSL(2, q)
where q = pr is subtle, one subgroup of the form PSL(2, ps) for s|r is easy to find. Indeed
Fps is a subfield of Fq for any such s. Furthermore, if p 󰃍 5 is odd and r > 2, or if p = 2
and r is odd composite, then we can use such a subfield to show that Fq is not a C1F, by
choosing appropriate α, β in the subfield, and considering the subgraph Fα,β ∪ F1,0.

It remains to tackle the case where q is a power of 2 with prime exponent.

Lemma 8. If q = 2r for some odd prime r, then Fq is a C1F.

Proof. By Lemma 4 it suffices to show that no proper subgroup of PSL(2, 2r) has at least
four elements of order 3. This implies that for any (α, β), (γ, δ) ∈ F∗

q×Fq the group Hα,β,γ,δ

is the entire group PSL(2, 2r) and thus acts transitively on PG(1, q). By Theorem 5 part
(d), we have that for a proper subgroup H of PSL(2, q), one of the following holds: |H|
is a divisor of q, H is cyclic, dihedral, or H ∼= PSL(2, 2) ∼= S3 (the symmetric group on
three letters). A proper subgroup H therefore has at most two elements of order 3. This
completes the proof.

The proof of Theorem 1 follows by combining Lemmas 6 and 8 with the knowledge
from [6] that F2,F5, and F11 are C1Fs.

4 Uniform 1-Factorisations

In this section we prove Theorem 1.2, noting that F5 and F8 were shown to be U1Fs (and
UC1Fs) in [6] and F2 is trivially a U1F.

For two distinct 1-factors F1 and F2 of a hypergraph, we say that a pair of vertices,
B = {v1, v2}, is repeated in the pair F1 and F2 if B ⊆ e for some edge e ∈ F1 and B ⊆ e′

for some edge e′ ∈ F2. We call the number of repeated pairs in a pair of 1-factors the pair
overlap number. If each pair of distinct 1-factors of a 1-factorisation have the same pair
overlap number, we call that the pair overlap number of the 1-factorisation. Davies et al.
[6] showed that if a U1F of K3

n exists then the pair overlap number of the 1-factorisation
is 2. Thus in order to prove that Fq is not a U1F, we need only show that there exist two
distinct 1-factors with pair overlap number not equal to 2.

Let F1,0 and Fα,β be distinct 1-factors of Fq, with corresponding functions f and mα,β

for α ∈ F∗ and β ∈ F. Recall that this is the case if and only if (α, β) ∕∈ {(1, 0), (−1, 1)}
in F. Observe that the pair overlap number of F1,0 and Fα,β is

|{x ∈ F ∪ {∞} : f(x) = mα,β(x)}|+ |{x ∈ F ∪ {∞} : f−1(x) = mα,β(x)}|.
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This means that every repeated pair corresponds to a solution to either f(x) = mα,β(x)
or f−1(x) = mα,β(x).

We will now consider the number of solutions for f(x) = mα,β(x) with values of α and
β that result in Fα,β being distinct from F1,0. A solution to f(x) = mα,β(x) gives us the
equation

1

1− x
= β +

α2

α + β − x
.

We note that for x = ∞, f(∞) = 0 and mα,β(∞) = β so there is at least one solution if
β = 0, and only one if β = 0, α = −1, and F1,0 ∕= F−1,0. Further, if β = 0, α ∕∈ {−1, 1},
then we also get the solution x = α

1+α
. If α + β = 1 then the only solutions are x = 1

and x = −α. (Note (α, β) ∕= (1, 0). We may have α = −1.) We now consider the case
where α+ β ∕= 1. Then f(x) = mα,β(x) implies x ∕∈ {1,α+ β}, every solution is in F and
f(x) = mα,β(x) is equivalent to

0 = (α2 + αβ − α + β2 − β)− x(α2 + αβ + β2 + β − 1) + βx2.

We can also obtain the number of solutions for f−1(x) = mα,β(x) by noticing that for
x ∈ F ∪ {∞} we have

|{x : f−1(x) = mα,β(x)}| = |{x : f(x) = m−1
α,β(x)}| = |{x : f(x) = m−α,α+β(x)}|.

To summarise the above we have the following.

Conditions {x ∈ F ∪ {∞} | f(x) = mα,β(x)}
β = 0, α = −1 {∞}
β = 0, α ∕∈ {−1, 1} {∞, α

1+α}
β ∕= 0, α+ β = 1 {1,−α}
β ∕= 0, α+ β ∕= 1,
((α,β) ∕= (−1, 1))

{x ∈ F | βx2−(α2+αβ+β2+β−1)x+(α2+αβ+β2−α−β) = 0}

Conditions {x ∈ F ∪ {∞} | f−1(x) = mα,β(x)}
β = 1, α = 1 {∞}
β = 1, α ∕∈ {−1, 1} {∞, 1

1−α}
β ∕= 1, α+ β = 0 {0, 1− α}
β ∕= 1, α+ β ∕= 0,
((α,β) ∕= (−1, 1))

{x ∈ F | (1− β)x2 + (α2 + αβ + β2 − α− β − 1)x+ (α+ β) = 0}

We use the information in the tables to show that Fq is not a U1F if q /∈ {2, 5, 8}. The
cases of 5|q and 2|q are treated separately from that of other primes. We start with the
case of primes greater than 5.

Lemma 9. Let q = pℓ for some prime p > 5 and some integer ℓ 󰃍 1 such that q ≡ 2
(mod 3). Then Fq is not a U1F.
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Proof. Let F1,0 and F−1,0 be 1-factors of Fq; we shall prove that the pair overlap number
of this pair of 1-factors is not 2. F1,0 and F−1,0 are distinct, and from above we know that
there is only one repeated pair corresponding to a solution to f(x) = m−1,0(x). Further,
we know that {x ∈ Fq ∪ {∞} | f−1(x) = m−1,0(x)} = {x ∈ Fq | x2 + x − 1 = 0}, and
x2 + x − 1 = 0 will have 2 solutions in Fq if 5 is a quadratic residue, and 0 if not. Thus
the pair overlap number of this pair of 1-factors must be either 1 or 3, and thus Fq is not
a U1F.

Lemma 10. Let q = 5ℓ for some integer ℓ > 1 such that q ≡ 2 (mod 3). Then Fq is not
a U1F.

Proof. As in the proof of Lemma 9 we show that there is a choice of α, β such that the
pair overlap number of F1,0 and Fα,β is not 2. This implies that Fq is not a U1F. We shall
show that for α ∈ F \ F5 the factor F1,0 has a pair overlap number of 4 with at least one
of Fα,−α, Fα,1−α or Fα2,1−α2 .

It follows from the tables above that if α ∈ F \ F5 and we set β = −α then f−1(x) =
mα,−α has the two distinct solutions 0 and 1−α. The solutions of f(x) = mα,−α are x ∈ F
such that αx2 + (α2 −α− 1)x−α2 = 0. The discriminant is D1 = (α− 1)2 · (α2 −α+1).
Therefore the pair overlap number between F1,0 and Fα,−α is 4 if α2 − α + 1 is a square
in F.

Now set β = 1 − α in the tables above. If α ∈ F \ F5 then f(x) = mα,1−α has the
two distinct solutions, 1 and −α. The solutions of f−1(x) = mα,1−α are x ∈ F such that
αx2 + (α2 − α− 1)x+ 1 = 0. The discriminant is D2 = (α+ 1)2 · (α2 + α+ 1). Therefore
the pair overlap number between F1,0 and Fα,1−α is 4 if α2 + α + 1 is a square in F.

Now take an α ∈ F \ F5. If α2 − α + 1 ∈ F2 or α2 + α + 1 ∈ F2 then the pair
overlap number of F1,0 with Fα,−α or with Fα,1−α is not 2 by the above paragraphs.
Recall that F∗ is a cyclic group, therefore the product of two non-squares is a square.
Therefore if α2 − α + 1 /∈ F2 and α2 + α + 1 /∈ F2, then their product is a square:
(α2 − α + 1)(α2 + α + 1) = (α2)2 + α2 + 1 ∈ F2.

Observe that q ≡ 2 (mod 3) implies that ℓ is odd. Therefore F does not contain the
field of 25 elements. This implies that for α ∈ F \ F5 we have α2 ∈ F \ F5. Thus using
similar working to above, the pair overlap number of F1,0 and Fα2,1−α2 is 4.

We now turn our attention to the case where q = 2ℓ for ℓ an odd integer, ℓ > 3. We
shall show that then Fq is not a U1F by proving that there is an α ∈ Fq \ {0, 1} such
that the pair overlap number of F1,0 with Fα,1 or Fα,0 is not 2. As in the case of odd
characteristic, the proof involves considering the number of solutions of the equations
f(x) = mα,β(x) and f−1(x) = mα,β(x) in special cases. To do so we recall the following
useful facts about the trace map.

Lemma 11. Let ℓ be a positive integer and set F = F2ℓ . The field extension F|F2 is
cyclic, its Galois group generated by the Frobenius automorphism x 󰀁→ x2. The trace map:
Tr = TrFF2

: F → F2 given by

Tr(x) = Tr
F
2ℓ

F2
(x) =

ℓ−1󰁛

i=0

x2i
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is an F2−linear map. For any x ∈ F we have x2ℓ = x and thus Tr(x) = Tr(x2) for all
x ∈ F. For x ∈ F there exists an r ∈ F such that x = r2 + r if and only if Tr(x) = 0.
A quadratic equation x2 + Lx+ C with L ∕= 0 has two solutions in F if Tr

󰀃
C
L2

󰀄
= 0, and

zero solutions otherwise. If ℓ is an odd integer then Tr(1) = 1.

Proofs of the facts collected in Lemma 11 can be found in many texts. For general
facts about the trace map, see [10, §5]. The fact that x = r2+r has a solution if and only if
Tr(x) = 0 is the additive form of Hilbert’s Theorem 90 [10, Theorem 6.3]. The statement
about the number of roots of a quadratic equation follows from the Artin-Schreier theorem
[10, Theorem 6.4] by a change of variables. See for example [11, Proposition 1].

To prove that F2ℓ is not uniform for any ℓ > 3, we will use the following lemma to
allow us to find two 1-factors of F2ℓ , at least one of which will have pair overlap number
4 with the 1-factor F1,0.

Lemma 12. For every odd ℓ > 3, there exists γ ∈ F2ℓ \ F2 such that Tr(γ) = Tr( 1
γ
) = 1.

Proof. For a contradiction, suppose that if γ ∈ F2ℓ \ F2 and Tr(γ) = 1, then Tr( 1
γ
) = 0.

Thus, Ker(Tr) \ {0} =
󰁱

1
γ
: Tr(γ) = 1, γ ∈ F2ℓ \ F2

󰁲
. It then follows that Tr(γ + 1

γ
) = 1

for every γ ∈ F2ℓ \ F2, and hence the polynomial x2ℓ−1
Tr(x + 1

x
) + x2ℓ−1

= 0 has 2ℓ − 2
roots in F2ℓ . However, note that if x satisfies Tr(x+ 1

x
) = 1 we have:

x2ℓ−1 · Tr
󰀕
x+

1

x

󰀖
= x2ℓ−1 ·

ℓ−1󰁛

i=0

󰀓
x2i + x−2i

󰀔
= x2ℓ−1

ℓ−1󰁛

i=0

󰀓
x2ℓ−1+2i + x2ℓ−1−2i

󰀔
= x2ℓ−1

x+
ℓ−2󰁛

i=0

󰀓
x2ℓ−1+2i

󰀔
+ x2ℓ−1

+
ℓ−1󰁛

i=0

󰀓
x2ℓ−1−2i

󰀔
= 0

where the last line follows from the fact that x2ℓ = x for every x ∈ F (see Lemma 11).
The left-hand side here is a polynomial of degree 2l−1 + 2l−2 (with coefficients in F2).
Therefore, it has at most 2l−1+2l−2 roots in the field F. If ℓ > 3 then 2ℓ−1+2ℓ−2 < 2ℓ−2,
which is a contradiction with our earlier conclusion. Thus, there exists some γ ∈ F2ℓ \ F2

such that Tr(γ) = Tr( 1
γ
) = 1.

With the existence of such a γ we can obtain the following result.

Lemma 13. F2ℓ is not a U1F for any odd ℓ > 3.

Proof. We show this by finding an α such that either the pair of 1-factors F1,0 and Fα,0

or the pair F1,0 and Fα+1,0 has pair overlap number 4. Recall the earlier discussion at
the beginning of the section about the pair overlap number of the two 1-factors, F1,0 and
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Fα,β. Specialising the corresponding tables to characteristic 2 and setting β = 0 we find
the solutions as follows.

Conditions {x ∈ F ∪ {∞} | f(x) = mα,β(x)} {x ∈ F ∪ {∞} | f−1(x) = mα,β(x)}
β = 0 (α ∕= 1) {∞, α

1+α} {x ∈ F | x2 + (α2 + α+ 1)x+ α = 0}

By Lemma 12, there exists some γ ∈ F2ℓ \F2 such that Tr(γ) = Tr( 1
γ
) = 1. As Tr(γ) = 1

it follows that Tr(γ + 1) = 0, thus there are 2 solutions to the equation x2 + x + 1 = γ.
Let α be one such solution (note that α ∕∈ {0, 1}). Therefore, Tr( 1

γ
) = Tr( 1

α2+α+1
) = 1;

furthermore,

Tr

󰀕
1

(α2 + α + 1)2

󰀖
= Tr

󰀕
1

α2 + α + 1

󰀖
= 1.

We now consider the two possible values of Tr( α
(α2+α+1)2

) separately. If Tr( α
(α2+α+1)2

) = 0,

then x2 + (α2 + α+ 1)x+ α = 0 has two solutions, thus by the above table the 1-factors
F1,0 and Fα,0 will have pair overlap 4. If Tr( α

(α2+α+1)2
) = 1, then

Tr

󰀕
(α + 1)

((α + 1)2 + (α + 1) + 1)2

󰀖
= Tr

󰀕
α

(α2 + α + 1)2

󰀖
+ Tr

󰀕
1

(α2 + α + 1)2

󰀖
= 0.

Thus, the 1-factors F1,0 and Fα+1,0 will have pair overlap number 4.
Therefore, F2ℓ will not be a U1F for all odd ℓ > 3.

The proof of Theorem 2 then follows from Lemmas 9, 10, 13, and the knowledge from
[6] that F2,F5,F8 are both U1Fs and C1Fs.

5 Hamilton-Berge 1-Factorisations

A necessary condition for a 1-factorisation of Kk
n to be a Hamilton-Berge 1-factorisation

is that the union of each k-set of 1-factors is connected.
We remark that the proof of Lemma 6 allows us to find three 1-factors whose union

is disconnected. Indeed it suffices to find a subgroup H of PSL(2, q) such that H has at
least 3 distinct subgroups of order 3, and H does not act transitively on PG(1, q). If q is
odd and q > 11, then H = A4, and if q = 2r with r odd composite, then H = PSL(2, 2s)
for s 󰃍 3 a divisor of r will satisfy this. From this it follows that if q = pr ≡ 2 (mod 3)
for some prime p and q > 11 is odd, or if q is even for some (odd) composite r, then Fq

cannot be an HB1F. Finally, it follows from Lemma 8 that if q = 2r for some odd prime
r, then Fq satisfies the property that the union of each set of three distinct 1-factors is
connected.

Thus Fq can only be an HB1F if q ∈ {2, 5, 11} or q = 2p for some odd prime p. The 1-
factorisations F5,F8,F11, and F32 were shown to be HB1Fs in [6], and the 1-factorisation
F2 is trivially an HB1F. We have also shown computationally that F128 is an HB1F, which
leads us to the following conjecture.

Conjecture 14. Fq is a Hamilton-Berge 1-factorisation if and only if q ∈ {2, 5, 11} or
q = 2p for some odd prime p.
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