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Abstract

The circumference and the clique number of a graph is the length of a longest
cycle and the largest order of a clique in it respectively. We show that the circum-
ference of a 2-connected non-Hamiltonian graph G is at least the sum of its clique
number and minimum degree unless G is one of two specific graphs.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

The length of a longest cycle, the circumference, in a graph G denoted by c(G) is widely
studied in extremal and structure graph theory. Let δ(G) be the minimum degree of G.
In 1952, Dirac [2] showed that the circumference of a 2-connected n-vertex graph is at
least min{n, 2δ(G)}. Since then, there are lots of results concerning the circumference
of a graph (see [5] for a survey). The clique number, denoted by ω(G), is the maximum
order of a clique in G. For integers n > k > 2t, let H(n, k, t) be the graph with a vertex
partition A ∪ B ∪ C with sizes t, n − k + t and k − 2t respectively, and whose edge set
consists of all edges between A and B and in A ∪ C. For n = k − t − 2 + `(t − 1) + 2,
the graph Z(n, k, t) denotes the n-vertex graph obtained from vertex-disjoint union of a
clique Kk−t−2 and ` > 2 copies of Kt−1 by adding two new vertices and joining them
to each other and completely to all other vertices (See Fig. 1). Clearly, the minimum
degree, the clique number and the circumference of H(n, k, t) and Z(n, k, t) are t, k − t
and k − 1 respectively. We will establish the following theorem concerning the relation
between δ(G), ω(G) and c(G) in 2-connected graphs.

Theorem 1. Let G be a 2-connected n-vertex graph. Then c(G) > min{n, ω(G) + δ(G)}
unless G = H(n, ω(G) + δ(G), δ(G)) or G = Z(n, ω(G) + δ(G), δ(G)).
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H(17, 16, 7). Z(19, 16, 7).
Figure 1. the vertices in each gray ellipse induce a complete graph

Circumference, minimum degree and clique number are important parameters of
graphs. Hence it is meaningful to study the relation between them. Moreover, Theo-
rem 1 can be applied to prove [8] a longstanding conjecture of Erdős, Simonovits and
Sós [1] (determining the maximum number of edge colors in a complete graph such that
there is no rainbow path of given length). In fact, Theorem 1 helps us to strengthen the
following result of Füredi, Kostochka, Luo and Verstraëte [3, 4].

Theorem 2 (Füredi, Kostochka, Luo and Verstraëte [3, 4]). Let G be an n-vertex 2-
connected graph with c(G) < k. Let ` = b(k − 1)/2c. Then e(G) 6 max{e(H(n, k, ` −
1)), e(H(n, k, 3))} unless

• k = 2`+ 1, k 6= 7, and G ⊆ H(n, k, `);

• k = 2`+ 2 or k = 7, and G−A is a star forest for some A ⊆ V (G) of size at most
`;1 or

• G ⊆ H(n, k, 2).

Combining a stability result of the well-known Pósa lemma with Theorem 1, Ma and
the author [6] proved the following theorem which strengthens Theorem 2 when n is odd.2

Theorem 3 (Ma and Yuan). Let k = 2`+1 > 5 be an odd integer and n > k. Let G be an
n-vertex 2-connected graph with c(G) < k. Then e(G) < max{e(H(n, k, 3)), e(H(n, k, `−
1))} unless

• G is a subgraph of H(n, k, 2) or H(n, k, `);

• G = H(n, k, 3) or G = H(n, k, `− 1);

• G− A is a star forest for some A ⊆ V (G) of size at most two for k = 7.

Applying Theorem 3, the author confirms the above mentioned conjecture of Erdős,
Simonovits and Sós.

1A star forest is a graph in which every component is a star.
2They also strengthened Theorem 2 when n is even, but the result is quit complicate. So we do not list
it here.
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2 Notation and Pósa’s Lemma

The general notation used in this paper is standard. Let G be the complement of G.
Denote by NG(x) the set of neighbors of x in G and let dG(x) be the size of NG(x). Let
NG[x] = NG(x) ∪ {x} and dG[x] be the size of NG[x]. Let P = x1x2 · · ·xm be a path in
G. For xi, xj ∈ V (P ), we use xiPxj to denote the sub-path of P between xi and xj. For
a vertex x of P , denote x− and x+ to be the immediate predecessor and successor of x on
P , respectively. For a subset S of V (P ), let S+ = {x+ : x ∈ S} and S− = {x− : x ∈ S}.
We call (i, j) a crossing pair of P if xi ∈ NP (xm) and xj ∈ NP (x1) with i < j. A crossing
pair (i, j) is minimal in P if xh /∈ NP (x1) ∪NP (xm) for each i < h < j. We say a vertex
x /∈ Y is connected to a vertex set X ⊆ Y if there is a path starting from x, ending at
x′ ∈ X and without containing any vertices of Y \ {x′}.

Our proof is based on the idea of the following well-known lemma of Pósa.

Lemma 4 (Pósa [7]). Let G be an n-vertex 2-connected graph with a path P = x1 . . . xk.
Then c(G) > min{n, dP (x1) + dP (xk)}. Furthermore, if P does not contain a crossing
pair, then c(G) > min{n, dP (x1) + dP (xk) + 1}.

3 Proof of Theorem 1

Let G be an edge-maximal counter-example. That is, G is a 2-connected graph with
c(G) < min{n, δ(G) + ω(G)}, however for any edge e ∈ E(G), G + e will have a cycle of
length at least min{n, δ(G) + ω(G)}. If δ(G) > ω(G), then Dirac’s theorem shows that
c(G) > min{n, 2δ(G)} > min{n, δ(G) + ω(G)}, a contradiction. Thus we may assume
that ω(G) > δ(G). Let δ(G) = t and δ(G) + ω(G) = k. It is enough to show that
G = H(n, k, t) or G = Z(n, k, t). If t = 2, then ω(G) = k − 2. By c(G) < k, it is easy to
see that G = Z(n, k, 2). Thus we may assume that t > 3.

LetH be a complete subgraph ofG on k−t vertices. Clearly, G is not a complete graph,
as otherwise c(G) = n and we are done. Hence there is an edge xy in G between V (H)
and V (G)\V (H), otherwise we have ω(G) > k−t, contradicting δ(G)+ω(G) = k. By the
maximality of G, if we adding xy to G, then G contains a cycle of length at least min{n, k},
implying there is a path on at least min{n, k} vertices starting from x, and ending at y.
Thus we can choose a maximal such path P = x1x2Pxm−1xm with m > min{n, k} starting
from x1 ∈ V (H) and ending at xm ∈ V (G)\V (H) (NH(x1) ⊆ NP (x1), NG(xm) = NP (xm)
and it is possible that (x1, xm) 6= (x, y).) Then we have dP (x1) > dH(x) = k − t− 1 and
dP (xm) > δ(G) > t. Since c(G) < min{n, k}, Lemma 4 implies that P contains a minimal
crossing pair (i, j), NP [x1] = NH [x1] = V (H), dP (xm) = t and n > k. In fact, if P does
not contain a minimal crossing pair, then c(G) > k > min{n, k}; if NP [x1] 6= NH [x1]
or dP (xm) > t, then c(G) > (k − t − 1 + t) + 1 = k > min{n, k} and if n < k, then
c(G) > k− t− 1 + t = k− 1 > min{n, k}. Hence we have m > min{n, k} > k. Note that
N−P (x1) ∩NP [xm] = ∅ and N+

P (xm) ∩NP [x1] = ∅ (otherwise, there is a cycle of length at
least k). The cycle x1PxixmPxjx1 of length (k − t− 1) + (t+ 1)− 1 = k − 1 (−1 for the
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vertex xj−1) implies for any minimal crossing pair (i, j), we have

(N−P (x1) ∪NP [xm]) \ {xj−1} = V (x1Pxi) ∪ V (xjPxm) and j − i = m− k + 2, (1)

implying that each vertex in V (x1Pxi) ∪ V (xjPxm) either belongs to NP [xm] or belongs
to N−P (x1).

Let s1 = min{h : xh ∈ NP (xm)} and s2 = max{h : xh ∈ NP (x1)}. Consider the
m-vertex paths P ∗ = xhPxmxh−1Px1 for s2 + 1 6 h 6 m− 1 (by c(G) < k, the possible
neighbors of xh in P ∗ are determined by the neighbors of x1 in P ∗). Since c(G) <
k and δ(G) > t, the maximality of m implies NP [xh] = NP [xm] for s2 + 1 6 h 6
m − 1. Hence xm is not adjacent to any two consecutive vertices of xs1Pxs2 , otherwise
x`−1Px1xs2Px`xs2+1Pxm is a cycle of length k (s1+1 6 ` 6 s2), a contradiction. Similarly,
x1 is not adjacent to any two consecutive vertices of xs1Pxs2 and NP [xh] = NP [x1] for
2 6 h 6 s1 − 1. From (1), we conclude that C = NP [x1] \ V (x1Pxs1−1) = NP [xm] \
V (xmPxs2+1) = {xs1 , xs1+2, . . . , xs2} where s1 ≡ s2 mod 2 when m = k (see Fig. 2); or
C = NP [x1]\V (x1Pxs1−1) = NP [xm]\V (xmPxs2+1) = {xs1 , xs2} with s2−s1 = m−k+2
when m > k.

x1 xmxs2xs1
Figure 2. The neighors of x1 and xm on P

Let A = V (x1Pxs1−1), B = V (xs2+1Pxm) and X = V (G) \ {A ∪ B ∪ C}. Note that
G[A ∪ C] = H and G[B ∪ C] = Kt+1 are complete graphs (see Fig. 3).

C

A B
x5 x6 x7x1 x2 x3 x9 x10 x11

x4 x8

A B

C

x4 x6x1 x2 x8 x9

x3 x5 x7

G[V (P )] when |C| = 2 G[V (P )] when |C| = 3

Figure 3. Subgraphs of G with k = 9, δ(G) = 4 and ω(G) = 5

Claim. Each vertex of X can only be connected to C ⊆ A∪B∪C. Moreover, if |C| > 3,
then X is an independent set.

Proof. Let x ∈ V (P ) ∩X. If x is connected to A ∪ B ⊆ A ∪ B ∪ C, then in both cases
(|C| = 2 and |C| > 3) we can easily find a cycle of length at least k, a contradiction. Now,
let x ∈ X \ V (P ). Since G is 2-connected, x ∈ X is connected to {y1, y2} ⊆ V (P ) by two
vertex-disjoint (except x) paths. If y1, y2 ∈ A or y1, y2 ∈ B, then there is path on m + 1
vertices containing V (P ) ∪ {x} starting from A ⊆ V (H), ending at B, a contradiction to
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the maximality of m. If y1 ∈ A∪B and y2 ∈ C or y1 ∈ A and y2 ∈ B, then in both cases
(|C| = 2 and |C| > 3) we can easily find a cycle of length at least k, a contradiction.

Now we prove the moreover part. Let |C| > 3. It is easy to see that for any two
vertices u, v ∈ V (P )\ (A∪B∪C) there is a path on k vertices starting from u and ending
at v (see Fig. 3). Hence V (P )\ (A∪B∪C) is an independent set. Note that, in G[V (P )],
for any two vertices u, v not both in C, there is a path on at least k − 1 vertices starting
from u and ending at v and for any two vertices u, v in C, there is a path on k−2 vertices
starting from u and ending at v (see Fig. 3). Thus by G is 2-connected and c(G) < k,
X \ V (P ) is an independent set and can be adjacent to C of V (P ).

If |C| > 3, then each vertex of X can only be adjacent to C in G and X is an
independent set. Since δ(G) = t, we must have |C| = t and each vertex of X is adjacent
to all vertex of C. Thus it follows from the maximality of G that G = H(n, k, t).

Suppose that |C| = 2. Then G[A] and G[B] are cliques of sizes k − t − 2 and t − 1.
Moreover, we have ω(G) − 2 = |A| > |B| = δ(G) − 1 by ω(G) > δ(G). Recall that
G[A∪C] = H and each vertex of X is not adjacent to B. It is easy to see that the graph
G − B is still 2-connected with δ(G − B) > t (the vertices in C ⊆ V (H) have degree at
least k − t− 1 > δ(G) in G−B), ω(G−B) = k − t and c(G−B) < k.

Since δ(G − B) > t and each vertex of X is not adjacent to A ∪ B by the claim, we
have |X| > t− 1. If |X| = t− 1, then G[X] is a complete graph on t− 1 vertices, whence
G = Z(k− t+ 2(t− 1), k, t). Let |X| > t. Then G−B has at least k− t+ t = k vertices.

We will show that G − B is also an edge-maximal counter-example. Let e = uv ∈
E(G−B). If e is not incident with A, then G+e contains a cycle of length at least k con-
taining no vertex of B (by |A| > |B|), since any cycle containing e (e is not incident with A
and B) in G+ e cannot contain both of some vertex a ∈ A and some vertex b ∈ B. With-

out loss of generality, let u ∈ A. We consider the path P̃ = x1Pxs1xs2+1Pxmxs2Pxs1+1.
From the previous discussions, there exists a vertex set B′ = V (xs2−1Pxs1+1) such that
G[B′∪C] is a complete graph on t+1 vertices. Moreover, each vertex of B′ is not adjacent
to any vertex of V (G) \ (B′ ∪ C). Since G is 2-connected, by |X| > t, there is a vertex
z ∈ X \ B′ which is connected to C by two vertex-disjoint (except z) paths. If v ∈ B′,
then (G − B) + e contains a cycle of length at least k containing A ∪ B′ ∪ C ∪ {z}. Let
v /∈ B′. If there is a cycle of length at least k in G + e (e is not incident with B and
B′) contains vertices in B, then we can replace the vertices in B with the vertices in B′

to get a cycle of length at least k in (G − B) + e. Thus G − B is also an edge-maximal
counter-example.

Applying the above arguments to G − B, if δ(G − B) > t, then repeat the previous
proof, we have c(G−B) > k by Lemma 4; if G−B = H(n− t+ 1, k, t) (the case |C| = 3
in the above arguments), then put back B, we can easily find a cycle of length k in G
containing all vertices of A and B (|B| = t − 1 > 2), a contradiction; otherwise there is
a copy of Kt−1 (the case |C| = 2 in the above arguments) joining only to C such that
after deleting it, the result graph G∗ on n − 2(t − 1) > k vertices is still a 2-connected
edge-maximal counter-example with δ(G∗) > t, ω(G∗) = k − t and c(G∗) < k, whence
G = Z(n, k, t) by applying the above arguments repeatedly until n− `(t− 1) = k − 1 for
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some `. The proof of our theorem is complete. �
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