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Abstract

Combinatorial Game Theory typically studies sequential rulesets with perfect
information where two players alternate moves. There are rulesets with entailing
moves that break the alternating play axiom and/or restrict the other player’s op-
tions within the disjunctive sum components. Although some examples have been
analyzed in the classical work Winning Ways, such rulesets usually fall outside the
scope of the established normal play mathematical theory. At the first Combina-
torial Games Workshop at MSRI, John H. Conway proposed that an effort should
be made to devise some nontrivial ruleset with entailing moves that had a com-
plete analysis. Recently, Larsson, Nowakowski, and Santos proposed a more general
theory, affine impartial, which facilitates the mathematical analysis of impartial
rulesets with entailing moves. Here, by using this theory, we present a complete
solution for a nontrivial ruleset with entailing moves.

Mathematics Subject Classifications: 91A05, 91A46

1 Introduction

The theory of disjunctive sums of combinatorial games was introduced by Conway [7] and
further expanded by Berlekamp, Conway and Guy in “Winning Ways” [3]. The main
point of the theory is that if a ruleset decomposes into components, then the analysis
becomes easier. Each component is assigned a theoretical value, which is an abstract
concept that is not tied to the ruleset. A position is a sum of individual components. An
important fact is that the players move alternately in the position, but not necessarily in
the components.

Winning Ways considers many types of rulesets which are not fully covered by this
theory. Half of Chapter 12 involves impartial rulesets with entailing moves. No theory is
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given. Some rulesets are considered, although none are solved. With an entailing move,
if a certain condition occurs, the options of the next player are reduced — for example, an
entailing move may force the opponent to play on a certain pile. In this document, the
game forms of entailing moves are expressed with help of the symbols co (an unconditional
Left win) and 30 (an unconditional Right win). Of special interest is the moon value,
( = {oo |35}, where each player has a terminating move. This is part of a general theory
[13], explained further on. A special note on terminology: since the moon is the only new
affine value [13] (adjoined to the nimbers), we designate the term Grundy-value for our
generalized Grundy-value.

It was noted by the authors that entailing moves also occurred in NIMSTRING (the
impartial version of DOTS AND BOXES, see Chapter 16) and other rulesets. In those
particular cases, the authors of Winning Ways used the designation complimenting mowves,
where the players ‘carry on’ the moves, keeping the turn to play. Given a game G, such
a move has the form G* = {oo|GF} or GF = {GF|ac}. Once there is a lethal threat
expressed by the infinity symbol, there is an automatic “jump” from G to G or to GFE.
These moves can also be seen as moves that reduce options, since the player is forced
to respond locally in a certain way to protect himself from an infinitely large threat.
Hence, complementing moves are particular cases of entailing moves. Here, we refer to
complimenting moves as carry-on moves.

Although NIMSTRING and DOTS AND BOXES have received attention [2, 4, 11, 12],
until recently little progress has been made towards a general theory. There are only two
papers which mention entailing moves: in 1996, [16], which is a computer analysis of TOP
ENTAILS heaps, ranging in size up to 600, 000, and no regularities were discovered; and, in
2002, [8], which considers pawn endgames in CHESS. In the latter, entailing moves avoid
losing immediately but no other theory is needed.

At the first Combinatorial Games Workshop at MSRI (1996), John H. Conway pro-
posed that an effort should be made to devise some nontrivial ruleset with entailing moves
that had a complete analysis.

One reason why a complete analysis is possible is that, in [13], we show that impartial
games, with entailing moves (and, in particular, carry-on moves), can be incorporated into
one theory that extends impartial normal play structure. We review the affine impartial
normal play theory in Section 2.

1.1 CHRISTMAS LIGHTS’ FIXTURE

The ruleset CHRISTMAS LIGHTS’ FIXTURE is inspired by the Christmas season. In a
typical family home, the Christmas tree is decorated by strings of lights which we call
“fixtures”. With use, some parts of the fixtures tend to become damaged. These damaged
parts may have either broken bulb sockets (broken bases), which must be removed, or
broken-but-replaceable bulbs. Observe that a broken-but-replaceable bulb has a “live”
socket in good shape. For example, in the fixture
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a working bulb is colored, a replaceable bulb is transparent, and a broken socket is in-
dicated by a broken bulb and a black socket. This fixture has three disjoint damaged zones.

After Christmas, the family calls two electricians to repair a fixture. Of course, they
want to replace all the replaceable bulbs and remove all the broken sockets. This is a
quiet time, so the electricians play the following game in which they alternate moves.
Since they only work on the damaged parts of the fixture, the whole fixture may be seen
as a disjunctive sum where the disjoint components are the damaged parts, separated by
working bulbs. The previous example corresponds to the disjunctive sum

LONORvRORN ORISR ONORO

Positions: A CHRISTMAS LIGHTS’ FIXTURE position is a fixture with some damaged
parts. Figure 1 shows a possible damaged part to be used to exemplify how the moves
are made.

Figure 1: A damaged part is a component of a disjunctive sum.

ORORYRYNONONYRONONY]

Mowves: There are three types of moves:

(1) If an electrician chooses a replaceable bulb of a component to play, then she fixes that
bulb and everything on that component to the right (away from the plug). That is, the
electrician replaces replaceable bulbs and removes broken sockets to the right — Figure 2.

Figure 2: Replacing a replaceable bulb.
Before

ORORYRNONONRONONY]

After T

vV Vv
The move reduces the This part plays no further
component to this part. role in the game.
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(2) If an electrician chooses a broken socket to play, and if the adjacent bulbs are not
both replaceable (with live sockets), then the electrician can remove it and connect the
two ends together, passing the turn to the opponent — Figure 3.

Figure 3: Removing a broken socket without getting a shock.

RORYRYRONONYRONON]

/I\
LONORRONOR AN N )

Before

After

(3) However, if an electrician chooses a broken socket to play, and if the adjacent bulbs
are both broken-but-replaceable, then, when connecting the two ends, the electrician gets
a mild electric shock. As a consequence of the shock, the electrician must move again,
which can be done on any component. This is the carry-on rule. Removing a broken
socket that is adjacent to only one or no broken-but-replaceable bulb does not trigger a
shock nor a carry-on move — Figure 4.

Figure 4: Removing a broken socket, and getting a mild shock.
Before

IORORYRYRONORYRONON S
/]\

After (the player must play again on any component)

Q.09 20 QMW Q

Winning condition: An electrician who no longer has broken-but-replaceable bulbs to
replace or broken bulb sockets to remove loses the game (normal play convention).

Moves of type (1) are similar to GREEN HACKENBUSH. Indeed, there are even deeper
connections.

2 Review of theory, an exposition, and some notation

Because working bulbs take no part of the game, we will henceforth designate the termi-
nology socket for a broken socket, and bulb for a broken-but-replaceable bulb.
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The proofs in this paper will focus on concatenations with bulbs and sockets that are
reminiscent of ordinal sums. To motivate the concept, let us consider the classic ruleset
GREEN HACKENBUSH, which is different from NiM [3]. The next left diagram shows a
position where, after removing the edge with the label a, four more edges on the top
disappear. In this example, it makes sense to consider the decomposition shown in the
right diagram.

o o

If a player moves in GG, then H disappears; if a player moves in H, then nothing
happens to G. The intuitive understanding in play is that H is eliminated when a player
moves in GG. This idea leads to the concept of ordinal sum of two games G : H, where
a player may move in either G (base) or H (subordinate), with the additional constraint
that any move on GG completely annihilates the component H. The recursive definition is

G:H:{GE,G:H’C|GR,G:HR}.

It is crucial to remember the Colon Principle, i.e., if H = H’, then G : H = G : H’,
but, in general, H : G # H' : G. There are many works where the ordinal sum is the
key concept (the classical [1, 3, 7, 14], or the more recent [5, 6, 9, 10]). Typically, one
begins by proving that the value of G : H can be determined, provided that G and H are
minimal in some respect. Then, given a composition of ordinal sums

G=Gy:G1:...:Gp_9:Gy_1:G,, that is,

G=Go:(G1:...: (Gpoo : (Gp1:Gp))),
the values of G,,_1 : G, Gy2 : (Gy1: Gy), Gp3(Gpo: (G,_1:Gy)), and so on, are

iteratively calculated through equivalent positions involving the already known minimal
cases. This procedure is mathematically correct, as the forms of the subordinates are
irrelevant, and therefore, the known minimal forms can be used without altering the game
values. Finally, we use right-to-left associativity to determine the value of the ordinal sum
as a whole.

In the following sections we present a complete solution for CHRISTMAS LIGHTS’ FIX-
TURE, i.e., an expeditious way to compute the Grundy-value of any component. The
analysis lies in finding ordinal sums like those of HACKENBUSH, but with carry-on moves.
Theorems 1, 3 and 5, in Subsection 3.1, allow us to determine the Grundy-values of three
important minimal cases. Theorem 10, a version of the Colon Principle, is presented
in Subsection 3.2. Finally, Subsection 3.3 concludes the analysis with an example that
showcases the theory presented here in action.

From now on, we will use shorthands for sockets and bulbs. The notation used in this
paper is as follows.

o
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1. A sequence of n consecutive sockets is designated by |n]|.
2. A sequence of n consecutive bulbs is designated by m.!

3. Concatenations are considered. For example |3|4]2| designates a sequence of 3
consecutive sockets, 4 consecutive bulbs and then 2 consecutive sockets.

4. For 0 < n < oo, *n designates any component whose affine impartial value (ex-
plained below) equals *n and whose leftmost piece is a bulb. One exception concerns
the case n = 0, where *n has no pieces at all.

5. The particular case of n = oo, in item 4, is highlighted as €. This component
equals moon and its leftmost piece is a bulb. A minimal example is explained in
Observation 4.

As mentioned, the affine impartial normal play theory presented in [13] is adequate to
study rulesets with entailing moves. That general theory is used in the following sections,
and can be summarized through the following list.

o Omnipresence of nimbers and moon: Given an affine impartial game form G, we
have a nonnegative integer n such that G =jp~ *n or we have G =jp C (“=pe”
is the equality of games modulo affine impartial and the moon is the game form
{00 | 36}; from now on, for ease, we write “=" instead of “=|n="). In the first case,
we say that the Grundy-value of G is G(G) = n, and, in the second case, we say

that the Grundy-value of G is G(G) = 00.?

o Determination of the Grundy-value of G from its options: Let G be an affine impar-
tial game form, and let nim be the class of nimbers. The set of
G-immediate nimbers, denoted Sg, is the set S¢ = G* N nim. These are the op-
tions of G that are nimbers. The set of G-protected nimbers, denoted Pg, is the
set of nimbers *n such that, playing first, Left wins G + *n by moving to some
{oo| GERY + %n or to oo + #n; although Left maybe cannot move to *n + *n, a
winning check or a checkmate is at hand. The Grundy-value of G is determined
by G(G) = mex(G(Sg U Pg)), where “mex” is the set function whose output is the
minimum nonnegative integer excluded from the set.? Of course, if Sg U Pz = nim,
then G(G) = co. Games G with options GF = {oo|*n} are common and immedi-
ately guarantee that nim\ {xn} C Pg. As these moves are carrying on to *n, we will
use the notation O*" instead of {oo | *n}. If we are making explicit Grundy-values
instead of game values, we will use the notation O™,

IThere is a slight overlap of notation here, because we inherit the notation for an unconditional Right
win as 50. The context is sufficiently different.

2The meaning of this symbol should not be confused with the meaning of the same symbol in Fraenkel-
Smith generalized Sprague-Grundy Theory [15]. Here, we are concerned with structures with entailing
moves; Fraenkel-Smith Theory considers loopy impartial games.

3In this paper, mex(G(Sg U Pg)) means mex{G(g) : g € S¢ U Pg}.

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(4) (2024), #P4.65 6



o Determination of the Grundy-value of a disjunctive sum, knowing the
Grundy-values of the components: If G and H are affine impartial game forms,
then G(G + H) = G(G) & G(H), where @ is the exclusive OR (XOR) of the binary
representations of the summands if G(G) < oo and G(H) < oo, or G(G) ® G(H)
results in oo if G(G) = oo or G(H) = oo (this operation is a natural extension of
NIM-sum).

e Relation between the Grundy-value of G and its outcome: Given an affine impartial
game form G, the outcome of G is P if and only if G(G) = 0.

Next, we present the values of all CHRISTMAS LIGHTS’ FIXTURE components with
three pieces. The following section will provide closed formulas to determine the Grundy-
values of these and other important particular cases.

@ @ @ =3 =1{0,%,%2| 0,,%2} = 3

D

0, W =201] = {0,%,%2| 0,%, %2} = %3

W, @ W =Tn|T=1{0,02,%2] 0,072, %2} = ¢

) ) =112 = {(+2,%,0] #2,%,0} =3

QD ) —121T=1{0,0,0]0,0,0} = +

QD W D =TI = {#2,%,0] #2,%, 0} = 3

Q:D W =T2| = {0,%2,%2] 0, %2, %2} = «

W@ =131 =1{0,0,0]0,0,0} =

3 Analysis of CHRISTMAS LIGHTS’ FIXTURE

A component that only has bulbs is isomorphic to a GREEN HACKENBUSH STRING. A
component that only has sockets is a trivial SHE LOVES ME SHE LOVES ME NOT situa-
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tion, since at each move, exactly one piece is fixed. Therefore, our analysis begins with
elementary positions with two types of pieces.

First, we present and prove some closed formulas that are useful for determining the
Grundy-values of important particular cases. Second, we prove a kind of Colon Principle,
stating that the Grundy-value of & |m/|*i only depends on the Grundy-value i and not on
the shape of xi (k,m > 0, and oo > > 0). Finally, we exemplify how to use right-to-left
associativity to compute the Grundy-value of any component.

The following proofs are made by induction. Typically we determine Si and Py in
order to compute G(G) = mex(G(SgUPg)). Of course, the values G(SgU Pg) are obtained
through the inductive step.

3.1 Grundy-values of |/m|n, m |m|, and k |m|7n

When playing in components of the |m| 7 or 7 |m| types, sockets never appear sandwiched
between two bulbs. Therefore, at all moments, the available options are quiet options,*
making analysis relatively simple, as illustrated in the following theorem.

Theorem 1. Ifm >0,n >0, G=|m|n, and H =7 |m|, then

|n if m is even
G(G) = { n+(—=1)" ifmis odd

and fm
n if m is even
Q(H)—{ n+1 if m is odd.

Proof. Let G be a component of the form |m|7. Since there are no sockets sandwiched
between two bulbs, all options are quiet options. Hence, Py = &, all options belong to
Sa, and |m| 7 is a nimber.

If m =1 and n = 0, we have [1/0 = {0]|0} = *, and that is consistent with the
formula. This is the base case.

Otherwise, the options of |m|7n are (jm — 1|7, |m|0, |m|1,..., |m|n — 1.

If m is even, by induction, the Grundy-values of the options are n — 1 or n + 1, 0,
1,..., n—1. In both cases, the minimum excluded value is n.

If m is odd and n is odd, by induction, the Grundy-values of the options are n, 1, 0,
3,2,....n—4,n—5n—2,n—3, n. The minimum excluded value is n — 1.

If m is odd and n is even, by induction, the Grundy-values of the options are n, 1, 0,
3,2,...,n—3,n—4,n—1,n—2. The minimum excluded value is n + 1, and the proof
is finished.

Let H be a component of the form 7 |m|. Since there are no sockets sandwiched
between two bulbs, all options are quiet options. Hence, Py = &, all options belong to
S, and 7 |m/| is a nimber.

4Quiet options do not involve terminating threats, carry-on moves and so forth.
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If m =1 and n = 0, we have 0|1| = {0]|0} = %, and that is consistent with the
formula. This is the base case.

Otherwise, the options of 7 |m| are 0,...,n — 1, and 1 |m — 1|.

If m is even, by induction, the Grundy-values of the options are 0, 1,..., n — 1, and
n + 1. The minimum excluded value is n.

If m is odd, by induction, the Grundy-values of the options are 0, 1,..., n— 1, and n.
The minimum excluded value is n + 1, and the proof is finished. O

Observation 2. Consider
W Y @ v =|3|2=%3 (m =3 is odd and n = 2 is even)

This component is trivially isomorphic to the GREEN HACKENBUSH position®

o)

% O
O O
In fact, all components of the form |m| = exhibit behavior similar to GREEN HACKEN-
BUSH positions where m single edges are arranged side by side with a string of length n.

This explains the first case of the previous theorem.

Consider now
@ v Y ) () =23 =%3 (n=2is even and m = 3 is odd )

This component is trivially isomorphic to the GREEN HACKENBUSH position

o ©

O
O O

Indeed, components of the form T |m| exhibit behavior similar to GREEN HACKENBUSH
positions where a string of length n has m single edges on the rightmost vertex. This
explains the second case of the previous theorem.

The following theorem, based on a minimal “lunar situation”, already allows for the
possibility of a carry-on move.

Theorem 3. Ifk >0, m >0, and G = k|m|1, then

00 ifm=1
GG)=X k if m > 1 is odd

k+1 if m is even.

5Horizontal presentation.

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(4) (2024), #P4.65 9



Proof. If m = 1, the socket is sandwiched between two bulbs and G has one carry-on
option. The options of G are 0,..., k — 1, a carry-on move to k + 1, and & |1|. Hence,
Se =10,%,...,%(k —2),x(k —1),%(k + 1)}, and, due to the fact that the carry-on move
is O**+D we have Pg; = nim\ {*(k + 1)}. Therefore, G(G) = mex(G(Sg U Pg)) =
mex(G(nim)) = oo.

Regarding the second case, the options of G are 0, 1,..., k — 2, k — 1, k|m — 1|1, and
k |m|. Hence, the Grundy-values of the options of G are 0, 1,..., k—2, k—1, k+1, and
k 4+ 1. The penultimate is obtained by induction. The last term is obtained taking into
account Theorem 1. The minimum excluded value is k.

Regarding the third case, the options of G are 0, 1,..., k—2, k— 1, k|m — 1|1, and
k|m|. Hence, the Grundy-values of the options of G are 0, 1,..., k—2, k—1, oo or k,
and k. If m —1 =1 then the penultimate is obtained taking into account the first case of
this proof; if m — 1 is an odd integer larger than 1 then the penultimate is obtained by
induction. The last term is obtained by using Theorem 1. The minimum excluded value
is k + 1, and the proof is finished.

m

Observation 4. If k =1 and m = 1, then we have the situation
0 @ ) = {0,{oo| x2},%2]0, {x2|}, 52} = ¢

In this case, since the socket is sandwiched between two bulbs, there is a carry-on option.
In fact, there is a quiet option to %2 and there is a carry-on option to *2. Consider the
disjunctive sum G + %2; in that sum, a move to x2 + %2 is a winning move for the first
player. Consider now the disjunctive sum G + xj where j # 2; in that case, the carry-on
move G + xj —O*2 4+ % j is a winning move because the first player can continue playing
on the N -position *2 + xj. In [3], the authors called this situation “a kind of strategy
stealing” (page 406). The position 1|1|1 is the simplest component whose value is equal
to (.

If k =2 and m = 4 we have the situation

@@ @:*3

0 1 2
The labels on the options represent their Grundy-values. In this example, fixing the
rightmost bulb makes it so that a ignorable even number of sockets remains. Therefore, in

practical terms, the simplest way to approach this type of situation is to simply disregard
the sockets.

If k =2 and m = 3 we have the situation
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In this last example, the removals of sockets and the replacement of the bulb are re-
versible options. Therefore, in practice, the best approach to this type of situation is to
treat the position as if it only has the bulbs on the left side of the sockets.

Theorems 1 and 3 allow the analysis of components k |m|7 where n > 1. As we will
see, these cases can also be thought of as particular positions of GREEN HACKENBUSH
positions.

Theorem 5. If k>0, m >0, n > 1, and G = k |m|n, then

| kE+n if m s odd
6(G) = { k4+n+(—1)" if m is even.

Proof. The options of G are 0, 1,..., k — 1, k|m — 1|7 (if m > 1) or O***) (if m = 1),
k|ml|, k|m|1, k|m|2,..., klm|n —1. In the following lines, the Grundy-value of the
option E\m[ is obtained by using Theorem 1 and the Grundy-values of all the other
options are obtained by induction (including quiet removals of sockets).

Let m be odd and n be odd. If m > 1, then we have the fundamental sets Sg =
{0,...,%(k —1),%(k+n —1),%(k + 1), %k, %(k +2),...,%x(k +n — 1)} and Pg = @. If
m = 1, then, since there is one carry-on move, we have the fundamental sets Sq =
{0,...,x(k—1),x(k+1),x(k+2),...,%x(k+n—1)}, and P; = nim\ {x(k+n)}. In both
cases, G(G) = mex(G(Sqg U Pg)) =k +n.

Let m be odd and n be even. if m > 1, then we have the fundamental sets Sg =
{0,...,%(k = 1), %(k +n+1),%(k + 1), %k, %(k +2),...,x(k+n —1)} and Pg = @. If
m = 1, then, since there is one carry-on move, we have the fundamental sets Sg =
{0, ..., %(k—=1),*%(k+1),x(k+2),...,x(k+n—1)}, and Pz = nim\ {*(k+n)}. In both
cases, G(G) = mex(G(Sqg U Pg)) =k +n.

Let m be even and n be odd. In this case, the Grundy-values of the options of G are
0,1,..., k—2, k—1, k+n (removal of a socket), k, k+1, k+3, k+2, ..., k+n— 2,
k+n — 3, and k +n. The minimum excluded value is k +n — 1.

Let m be even and n be even. In this case, the Grundy-values of the options of G are
0,1,..., k=2, k—1, k+n (removal of a socket), k, k+1, k+3, k+2, ..., k+n, and
k +n — 1. The minimum excluded value is k + n 4 1, and the proof is finished. m

Observation 6. Consider the component where k =2, m =1, and n = 4, that is,

0 1 o83 « 4 5

In this case, the Grundy-value of the component coincides with the total number of
bulbs. This happens whenever m =1 andn > 1. Consequently, in terms of game practice,
the simplest approach is to make the carry-on move and, if appropriate, play again in the
same component.
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This can be thought of as @ GREEN HACKENBUSH string with a “ghost edge”.

O
% O O O O O O
0 1 2 3 4 5

In practice, the ghost edge does not exist,% since it corresponds to a carry-on move that
keeps the right to play to the player who makes it. Consider now the position where k = 2,
m =2, and n =05, that is,

@@@@@@@@@:*6

o 1r 7 2 3 5 4 7

This example is more difficult to analyze. Applying the previous theorem, given that
n 1s odd, we obtain the Grundy-value 2 + 5 — 1 = 6. However, due Theorem 3, there
15 a “perturbation” related to the two bulbs following the sockets, so it is no longer easy
to have an intuition about the Grundy-values of the options. To overcome this problem,
we suggest the mnemonic Double Jump which consists of establishing again a link with a
GREEN HACKENBUSH position, but placing the second edge two vertices to the right what
would be expected.

O
% O O O O O O O
0 1

Algebraically speaking, this action reqularizes the perturbation. Then, it is only neces-
sary to determine the Grundy-values of the options of that GREEN HACKENBUSH position,
always keeping in mind that the ghost does not exist.

For larger values of m, the mnemonic still works. However, starting from the second
one, “non-ghost” edges are placed on the expected vertex. For example, consider k = 2,
m =3, and n =5, that is,

0 1 6 3 2 4 5 6

In that case, the related GREEN HACKENBUSH position is

6Ghosts do not exist.
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and, for 214|5 and 21|5|5, the related GREEN HACKENBUSH positions are

7 0
o " o
% o 3 o o o o o
0 1 2 3 5 4 7
and
o
6
o
o
o 6 o
% o 3 o o o o o
0 1 3 2 4 5 6

3.2 Moonlight Theorem and Colon Principle

The initial results of this section are related to the Colon Principle, but they only apply
to components with a finite Grundy-value. Nevertheless, once we establish the Moonlight
Theorem, we prove that the Colon Principle is applicable to all cases.

Lemma 7. Ifi < s are two integers, we have the following:

1. All carry-on moves on *i are O where i is identical to the fixture *i in every
way, except for the absence of the socket removed with the carry-on move;

2. In the game *i + %3, the first player can win by making all possible carry-on moves
on the second component, followed by a move to *i -+ xi in that same component.

Proof. Starting with the first item, note that a carry-on move on *i cannot be C)@, oth-
erwise the Grundy-value of xi would be co instead of i. On the other hand, a carry-on
move on xi also cannot be O* with j # i, otherwise we would have nim\ {*j} C P, and
mex(G (S5 U Px)) could be j or co, but not 4. Therefore, a carry-on move on *i can only

be O* .

The second item is a consequence of the first. That is, after making all possible carry-
on moves on the second component, a position xi + ¥’ is obtained in which the second
component no longer has any carry-on moves. Since its Grundy-value is still s, at that
point, the second component must have a quiet move to 0. Naturally, the move to Ry
is a winning move since its Grundy-value is i & i = 0. O]
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Lemma 8. Let k 20, m 20, and i < co. If k |m| %3 is not the moon, then the Grundy-
value of k |m|*i does not depend on the shape of xi.

Proof. Let %7 and *i be two components of different shapes, but with the same Grundy-
value i < oo. First, suppose that m = 0. In this case, k *i + k*i € P because the second
player can play on the rightmost parts as they were playing the P-position pr i Hence,
Fxi=Fkxi.

Now, let us prove that we cannot have k > 0 and m = i = 1. In k [1] %, by Theorem 1,
a player would be able to make a move to k|1| = *(k + 1). On the other hand, in & |1] ¥,
a player could also make a carry-on move to k%. However, we have already shown in
the previous paragraph that k¥ = k1. Since k1 = *(k + 1), that carry-on move would
lead to k% = x(k + 1). Consequently, we have *(k + 1) € Sty but at the same time,
nim\ {x(k+1)} C Py 5. Together, these two facts imply that Gk|1]¥) = mex(G(Sz 15U
Prys)) = mex(G(nim)) = oo, therefore, it follows that k|1|¥ = «, contradicting our
assumption.

For the general case, let us prove that k |m|xi+k |m|*i € P. Essentially, the strategy
of the second player is to play on the rightmost parts as if they were playing the P-position
i+ %0

If the first player makes a quiet move on one of the rightmost parts *i or *_i/, then the
second player responds also on the rightmost parts with their winning line of *7 +%i. As
a result, a position like % |m|%j + k |m|*j is achieved. By induction on the number of
pieces, that position is a P-position and the second player wins.

If the first player makes a carry-on move on one of the rightmost parts, say *z, then, by
Lemma 7, that move carries on to some . Hence, the first player has the turn again in
the position & [m|*i +k |m|*i . Since by induction on the number of pieces that position
is a P-position, the second player wins.

If the first player replaces a bulb from one of the leftmost parts k of one of the
components, the second player mimics that move on the other component, obtaining a
position k — j +k — j = x(k — j) + x(k — j) € P.

If m > 1 and the first player removes one of the m sockets from one of the components,
the second player mimics that move on the other component, obtaining the position
F|m—1|*i+k|m—1|%i. Once more, by induction on the number of pieces, & [m — 1| i+
k|m — 1] i is a P-position and the second player wins.

If £k > 0, m =1 and the first player makes a carry-on move by removing that single
socket, followed by a sequence of moves that allows the second player to obtain a position
such as k*j + k *_j/ or a position such as k — j + k — j, the second player also wins. The
first case is a P-position, as explained in the first paragraph of this proof. In the second
case, we have k — j+k — j = x(k—j)+*(k—j) € P. The only scenario where the second
player is unable to reach such positions is when k£ > 0, m = 1, and the first player makes
a carry-on move on one component to kxi + k |1] i, followed by a move on the second
component to ki + k |1|. This is the only case where the second player cannot use the
winning strategy of *i + %3 (moving from xi + 0 to 0 + 0) because they no longer have
access to a preliminary carry-on move on the second component before doing it. However,
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even in this case, since we already know that i # 1, the second player can still win by
playing on the rightmost parts by choosing the move that corresponds to the winning
move of *i + |1]. O

The following theorem states that when a moon appears as a part of a component, the
value of the component as a whole is also equal to the moon. In other words, regarding
this type of concatenations, the moon is an absorbing element.

Theorem 9 (Moonlight Theorem). If k > 0 and m >0 then k|m|T = .7

Proof. Suppose there exists a component ¢ such that G(k|m|T) < oo. Additionally,
assume that C is composed of the minimal number of pieces possible. The component
must include carry-on moves, otherwise its game value would not be the moon.

A carry-on move of ¢ cannot be {oo | T}, where T is identical to € in every way, except
for the absence of the socket removed with the carry-on move. If it were, then, due to the
minimal assumption, & |m|T would be the moon. And, because of that, k|m|T would
have a carry-on move to the moon, contradicting the assumption that G(k|m| Q) < oo.

Suppose now that all carry-on moves of € have the form {oco|xi} for some i < oo.
Because the game value of C is the moon, a player must also have a move to . Therefore,
in % |m| T, a player has a move to k |m/|*i and a carry-on move to & |m/|xi. If k |m|*i = C,
then k |m| T is the moon, contradicting G(k |m| Q) < co. On the other hand, if k |m|*i =
xw with w < 0o, by Lemma 8, that fact does not depend on the shape of *i and k|ml| 0
is also equal to xw. In this way, we have xw € Sk| i< nim \ {xw} C | < and
mex(G (SE\m\
assumption G(k |m| Q) < oo.

Finally, suppose that in ( there are at least two carry-on moves {00 | *z} and {oo | *s}
with i < s < oo. If so, in k Im|C a v player has a carry-on move to k Im| *i and a carry-

on move to k |m|*s. Neither k [m| *i nor k|m|*s is the moon, or else k |m| T would be
the moon. Also, note that k|m|*i is not equal to k |m|%s since the first player wins

Y Pk| I )) = oo. Thus, k|m| T is the moon, contradicting once again the

F |m)| i+ k |m| 5. Since i < s < oo, the first player can force k |m| i + k [m| i with the
winning strategy of *i+%s given by Lemma 7, winning the game because k |m| *i+k |m| r
is a P-position by Lemma 8. Thus, a player has carry-on moves to two distinct nimbers.
This fact implies that P, & = nim and k |m| T is the moon, definitively contradicting

the assumption G(k |m| Q) < oc. O
Now, we are ready to establish the Colon Principle in general terms.

Theorem 10 (Colon Principle). Let k > 0, m > 0, and oo > i > 0. Then the Grundy-
value of k |m|*i does not depend on the shape of xi.

Proof. Suppose first that 7 is finite. If & |m|*i is not equal to the moon, then Lemma 8
guarantees that the shape of xi is irrelevant. On the other hand, if k |m|*i is equal to

"When we are exposed to the moonlight, regardless of how far away the moon is, it is impossible to
ignore its presence.
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the moon, and if there is another component *i such that the Grundy-value of k |m| 7
is finite, then we have a contradiction with Lemma 8. Therefore, such % cannot exist,
and the shape of *i is again irrelevant. Suppose now that i is infinite, i.e., *7 is equal to
the moon. In that case, by Theorem 9, k |m|*i is equal to the moon and, once more, the
shape of xi is irrelevant. O

3.3 Use of right-to-left associativity

Let Cy,..., C, be pieces such that C; = k or C; = |k|. To determine the Grundy-value
of the component Cy C, ... C\,,_, C,,, we can use right-to-left associativity:

CoCy (Cy ... (Cres Cpg (Crra Crei C)))

We begin the computation by applying Theorem 1, Theorem 3, or Theorem 5 to
Cy—2Cp_y Cy,. If this is the moon, then the entire component is the moon (Moonlight
Theorem). If C,,_5 C,,_, C,, = *xj with j < oo, the Colon Principle allows us to replace
C_o Cp_, C, with j. After that replacement, it is possible to apply the theorems again to
compute Cy,_y Cp_g (Cpma Cpy C,) as it was Cy,_y Cp—g 4. And so on, until reaching the
leftmost piece of the component. As an example, consider the following exercise involving
the disjunctive sum 2 |3]5|1]4|2]2 + 21| 31| 13| 1.

Figure 5: The electricians are repairing a fixture that is in terrible condition, so the game
is going to be interesting! Who wins, the Previous player or the Next player? If it is the
Next player, how?

On one hand, the disjoint component on the left is 2|3|5]1|4]2|2. Hence, by using
right-to-left associativity, and applying Theorem 3, Theorem 5, and the Colon Principle,
we have

(213 (51} (412[2)))

*7
~—_——
*x12

N J/
-

*14

On the other hand, the disjoint component on the right is 2|13 |1/ 13| 1. Hence, by
using right-to-left associativity, and applying Theorem 3, Theorem 5, the Colon Principle,
and the Moonlight Theorem, we have
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(1] (1} (113[1)))

*

| —
«

(. J/

14

Note that, since 3|1|1|3|1 = (, we immediately know that the entire component is
equal to .

Therefore, the disjunctive sum is an N -position, and its game value is equal to
x14 + C = . The first player can win by playing a sequence of carry-on moves. She can
start with two carry-on moves on the right component, moving to 2 |3|5[1|4]2|2+6 |3| 1,
which is equal to x14 + x6. After that, she can carry on to 2[3|9]2|2+ 63| 1 on the left
component, maintaining the sum in %14 + 6. Finally, she can play the quiet winning
move on the left component to 23|44 63| 1 = %6 + *6 = 0.

After the game is over, the electricians can admire their work illuminated with 23
shining bulbs!
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