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Abstract

A 1
k -majority l-edge-colouring of a graph G is a colouring of its edges with l

colours such that for every colour i and each vertex v of G, at most 1
k ’th of the

edges incident with v have colour i. We conjecture that for every integer k 󰃍 2,
each graph with minimum degree δ 󰃍 k2 is 1

k -majority (k + 1)-edge-colourable and
observe that such result would be best possible. This was already known to hold
for k = 2. We support the conjecture by proving it with 2k2 instead of k2, which
confirms the right order of magnitude of the conjectured optimal lower bound for δ.
We at the same time improve the previously known bound of order k3 log k, based
on a straightforward probabilistic approach. As this technique seems not applicable
towards any further improvement, we use a more direct non-random approach. We
also strengthen our result, in particular substituting 2k2 by (74 +o(1))k2. Finally, we
provide the proof of the conjecture itself for k 󰃑 4 and completely solve an analogous
problem for the family of bipartite graphs.
Mathematics Subject Classifications: 05C15

1 Introduction

A majority colouring of a digraph D is a colouring of the vertices of D such that for every
vertex of D at most half the out-neighbours of v receive the same colour as v. This notion
was first considered by Kreutzer, Oum, Seymour, van der Zypen and Wood [8], who in
particular proved that every digraph has a majority 4-colouring, and conjectured that 3
colours should always suffice. They also posed several other related problems, addressed
in a few consecutive papers. In particular, in [3] Anholcer, Bosek and Grytczuk extended
the result above to a list setting. Further, in [6, 7] the authors studied the problem of
1
k
-majority colourings of digraphs, that is such colourings of the vertices of a digraph

that each vertex receives the same colour as at most 1
k
’th of its out-neighbours, which is

a natural generalisation, proposed already in [8]. Girão, Kittipassorn and Popielarz [6],
and independently Knox and Šámal [7] proved that for each k 󰃍 2, every digraph is
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1
k
-majority 2k-colourable, while there are digraphs requiring no less than 2k − 1 colours.

Further results and extensions can be found e.g. in [2, 3, 4].
It is worth mentioning that optimal results concerning the natural correspondents of

the notions above, but in the environment of graphs follow by the argument of Lovász [9],
printed already in 1966, see also [4] for further comments and results.

A majority edge-colouring of a graph G is a colouring of the edges of G such that for
each vertex v of G, at most half of the edges incident with v have the same colour. More
generally, for an integer k 󰃍 2, a 1

k
-majority edge-colouring of G is a colouring of its edges

such that for every colour i and each vertex v of G at most 1
k
’th of the edges incident

with v have colour i. One of characteristic features of these notions, introduced recently
by Bock, Kalinowski, Pardey, Pilśniak, Rautenbach and Woźniak [5], is that unlike in the
case of vertex-colourings, such edge-colourings do not exist for all graphs. In particular,
for every k 󰃍 2, graphs with vertices of degree 1 do not admit a 1

k
-majority edge-colouring

with any number of colours. In [5] it was however proven that every graph G of minimum
degree δ 󰃍 2 has a majority 4-edge-colouring. On the other hand, the minimum degree
of a graph may have significant influence on the number of colours sufficient to provide
such colourings, and examining this problem seems to be the primal issue in this area.
The main result of [5] solves this problem for k = 2.

Theorem 1 ([5]). Every graph G of minimum degree δ 󰃍 4 has a majority 3-edge-
colouring.

This result is twofold best possible. Firstly, 4 cannot be decreased, as exemplify e.g.
cubic graphs with chromatic index 4. Secondly, 2 colours are not sufficient e.g. for any
graph containing an odd degree vertex.

The main motivation of our research is thus the quest for best possible extension of
Theorem 1 towards all k 󰃍 3. Note first that for any fixed k 󰃍 2, no minimum degree
constraint can guarantee the existence of a 1

k
-majority edge-colouring with at most k

colours – it is enough to consider graphs containing vertices of (arbitrarily large) degrees
not divisible by k. We thus must admit (at least) k + 1 colours, and in fact the authors
of [5] showed that this number of colours is sufficient (and hence, optimal) within our
quest.

Theorem 2 ([5]). For every integer k 󰃍 2, there exists δk such that each graph G of
minimum degree δ 󰃍 δk has a 1

k
-majority (k + 1)-edge-colouring.

For k = 2 this follows by Theorem 1, while in the remaining cases it was proven by a
fairly standard application of the Lovász Local Lemma, which admitted to get the result
above with δk = Ω(k3 log k). We believe that much smaller values of δk should allow
obtaining the same result. Our main objective concerns finding the optimal value of δk
and can be formulated as follows.

Problem 3. For every integer k 󰃍 2, find the least value δoptk such that each graph G of
minimum degree δ 󰃍 δoptk has a 1

k
-majority (k + 1)-edge-colouring.
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It seems one needs to use a non-probabilistic argument in order to completely solve this
problem, we discuss this issue at the end of the paper. In the next section we present the
main tool we shall use within our approach, and show how it allows to solve the problem
in the environment of bipartite graphs. In Section 3 we shall in turn provide order-wise
tight estimations for δoptk in the general case and formulate our main conjecture. In the
following section we also confirm that the conjecture holds for k 󰃑 4. The last section is
devoted to a short discussion concerning our results and further perspectives.

2 Bipartite graphs

Let us begin with a simple observation implying the lower bound for δoptk , also within the
family of bipartite graphs.

Observation 4. For every k 󰃍 2 there exist bipartite graphs G with δ(G) = k2 − k − 1
which are not 1

k
-majority (k + 1)-edge-colourable.

Proof. Let G be a graph containing a vertex v of degree k2 − k − 1 and suppose G has a
1
k
-majority (k + 1)-edge-colouring. Then at most

󰀙
k2 − k − 1

k

󰀚
= k − 2

edges incident with v may have the same colour, and hence at most

(k + 1)(k − 2) = k2 − k − 2 < d(v)

edges incident with v can be coloured, a contradiction.
Therefore, in particular the complete bipartite graph Kk2−k,k2−k with a single edge

removed is an example of a bipartite graph which is not 1
k
-majority (k+1)-edge-colourable

and has minimum degree k2 − k − 1.

We thus must require that δ(G) 󰃍 k(k−1) in order to have a chance to show that such
assumption guarantees that G is 1

k
-majority edge-colourable with k + 1 colours. In [5] it

was actually already proven that k+2 colours are sufficient in such a case. We shall show
that in fact in the case of bipartite graphs, k + 1 colours always suffice, which, in view of
Observation 4, yields an optimal result.

Theorem 5. For every integer k 󰃍 2, if a bipartite graph G has minimum degree δ(G) 󰃍
k(k − 1), then G has a 1

k
-majority (k + 1)-edge-colouring.

In order to prove Theorem 5 we shall make use of Lemma 6 below. This was essentially
proven by Alon and Wei [1]. We present a slight, yet very useful refinement of their result.
We also include its full proof for the sake of completeness. We say a cycle is odd if it has
odd length. Moreover, cycles C1, . . . , Ct in a graph G are called independent if for any
i ∕= j there is no vertex of Ci adjacent to a vertex of Cj in G. (Note that such cycles are
in particular pairwise distinct.)
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Lemma 6. Let G = (V,E) be a graph, and let z : E → [0, 1] be a weight function assigning
to each edge e ∈ E a real weight z(e) in [0, 1]. Then there is a function x : E → {0, 1}
assigning to each edge an integer value in {0, 1} such that

(i)
󰁓
e∋v

z(e)− 1 <
󰁓
e∋v

x(e) 󰃑
󰁓
e∋v

z(e) + 1 for every v ∈ V ;

(ii) if
󰁓
e∋u

x(e) <
󰁓
e∋u

z(e) and
󰁓
e∋v

x(e) <
󰁓
e∋v

z(e) for some uv ∈ E, then x(uv) = 1;

(iii) each vertex v with
󰁓
e∋v

x(e) =
󰁓
e∋v

z(e)+1 belongs to an odd cycle Cv with
󰁓
e∋u

z(e) ∈ Z

for every vertex u of Cv, and moreover all such cycles are independent in G.

Proof. If z(e) ∈ {0, 1} for any edge e of G, then fix x(e) = z(e). Let G′ be the subgraph of
G obtained by removing all edges of G for which z(e) is an integer. Consider the incidence
matrix M of G′. For every edge e ∈ E(G′) let ye be its corresponding column in M . Note
that if G′ contains a closed walk of even length which traverses at least one edge an odd
number of times, then the columns of M are linearly dependent over reals, i.e. there exist
real numbers αe, e ∈ E(G′), such that

󰁛

e∈E(G′)

αeye = 0

and at least one αe is nonzero. In order to see this it is enough to alternately add and
subtract columns corresponding to the consecutive edges along the walk, which yields the
zero vector.

Note that for any nonzero real number c, if we modify all of the values x(e) by cαe,
then the sum

󰁓
e∋v x(e) remains the same for all vertices v, but the value of x(e) shall

change for at least one edge e. Therefore we can choose the value of the coefficient c so
that all modified values of x(e) remain in [0, 1], but at least one of them gets an integer.
Remove all integer valued edges from the graph G′ and continue with the same procedure
until G′ does not contain an even closed walk traversing some edge an odd number of
times. Note that every component of the resulting graph G′ contains at most one cycle,
which has to be odd.

Observe that at this point for all vertices v of G we have
󰁛

e∋v
x(e) =

󰁛

e∋v
z(e)

and for all edges e of G′ the value of x(e) is in the open interval (0, 1). Hence, after
modifying each of these values to an integer in {0, 1}, for all vertices v with dG′(v) 󰃑 1
we shall have 󰁛

e∋v
z(e)− 1 <

󰁛

e∋v
x(e) <

󰁛

e∋v
z(e) + 1.

Thus, in the following step we shall focus on modifying the values of x(e) for the edges e
of G′ in such a way that 󰁛

e∋v
x(e) =

󰁛

e∋v
z(e)
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for all vertices v with dG′(v) 󰃍 2.
Suppose G′ has a component G′′ containing both a vertex of degree 1 and a vertex of

degree at least 2. Consider the system of linear equations
󰁛

e∋v
x(e) =

󰁛

e∋v
z(e)

for all vertices v of G′′ which have degrees at least 2, where the variables are x(e) for all
edges e of G′′. Since every edge of the component must be incident with a vertex of degree
at least 2, the number of variables in this system equals the number of edges of G′′, which
is strictly greater than the number of its vertices of degree at least 2, as it contains at
least one vertex of degree 1. Thus, the number of variables in this system is greater than
the number of equations. Since there exists a solution of the system, given by x(e) = z(e)
for e ∈ E(G′′), there must exist infinitely many solutions of the system, forming an affine
space. Choose any nonzero vector ω in the vector space associated to this affine space and
note that for any β ∈ R󰄀 {0}, by adding βω to the mentioned solution: x(e) = z(e) for
e ∈ E(G′′), we obtain a new solution of our system of equations. Thus, by appropriately
adjusting β, we may choose such solution so that all values of x(e) remain in the interval
[0, 1] and at least one of them is an integer. We then remove integer valued edges from
G′. We repeat this procedure until all components of G′ are odd cycles or isolated edges.

For all isolated edges e of G′ we can then simply set x(e) = 1.
The remaining edges e with non-integer values of x(e) induce disjoint odd cycles in G.

By previous arguments all vertices v of such cycles satisfy
󰁛

e∋v
x(e) =

󰁛

e∋v
z(e).

We call an odd cycle bad if x(e) = 1/2 for all its edges e. Note
󰁓

e∋v z(e) ∈ Z for every
vertex v of any bad cycle in G′. We shall show that we may modify G′ so that all its bad
cycles are independent in G. Suppose there are bad (odd) cycles C1, C2 in G′ joined by
an edge, say e0 in G. Let H be the subgraph of G induced by e0 and the edges of C1, C2.
Then it is straightforward to notice that there exist αe ∈ {−1, 1}, e ∈ C1 ∪ C2, such that

αe0ye0 +
󰁛

e∈C1∪C2

αeye = 0

where αe0 = 2. (It suffices to alternately set αe to −1 and 1 along both of the cycles,
starting from a vertex of e0.) Since x(e) = 1/2 for e ∈ C1 ∪ C2 and x(e0) ∈ {0, 1}, by
adding αe/2 or −αe/2 (depending on x(e0)) to all x(e), e ∈ E(H) we shall thus not change
the sum

󰁓
e∋v x(e) at any vertex v while all edges of H shall get integer valued. We shall

thus remove all these edges from G′. We repeat this procedure until all bad cycles of G′

are independent in G.
For each cycle C of G′ we then proceed as follows. If C is bad, we denote any of its

vertices as v. Then for all edges e of C we round the value of x(e) to the nearest integer
with the additional restriction that if for the two edges e′, e′′ incident to any given vertex
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u in C we had x(e′) = 1/2 = x(e′′), then one of these values must be rounded down to 0
and the other one rounded up to 1 if u ∕= v, while we round both values up to 1 for u = v.
As a result we obtain a function x such that

󰁓
e∋v

x(e) =
󰁓
e∋v

z(e) + 1 and

󰁛

e∋u
z(e)− 1 <

󰁛

e∋u
x(e) <

󰁛

e∋u
z(e) + 1

for all the remaining vertices u of C (other than v). Thus, since bad cycles of G′ were
independent in G, we obtain a function x : E → {0, 1} satisfying (i) and (iii).

Finally, we shall show that we can further modify the function x so that it also satisfies
(ii). Assume (ii) is not satisfied and there exists an edge uv ∈ E with x(uv) = 0 such
that

󰁓
e∋u

x(e) <
󰁓
e∋u

z(e) and
󰁓
e∋v

x(e) <
󰁓
e∋v

z(e). If we modify the value of x(uv) to 1, then
󰁓
e∋u

x(e) <
󰁓
e∋u

z(e) + 1 and
󰁓
e∋v

x(e) <
󰁓
e∋v

z(e) + 1, hence (i) and (iii) are still satisfied, but

there are less edges that contradict (ii). Therefore, we can construct in this manner a
function x : E → {0, 1} satisfying all three conditions (i) – (iii).

Proof of Theorem 5. Let G = (V,E) be a bipartite graph with δ(G) 󰃍 k(k − 1), k 󰃍 2.
Set Gk+1 = G.
For i = k + 1, k, . . . , 2 let further Gi be a subgraph of Gi obtained via applying to it

Lemma 6 with a constant weight function zi(e) = 1
i

and setting E(Gi) = {e ∈ E(Gi) :

xi(e) = 1} where xi : E(Gi) → {0, 1} is a function resulting from the lemma; let also
Gi−1 = (V (G), E(Gi) \ E(Gi)).

Finally, set G1 = G1.
We shall prove that for every i ∈ {1, . . . , k + 1} and each vertex v ∈ V

dGi
(v) 󰃑

󰀙
dG(v)

k

󰀚
, (1)

and thus the edges of G1, . . . , Gk+1 partition E to k+1 colour classes inducing a 1
k
-majority

(k + 1)-edge-colouring of G. In other words, the colouring c : E → {1, . . . , k + 1} can be
defined by setting c(e) = i iff e ∈ E(Gi).

Let v be an arbitrary vertex of G and let

dG(v) = (k + 1)l + j

where j ∈ {0, . . . , k}. Since dG(v) 󰃍 δ(G) 󰃍 k(k − 1) we have that l 󰃍 k − 1 or l = k − 2
and j 󰃍 2. Hence

󰀙
dG(v)

k

󰀚
=

󰀙
(k + 1)l + j

k

󰀚
= l +

󰀙
l + j

k

󰀚
󰃍 l + 1 (2)

unless l = k − 1 and j = 0. Since G is bipartite, none of Gi contains odd cycles. Thus,
Lemma 6 (iii), exploited to construct each Gi, guarantees the following to hold.
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Claim 7. If dGt
(v) = td for some t ∈ {1, . . . , k + 1} and d ∈ Z, hence

󰁓
e∋v

zt(e) = d, then

dGt(v) = d.

This almost immediately yields (1) in the case when dG(v) is divisible by k + 1. It is
sufficient to apply k times Claim 7 to obtain the following.

Claim 8. If j = 0, i.e. dG(v) = (k + 1)l, then dGi
(v) = l for all i.

Then however, we have that for every i ∈ {1, . . . , k + 1},

dGi
(v) = l =

󰀙
kl

k

󰀚
󰃑

󰀙
dG(v)

k

󰀚
,

and thus (1) follows.
It remains to prove (1) in the case when j ∕= 0. By (2) it is sufficient to show that

dGi
(v) 󰃑 l+1 for every i. This is implied by k times repeated application of the following

claim.

Claim 9. If dG(v) = (k + 1)l + j and j ∕= 0, then for every t ∈ {2, . . . , k + 1}, if
dGt

(v) ∈ {tl, tl + 1, . . . , t(l + 1)}, then dGt(v) ∈ {l, l + 1} and dGt−1
(v) ∈ {(t − 1)l, (t −

1)l + 1, . . . , (t− 1)(l + 1)}.

Proof. Note that analogously as above, if dGt
(v) = tl (respectively, t(l + 1)), then by

Claim 7, dGt(v) = l (respectively, l+1) and dGt−1
(v) = (t−1)l (respectively, (t−1)(l+1)).

In the remaining cases, dGt(v) ∈ {l, l + 1} by Lemma 6 (i), and thus dGt−1
(v) ∈

{(t− 1)l, (t− 1)l + 1, . . . , (t− 1)(l + 1)}.

3 General graphs

The main obstacle in obtaining a similar result as in Theorem 5 for the general case, not
only for bipartite graphs, is that we cannot show Claim 7 to hold any more if a graph has
odd cycles, as the proof of this fact relied on Lemma 6 (iii). Actually, this inconvenience
shall have much further reaching consequences than we initially suspected, and shall (most
likely) disallow us obtaining sharp results in most of the general cases.

Before we discuss our upper bounds, let us however first demonstrate that it is after
all not that surprising we could not solve this apparent sole obstacle on the way towards
extending Theorem 5 to all graphs, as the upper bound in it does not hold any more in
general.

Observation 10. For every k 󰃍 2 there exists a graph G with δ(G) = k2 − 1 which is
not 1

k
-majority (k + 1)-edge-colourable.
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Proof. For every fixed k 󰃍 2 we construct a graph G as follows. We first take the complete
graph on k2 + 1 vertices and remove the edges of any fixed Hamilton cycle from it. Then
we add a new vertex to the constructed graph and connect it with single edges with all
the remaining vertices. Note that the obtained graph G has k2+1 vertices of degree k2−1
and a single vertex of degree k2 +1. Suppose there is a 1

k
-majority (k+1)-edge-colouring

of G. Since k2 − 1 = (k + 1)(k − 1) and at most
󰀙
k2 − 1

k

󰀚
= k − 1

edges incident to every vertex v of degree k2 − 1 can be coloured with the same colour,
then for every such vertex v and for each of the k+1 colours, exactly k−1 edges incident
to such v are coloured with this colour. Analogously, for the only vertex u of G with
degree k2 + 1 = (k + 1)(k − 1) + 2, at most

󰀙
k2 + 1

k

󰀚
= k

edges incident to the vertex u can be coloured with the same colour, and hence exactly
k edges incident to the vertex u must be coloured with some colour, say α. Consider the
subgraph of G induced by the edges of G coloured with α. The sum of degrees in this
subgraph equals

(k2 + 1)(k − 1) + k,

which is always an odd number, a contradiction.

Observation 10 thus implies that δoptk 󰃍 k2 for every k 󰃍 2. We conjecture that in fact
δoptk = k2 for each k 󰃍 2, which holds for k = 2 by Theorem 1.

Conjecture 11. For every integer k 󰃍 2, if a graph G has minimum degree δ(G) 󰃍 k2,
then G is 1

k
-majority (k + 1)-edge-colourable.

By means of Lemma 6 we shall now show that δoptk is at most twice the conjectured
value. The proof of this fact shall also be an indispensable ingredient of the further slight
improvement included in Theorem 14.

Theorem 12. For every integer k 󰃍 2, if a graph G has minimum degree δ(G) 󰃍 2k2,
then G is 1

k
-majority (k + 1)-edge-colourable.

Proof. Let G = (V,E) be a graph with minimum degree δ(G) = δ 󰃍 2k2, for some fixed
integer k 󰃍 2. Analogously as within the proof of Theorem 5, we shall use Lemma 6 in
order to choose k consecutive subgraphs G1, . . . , Gk of G and colour the edges of each Gi

with colour i. The remaining edges shall be coloured with colour k + 1.
Set G0 = G. For i = 1, . . . , k let Gi be a subgraph of Gi−1 induced by the edges

e with xi(e) = 1 where xi is a function resulting from applying Lemma 6 to Gi−1 with
a constant weight function zi : E(Gi−1) → {αi}, where the value of αi ∈ [0, 1] shall be
specified later (see (6)); we also set Gi = (V (G), E(Gi−1) \ E(Gi)). Let Gk+1 = Gk. We
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shall show we may choose αi for i ∈ {1, . . . , k} so that for every vertex v of G and each
j ∈ {1, . . . , k + 1},

dGj
(v) 󰃑 dG(v)

k
. (3)

By Lemma 6 (i), for every v ∈ V :

α1dG(v)− 1 <
󰁛

e∋v
x1(e) = dG1(v) 󰃑 α1dG(v) + 1. (4)

In order to satisfy (3) it is thus necessary and sufficient to choose α1 so that α1dG(v)+1 󰃑
dG(v)

k
for all vertices v of G, that is α1 󰃑 1

k
− 1

dG(v)
. Since the function f(n) = 1

k
− 1

n
is

increasing for n > 0, we shall achieve our goal by setting

α1 =
δ
k
− 1

δ
. (5)

Consequently, a vertex v of degree δ, which in some sense are the most restrictive ones,
may in theory end up with dG1(v) arbitrarily close to δ

k
− 2, cf. (4) and (5). Hence for

i ∈ {1, . . . , k} we in general set:

αi =
δ
k
− 1

δ − (i− 1)( δ
k
− 2)

. (6)

We shall now formally prove that such choices of αi guarantee (3) to hold for all j and
v. Let v be an arbitrarily chosen vertex of G. There exists β 󰃍 1 such that dG(v) = βδ.
We shall precisely show that for every i ∈ {1, . . . , k},

dGi
(v) 󰃑 β

󰀕
δ − i

󰀕
δ

k
− 2

󰀖󰀖
(7)

and
dGi

(v) 󰃑 βδ

k
=

dG(v)

k
. (8)

We proceed by induction with respect to i. Since

α1dG(v) =
δ
k
− 1

δ
· βδ = β

󰀕
δ

k
− 1

󰀖

and β 󰃍 1, by (4) we obtain

β

󰀕
δ

k
− 2

󰀖
< dG1(v) 󰃑 β

δ

k
,

so (7) and (8) hold for i = 1, which yields the base case of induction.
For an induction step, assume that dGi−1

(v) = D 󰃑 β
󰀃
δ − (i− 1)

󰀃
δ
k
− 2

󰀄󰀄
for some

i 󰃑 k. Note that by Lemma 6 (i),

dGi
(v) > αiD − 1,
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and thus, by (6):

dGi
(v) < D − (αiD − 1) = (1− αi)D + 1

󰃑 (1− αi)β

󰀕
δ − (i− 1)

󰀕
δ

k
− 2

󰀖󰀖
+ 1

= β

󰀕
δ − (i− 1)

󰀕
δ

k
− 2

󰀖
−

󰀕
δ

k
− 1

󰀖󰀖
+ 1

󰃑 β

󰀕
δ − (i− 1)

󰀕
δ

k
− 2

󰀖
−

󰀕
δ

k
− 1

󰀖󰀖
+ β

= β

󰀕
δ − i

󰀕
δ

k
− 2

󰀖󰀖
,

cf. (7).
On the other hand, by (4) and (6):

dGi
(v) 󰃑 αiD + 1 󰃑 αiβ

󰀕
δ − (i− 1)

󰀕
δ

k
− 2

󰀖󰀖
+ 1

= β

󰀕
δ

k
− 1

󰀖
+ 1 󰃑 β

󰀕
δ

k
− 1

󰀖
+ β =

βδ

k
=

dG(v)

k
,

hence (8) and (7) hold (where (8) implies (3)).
Finally, observe that by (7) we have:

dGk+1
(v) = dGk

(v) 󰃑 β

󰀕
δ − k

󰀕
δ

k
− 2

󰀖󰀖
= 2βk.

Since δ 󰃍 2k2, we obtain dGk+1
(v) 󰃑 βδ

k
= dG(v)

k
, which concludes the proof of Theorem 12.

Note that the bound on the minimum degree of G was only required to bound dGk+1

in the proof of Theorem 12. This remark allows us to use almost entire reasoning above
within the proof of Theorem 14 below, which improves the general lower bound for δoptk .
This refinement exploits the following straightforward and direct consequence of Euler’s
Theorem (through adding a single auxiliary vertex to a graph, if necessary). Details of
its proof can be found e.g. in [5, 10] and most likely in many other papers.

Observation 13. Let G be a connected graph.

(1◦) If G has an even number of edges or G contains vertices of odd degree, then G has
a 2-edge-colouring such that for every vertex u of G, at most

󰁯
dG(u)

2

󰁰
of the edges

incident with u have the same colour.

(2◦) If G has an odd number of edges, all vertices of G have even degree and uG is any
vertex of G, then G has a 2-edge-colouring such that for every vertex u of G distinct
from uG, exactly dG(u)

2
of the edges incident with u have the same colour, and at

most dG(uG)
2

+ 1 of the edges incident with uG have the same colour.
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In what follows, a bad vertex shall mean a vertex of G which was chosen as the vertex
uG while applying Observation 13 above, that is the vertex with exactly dG(v)

2
+1 incident

edges coloured the same in one of the two colours.

Theorem 14. Let k = 2n+m−1 󰃍 2 where n is a positive integer and m is a nonnegative
integer less than 2n. If G is a graph with minimum degree δ(G) 󰃍 3

2
k2 + 1

2
km+ 1

2
k, then

G has a 1
k
-majority (k + 1)-edge-colouring.

Proof. We start by partially colouring the graph G = (V,E) with m colours, choosing
G1, . . . , Gm, corresponding to colours 1, . . . ,m, the same way as in the proof of Theorem
12. By (8) these colours satisfy the majority rule, that is for every vertex u, at most
dG(u)/k edges incident with u are coloured with any of the colours in {1, . . . ,m}.

Let H be a subgraph of G induced by the uncoloured edges. Notice that H = Gm

(using the notation from the proof of Theorem 12), and thus by (7), if v is a vertex of G
such that dG(v) = βδ, where δ = δ(G), then

dH(v) 󰃑 β

󰀕
δ −m

󰀕
δ

k
− 2

󰀖󰀖
. (9)

We shall colour the edges of H with new 2n colours, namely the elements of the set {0, 1}n,
hence we shall be colouring these edges with binary vectors of length n. For any vector
w ∈ {0, 1}n and 0 󰃑 j 󰃑 n we denote by [w]j the prefix of length j of w, that is the
vector in {0, 1}j formed of j first consecutive coordinates of w (where [w]j = ∅ for j = 0).
Initially (in step 0) we associate the vector ce = (0, . . . , 0) to every edge e of H. The
vectors ce, e ∈ E(H), shall be modified one coordinate after another in n steps. In certain
situations we shall however be finally fixing all the remaining coordinates of some of these
vectors at once – the corresponding edges shall be called determined. In what follows,
ce shall always refer to the current value of the colour (vector) associated with an edge
e. Suppose for a given i ∈ {1, . . . , n} we have completed step i − 1 of our construction,
hence each ce has the first i− 1 coordinates finally fixed (or all, for selected, determined,
e ∈ E(H)), and we are about to perform step i. We proceed as follows.

For each possible prefix p ∈ {0, 1}i−1 we denote by Hp the subgraph induced in H
by all not yet determined edges e with [ce]i−1 = p (after step i − 1). In each such Hp

we consider all components one after another. Let H ′ be such a component for any fixed
p ∈ {0, 1}i−1. Let us give an advance notice to the fact that at most one vertex of H ′ shall
be chosen to be so-called special for Hp′ , where p′ is the extensions of p with 1 added to
its end (i.e. p′ ∈ {0, 1}i, [p′]i−1 = p and p′(i) = 1), according to the rule specified below.

(a) If for each vertex v of H ′ there exists a prefix q of p (possibly q = p) such that v
is special for Hq, then for every edge e of H ′ we fix as 0 all the remaining (starting
from the i’th one) coordinates of ce, hence all edges of H ′ become determined.

(b) Otherwise, we use Observation 13 to temporarily colour the edges of H ′ blue and red.
For each edge e of H ′ we fix the i’th coordinate of ce as 0 if e is blue, and 1 otherwise.
Moreover, if we are forced to create a bad vertex uH′ (with (dH′(uH′)/2)+1 incident
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edges of the same colour), then we choose it so that it was not special for Hq for
any prefix q of p and assign colours blue and red so that uH′ is incident with exactly
(dH′(uH′)/2)+ 1 red edges; we then also choose uH′ to be special for Hp′ where p′ is
the extensions of p with 1 added to its end.

After going through all n steps described above, we complete a (k+1)-edge-colouring
of the graph G. It remains to show that all new colours satisfy the 1

k
-majority rule.

Consider a vertex v ∈ V and any fixed colour α ∈ {0, 1}n. Let us denote by Gα the
subgraph induced in G (in fact in H) by all the edges coloured with α.

Suppose first that v is incident with some edge e ∈ E(H) which was coloured (deter-
mined) with a colour α according to Rule (a) above, i.e. at certain iteration i, the edge
e belonged to a component H ′ of some Hp with all vertices being special for some Hq

where q is a prefix of Hp. Note however that by our construction, H ′ must have been a
(connected) subgraph of every such Hq, and thus for each such Hq at most one vertex of
H ′ might have been chosen to be special for Hq. Consequently, as p has no more than n
distinct prefixes, H ′ must have contained at most n vertices. Hence for each its vertex,
in particular v,

dGα(v) < n 󰃑 k 󰃑 dG(v)

k
.

Assume in turn that every edge e ∈ E(Gα) incident with v was coloured by means
of Rule (b) exclusively. This rule was thus utilised n times in order to settle all edges
incident with v coloured α, each time via application of Observation 13 to a component
H ′ (containing v) of some Hp, where p is a prefix of α. Suppose v had degree d in such
H ′, say in iteration i. If v was chosen to be special for Hp, which could happen only once
during n steps of our construction (for prefixes p of the fixed α), then at most d

2
+1 edges

incident with v got their colours’ prefixes fixed as p after step i; otherwise the number of
such edges is bounded above by d

2
+ 1

2
, cf. Observation 13. Only such edges retained the

chance to belong to Gα. In order to estimate the maximum number of edges incident with
v which eventually could be coloured α let us thus consider two following functions. Let
f(d) = d

2
+ 1

2
and g(d) = d

2
+1. By the observations above, dGα(v) is bounded above by the

maximum of fn(d) and f i(g(f j(d))) for all natural numbers i and j such that i+j = n−1
where d = dH(v) (here fn denotes the n-fold composition of f). Since f(d) < g(d) for all
d, the value of f i(g(f j(d))) is greater that fn(d) for all i and j satisfying i + j = n − 1.
We shall prove the following upper bound.

Claim 15. The inequality f i(g(f j(d))) 󰃑 d−1
2n

+ 3
2

holds for all d and all natural numbers
i and j such that i+ j = n− 1.

Proof. We begin by proving that

f i(d) =
d− 1

2i
+ 1

holds for any nonnegative integer i. We proceed by induction with respect to i. Clearly
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f 0(d) = d = d−1
20

+ 1. Assume that f j(d) = d−1
2j

+ 1 holds for all j < i. Thus,

f i(d) = f(f i−1(d)) = f

󰀕
d− 1

2i−1
+ 1

󰀖
=

d−1
2i−1 + 1

2
+

1

2
=

d− 1

2i
+ 1.

Finally, for any fixed i and j such that i+ j = n− 1, we have

f i(g(f j(d))) = f i

󰀕
g

󰀕
d− 1

2j
+ 1

󰀖󰀖
= f i

󰀣
d−1
2j

+ 1

2
+ 1

󰀤

= f i

󰀕
d− 1

2j+1
+

3

2

󰀖
=

d−1
2j+1 +

3
2
− 1

2i
+ 1 =

d− 1

2n
+

1

2i+1
+ 1.

The value of f i(g(f j(d))) is greatest when i = 0, and thus f i(g(f j(d))) 󰃑 d−1
2n

+ 3
2
.

By Claim 15 and discussion above we obtain that

dGα(v) 󰃑
dH(v)− 1

2n
+

3

2
. (10)

It remains to show that if dG(v) = βδ, then dGα(v) 󰃑 βδ
k

. Recall that by (9), dH(v) 󰃑
β
󰀃
δ −m

󰀃
δ
k
− 2

󰀄󰀄
. This combined with (10) yield the following, where we make use of

the facts that k = 2n +m− 1, δ 󰃍 3
2
k2 + 1

2
km+ 1

2
k and β 󰃍 1:

dGα(v) 󰃑
β
󰀃
δ −m

󰀃
δ
k
− 2

󰀄󰀄
− 1

2n
+

3

2

=
βδ

󰀃
1− m

k

󰀄
+ 2βm− 1

2n
+

3

2

=
βδ

󰀃
2n−1
k

󰀄
+ 2βm− 1

2n
+

3

2

=
βδ

k
+

2βm− 1− βδ
k

2n
+

3

2

󰃑 βδ

k
+

2βm− 1− β
󰀃
3
2
k + 1

2
m+ 1

2

󰀄

2n
+

3

2

=
βδ

k
+

β
󰀃
−3

2
k + 3

2
m− 1

2

󰀄
− 1

2n
+

3

2

=
βδ

k
+

β
󰀃
−3

2
(2n − 1)− 1

2

󰀄
− 1

2n
+

3

2

=
βδ

k
− 3

2
β +

β − 1

2n
+

3

2

=
βδ

k
+ (1− β)

󰀕
3

2
− 1

2n

󰀖

󰃑 βδ

k
=

dG(v)

k
.

This concludes the proof of Theorem 14.
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Note that the formula for k used in Theorem 14 implies that m is always bounded
above by k

2
, and thus we immediately obtain the following corollary.

Corollary 16. For every integer k 󰃍 2, if a graph G has minimum degree δ(G) 󰃍 7
4
k2+ 1

2
k,

then G has a 1
k
-majority (k + 1)-edge-colouring.

4 Confirmation of Conjecture 11 for initial values of k

The main result of [5] confirms Conjecture 11 for k = 2. In this section we shall extend this
result towards two following values of k. To achieve this we shall use the two observations
below.

Observation 17. Let k 󰃍 2 be an integer. If every graph G with minimum degree
δ(G) 󰃍 k2 and maximum degree ∆(G) < 2k2 has a 1

k
-majority (k + 1)-edge-colouring,

then every graph with minimum degree at least k2 has a 1
k
-majority (k+1)-edge-colouring.

Proof. Let G be an arbitrary graph with minimum degree at least k2. If the maximum
degree of G is less than 2k2 then by assumption it has a 1

k
-majority (k+1)-edge-colouring.

Otherwise, let v be a vertex of G such that dG(v) 󰃍 2k2. There exist unique integers n
and d such that dG(v) = nk2+d and k2 󰃑 d < 2k2. Partition the neighbourhood of v into
n+1 disjoint sets N0, . . . , Nn such that |N0| = d and |Ni| = k2 for i 󰃍 1. Let H be a graph

such that V (H) = V (G)\{v}∪{v0, v1, . . . , vn} and E(H) = E(G−v)∪
n󰁖

i=0

{uvi : u ∈ Ni}.
Note that this operation yields a natural bijection between the edges of G and the edges of
H. Let G be a graph constructed from G by applying the above operation to all vertices
of G with degree at least 2k2. By construction, the maximum degree of G is less than 2k2,
hence G has a 1

k
-majority (k+1)-edge-colouring, which yields a (k+1)-edge-colouring of

G. It remains to prove that this is also a 1
k
-majority edge-colouring of G.

Let v be a vertex of G with degree dG(v) = nk2 + d where k2 󰃑 d < 2k2 (with n
possibly equal 0). The number of edges adjacent to v coloured with any fixed colour is
bounded above by

n

󰀙
k2

k

󰀚
+

󰀙
d

k

󰀚
= nk +

󰀙
d

k

󰀚
=

󰀙
nk2 + d

k

󰀚
=

󰀙
dG(v)

k

󰀚
,

hence the colouring of G is indeed a 1
k
-majority (k + 1)-edge-colouring.

Observation 18. For every integer k 󰃍 2, let Sk be the set of all integers i between k2 and
2k2 such that i ≡ k − 1 (mod k). Let Gk be the set of all graphs for which the degrees of
all vertices are in the set Sk. If every graph in Gk has a 1

k
-majority (k+1)-edge-colouring,

then every graph with minimum degree at least k2 has a 1
k
-majority (k+1)-edge-colouring.

Proof. By Observation 17 it is sufficient to consider graphs with maximum degree less
than 2k2. Let G0 be an arbitrary graph with minimum degree δ 󰃍 k2 and maximum
degree ∆ < 2k2. If all vertices of G0 have degrees in the set Sk, then by assumption
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G0 has a 1
k
-majority (k + 1)-edge-colouring. Otherwise, let G1 be a graph constructed

from G0 by taking two copies of G0 and joining by edges the vertices of G0 which do
not have degrees in the set Sk with their corresponding counterparts in the second copy
of G0. Note that G0 is a subgraph of G1. Moreover, for every vertex v of G0, either
dG1(v) = dG0(v) ∈ Sk or dG0(v) ≡ i (mod k) and dG1(v) ≡ i + 1 (mod k) (and the same
holds for the vertices in the second copy of G0). We repeat this operation until all vertices
of the obtained graph G2 have degrees in the set Sk. Note the degree of each vertex v of
G0 increased by at most k − 1, and more importantly,

󰀙
dG2(v)

k

󰀚
=

󰀙
dG0(v)

k

󰀚
. (11)

Since the maximum degree of G0 is at most 2k2−1 ≡ k−1 (mod k), the maximum degree
of G2 is also less than 2k2, hence G2 ∈ Gk. By our assumption, there is a 1

k
-majority (k+1)-

edge-colouring c of G2. Since G0 is a subgraph of G2, by (11), the colouring c restricted
to the edges of G0 yields a 1

k
-majority (k + 1)-edge-colouring of G0.

Observations 17 and 18 allow us to narrow down the set of graphs we need to consider
in order to prove Conjecture 11. To start with, we exemplify their usefulness by reprov-
ing Theorem 1, whose proof provided in [5] is rather lengthy. Tools and observations
introduced above yield a short and straightforward argument.

Proof of Theorem 1. Let G be an arbitrary graph with minimum degree δ 󰃍 4. By
Observation 18, we can assume that the degrees of all vertices of G are in the set S2 =
{5, 7}. Let D2 be the set of vertices of degree 5, and D3 the set of vertices of degree
7. Vertices in D2 can have at most 2 incident edges in the same colour, and vertices of
D3 can have at most 3 such edges. We shall construct a majority 3-edge-colouring of G
in two steps. First, use Lemma 6 with a weight function assigning 1/3 to every edge of
G to colour some edges of G with one of the three colours (similarly as in the proof of
Theorem 12). Vertices in D2 have 1 or 2 edges coloured, and vertices in D3 – 2 or 3. Let
H be the graph induced by uncoloured edges of G. Vertices in D2 have degrees 3 or 4
in H, and vertices in D3 have degrees 4 or 5. Finally, use Observation 13 to colour the
edges of H with the remaining two colours. Note that every component of H either has
vertices of odd degree or all of its vertices have degree 4 and thus such component has an
even number of edges. Hence, by Observation 13, at most

󰁯
dH(u)

2

󰁰
of the edges incident

with any given vertex u shall get the same colour, which satisfies the majority rule for
the graph G.

Theorem 19. Every graph G with minimum degree δ(G) 󰃍 9 has a 1
3
-majority 4-edge-

colouring.

Proof. Let G be a graph with minimum degree δ(G) = δ 󰃍 9. By Observation 18, we
can assume that the degrees of all vertices of G are in the set S3 = {11, 14, 17}. Similarly
as before, let D3 be the set of vertices of degree 11 (which can have at most 3 incident
edges with the same colour), D4 be the set of vertices of degree 14 (allowing 4 incident
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monochromatic edges), and D5 – vertices of degree 17 (allowing 5 incident edges with
the same colour). Let G′ be a graph constructed from the graph G by removing all
components which have all vertices of degree 14 and an odd number of edges. Hence,
each component of G′ has an even number of edges or contains vertices of odd degree.
Colour the edges of G′ using Observation 13 with colours blue and red. The number of
incident edges with the same colour shall equal 5 or 6 for vertices in D3, 7 for vertices in
D4, and 8 or 9 for vertices in D5.

We shall show that in fact we can choose such a 2-edge-colouring of G′ complying with
Observation 13 that neither of the two colours induces a component with an odd number
of edges and all vertices of degree 6 – we call such component bad. Assume this is not the
case and consider a 2-edge-colouring of G′ consistent with Observation 13 with the least
number of such bad components. Without loss of generality we can assume that there
exists such a bad component, say H in the graph induced by the blue edges. Notice that
H is in particular Eulerian (as it is connected and contains exclusively vertices of even
degree), and thus it is 2-edge-connected. Clearly, all the vertices in H are in the set D3

and have exactly 5 red incident edges (in G′). Let v be an arbitrary vertex of H, and let
u1, u2 be any two distinct neighbours of v in H. Consider a component in the subgraph
of G′ induced by the red edges such that v is in this component, denote it H ′. If u1 is not
in the same (red) component as v, then we can recolour the edge u1v with red colour. In
such a case, H shall no longer have exclusively vertices of degree 6, and no new 6-regular
monochromatic component shall be created, since at least one other than u1 vertex in H ′

needs to have odd degree. We proceed similarly if u1 is in the same red component as v,
but u2 is not. If both u1 and u2 are in the same red component as v, then we can recolour
the edge u1v to red colour. Then, neither H nor H ′ shall be a 6-regular components.
Hence, in each case, the number of monochromatic components with an odd number of
edges and all vertices of degree 6 can be decreased, which is in contradiction with the
assumption that our colouring had the least possible number of bad components.

As a result, both in the graph induced by the red edges and in the graph induced by the
blue edges each component has an even number of edges or contains vertices of odd degree
or contains a vertex of degree 8. Hence, we can again use Observation 13 (separately for
graphs induced by both of the colours), choosing a vertex of degree 8 as the bad vertex
if necessary. The 4-edge-colouring obtained this way satisfies the 1

3
-majority rule for the

graph G′.
Finally, consider components of G with all vertices of degree 14 and an odd number

of edges. Using Observation 13 we obtain a 2-edge-colouring of such components with
colours red and blue, such that in the subgraph generated by the edges of either of the
colours all vertices shall have degree 7, except one vertex of degree 6 or 8. In either case,
there shall be a vertex of odd degree in each of the obtained monochromatic components,
hence using again Observation 13 (and merging the result with the colouring of G′) yields
a 1

3
-majority 4-edge-colouring of G.

Theorem 20. Every graph G with minimum degree δ(G) 󰃍 16 has a 1
4
-majority 5-edge-

colouring.
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Proof. Let G be a graph with minimum degree δ(G) = δ 󰃍 16. By Observation 18, we
can assume that the degrees of all vertices of G are in the set S4 = {19, 23, 27, 31}. Let
D4 be the set of vertices of degree 19 (which can have at most 4 incident edges with the
same colour), D5 be the set of vertices of degree 23 (allowing 5 incident monochromatic
edges), D6 be the set of vertices of degree 27 (allowing 6 incident edges with the same
colour), and D7 – vertices of degree 31 (allowing 7 incident monochromatic edges). First,
use Lemma 6 with a weight function assigning 1/5 to all edges of G to colour some edges
of G with colour 1. As a result, every vertex v of G has either ⌊d(v)

5
⌋ or ⌈d(v)

5
⌉ incident

edges coloured 1. As none of the vertices has degree divisible by 5, these two values are
distinct, and by Lemma 6 (ii), every edge uv with exactly ⌊d(u)

5
⌋ edges incident with u

coloured 1 and exactly ⌊d(v)
5
⌋ edges incident with v coloured 1 must be coloured 1 as well.

Let H be the subgraph of G induced by the uncoloured edges. Vertices in D4 have
degrees in {15, 16} in H, vertices in D5 – degrees in {18, 19}, vertices in D6 – degrees
in {21, 22}, and vertices in D7 – degrees in {24, 25}. Using Observation 13 divide the
graph H into two subgraphs H1 (coloured blue) and H2 (coloured red), choosing vertices
of degree 18 or 22 as the bad vertices, if necessary. In the components of the graphs H1

and H2 we have the following situation: vertices in D4 have degrees in {7, 8}, vertices in
D5 have degrees in {9, 10} (and possibly a single vertex has degree 8), vertices in D6 have
degrees in {10, 11} (and possibly a single vertex has degree 12), and vertices in D7 have
degrees in {12, 13}. Notice that if a vertex in D6 has degree 12, then in the graph H, it
had to be in a component with no vertex of odd degree, hence in the graphs H1 and H2,
this vertex cannot be in the same component as any vertex of degree 10.

We shall show that we can recolour the graph H (retaining conditions mentioned
above) in such a way that neither H1 nor H2 contains a component with an odd number
of edges whose every vertex either has degree 10 and belongs to D5 or has degree 8 and
belongs to D4. Assume this is not possible and consider a colouring with the least number
of such components. Let H be one of these components. Since the number of edges of
H is odd, at least one of the vertices in H must have degree 10. Let v be a vertex of
degree 10 in H and let u1 and u2 be two distinct neighbours of v in H. If v is the only
vertex of degree 10 in H and dH(v) = 18, then v is a bad vertex and for all the remaining
vertices u of H we must have dH(u) = 16 = ⌈4d(u)

5
⌉, and two such vertices, say u′, u′′,

must be adjacent in H (hence also in H), which is impossible by the last remark of the
first paragraph of the proof, which implies that the edge u′u′′ must have been coloured
1, as there must have been exactly ⌊d(u′)

5
⌋ edges incident with u′ which were coloured 1

and exactly ⌊d(u′′)
5

⌋ edges incident with u′′ which were coloured 1. We may thus assume
that dH(v) = 19 = ⌈4d(v)

5
⌉, and hence, again by the last remark of the first paragraph of

the proof, u1 and u2 must be vertices of degree 8 in H and 15 in H. Thus, proceeding
analogously as in the proof of Theorem 19 we can obtain a colouring of H with a smaller
number of bad components, a contradiction.

Hence, each component of H1 and H2 contains vertices of odd degree or has an even
number of edges or contains a vertex of degree 10 belonging to D6 or a vertex of degree 12
belonging to D7. Thus, using Observation 13 (with one of the mentioned vertices being
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chosen as the bad vertex, if necessary) we can obtain a 4-edge-colouring of H, which
completes a 1

4
-majority 5-edge-colouring of G.

5 Concluding remarks

Theorem 12 and the construction in Observation 10 imply that we managed to settle the
order of magnitude of our main objective: δoptk and approximate it within a multiplicative
factor of 2. Our Conjecture 11 clearly conveys we expect that 2 is redundant factor in
our 2k2 upper bound for δoptk . In fact, Corollary 16 shows that the leading factor in this
bound should not be larger than 7

4
k2. Moreover, Theorem 14 also implies that there is

e.g. an infinite sequence of values of k for which δoptk 󰃑 (3
2
+ o(1))k2.

On the other hand, even though we were able to confirm the conjecture for several
initial values of k in Section 4, we are not entirely convinced that the postulated quantity
of δoptk has to be precisely correct for all k. One may possibly come up with some more
sophisticated construction than the one in Observation 10, and this seems an interesting
direction to be more thoroughly investigated. However, we would not expect the lower
bound stemming from such a potential construction to exceed k2 by far. In any case we
strongly expect an upper bound of the form (1 + o(1))k2 to be valid for δoptk .

Recall that Observation 10 implies that we cannot directly extend to all graphs our
Theorem 5, yielding an optimal solution for the family of bipartite graphs. However,
as mentioned, the main obstacle on the way towards obtaining some form of such an
extension was the fact that we were not able to prove a suitable for the general setting
correspondent of Claim 7 from the proof of Theorem 5, where in a sense it allowed us to
control and ‘capture’ degrees of consecutively constructed subgraphs of a given bipartite
graph within a reasonably narrow interval. In fact, in pursuit of such a correspondent
we came up with our refinement of the lemma of Alon and Wei [1], that is Lemma 6.
Even though some aspects of this slight improvement were useful and crucial in the case
of bipartite graphs, we did not use it in full measure, while at the same time it was not
strong enough to provide a result we expect in the general case. Nevertheless, we decided
to include in our paper this slightly excessive form of Lemma 6, as a suggestion for possible
further development of this tool, which might hopefully lead to solving Conjecture 11, or
at least help closing the current gap.

Let us also mention we believe that even solving our Problem 3 for the first open case
of k = 5 (and maybe some consecutive initial ones) seems interesting by itself, and may
furthermore shed light on a possible approach to attack Conjecture 11 in its entirety.

Finally, let us remark why we believe the probabilistic approach seems difficult to be
(directly) utilised while trying to prove Conjecture 11. It stems from the fact that if a
graph has a vertex v with degree (close to) k2, then while colouring its edges randomly with
k+1 colours we expect every colour to appear roughly d(v)/(k+1) > k− 1 times (and in
fact some colours must appear at least this many times) around v, while we admit at most
⌊d(v)/k⌋ 󰃑 k appearances of each colour. Thus in a way we admit an error of at most 1
in frequency of appearing of each colour, which does not seem achievable via probabilistic
approach, as e.g. typical concentration tools require admitting an error “slightly” larger
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than
󰁳

(d(v)/k) (which is enough as long as d(v) is of magnitude roughly k3 log k). This
is also why we reckon that our, rather naive in nature, approach is surprisingly efficient.
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