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Abstract

We say that a graph G is Kr-saturated if G contains no copy of Kr but adding
any new edge to G creates a copy of Kr. Let sat(n,Kr, t) be the minimum number
of edges in a Kr-saturated graph on n vertices with minimum degree at least t. Day
showed that for fixed r ⩾ 3 and t ⩾ r−2, sat(n,Kr, t) = tn−c(r, t) for large enough
n, where c(r, t) is a constant depending on r and t, and proved the bounds

2tt3/2 ≪r c(r, t) ⩽ tt
2t2

for fixed r and large t. In this paper we show that for fixed r and large t, the order
of magnitude of c(r, t) is given by c(r, t) = Θr

(
4tt−1/2

)
. Moreover, we investigate

the dependence on r, obtaining the estimates

4t−r

√
t− r + 3

+ r2 ≪ c(r, t) ≪ 4t−r min (r,
√
t− r + 3)√

t− r + 3
+ r2 .

We further show that for all r and t, there is a finite collection of graphs such that
all extremal graphs are blow-ups of graphs in the collection.

Using similar ideas, we show that every large Kr-saturated graph with e edges
has a vertex cover of size O(e/ log e), uniformly in r ⩾ 3. This strengthens a previous
result of Pikhurko. We also provide examples for which this bound is tight.

A key ingredient in the proofs is a new version of Bollobás’s Two Families The-
orem.

Mathematics Subject Classifications: 05C35, 05D05

1 Introduction

Given a graph H, we say that a graph G is H-saturated if it is maximally H-free, meaning
G contains no copy ofH but adding any new edge toG creates a copy ofH. The saturation
problem is to determine, or at least estimate, the saturation number sat(n,H), defined (for
graphs H with at least one edge) to be the minimum number of edges in an H-saturated
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graph G on n vertices. We are usually interested in fixed H and large n. The saturation
problem is dual to the Turán forbidden subgraph problem of determining the extremal
number ex(n,H), defined to be the maximum number of edges in an H-saturated graph
G on n vertices. However, much less is known for the saturation problem than for the
Turán problem. See [1] for a survey of the saturation problem.

For certain H the saturation number is known exactly, however. In particular, Erdős,
Hajnal and Moon showed (Theorem 1 in [2]) that for r ⩾ 2 and n ⩾ r − 2, sat(n,Kr) =
(r − 2)n −

(
r−1
2

)
and that the unique extremal graph consists of a Kr−2 fully connected

to an independent set of size n− (r− 2) (for n < r, Kn is the unique Kr-saturated graph
on n vertices). Note that for large n this graph contains many vertices of degree r − 2.
Moreover, this is the smallest possible degree of a vertex in a Kr-saturated graph on
n ⩾ r − 1 vertices. One might therefore ask what happens if we forbid vertices of degree
r − 2, and more generally, vertices of small degree. This leads us to define sat(n,Kr, t)
for r ⩾ 3, t ⩾ r − 2 and large enough n to be the minimum number of edges in a Kr-
saturated graph G on n vertices with δ(G) ⩾ t (more precisely, such graphs exist if and
only if n ⩾ (r − 1)t/(r − 2)). This quantity (or rather the one obtained by replacing the
condition δ(G) ⩾ t with δ(G) = t) was first considered by Duffus and Hanson (second
paragraph of the Introduction in [3]).

Proving a conjecture of Bollobás, Day showed that for fixed r and t, sat(n,Kr, t) =
tn − c(r, t) for large enough n, where c(r, t) is some constant depending on r and t. He
raised the problem of estimating c(r, t) and proved the bounds

2tt3/2 ≪r c(r, t) ⩽ tt
2t2

for fixed r and large t (Theorem 1.2 and the previous two paragraphs in [4])(see Section
2.2 for precise definitions of asymptotic notation). In this paper we show that for fixed r
and large t, the order of magnitude of c(r, t) is given by c(r, t) ≍r 4

tt−1/2. Moreover, we
investigate the dependence on r.

Theorem 1. For all integers r ⩾ 3 and t ⩾ r − 2,

4t−r

√
t− r + 3

+ r2 ≪ c(r, t) ≪ 4t−r min (r,
√
t− r + 3)√

t− r + 3
+ r2 .

Note that the lower and upper bounds are the same up to the min (r,
√
t− r + 3) factor.

We conjecture that the lower bound is tight. The r2 terms cannot be absorbed into the
other terms, because when t is not much larger than r−2, the r2 terms dominate. Indeed,
for such t Theorem 1 gives c(r, t) ≍ r2.

We further characterise the extremal graphs for large n, and more generally,
Kr-saturated graphs G on n vertices with δ(G) ⩾ t and e(G) not much larger than
sat(n,Kr, t).

Theorem 2. Let r ⩾ 3, t ⩾ r − 2 and k be integers. Then there is a finite collection
C of graphs such that the following holds. Let G be a graph on n vertices. Then G is
Kr-saturated with δ(G) ⩾ t and e(G) = tn + k if and only if G is obtained from a graph
in C by blowing up non-adjacent vertices of degree t.
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(Blowing up a vertex refers to replacing it by several copies - see Section 4 for the
precise definition of a blow-up.)

Using ideas similar to those in the proof of Theorem 1 one can prove further structural
results about Kr-saturated graphs. Pikhurko showed that for fixed r and t, every Kr-
saturated graph has only a bounded number of vertices of degree at most t that are
adjacent to some other vertex of degree at most t (Theorem 8 in [5]). He then used this
result to deduce that for fixed r and large n, every Kr-saturated graph on n vertices
with O(n) edges has a vertex cover (a set of vertices intersecting every edge) of size
Or(n log log n/ log n) (Lemma 9 in [5]). In fact, the same argument shows more generally
that for fixed r and large e, every Kr-saturated graph with e edges has a vertex cover of
size Or(e log log e/ log e).

Let f(r, t) be the maximum over all Kr-saturated graphs of the number of vertices of
degree at most t that are adjacent to some other vertex of degree at most t. Pikhurko’s
proof gives

f(r, t) ⩽ e2(r−2)t log t+Or(t)

for fixed r ⩾ 3 and large t. In this paper we show that for fixed r ⩾ 3 and large t the
order of magnitude of f(r, t) is given by f(r, t) ≍r 4

tt−1/2. Moreover, we investigate the
dependence on r.

Theorem 3. For all integers r ⩾ 3 and t ⩾ r − 2,

4t−r

√
t− r + 3

+ r ≪ f(r, t) ≪ 4t−r min (r,
√
t− r + 3)√

t− r + 3
+ r .

As in Theorem 1, the lower and upper bounds are the same up to the min (r,
√
t− r + 3)

factor. We again conjecture that the lower bound is tight. As before, the r terms cannot
be absorbed into the other terms, because when t is not much larger than r − 2, the r
terms dominate. Indeed, for such t Theorem 3 gives f(r, t) ≍ r.

Using this improved upper bound for f(r, t) we deduce in the same way as Pikhurko a
strengthening of his vertex cover result.

Theorem 4. Every large Kr-saturated graph (r ⩾ 3) with e edges has a vertex cover of
size O(e/ log e).

Note that this bound is uniform in r.
We trivially have that every graph on n vertices has a vertex cover of size n, so it follows

that every large Kr-saturated graph (r ⩾ 3) with n vertices and e edges has a vertex cover
of size O(min (e/ log e, n)). Note that for a Kr-saturated graph with n ⩾ r ⩾ 3 vertices
and e edges to exist we must have

rn ≪ (r − 2)n−
(
r − 1

2

)
= sat(n,Kr) ⩽ e ⩽ ex(n,Kr) = e (T (n, r − 1)) ≪ n2 .
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Our next theorem states that there exist Kr-saturated graphs with n vertices and e
edges for which the O(min (e/ log e, n)) vertex cover bound is tight for all r ⩾ 3 and all
such permitted orders of magnitude for n and e.

Theorem 5. Let r ⩾ 3 be an integer and n and e be large quantities with rn ≪ e ≪ n2.
Then there exists a Kr-saturated graph G with |G| ≍ n and e(G) ≍ e such that every
vertex cover in G has size Ω(min (e/ log e, n)).

The problems of estimating c(r, t) and f(r, t) turn out to be closely related to a cele-
brated result in extremal set theory known as the Two Families Theorem. This theorem
was first proved by Bollobás and since then many different versions of the theorem have
been proven (see Section 7.2 for more on the Two Families Theorem). To prove Theorems
1 and 3 we will need the following new version of the theorem.

Theorem 6. Let a, b ⩾ c ⩾ 0 be integers and (Ai, Bi)i∈I be a sequence of pairs of finite
sets, indexed by a finite, ordered set I, with the following properties.

1. |Ai ∩
⋃

k<iAk| ⩽ a and |Bi| ⩽ b for all i ∈ I.

2. |Ai ∩Bi| ⩽ c for all i ∈ I.

3. |Ai ∩Bj| > c for all i < j ∈ I.

Then |I| ≪
(
a+b−2c+1
a−c+1

)
.

As we shall see later, Theorem 6 is tight (see Theorem 27). The novelty in Theorem 6
is that it only requires the bound |Ai ∩

⋃
k<iAk| ⩽ a rather than |Ai| ⩽ a.

The rest of the paper is organised as follows. We first establish some notation in Section
2. We then construct graphs in Section 3 which we will use to prove the lower bounds in
Theorems 1 and 3 and construct the graphs in Theorem 5 in the special case r = 3. In
Section 4 we define blow-ups and discuss their relation with sat(n,Kr, t), which leads to
an alternative definition of c(r, t) that we will use throughout the rest of the paper.

Next, we define conical vertices in Section 5 and use them to obtain inequalities for
c(r, t) and f(r, t) which we will use to deduce the lower bounds in Theorems 1 and 3 for
the general case r ⩾ 3 from the special case r = 3. We will also use conical vertices
when proving Theorem 5 to similarly reduce the general case r ⩾ 3 to the special case
r = 3. We conclude Section 5 with a conjecture regarding conical vertices. We then prove
Theorems 1 through 5 in Section 6.

In Section 7 we first provide some background on the Two Families Theorem to put
Theorem 6 into context. We then prove Theorem 6 and further related results. Next,
we discuss the known values of c(r, t) in Section 8 and complete the work of Duffus and
Hanson in [3] on the case r = 3 = t by determining the extremal graphs. Finally, in
Section 9, we first speculate about the exact value of c(3, t) for large t. We then discuss
how one might remove the min (r,

√
t− r + 3) factor from the upper bounds in Theorems

1 and 3.
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2 Notation

In this section we establish some graph theory and asymptotic notation and state some
order theory definitions.

2.1 Graph theory notation

Given a graph G, we denote by |G|, e(G), δ(G), χ(G) and ω(G) the number of vertices,
number of edges, minimum degree, chromatic number and clique number of G, respec-
tively. We write V (G) for the vertex set of G. Given a subset S ⊆ V (G), we denote
by G[S] the subgraph of G induced by S. We let ω(S) = w(G[S]) and e(S) = e(G[S]).
Given a subset T ⊆ V (G) \ S, we write e(S, T ) for the number of edges between S and
T . Given a vertex v ∈ V (G), we denote by Γ(v) the neighbourhood of v in G. Given an
integer s ⩾ 0, we write Gs for the graph obtained by adding s conical vertices to G (see
Section 5 for the definition of a conical vertex).

2.2 Asymptotic notation

Given two real valued functions f and g of several variables, we write f ≪ g if there
exists a constant C > 0 such that f ⩽ Cg for all possible values of the variables. We
write f ≫ g if g ≪ f , and f ≍ g if f ≪ g and f ≫ g. O(g) denotes a function f such
that f ≪ g, and Ω(g) denotes a function f such that f ≫ g. Given a variable, say r,
if instead of being a constant, C is a function of r, we write f ≪r g. In other words,
f ≪r g if f ≪ g for any fixed r. Similarly, given other variables, say t and k, we can
define f ≪r,t g, f ≍r g, Or,t,k(g), etc.

2.3 Order theory definitions

Given an order < on a set S, the dual order <′ on S is given by a <′ b if and only if a > b.
Given an order < on a set S and a subset T ⊆ S, the induced order <′ on T is given by
a <′ b if and only if a < b. Given orders <i on disjoint sets Si, indexed by a set I with
order <, the sum of the orders is the order <′ on

⋃
i∈I Si given by a <′ b if and only if

a ∈ Si and b ∈ Sj for some i < j ∈ I or a, b ∈ Si and a <i b for some i ∈ I.

3 Construction

In this section we define a graph Gt for each integer t ⩾ 3. We will use these graphs to
prove the lower bounds in Theorems 1 and 3 and construct the graphs in Theorem 5 in
the special case r = 3. Let S be a set of size 2(t − 1) and R = {T ⊆ S : |T | = t − 1}.
The vertex set of Gt is S ∪R. The edges are as follows.

• S is an independent set.

• An element s ∈ S is adjacent to a set T ∈ R if and only if s ∈ T .
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• Two sets T, T ′ ∈ R are adjacent if and only if T ∩ T ′ = ∅.

S

R

T

S \ T

s
s ∈ T

Figure 1: The graph Gt.

It is easy to check that Gt has the following properties, which we will use later.

1. Gt is K3-saturated.

2. |Gt| =
(
2(t−1)
t−1

)
+ 2(t− 1).

3. e(Gt) = (t− 1/2)
(
2(t−1)
t−1

)
.

4. Every vertex in S has degree at least t and every vertex in R has degree exactly t.

5. Gt[R] is a matching with
(
2(t−1)
t−1

)
vertices.

6. χ(Gt) = 3.

7. Let G′
t be the graph obtained from Gt by adding a new vertex and joining it to all

vertices in S. Then G′
t has the property of not only being K3-saturated, but also of

remaining so after arbitrarily removing pairs of matching vertices from R.

4 Blow-ups

In this section we first define blow-ups and observe that the operation of blowing up
preserves both the properties of being Kr-saturated (with some trivial exceptions) and
of having large minimum degree. We then explain how Day proved that for fixed r and
t, sat(n,Kr, t) = tn − c(r, t) for large enough n, which leads to an alternative definition
of c(r, t). We define a similar quantity c′(r, t) and pose a question about how these two
quantitites are related. Finally, we define collections of graphs C(r, t, k) and C ′(r, t, k),
show that C ′(r, t, k) is always finite and observe that Theorem 2 is equivalent to the
statement that C(r, t, k) is always finite.

A blow-up of a graph H is a graph G obtained by replacing each vertex of H with some
positive number of copies. Two copies in G are adjacent if and only if the vertices in H
they are copies of are adjacent (in particular copies of the same vertex are non-adjacent).
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It is easy to check that G is Kr-saturated if and only if H is Kr-saturated, unless H is a
clique on at most r− 2 vertices and G is a proper blow-up of H. Note that δ(G) ⩾ δ(H).

Hence, given integers r ⩾ 3 and t ⩾ r− 2 and a Kr-saturated graph H with δ(H) ⩾ t,
we can generate other Kr-saturated graphs G with δ(G) ⩾ t by taking blow-ups of H (the
conditions δ(H) ⩾ t ⩾ r − 2 rule out the trivial exceptions). To minimise the number of
edges in G given the number of vertices, one should blow up non-adjacent vertices in H
of minimum degree. We then have e(G) − δ(H)|G| = e(H) − δ(H)|H|. In particular, if
δ(H) = t, e(G)− t|G| = e(H)− t|H|.

Day proved that for fixed r and t, sat(n,Kr, t) = tn − c(r, t) for large enough n as
follows. He first proved (and this is where the difficulty lies) that for fixed r and t the
quantity t|G| − e(G) is bounded above when G ranges over all Kr-saturated graphs with
δ(G) ⩾ t (Theorem 1.1 in [4]). We can thus define

c(r, t) = max
G Kr-sat.δ(G)=t

t|G| − e(G) and c′(r, t) = max
G Kr-sat.
δ(G)⩾t

t|G| − e(G) .

(It is easy to check that for all integers r ⩾ 3 and t ⩾ r − 2, Kr-saturated graphs G
with δ(G) = t do exist.)

Take a Kr-saturated graph H with δ(H) = t and t|H| − e(H) = c(r, t). Then by
blowing up non-adjacent vertices in H of degree t, we can construct Kr-saturated graphs
G with δ(G) ⩾ t (in fact with equality), |G| = n and e(G) = tn− c(r, t) for all n ⩾ |H|,
so sat(n,Kr, t) ⩽ tn− c(r, t) for large enough n. Now suppose G is a Kr-saturated graph
on n vertices with δ(G) ⩾ t. If δ(G) = t, e(G) ⩾ tn − c(r, t), whereas if δ(G) > t,
e(G) ⩾ (t + 1)n − c′(r, t + 1). But (t + 1)n − c′(r, t + 1) > tn − c(r, t) for large enough
n, so e(G) ⩾ tn − c(r, t) if n is large enough. Hence sat(n,Kr, t) ⩾ tn − c(r, t) for large
enough n, so sat(n,Kr, t) = tn− c(r, t) for large enough n.

Clearly c′(r, t) ⩾ c(r, t). It is unclear whether we have equality.

Question 1. Do we have c′(r, t) = c(r, t)?

We now define collections of graphs C(r, t, k) and C ′(r, t, k) for all integers r ⩾ 3,
t ⩾ r − 2 and k. Let C(r, t, k) be the collection of Kr-saturated graphs G with δ(G) = t
and e(G) = t|G| + k which are minimal in the sense that they cannot be obtained from
a smaller Kr-saturated graph H with δ(H) = t and e(H) = t|H| + k by blowing up
non-adjacent vertices in H of degree t. Let C ′(r, t, k) be the collection of Kr-saturated
graphs G with δ(G) > t and e(G) = t|G|+ k.

Note that for G ∈ C ′(r, t, k), c′(r, t + 1) ⩾ (t + 1)|G| − e(G) = |G| − k, which implies
|G| ⩽ c′(r, t + 1) + k. It follows that C ′(r, t, k) is always finite. Hence Theorem 2 is
equivalent to the statement that C(r, t, k) is always finite. We will prove this in Section
6. For all integers r ⩾ 3 and t ⩾ r − 2, let C(r, t) = C(r, t,−c(r, t)) and C ′(r, t) =
C ′(r, t,−c′(r, t)). Note that for fixed r and t and large enough n, the extremal graphs
for sat(n,Kr, t) are precisely the graphs obtained from a graph in C(r, t) by blowing up
non-adjacent vertices of degree t.
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5 Conical vertices

In this section we first define conical vertices and note that the operation of adding a
conical vertex interacts well with the property of being Kr-saturated. This fact allows us
to obtain some inequalities for c(r, t) and f(r, t) which we will use later to deduce lower
bounds for the general case r ⩾ 3 from the special case r = 3. We will also use this
fact when proving Theorem 5 to similarly reduce the general case r ⩾ 3 to the special
case r = 3. Finally, we state a speculation made by Day regarding conical vertices as a
conjecture and discuss the evidence for this conjecture.

A conical vertex is a vertex adjacent to all other vertices. It is easy to check that for
every graph G and integer s ⩾ 0, the graph Gs obtained by adding s conical vertices to
G is Kr+s-saturated if and only if G is Kr-saturated. We thus obtain the following two
lemmas, which we will use later.

Lemma 7. For all integers r ⩾ 3, t ⩾ r − 2 and s ⩾ 0,

c(r + s, t+ s) ⩾ c(r, t) + ts+

(
s+ 1

2

)
.

Lemma 8. For all integers r ⩾ 3, t ⩾ r − 2 and s ⩾ 0,

f(r + s, t+ s) ⩾ f(r, t) .

Day speculated that perhaps for all fixed r ⩾ 4 and t ⩾ r − 2 and large enough n,
all extremal graphs for sat(n,Kr, t) have a conical vertex (last paragraph in [4]). This
is equivalent to the statement that every graph in C(r, t) has a conical vertex for r ⩾ 4.
The author believes this to be true.

Conjecture 1. For all integers r ⩾ 4 and t ⩾ r − 2, every graph in C(r, t) has a conical
vertex.

There is some evidence for Conjecture 1. Hajnal showed that every Kr-saturated graph
G with δ(G) < 2(r−2) has a conical vertex (Theorem 1 in [6]). Hence Conjecture 1 is true
for t < 2(r−2). Moreover, Alon, Erdős, Holzman and Krivelevich showed that Conjecture
1 is true when r = 4 = t, the first case not covered by Hajnal’s result (Theorem 8 and
Corollary 3 in [7]).

An equivalent way of stating Conjecture 1 is that for all integers r ⩾ 4 and t ⩾ r − 2,
C(r, t) is the collection of graphs that can be obtained by adding a conical vertex to
a graph in C(r − 1, t − 1). This would imply that we have equality in Lemma 7, or
equivalently that

c(r, t) = c(3, t− (r − 3)) + (r − 3)t−
(
r − 3

2

)
for all integers r ⩾ 3 and t ⩾ r − 2.
By Theorem 1, c(3, t) ≍ 4tt−1/2, so Conjecture 1 would imply
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c(r, t) ≍ 4t−r

√
t− r + 3

+ r2 ,

or in other words, that the lower bound in Theorem 1 is tight. (Indeed, we will
prove the lower bound in Theorem 1 by first using the graph Gt from Section 3 to show
c(3, t) ≫ 4tt−1/2 and then using Lemma 7.) So the fact that the upper bound in Theorem
1 comes close to showing the lower bound is tight is further evidence for Conjecture 1.

6 Main results

In this section we prove Theorems 1 through 5. We first state some results that we will
need in the proofs. To state the first result, we need the following definition.

Definition 9. For integers a, b ⩾ 0, an (a, b) set system is a sequence (Ai, Bi)i∈I of pairs
of finite sets, indexed by a finite, ordered set I, with the following properties.

1. |Ai| ⩽ a and |Bi| ⩽ b for all i ∈ I.

2. Ai ∩Bi = ∅ for all i ∈ I.

3. Ai ∩Bj ̸= ∅ for all i < j ∈ I.

The first result is the following known version of the Two Families Theorem (see [8]).

Theorem 10 (Skew Two Families Theorem, Frankl, 1982). Let a, b ⩾ 0 be integers and
(Ai, Bi)i∈I be an (a, b) set system. Then |I| ⩽

(
a+b
a

)
.

To state the next result, we need the following definition.

Definition 11. For integers a, b, c ⩾ 0, an (a, b, c) modified set system is a sequence
(Ai, Bi)i∈I of pairs of finite sets, indexed by a finite, ordered set I, with the following
properties.

1. |Ai ∩
⋃

k<iAk| ⩽ a and |Bi| ⩽ b for all i ∈ I.

2. |Ai ∩Bi| ⩽ c for all i ∈ I.

3. |Ai ∩Bj| > c for all i < j ∈ I.

The result consists of Theorem 6 and two further results covering the remaining, de-
generate cases b > c ⩾ a and b ⩽ c.

Theorem 12. Let a, b, c ⩾ 0 be integers and (Ai, Bi)i∈I be an (a, b, c) modified set system.
Then in each of the following cases we have the following bounds for |I|.
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1. If a, b > c,

|I| ≪
(
a+ b− 2c+ 1

a− c+ 1

)
.

2. If b > c ⩾ a,

|I| ⩽
⌊

b− a

c− a+ 1

⌋
+ 1 .

3. If b ⩽ c,

|I| ⩽ 1 .

We will prove Theorem 12 in Section 7.
A key step in the proofs of Theorems 1 and 3 is defining a sequence (Ai, Bi)i∈I of

pairs of finite sets with properties similar to those in Definition 11, but with cardinality
replaced by clique number in properties 2 and 3. The following graph theory lemma will
allow us to replace these conditions by those in Definition 11, after which we can apply
Theorem 12.

Lemma 13. Let G be a graph. Then there is a subset S ⊆ V (G) such that |S| −w(S) =
|G| − w(G) and |S| ⩾ 2w(S).

Proof. Consider the subsets S ⊆ V (G) satisfying |S| − w(S) = |G| − w(G). Such sets do
exist since we can take S = V (G). Take a minimal such S. Then the intersection of the
maximum cliques of G[S] must be empty, for if there was a vertex v in every maximum
clique of G[S], we would have |S \ {v}| − w(S \ {v}) = |G| − w(G), contradicting the
minimality of S. Hajnal showed (the lemma in [6]) that for any graph H and non-empty
collection C of maximum cliques in H, we have |

⋃
T∈C T | + |

⋂
T∈C T | ⩾ 2w(H). In

particular, for any graph H we have u(H)+ i(H) ⩾ 2w(H), where u(H) and i(H) are the
size of the union and intersection of all the maximum cliques of H, respectively. Hence,
if i(H) = 0, we have |H| ⩾ u(H) ⩾ 2w(H). So |S| ⩾ 2w(S).

We will deduce Theorems 1 and 2 from the following technical lemma.

Lemma 14. Let r ⩾ 3 and t ⩾ r − 2 be integers and G be a Kr-saturated graph. Then
there exists a subset S ⊆ V (G) with the following properties.

1. |S| = Ot(1) .

2.

e(S) ⩾ t|S| −O

(
4t−r min (r,

√
t− r + 3)√

t− r + 3
+ r2

)
.
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3. For all v ∈ V (G), either |Γ(w) ∩ S| > t for all w ∈ Γ(v) \ S or

|Γ(v) ∩ S|+ 1

2
|Γ(v) \ S| > t .

Remark 1. Since for every integer t, there are only finitely many integers r satisfying
r ⩾ 3 and t ⩾ r − 2, property 1 is equivalent to the statement |S| = Or,t(1).

Proof. If |G| ⩽ r − 2, we can take S = V (G), so suppose |G| ⩾ r − 1. Consider all
sequences (vi)i∈I of vertices in G, indexed by some finite, ordered set I, with the following
properties.

(a) For all i ∈ I, |Γ(vi) ∩
⋃

k<i Γ(vk)|+
1
2
|Γ(vi) \

⋃
k<i Γ(vk)| ⩽ t .

(b) For all i ∈ I, there exist vertices w ∈ Γ(vi)\
⋃

k<i Γ(vk) such that |Γ(w)∩
⋃

k<i Γ(vk)| ⩽
t .

Such sequences do exist since we can take the empty sequence. Note that property (b)
forces the vi to be distinct. Hence we can take a maximal such (vi)i∈I , in the sense that
one cannot adjoin a vertex at the end of the sequence and obtain a sequence with the
same properties. Let S =

⋃
i∈I Γ(vi). Then property 3 holds by the maximality of the

sequence.
For each i ∈ I, pick a vertex wi ∈ Γ(vi)\

⋃
k<i Γ(vk) that minimises |Γ(wi)∩

⋃
k<i Γ(vk)|.

Let Ai = Γ(vi) and Bi = Γ(wi) ∩
⋃

k<i Γ(vk). Then property (a) can be rewritten as

|Ai ∩
⋃
k<i

Ak|+
1

2
|Ai \

⋃
k<i

Ak| ⩽ t (1)

for all i ∈ I and property (b) is equivalent to

|Bi| ⩽ t (2)

for all i ∈ I.
We now show that (Ai, Bi)i∈I has properties 2 and 3 in Definition 11, but with cardi-

nality replaced by clique number. More precisely, we have

w(Ai ∩Bi) ⩽ r − 3 (3)

for all i ∈ I and

w(Ai ∩Bj) > r − 3 (4)

for all i < j ∈ I. To prove (3), note that since vi and wi are adjacent and G is Kr-free,
G[Γ(vi)∩Γ(wi)] isKr−2-free. But Ai∩Bi ⊆ Γ(vi)∩Γ(wi), so (3) follows. To prove (4), note
that since vi and wj are non-adjacent and G is Kr-saturated, G[Γ(vi)∩ Γ(wj)] contains a
Kr−2 (since |G| ⩾ r − 1, this still holds when vi = wj). But Ai ∩ Bj = Γ(vi) ∩ Γ(wj), so
(4) follows.
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Let us now show property 1 holds. Since this only requires a qualitative bound, we
can afford to be less careful when bounding quantities. We have S =

⋃
i∈I Ai. By (1),

|Ai| ⩽ 2t for all i ∈ I, so it suffices to show |I| = Ot(1). Combining (3) and (4) gives
Ai ∩ Bj ̸⊆ Ai ∩ Bi for all i < j ∈ I, which is equivalent to Ci ∩ Bj ̸= ∅ for all i < j ∈ I,
where Ci = Ai \ Bi for each i ∈ I. We also have |Ci| ⩽ |Ai| ⩽ 2t, |Bi| ⩽ t by (2) and
Ci∩Bi = ∅ for all i ∈ I. Hence (Ci, Bi)i∈I is a (2t, t) set system, so |I| ⩽

(
3t
t

)
by Theorem

10.
Let us now show property 2 holds. Since this requires a quantitative bound, we will

need to be more careful when bounding quantities. We have

|S| =

∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ =∑
i∈I

|Ai \
⋃
k<i

Ak|

and

e(S) = e

(⋃
i∈I

Ai

)
⩾
∑
i∈I

e

(⋃
k<i

Ak, Ai \
⋃
k<i

Ak

)
⩾
∑
i∈I

|Ai \
⋃
k<i

Ak| |Bi|

by the minimality of wi. Hence

t|S| − e(S) ⩽
∑
i∈I

|Ai \
⋃
k<i

Ak| (t− |Bi|) ⩽ 2
∑
i∈I

(t− |Ai ∩
⋃
k<i

Ak|) (t− |Bi|) (5)

by (1) and (2).
Our aim now is to show∑

i∈I

(t− |Ai ∩
⋃
k<i

Ak|) (t− |Bi|) ≪
4t−r min (r,

√
t− r + 3)√

t− r + 3
+ r2 , (6)

which together with (5) proves property 2 holds. Note that (1) implies

|Ai ∩
⋃
k<i

Ak| ⩽ t (7)

for all i ∈ I. We would like to use (7), (2), (3) and (4) to apply Theorem 12 to
(Ai, Bi)i∈I to prove (6), but there are two obstacles. The first is that in (3) and (4),
we have bounds for the clique numbers instead of the cardinalities. The second is that
instead of an upper bound for |I| =

∑
i∈I 1, we need an upper bound for the sum in (6),

which involves the weights (t− |Ai ∩
⋃

k<iAk|) (t− |Bi|).
We first use Lemma 13 to overcome the first problem, as follows. For each i ∈ I, apply

Lemma 13 to G[Ai ∩Bi] to obtain a set Di ⊆ Ai ∩Bi such that

|Di| − w(Di) = |Ai ∩Bi| − w(Ai ∩Bi) (8)

and
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|Di| ⩾ 2w(Di) . (9)

Let Ei = Bi \Di. We then show that we have

|Ei| ⩽ |Bi| − 2w(Di) (10)

and

|Ai ∩ Ei| ⩽ r − 3− w(Di) (11)

for all i ∈ I and

|Ai ∩ Ej| > r − 3− w(Dj) (12)

for all i < j ∈ I. For (10), note that

|Ei| = |Bi| − |Di| ⩽ |Bi| − 2w(Di)

by (9). For (11), note that

|Ai ∩ Ei| = |Ai ∩Bi| − |Di| = w(Ai ∩Bi)− w(Di) ⩽ r − 3− w(Di)

by (8) and (3). Finally, for (12), note that

|Ai ∩ Ej| ⩾ w(Ai ∩ Ej) ⩾ w(Ai ∩Bj)− w(Dj) > r − 3− w(Dj)

by (4).
We now address the problem of the weights. For all integers 1 ⩽ a, b ⩽ t, let Ia,b = {i ∈

I : t−|Ai∩
⋃

k<iAk| ⩾ a, t−|Bi| ⩾ b}. By double counting the number of triples (i, a, b),
where i ∈ I and a and b are integers, with 1 ⩽ a ⩽ t− |Ai ∩

⋃
k<iAk| and 1 ⩽ b ⩽ t− |Bi|

(and using (2) and (7)), we obtain∑
i∈I

(t− |Ai ∩
⋃
k<i

Ak|) (t− |Bi|) =
∑
1⩽a⩽t
1⩽b⩽t

|Ia,b| . (13)

Note that for i ∈ Ia,b, we have

|Ai ∩
⋃
k<i

Ak| ⩽ t− a (14)

and
|Ei| ⩽ t− b− 2w(Di) (15)

by (10).
We would now like to use (14), (15), (11) and (12) to apply Theorem 12 to (Ai, Ei)i∈Ia,b

to bound |Ia,b|, but cannot since the bounds depend on the w(Di). We would like to
overcome this by partitioning Ia,b into parts Ia,b,c depending on the value of w(Di). Then
depending on the values of a, b and c, we would bound |Ia,b,c| using case 1, 2 or 3 of
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Theorem 12. Note that by doing this we discard the information that (12) holds for i and
j in different parts. The contributions from case 3 turn out to be the ones that ultimately
give rise to the r2 term in (6), but since we would have to sum over all possible values of
c, we would obtain an inferior bound of r3 instead. So instead we deal with case 3 before
partitioning Ia,b and discarding information, as follows.

If I is empty, the sum in (6) is 0, so suppose otherwise. Let f be the first element of
I. Note that f ∈ Ia,b for all a and b. Then for all f < i ∈ Ia,b, we have

r − 3− w(Di) < |Af ∩ Ei| ⩽ |Ei| ⩽ t− b− 2w(Di)

by (12) and (15), which implies

w(Di) ⩽ t− r + 2− b . (16)

For all integers 1 ⩽ a, b ⩽ t and 0 ⩽ c ⩽ min (r − 3, t− r + 2− b), let Ia,b,c = {i ∈
Ia,b \ {f} : w(Di) = c}, with the order induced by I. Note that the Ia,b,c partition
Ia,b \ {f} for all a and b by (3) and (16). By (14), (15), (11) and (12), (Ai, Ei)i∈Ia,b,c is a
(t−a, t−b−2c, r−3−c) modified set system for all a, b and c, so when t−a > r−3−c,
we have

|Ia,b,c| ≪
(
2t− 2r + 7− a− b

t− r + 4− a+ c

)
by part 1 of Theorem 12 and when t− a ⩽ r − 3− c, we have

|Ia,b,c| ⩽
⌊

a− b− 2c

a− c− t+ r − 2

⌋
+ 1

by part 2 of Theorem 12. (Note that the
⋃

k<iAk may change when restricting to Ia,b,c,
but can only become smaller.)

Hence

∑
i∈I

(t− |Ai ∩
⋃
k<i

Ak|) (t− |Bi|) =
∑
1⩽a⩽t
1⩽b⩽t

|Ia,b| =
∑
1⩽a⩽t
1⩽b⩽t

 ∑
0⩽c⩽r−3

c⩽t−r+2−b

|Ia,b,c| + 1


≪

∑
1⩽a⩽t
1⩽b⩽t

0⩽c⩽r−3
c⩽t−r+2−b
t−a>r−3−c

(
2t− 2r + 7− a− b

t− r + 4− a+ c

)
+

∑
1⩽a⩽t
1⩽b⩽t

0⩽c⩽r−3
c⩽t−r+2−b
t−a⩽r−3−c

(⌊
a− b− 2c

a− c− t+ r − 2

⌋
+ 1

)
+ t2

by (13), where the first and second sum consist of the contributions from case 1 and 2,
respectively. The contribution of the second sum turns out to be negligible, so we can
afford to be less careful when bounding it. Each term in the sum is at most t− r+3 and
the sum is over at most t values of a, t− r+3 values of b and t− r+3 values of c, so the
sum is at most t(t− r + 3)3.
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For the first sum, we have∑
1⩽a⩽t
1⩽b⩽t

0⩽c⩽r−3
c⩽t−r+2−b
t−a>r−3−c

(
2t− 2r + 7− a− b

t− r + 4− a+ c

)
⩽

∑
1⩽a⩽t

0⩽c⩽r−3
c⩽t−r+1

t−a>r−3−c

(
2t− 2r + 7− a

t− r + 5− a+ c

)

⩽
∑

0⩽c⩽r−3
c⩽t−r+1

(
2t− 2r + 7

t− r + 3− c

)
≪ 4t−r min (r,

√
t− r + 3)√

t− r + 3
.

Putting everything together, we obtain

∑
i∈I

(t− |Ai ∩
⋃
k<i

Ak|) (t− |Bi|) ≪ 4t−r min (r,
√
t− r + 3)√

t− r + 3
+ t(t− r + 3)3 + t2

≍ 4t−r min (r,
√
t− r + 3)√

t− r + 3
+ r2 ,

which proves (6).

We now deduce Theorem 1 from Lemma 14. In fact, we prove a slightly stronger result.

Theorem 1. For all integers r ⩾ 3 and t ⩾ r − 2,

4t−r

√
t− r + 3

+ r2 ≪ c(r, t) ⩽ c′(r, t) ≪ 4t−r min (r,
√
t− r + 3)√

t− r + 3
+ r2 .

Proof. We first prove the lower bound. By Lemma 7, it is sufficient to prove the special
case r = 3, which states that c(3, t) ≫ 4tt−1/2 for all integers t ⩾ 1. By properties 1 and 4
in Section 3, for all integers t ⩾ 3, Gt is K3-saturated and δ(Gt) = t, respectively. Hence,
by properties 2 and 3 in Section 3,

c(3, t) ⩾ t|Gt| − e(Gt) =
1

2

(
2(t− 1)

t− 1

)
+ 2t(t− 1) ≍ 4tt−1/2

for all integers t ⩾ 3. It is easy to check that c(3, 1), c(3, 2) > 0 (in fact, as we shall
see in Section 8, c(3, 1) = 1 and c(3, 2) = 5), so c(3, t) ≫ 4tt−1/2 for all integers t ⩾ 1.

We now prove the upper bound. Let G be a Kr-saturated graph with δ(G) ⩾ t. We
need to show that

e(G) ⩾ t|G| −O

(
4t−r min (r,

√
t− r + 3)√

t− r + 3
+ r2

)
.

By Lemma 14, there exists a subset S ⊆ V (G) with the properties stated in the lemma.
Let T = S ∪ {v ∈ V (G) : |Γ(v) ∩ S| > t}. Then
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e(T ) ⩾ e(S) + e(S, T \ S) ⩾ t|S| −O

(
4t−r min (r,

√
t− r + 3)√

t− r + 3
+ r2

)
+ t|T \ S|

= t|T | −O

(
4t−r min (r,

√
t− r + 3)√

t− r + 3
+ r2

)
by property 2 in the lemma and the definition of T .
We now claim that for all v ∈ V (G) we have

|Γ(v) ∩ T |+ 1

2
|Γ(v) \ T | ⩾ t .

Indeed, by property 3 in the lemma, either |Γ(w) ∩ S| > t for all w ∈ Γ(v) \ S or

|Γ(v) ∩ S|+ 1

2
|Γ(v) \ S| > t .

In the first case we have Γ(v) ⊆ T , so

|Γ(v) ∩ T |+ 1

2
|Γ(v) \ T | = d(v) ⩾ t ,

since δ(G) ⩾ t. In the second case we have

|Γ(v) ∩ T |+ 1

2
|Γ(v) \ T | ⩾ |Γ(v) ∩ S|+ 1

2
|Γ(v) \ S| > t ,

since S ⊆ T .
Hence

e(G) = e(T ) +
∑

v∈V (G)\T

(
|Γ(v) ∩ T |+ 1

2
|Γ(v) \ T |

)

⩾ t|T | −O

(
4t−r min (r,

√
t− r + 3)√

t− r + 3
+ r2

)
+ t|V (G) \ T |

= t|G| −O

(
4t−r min (r,

√
t− r + 3)√

t− r + 3
+ r2

)
.

We now deduce Theorem 2, in its equivalent form, from Lemma 14.

Theorem 2. For all integers r ⩾ 3, t ⩾ r − 2 and k, C(r, t, k) is finite.

Proof. Let G ∈ C(r, t, k). We need to show that |G| = Or,t,k(1). By Lemma 14, there is
a subset S ⊆ V (G) with the properties stated in the lemma. Let T = S ∪ {v ∈ V (G) :
|Γ(v) ∩ S| > t} as before. Then

e(T ) ⩾ e(S) + e(S, T \ S)

⩾ t|S| −Or,t(1) + (t+ 1)|T \ S| = t|T | −Or,t(1) + |T \ S|
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by property 2 in the lemma and the definition of T .
We now claim that for all v ∈ V (G) we have

|Γ(v) ∩ T |+ 1

2
|Γ(v) \ T | ⩾ t ,

with equality if and only if Γ(v) ⊆ T and d(v) = t. Indeed, by property 3 in the lemma,
either |Γ(w) ∩ S| > t for all w ∈ Γ(v) \ S or

|Γ(v) ∩ S|+ 1

2
|Γ(v) \ S| > t .

In the first case we have Γ(v) ⊆ T and

|Γ(v) ∩ T |+ 1

2
|Γ(v) \ T | = d(v) ⩾ t ,

as before. In the second case we have

|Γ(v) ∩ T |+ 1

2
|Γ(v) \ T | ⩾ |Γ(v) ∩ S|+ 1

2
|Γ(v) \ S| > t ,

as before.
Let R = {v ∈ V (G) : Γ(v) ⊆ T, d(v) = t}. We then have

t|G|+ k = e(G) = e(T ) +
∑

v∈V (G)\T

(
|Γ(v) ∩ T |+ 1

2
|Γ(v) \ T |

)
⩾ t|T | −Or,t(1) + |T \ S|+ t|V (G) \ T |+ 1

2
|V (G) \ (T ∪R)|

= t|G| −Or,t(1) + |T \ S|+ 1

2
|V (G) \ (T ∪R)|.

Hence |T \ S|, |V (G) \ (T ∪ R)| = Or,t,k(1). We also have |S| = Or,t(1) by property 1
in the lemma. Combining these, we obtain |V (G) \ (R \ T )| = Or,t,k(1).

Note that R \ T is an independent set of vertices of degree t. We now claim that for
every subset N ⊆ V (G) \ (R \ T ) there are at most t vertices v ∈ R \ T with Γ(v) = N .
We then have |R\T | = Or,t,k(1) and hence |G| = Or,t,k(1), completing the proof. Suppose
for the sake of contradiction that there is a subset N ⊆ V (G) \ (R \ T ) such that |U | > t,
where U = {v ∈ R \ T : Γ(v) = N}.

Pick a subset W ⊂ U with |W | = t and let H = G[V (G) \ (U \ W )]. Note that
H is smaller than G and that G can be obtained from H by blowing up vertices in W ,
which are non-adjacent and of degree t. Hence H is Kr-saturated. The only vertices with
smaller degree in H than in G are those in N . But these vertices are adjacent in H to
all vertices in W , so δ(H) = t. Since U \W is an independent set of vertices of degree t,
e(H) = t|H|+ k. This contradicts the minimality of G.

We now prove Theorem 3. We first state a lemma that we will need in the proof. To
state the lemma, we need the following definition.
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Definition 15. For integers b > c ⩾ a ⩾ 0, an (a, b, c) degenerate set system is a pair
((Ai)i∈I , B), where (Ai)i∈I is a sequence of finite sets, indexed by a finite, ordered set I,
and B is a finite set, with the following properties.

1. |B| ⩽ b.

2. |Ai ∩B| > c for all i ∈ I.

3. |Ai ∩
⋃

k<iAk| ⩽ a for all i ∈ I.

The lemma is the following slight strengthening of case 2 of Theorem 12.

Lemma 16. Let b > c ⩾ a ⩾ 0 be integers and ((Ai)i∈I , B) be an (a, b, c) degenerate set
system. Then |I| ⩽

⌊
b−a

c−a+1

⌋
.

We will prove Lemma 16 in Section 7. We are now ready to prove Theorem 3. The
proof will be similar to that of Lemma 14.

Theorem 3. For all integers r ⩾ 3 and t ⩾ r − 2,

4t−r

√
t− r + 3

+ r ≪ f(r, t) ≪ 4t−r min (r,
√
t− r + 3)√

t− r + 3
+ r .

Proof. We first prove the lower bound. We need to show that f(r, t) ≫ r and f(r, t) ≫
4t−r/

√
t− r + 3. For the former, consider the graph Kr−1. For the latter, by Lemma 8,

it is sufficient to prove the special case r = 3, which states that f(3, t) ≫ 4tt−1/2 for all
integers t ⩾ 1. By properties 1, 4 and 5 in Section 3, f(3, t) ⩾

(
2(t−1)
t−1

)
≫ 4tt−1/2 for all

integers t ⩾ 3. Since f(r, t) ≫ r, f(r, t) > 0, so in particular f(3, 1), f(3, 2) > 0. Hence
f(3, t) ≫ 4tt−1/2 for all integers t ⩾ 1.

We now prove the upper bound. Let G be a Kr-saturated graph. We need to bound
the number of vertices in G of degree at most t which are adjacent to another vertex of
degree at most t. If |G| ⩽ r−2, the upper bound holds, so suppose |G| ⩾ r−1. Consider
all sequences (vi, wi)i∈I of pairs of vertices in G, indexed by some finite, ordered set I,
with the following properties.

1. For all i ∈ I, d(vi), d(wi) ⩽ t .

2. For all i ∈ I, vi and wi are adjacent.

3. For all i < j ∈ I, vi and wj are not adjacent.

Such sequences do exist since we can take the empty sequence. Note that properties 2
and 3 force the vi to be distinct (and the wi to be distinct). Hence we can take a maximal
such (vi, wi)i∈I , in the sense that one cannot adjoin a pair at the end of the sequence and
obtain a sequence with the same properties. Then by the maximality of the sequence,
every vertex in G of degree at most t adjacent to another vertex of degree at most t is in⋃

i∈I Γ(vi), so it suffices to bound |
⋃

i∈I Γ(vi)|.
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For each i ∈ I, let Ai = Γ(vi) and Bi = Γ(wi). Then property 1 can be rewritten as

|Ai| ⩽ t (17)

and

|Bi| ⩽ t (18)

for all i ∈ I. As in Lemma 14, we now show that (Ai, Bi)i∈I has properties 2 and 3 in
Definition 11, but with cardinality replaced by clique number. More precisely, we have

w(Ai ∩Bi) ⩽ r − 3 (19)

for all i ∈ I and

w(Ai ∩Bj) > r − 3 (20)

for all i < j ∈ I. To prove (19), note that vi and wi are adjacent by property 2 and
G is Kr-free. For (20), note that vi and wj are non-adjacent by property 3 and G is
Kr-saturated (since |G| ⩾ r − 1, this still holds when vi = wj).

We have ∣∣∣∣∣⋃
i∈I

Γ(vi)

∣∣∣∣∣ =
∣∣∣∣∣⋃
i∈I

Ai

∣∣∣∣∣ =∑
i∈I

|Ai \
⋃
k<i

Ak| ⩽
∑
i∈I

(
t− |Ai ∩

⋃
k<i

Ak|

)
(21)

by (17). Our aim now is to show

∑
i∈I

(
t− |Ai ∩

⋃
k<i

Ak|

)
≪ 4t−r min (r,

√
t− r + 3)√

t− r + 3
+ r , (22)

which together with (21) proves the upper bound. Note that (17) implies

|Ai ∩
⋃
k<i

Ak| ⩽ t (23)

for all i ∈ I. As before, we would like to use (23), (18), (19) and (20) to apply Theorem
12 to (Ai, Bi)i∈I to prove (22), but there are two obstacles. The first is that in (19) and
(20), we have bounds for the clique numbers instead of the cardinalities. The second is
that instead of an upper bound for |I| =

∑
i∈I 1, we need an upper bound for the sum

in (22), which involves the weights (t− |Ai ∩
⋃

k<iAk|).
As in Lemma 14, we first use Lemma 13 to overcome the first problem. For each i ∈ I,

apply Lemma 13 to G[Ai ∩Bi] to obtain a set Ci ⊆ Ai ∩Bi such that

|Ci| − w(Ci) = |Ai ∩Bi| − w(Ai ∩Bi) (24)

and

|Ci| ⩾ 2w(Ci) . (25)
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For each i ∈ I, let Di = Bi \ Ci. We then show that we have

|Di| ⩽ t− 2w(Ci) (26)

and

|Ai ∩Di| ⩽ r − 3− w(Ci) (27)

for all i ∈ I and

|Ai ∩Dj| > r − 3− w(Cj) (28)

for all i < j ∈ I. For (26), note that

|Di| = |Bi| − |Ci| ⩽ t− 2w(Ci)

by (18) and (25). For (27), note that

|Ai ∩Di| = |Ai ∩Bi| − |Ci| = w(Ai ∩Bi)− w(Ci) ⩽ r − 3− w(Ci)

by (24) and (19). Finally, for (28), note that

|Ai ∩Dj| ⩾ w(Ai ∩Dj) ⩾ w(Ai ∩Bj)− w(Cj) > r − 3− w(Cj)

by (20).
We now address the problem of the weights as before. For all integers 1 ⩽ a ⩽ t, let

Ia = {i ∈ I : t − |Ai ∩
⋃

k<iAk| ⩾ a}. By double counting the number of pairs (i, a),
where i ∈ I and a is an integer, with 1 ⩽ a ⩽ t − |Ai ∩

⋃
k<iAk| (and using (23)), we

obtain

∑
i∈I

(
t− |Ai ∩

⋃
k<i

Ak|

)
=
∑
1⩽a⩽t

|Ia| . (29)

Note that for i ∈ Ia, we have

|Ai ∩
⋃
k<i

Ak| ⩽ t− a . (30)

As in Lemma 14, we would now like to use (30), (26), (27) and (28) to apply Theorem
12 to (Ai, Di)i∈Ia to bound |Ia|, but cannot since the bounds depend on the w(Ci). We
would like to overcome this by partitioning Ia into parts Ia,b depending on the value of
w(Ci). Then depending on the values of a and b, we would bound |Ia,b| using case 1, 2 or
3 of Theorem 12.

As before, the contributions from case 3 turn out to be the ones that ultimately give
rise to the r term in (22), but since we would have to sum over all possible values of b,
we would obtain an inferior bound of r2 instead, so we instead deal with case 3 before
partitioning Ia. Unlike in Lemma 14, however, the contributions from case 2 would turn
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out to not be negligible and indeed would ultimately give an inferior bound of r log r
instead of r, so this time we need to also deal with case 2 before partitioning Ia.

We first deal with case 3 as in Lemma 14. If I is empty, the sum in (22) is 0, so
suppose otherwise. Let f be the first element of I. Note that f ∈ Ia for all a. Then for
all f < i ∈ I, we have

r − 3− w(Ci) < |Af ∩Di| ⩽ |Di| ⩽ t− 2w(Ci)

by (28) and (26), which implies

w(Ci) ⩽ t− r + 2 . (31)

We now deal with case 2 using Lemma 16, depending on the value of a. For a ⩾ 2t−2r+5,
there are no i ∈ Ia in case 1, so the only remaining case is case 2. For such a we
show that |Ia| ⩽ 2, as follows. Let l be the last element of Ia in the order induced by
I. If l = f , Ia = {f}, so suppose l > f . Then w(Cl) ⩽ t − r + 2 by (31). Order
Ia \ {l} using the order induced by I. Then by (26), (28) and (30), ((Ai)i∈Ia\{l}, Dl) is a
(t− a, t− 2w(Cl), r − 3− w(Cl)) degenerate set system, so

|Ia| = |Ia \ {l}|+ 1 ⩽

⌊
a− 2w(Cl)

a− w(Cl)− t+ r − 2

⌋
+ 1 = 2

by Lemma 16. (Note that the
⋃

k<iAk may change when restricting to Ia \ {l}, but
can only become smaller.)

For a ⩽ 2t − 2r + 4, let Ja = {i ∈ Ia : w(Ci) ⩽ a − t + r − 3} be the set of i ∈ Ia
in case 2. We claim that |Ja| ⩽ 2t− 2r + 7− a. Indeed, if |Ja| ⩽ 1, the bound holds, so
suppose |Ja| ⩾ 2. Let l be the last element of Ja in the order induced by I. Since |Ja| ⩾ 2,
l > f , so w(Cl) ⩽ t− r + 2 by (31). Order Ja \ {l} using the order induced by I. Then,
as before, by (26), (28) and (30), ((Ai)i∈Ja\{l}, Dl) is a (t− a, t− 2w(Cl), r− 3−w(Cl))
degenerate set system, so

|Ja| = |Ja \ {l}|+ 1 ⩽

⌊
a− 2w(Cl)

a− w(Cl)− t+ r − 2

⌋
+ 1 ⩽ 2t− 2r + 7− a

by Lemma 16. (Again, the
⋃

k<iAk may change when restricting to Ja \ {l}, but can
only become smaller.)

We now bound |Ia \ Ja|. For each integer

max (0, a− t+ r − 2) ⩽ b ⩽ min (r − 3, t− r + 2),

let Ia,b = {i ∈ (Ia \Ja)\{f} : w(Ci) = b}, with the order induced by I. Note that the Ia,b
partition (Ia \ Ja) \ {f} by (19) and (31). Then by (30), (26), (27) and (28), (Ai, Di)i∈Ia,b
is a (t− a, t− 2b, r − 3− b) modified set system, so

|Ia,b| ≪
(

2t− 2r + 7− a

t− r + 4− a+ b

)
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by part 1 of Theorem 12. (Once again, the
⋃

k<iAk may change when restricting to
Ia,b, but can only become smaller.)

Hence

|Ia\Ja| ⩽ |(Ia\Ja)\{f}|+ 1 =
∑

0⩽b⩽r−3
a−t+r−2⩽b
b⩽t−r+2

|Ia,b|+ 1 ≪
∑

0⩽b⩽r−3
a−t+r−2⩽b
b⩽t−r+2

(
2t− 2r + 7− a

t− r + 4− a+ b

)
+ 1 ,

so

|Ia| = |Ia \ Ja|+ |Ja| ≪
∑

0⩽b⩽r−3
a−t+r−2⩽b
b⩽t−r+2

(
2t− 2r + 7− a

t− r + 4− a+ b

)
+ (2t− 2r + 8− a)

for a ⩽ 2t− 2r + 4.
Combining our upper bounds for the |Ia|, we obtain

∑
i∈I

(
t− |Ai ∩

⋃
k<i

Ak|

)
=

∑
1⩽a⩽t

|Ia|

≪
∑
1⩽a⩽t

a⩽2t−2r+4


∑

0⩽b⩽r−3
a−t+r−2⩽b
b⩽t−r+2

(
2t− 2r + 7− a

t− r + 4− a+ b

)
+ (2t− 2r + 8− a)

 +
∑

a⩾2t−2r+5
a⩽t

2

≪
∑
1⩽a⩽t

a⩽2t−2r+4
0⩽b⩽r−3

a−t+r−2⩽b
b⩽t−r+2

(
2t− 2r + 7− a

t− r + 4− a+ b

)
+ (t− r + 3)2 + t

by (29).
We have∑
1⩽a⩽t

a⩽2t−2r+4
0⩽b⩽r−3

a−t+r−2⩽b
b⩽t−r+2

(
2t− 2r + 7− a

t− r + 4− a+ b

)
⩽

∑
0⩽b⩽r−3
b⩽t−r+2

(
2t− 2r + 7

t− r + 4− b

)
≪

4t−r min
(
r,
√
t− r + 3

)
√
t− r + 3

.

Putting everything together, we obtain∑
i∈I

(
t− |Ai ∩

⋃
k<i

Ak|

)
≪

4t−r min
(
r,
√
t− r + 3

)
√
t− r + 3

+ (t− r + 3)2 + t

≍
4t−r min

(
r,
√
t− r + 3

)
√
t− r + 3

+ r,
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which proves (22).

We now use Pikhurko’s argument and our improved upper bound for f(r, t) in Theorem
3 to deduce Theorem 4.

Theorem 4. Every large Kr-saturated graph (r ⩾ 3) with e edges has a vertex cover of
size O(e/ log e).

Proof. Let G be a Kr-saturated graph with n vertices and e edges, where r ⩾ 3 and n is
large. If n < r, G = Kn, so e/ log e ≍ n2/ log n. But G trivially has a vertex cover of size
n = O(n2/ log n), so suppose n ⩾ r. Then e ⩾ sat(n,Kr) = (r − 2)n −

(
r−1
2

)
≫ r2, so

r ≪
√
e.

Let t ⩾ r − 2 be an integer, to be chosen later. Let A = {v ∈ V (G) : d(v) > t} and
B = {v ∈ V (G) : d(v) ⩽ t, ∃w ∈ Γ(v) : d(w) ⩽ t}. Then A ∪ B is a vertex cover of G.
We have

|A ∪B| = |A|+ |B| ⩽ 2e

t
+ f(r, t)

≪ e

t
+

4t−r min (r,
√
t− r + 3)√

t− r + 3
+ r

≪ e

t− r + 3
+ 4t−r+3 +

√
e

by Theorem 3. Optimising in t gives a vertex cover of size O(e/ log e).

We now use the graphs Gt from Section 3 to prove Theorem 5.

Theorem 5. Let r ⩾ 3 be an integer and n and e be large quantities with rn ≪ e ≪ n2.
Then there exists a Kr-saturated graph G with |G| ≍ n and e(G) ≍ e such that every
vertex cover in G has size Ω(min (e/ log e, n)).

Proof. As when proving the lower bounds for c(r, t) and f(r, t), by adding conical vertices,
it is sufficient to prove the special case r = 3. Indeed, suppose r, n and e are as in the
theorem. Then by the case r = 3, there is a K3-saturated graph H with |H| ≍ n and
e(H) ≍ e such that every vertex cover in H has size Ω(min (e/ log e, n)). Let G be the
graph obtained by adding r− 3 conical vertices to H. Then G is Kr-saturated and every
vertex cover in G has size Ω(min (e/ log e, n)). Note that rn ≪ e ≪ n2 implies r ≪ n and
hence also r2 ≪ e. Hence |G| = |H|+(r−3) ≍ n and e(G) = e(H)+(r−3)|H|+

(
r−3
2

)
≍ e.

We now prove the special case r = 3, which states that for all large quantities n and e
with n ≪ e ≪ n2, there exists a K3-saturated graph G with |G| ≍ n and e(G) ≍ e such
that every vertex cover in G has size Ω(min (e/ log e, n)). The broad idea of the proof is
as follows. Note that by properties 1, 2, 3 and 5 in Section 3, Gt is K3-saturated, |Gt| ≍
4tt−1/2, e(Gt) ≍ 4tt1/2 and every vertex cover in Gt has size at least 1

2

(
2(t−1)
t−1

)
≍ 4tt−1/2,

respectively. Hence Gt can be used to prove the result when e/ log e ≍ n. To extend this
to general n and e, we will modify Gt depending on whether e/ log e ≪ n or e/ log e ≫ n.
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We first consider the case e/ log e ≪ n. We are given large quantities n and e with
e/ log e ≪ n ≪ e and need to construct a K3-saturated graph G with |G| ≍ n and
e(G) ≍ e such that every vertex cover in G has size Ω(e/ log e). The key to doing this is
the fact that Gt has bounded chromatic number.

Pick an integer t ⩾ 3 such that 4tt1/2 ≍ e. Note that e/ log e ≍ 4tt−1/2. By property 6
in Section 3, there exist three maximally independent subsets of V (Gt) that cover it. Let
G′′

t be the graph obtained from Gt as follows. Add three new non-adjacent vertices, one for
each maximally independent set, and join each new vertex to all vertices in its maximally
independent set. Then add one final vertex and join it to the three new vertices.

It is easy to check that G′′
t has the properties of Gt stated previously - G′′

t is K3-
saturated, |G′′

t | ≍ 4tt−1/2, e(G′′
t ) ≍ 4tt1/2 and every vertex cover in G′′

t has size at least
1
2

(
2(t−1)
t−1

)
≍ 4tt−1/2 - and the additional property of having a vertex of degree three. Pick

an integer N ⩾ 0 such that N ≍ n. Let G be the graph obtained from G′′
t by blowing up

the vertex of degree three by N +1. Then G is K3-saturated and every vertex cover in G
has size Ω(e/ log e). Note that

|G′′
t | ≍ 4tt−1/2 ≍ e/ log e ≪ n ≍ N ≪ e ≍ 4tt1/2 ≍ e(G′′

t ) .

Hence |G| = |G′′
t |+N ≍ n and e(G) = e(G′′

t ) + 3N ≍ e.
We now consider the case e/ log e ≫ n. We are given large quantities n and e with

n log n ≪ e ≪ n2 and need to construct a K3-saturated graph G with |G| ≍ n and
e(G) ≍ e such that every vertex cover in G has size Ω(n). Pick an integer t ⩾ 3 such that
t ≍ e/n and 4tt−1/2 ≫ n. This is possible since e/n ≫ log n. Note that t ≪ n. Let G′

t be
as in property 7 in Section 3.

Pick an integer N with 0 ⩽ N ⩽ 1
2

(
2(t−1)
t−1

)
and N ≍ n. This is possible since 1

2

(
2(t−1)
t−1

)
≍

4tt−1/2 ≫ n. Let G be a graph obtained from G′
t by keeping N of the pairs of matching

vertices in R and removing the rest. Then G is K3-saturated by property 7 in Section 3
and contains a matching of size N , so every vertex cover in G has size Ω(n). We have
|G| = 2N + (2t− 1) ≍ n and e(G) = (2t− 1)N + 2(t− 1) ≍ e.

7 The Two Families Theorem

In this section we prove Theorem 12, Lemma 16 and further related results. We first
establish some linear algebra notation in Section 7.1. Next, we put our results into
context in Section 7.2. In Section 7.3 we introduce some definitions necessary for stating
and proving these results, which we then prove in Section 7.4.

7.1 Linear algebra notation

Let F be an infinite field. All our vector spaces will be over F and finite dimensional.
Given such a vector space V , we write dim(V ) for the dimension of V . We denote by 0
the zero subspace of V . Given subspaces Vi of V , indexed by some finite set I, we write∑

i∈I Vi =
{∑

i∈I vi : vi ∈ Vi for all i
}
for the smallest subspace of V contatining all the
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Vi. We say that the sum
∑

i∈I Vi is a direct sum if each of its elements can be written
uniquely as a sum of vi ∈ Vi. Given a subset S of V , we denote by span(S) the linear
span of S, the smallest subspace of V containing S, consisting of all linear combinations
of elements of S.

7.2 Context

The Two Families Theorem is a celebrated result in extremal set theory. It was first
stated and proved by Bollobás in 1965 (see the lemma in [9] for the original version of
the theorem, which is a weighted generalisation of Theorem 17 below; see also [10] for an
alternative, elegant proof of Theorem 17 by Katona). Since then it has been generalised
in several different ways and found numerous applications (see [11] through [22]). The
simplest version of the Two Families Theorem is as follows.

Theorem 17 (Two Families Theorem, Bollobás, 1965). Let a, b ⩾ 0 be integers and
(Ai, Bi)i∈I be a collection of pairs of finite sets, indexed by a finite set I, with the following
properties.

1. |Ai| ⩽ a and |Bi| ⩽ b for all i ∈ I.

2. Ai ∩Bi = ∅ for all i ∈ I.

3. Ai ∩Bj ̸= ∅ for all i ̸= j ∈ I.

Then |I| ⩽
(
a+b
a

)
.

One can see that Theorem 17 is tight by taking (Ai, Bi)i∈I to be the collection of all
partitions of a set of size a+b into subsets Ai and Bi of size a and b, respectively. Moreover,
this is the unique way of achieving equality. An interesting feature of this theorem is that
the bound does not depend on the size of the ground set. This is ultimately the reason
c(r, t) and f(r, t) are constants independent of n.

Note that Theorem 10 is a generalisation of Theorem 17 allowing one to relax condition
3. In this version of the theorem there are many ways of achieving equality. There is no
known combinatorial proof of the Skew Two Families Theorem - all known proofs use
linear algebra in some form. One can deduce Theorem 10 from the following vector space
analogue (see Theorem 4.9 in [23]).

Theorem 18 (Vector Space Two Families Theorem, Lovász, 1977). Let a, b ⩾ 0 be
integers and (Ai, Bi)i∈I be a sequence of pairs of finite dimensional vector spaces over F ,
indexed by a finite, ordered set I, with the following properties.

1. dim(Ai) ⩽ a and dim(Bi) ⩽ b for all i ∈ I.

2. Ai ∩Bi = 0 for all i ∈ I.

3. Ai ∩Bj ̸= 0 for all i < j ∈ I.
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Then |I| ⩽
(
a+b
a

)
.

Theorem 18 is proved using exterior algebra. We now explain how to deduce Theorem
10 from Theorem 18, since the same construction will be useful for us later. Suppose
a, b ⩾ 0 are integers and (Ai, Bi)i∈I is an (a, b) set system with ground set S. Let V
be a vector space over F with a basis consisting of vectors es indexed by s ∈ S. Let
A′

i = span({ea : a ∈ Ai}) and B′
i = span({eb : b ∈ Bi}) for each i ∈ I. Then (A′

i, B
′
i)i∈I

satisfies the conditions in Theorem 18, so |I| ⩽
(
a+b
a

)
. We will refer to this construction

as the vector space construction.
Theorem 6 is similar to the following generalisation of Theorem 10 (see [24]), but with

the bound |Ai| ⩽ a replaced by the weaker bound |Ai ∩
⋃

k<iAk| ⩽ a.

Theorem 19 (Threshold Two Families Theorem, Füredi, 1984). Let a, b ⩾ c ⩾ 0 be
integers and (Ai, Bi)i∈I be a sequence of pairs of finite sets, indexed by a finite, ordered
set I, with the following properties.

1. |Ai| ⩽ a and |Bi| ⩽ b for all i ∈ I.

2. |Ai ∩Bi| ⩽ c for all i ∈ I.

3. |Ai ∩Bj| > c for all i < j ∈ I.

Then |I| ⩽
(
a+b−2c
a−c

)
.

Taking c = 0 gives Theorem 10. One can see that Theorem 19 is tight as follows. Let
(Ai, Bi)i∈I be the collection of all partitions of a set S of size a + b − 2c into subsets Ai

and Bi of size a − c and b − c, respectively. Order I arbitrarily and let T be a set of
size c disjoint from S. Now consider the the sequence (A′

i, B
′
i)i∈I , where A′

i = Ai ∪ T and
B′

i = Bi ∪ T for each i ∈ I.
Füredi deduced Theorem 19 from the following vector space analogue using the vector

space construction (see [24]).

Theorem 20 (Vector Space Threshold Two Families Theorem, Füredi, 1984). Let a, b ⩾
c ⩾ 0 be integers and (Ai, Bi)i∈I be a sequence of pairs of finite dimensional vector spaces
over F , indexed by a finite, ordered set I, with the following properties.

1. dim(Ai) ⩽ a and dim(Bi) ⩽ b for all i ∈ I.

2. dim(Ai ∩Bi) ⩽ c for all i ∈ I.

3. dim(Ai ∩Bj) > c for all i < j ∈ I.

Then |I| ⩽
(
a+b−2c
a−c

)
.

Note that taking c = 0 gives Theorem 18. Füredi proved Theorem 20 by reducing it to
Theorem 18. Since the same argument will be useful later, we explain how this reduction
works here. We first need a linear algebra fact. For any two subspaces U and W of a finite
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dimensional vector space V we have dim(U∩W ) ⩾ max (dim(U) + dim(W )− dim(V ), 0).
We say that U and W are in general position if we have equality. The fact we will use
is the following. Suppose we have a finite collection of subspaces of a finite dimensional
vector space V over an infinite field. Then for every integer 0 ⩽ d ⩽ dim(V ), there exists
a subspace W of V with dim(W ) = d that is in general position with all subspaces in the
collection.

Now suppose (Ai, Bi)i∈I satisfies the conditions in Theorem 20. Let V be an ambient
vector space containing all the Ai and Bi. We may assume that V is finite dimensional
and that dim(V ) ⩾ c. Pick a subspace W of V with dim(W ) = dim(V ) − c that is in
general position with Ai, Bi and Ai ∩Bi for all i ∈ I. Let A′

i = Ai ∩W and B′
i = Bi ∩W

for each i ∈ I. Then (A′
i, B

′
i)i∈I satisfies the conditions in Theorem 18, with a and b

replaced by a− c and b− c, respectively, so |I| ⩽
(
a+b−2c
a−c

)
. We will refer to this argument

as Füredi’s reduction argument.

7.3 Definitions

In this section we introduce some definitions necessary for stating and proving our results.
We first introduce the vector space analogues of Definitions 9 and 11.

Definition 21. For integers a, b ⩾ 0, an (a, b) vector space system is a sequence (Ai, Bi)i∈I
of pairs of finite dimensional vector spaces over F , indexed by a finite, ordered set I, with
the following properties.

1. dim(Ai) ⩽ a and dim(Bi) ⩽ b for all i ∈ I.

2. Ai ∩Bi = 0 for all i ∈ I.

3. Ai ∩Bj ̸= 0 for all i < j ∈ I.

Note that these are the conditions in Theorem 18.

Definition 22. For integers a, b, c ⩾ 0, an (a, b, c) modified vector space system is a
sequence (Ai, Bi)i∈I of pairs of finite dimensional vector spaces over F , indexed by a
finite, ordered set I, with the following properties.

1. dim(Ai ∩
∑

k<iAk) ⩽ a and dim(Bi) ⩽ b for all i ∈ I.

2. dim(Ai ∩Bi) ⩽ c for all i ∈ I.

3. dim(Ai ∩Bj) > c for all i < j ∈ I.

We now name the maximum possible size of the index set in a modified set system.

Definition 23. For all integers a, b, c ⩾ 0, let is(a, b, c) be the maximum of |I| over all
(a, b, c) modified set systems.

We will also need the vector space analogue of this definition.
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Definition 24. For all integers a, b, c ⩾ 0, let iv(a, b, c) be the maximum of |I| over all
(a, b, c) modified vector space systems.

We will see in Section 7.4 that these maxima do exist, i.e. that |I| is bounded for both
(a, b, c) modified set systems and (a, b, c) modified vector space systems.

To prove our results, we will need to also consider the following maximum.

Definition 25. For all integers a, b ⩾ 0, let us(a, b) be the maximum of |
⋃

i∈I Bi| over
all (a, b) set systems.

We will also need the vector space analogue of this definition.

Definition 26. For all integers a, b ⩾ 0, let uv(a, b) be the maximum of dim
(∑

i∈I Bi

)
over all (a, b) vector space systems.

It is clear that these maxima do exist, i.e. that |
⋃

i∈I Bi| and dim(
∑

i∈I Bi) are

bounded, since Theorems 10 and 18 give |I| ⩽
(
a+b
a

)
and condition 1 in Definitions 9

and 21 gives |Bi| ⩽ b and dim(Bi) ⩽ b for (a, b) set and vector space systems, respec-
tively, so us(a, b), uv(a, b) ⩽ b

(
a+b
a

)
. We will obtain better bounds, however.

We can now state our results.

Theorem 27. We have the following estimates for is, iv, us and uv.

1. For all integers a, b ⩾ c ⩾ 0,

is(a, b, c), iv(a, b, c) ≍
(
a+ b− 2c+ 1

a− c+ 1

)
.

2. For all integers a ⩾ 0 and b ⩾ 1,

us(a, b), uv(a, b) ≍
(
a+ b+ 1

a+ 1

)
.

3. For all integers b, c ⩾ a ⩾ 0,

is(a, b, c) = iv(a, b, c) =

⌊
b− a

c− a+ 1

⌋
+ 1 .

4. For all integers a ⩾ 0 and c ⩾ b ⩾ 0, is(a, b, c) = iv(a, b, c) = 1.

5. For all integers a ⩾ 0, us(a, 0) = uv(a, 0) = 0.

Note that Theorem 27 implies Theorem 12 and moreover that Theorem 12 is tight.
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7.4 Proofs

In this section we prove Theorem 27 and Lemma 16. We first prove some preliminary
lemmas. Using the vector space construction, one obtains the following lemma.

Lemma 28. For all integers a, b, c ⩾ 0, is(a, b, c) ⩽ iv(a, b, c). For all integers a, b ⩾ 0,
us(a, b) ⩽ uv(a, b).

By Lemma 28, to prove parts 1, 2 and 3 of Theorem 27, it will be sufficient to prove
lower bounds for is(a, b, c) and us(a, b) and upper bounds for iv(a, b, c) and uv(a, b).

Recall that we obtained an extremal construction for Theorem 19 from the extremal
construction for Theorem 17 by adjoining c new elements to all the sets. Similarly,
adjoining d new elements to all the sets gives is(a + d, b + d, c + d) ⩾ is(a, b, c) and the
vector space analogue of this argument gives iv(a+ d, b+ d, c+ d) ⩾ iv(a, b, c). Moreover,
Füredi’s reduction argument shows that the second inequality is in fact an equality.

Lemma 29. For all integers a, b, c, d ⩾ 0, is(a + d, b + d, c + d) ⩾ is(a, b, c) and iv(a +
d, b+ d, c+ d) = iv(a, b, c).

Proof. Let (Ai, Bi)i∈I be an (a, b, c) modified set or vector space system with ground set
S or ambient vector space V , respectively. Let T or W be a set or vector space over F of
size or dimension d disjoint from S or intersecting V in the zero subspace, respectively.
For each i ∈ I, let A′

i be Ai∪T or Ai+W and B′
i be Bi∪T or Bi+W , respectively. Then

(A′
i, B

′
i)i∈I is an (a + d, b + d, c + d) modified set or vector space system, respectively, so

is(a+ d, b+ d, c+ d) ⩾ is(a, b, c) and iv(a+ d, b+ d, c+ d) ⩾ iv(a, b, c).
It remains to show that iv(a + d, b + d, c + d) ⩽ iv(a, b, c). Let (Ai, Bi)i∈I be an

(a + d, b+ d, c+ d) modified vector space system with ambient vector space V . We may
assume that V is finite dimensional and that dim(V ) ⩾ d. Pick a subspace W of V with
dim(W ) = dim(V )− d that is in general position with Ai ∩

∑
k<iAk, Bi and Ai ∩ Bi for

all i ∈ I. Let A′
i = Ai∩W and B′

i = Bi∩W for each i ∈ I. Then (A′
i, B

′
i)i∈I is an (a, b, c)

modified vector space system, so the inequality follows.

Lemma 29 will allow us to only consider is(a, b, 0) and iv(a, b, 0) when proving part 1
of Theorem 27 and is(0, b, c) and iv(0, b, c) when proving part 3 of Theorem 27.

We now prove two lemmas. The first, Lemma 30, gives an upper bound for iv(a, b, 0)
in terms of uv(a, b). The second, Lemma 31, gives an upper bound for uv(a, b) in terms
of the values of iv(c, a, 0) for integers 0 ⩽ c ⩽ b− 1. Combining these two will allow us to
prove upper bounds for both iv(a, b, 0) and uv(a, b) by induction. This is the reason for
introducing uv(a, b) in the first place.

The main idea in the proof of Lemma 30 is that, given an (a, b, 0) modified vector space
system, we would like to replace each Ai by Ai ∩

∑
k<iAk, since condition 1 in Definition

22 gives an upper bound for dim
(
Ai ∩

∑
k<iAk

)
rather than dim(Ai), and then apply

Theorem 18. However, this makes the Ai smaller, so while condition 2 in Definition 22
will still hold, condition 3 might not. The solution is to find a subset J ⊆ I in which
condition 3 does still hold that is maximal with respect to this property in a certain way.
We can then bound |J | using Theorem 18 and |I \ J | using the maximality of J .

the electronic journal of combinatorics 31(4) (2024), #P4.68 29



Lemma 30. For all integers a, b ⩾ 0, iv(a, b, 0) ⩽
(
a+b
a

)
+ uv(a, b).

Proof. Let (Ai, Bi)i∈I be an (a, b, 0) modified vector space system. Define a subset J ⊆ I
recursively (in the dual order) as follows. For every i ∈ I, i ∈ J if and only if Ai ∩(∑

k<iAk

)
∩Bj ̸= 0 for all j ∈ J with i < j. The set J has the following two properties:

1. For all i < j ∈ J , Ai ∩
(∑

k<iAk

)
∩Bj ̸= 0 .

2. For all i ∈ I \ J , there is some j ∈ J with i < j and Ai ∩
(∑

k<iAk

)
∩Bj = 0 .

(Indeed, J is the unique subset of I with these properties.) Let A′
i = Ai ∩

∑
k<iAk for

each i ∈ J . Order J using the order induced by I. Then by property 1, (A′
i, Bi)i∈J is an

(a, b) vector space system, so |J | ⩽
(
a+b
a

)
by Theorem 18 and dim

(∑
k∈J Bk

)
⩽ uv(a, b)

by definition.
For all i ∈ I \ J , we clearly have

dim


∑

k∈I\J
k⩽i

Ak

 ∩

(∑
k∈J

Bk

) ⩾ dim


∑

k∈I\J
k<i

Ak

 ∩

(∑
k∈J

Bk

) .

We now show that this inequality is strict. By property 2, there is some j ∈ J with
i < j and Ai∩

(∑
k<iAk

)
∩Bj = 0. By condition 3 in Definition 22, Ai∩Bj ̸= 0, so there

is some v ∈ Ai ∩ Bj with v ̸= 0. Then the inequality is strict because v is in the vector
space on the left hand side but not in the vector space on the right hand side. We thus
have

uv(a, b) ⩾ dim

(∑
k∈J

Bk

)
⩾ dim

∑
i∈I\J

Ai

 ∩

(∑
k∈J

Bk

)

=
∑
i∈I\J

dim


∑

k∈I\J
k⩽i

Ak

 ∩

(∑
k∈J

Bk

)− dim


∑

k∈I\J
k<i

Ak

 ∩

(∑
k∈J

Bk

)
 ⩾ |I \ J | .

Hence |I| = |J |+ |I \ J | ⩽
(
a+b
a

)
+ uv(a, b).

Recall that uv(a, b) ⩽ b
(
a+b
a

)
, since for all (a, b) vector space systems we have |I| ⩽(

a+b
a

)
by Theorem 18 and dim(Bi) ⩽ b for all i ∈ I by condition 1 in Definition 21, so

trivially dim
(∑

i∈I Bi

)
⩽ b

(
a+b
a

)
. Lemma 31 gives a better bound in terms of the values

of iv(c, a, 0) for integers 0 ⩽ c ⩽ b−1. The main idea in the proof of Lemma 31 is that for
the trivial bound to be close to tight, the sum

∑
i∈I Bi would have to be close to a direct

sum. But then the Bi ∩
∑

k>iBk would have to have small dimension, which allows us to
obtain a better bound for |I| in terms of the values of iv(c, a, 0) for integers 0 ⩽ c ⩽ b− 1.

the electronic journal of combinatorics 31(4) (2024), #P4.68 30



Lemma 31. For all integers a, b ⩾ 0,

uv(a, b) ⩽
b−1∑
c=0

min

{
iv(c, a, 0),

(
a+ b

a

)}
.

Proof. Let (Ai, Bi)i∈I be an (a, b) vector space system. By Theorem 18, |I| ⩽
(
a+b
a

)
. For

each integer 1 ⩽ c ⩽ b, let Ic = {i ∈ I : dim(Bi) − dim
(
Bi ∩

∑
k>iBk

)
⩾ c}. Then

by double counting the number of pairs (i, c), where i ∈ I and c is an integer, with
1 ⩽ c ⩽ dim(Bi)− dim

(
Bi ∩

∑
k>iBk

)
, we obtain

dim

(∑
i∈I

Bi

)
=
∑
i∈I

[
dim

(∑
k⩾i

Bk

)
− dim

(∑
k>i

Bk

)]

=
∑
i∈I

[
dim(Bi)− dim

(
Bi ∩

∑
k>i

Bk

)]

=
b∑

c=1

|Ic|.

For each integer 1 ⩽ c ⩽ b, we can bound |Ic| in two different ways. On the one
hand, |Ic| ⩽ |I| ⩽

(
a+b
a

)
. On the other hand, for all i ∈ Ic, dim

(
Bi ∩

∑
k>iBk

)
⩽

b − c. Order Ic using the order induced by the dual order on I. Then (Bi, Ai)i∈Ic is a
(b − c, a, 0) modified vector space system, so |Ic| ⩽ iv(b − c, a, 0) by definition. Hence
|Ic| ⩽ min

{
iv(b− c, a, 0),

(
a+b
a

)}
, so

dim

(∑
i∈I

Bi

)
=

b∑
c=1

|Ic| ⩽
b∑

c=1

min

{
iv(b− c, a, 0),

(
a+ b

a

)}

=
b−1∑
c=0

min

{
iv(c, a, 0),

(
a+ b

a

)}
.

At this point we have all the lemmas we need to prove the upper bounds in parts 1
and 2 of Theorem 27. To prove the lower bounds, we will need the next two lemmas. The
first, Lemma 32, gives a lower bound for is(a+ c, b+ d, 0) and iv(a+ c, b+ d, 0) in terms
of is(c, d, 0) and iv(c, d, 0), respectively. We will only need the inequality for is and when
c = 0, but proving the general case is not more difficult.

Lemma 32. For all integers a, b, c, d ⩾ 0, is(a + c, b + d, 0) ⩾
(
a+b
a

)
is(c, d, 0) and iv(a +

c, b+ d, 0) ⩾
(
a+b
a

)
iv(c, d, 0).

Proof. Let (Ai, Bi)i∈I∗ be an (a, b) set or vector space system with ground set S∗ or
ambient vector space V∗ and for each i ∈ I∗, let (A

i
j, B

i
j)j∈Ii be a (c, d, 0) modified set or

vector space system with ground set Si or ambient vector space Vi, respectively. Without
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loss of generality, we may assume that the Ii are disjoint and that the union
⋃

i∈I∪{∗} Si

is a disjoint union or that the sum
∑

i∈I∪{∗} Vi is a direct sum, respectively.

Let J =
⋃

i∈I∗ Ii, ordered with the sum of the orders on the Ii. For each i ∈ I∗ and
j ∈ Ii, let A′

j be Ai ∪ Ai
j or Ai + Ai

j and B′
j be Bi ∪ Bi

j or Bi + Bi
j, respectively. Then

(A′
i, B

′
i)i∈J is an (a + c, b + d, 0) modified set or vector space system, respectively, so the

inequalities follow.

Given an (a, b) set or vector space system (Ai, Bi)i∈I , the second lemma, Lemma 33,
gives a lower bound for us(a+ c, b+ d) or uv(a+ c, b+ d) in terms of us(c, d) or uv(c, d),
|I| and |

⋃
i∈I Bi| or dim

(∑
i∈I Bi

)
, respectively. We will only need the inequality for us

and when c = 0 or d = 1, but proving the general case is not more difficult. The proof is
similar to that of Lemma 32.

Lemma 33. Let a, b, c, d ⩾ 0 be integers and (Ai, Bi)i∈I be an (a, b) set or vector space
system. Then us(a + c, b + d) ⩾ |I|us(c, d) + |

⋃
i∈I Bi| or uv(a + c, b + d) ⩾ |I|uv(c, d) +

dim
(∑

i∈I Bi

)
, respectively.

Proof. Let I∗ = I and let (Ai, Bi)i∈I∗ have ground set S∗ or ambient vector space V∗,
respectively. For each i ∈ I∗, let (A

i
j, B

i
j)j∈Ii be a (c, d) set or vector space system with

ground set Si or ambient vector space Vi, respectively. As before, we may assume without
loss of generality that the Ii are disjoint and that the union

⋃
i∈I∪{∗} Si is a disjoint union

or that the sum
∑

i∈I∪{∗} Vi is a direct sum, respectively. Define and order J as before

and for each i ∈ J , define A′
i and B′

i as before. Then (A′
i, B

′
i)i∈J is an (a+ c, b+ d) set or

vector space system, respectively, so the inequalities follow.

We now prove the vector space analogue of Lemma 16.

Lemma 34. Let b, c ⩾ a ⩾ 0 be integers and ((Ai)i∈I , B) be a pair, where (Ai)i∈I is a
sequence of finite dimensional vector spaces over F , indexed by a finite, ordered set I, and
B is a finite dimensional vector space over F , with the following properties.

1. dim(B) ⩽ b.

2. dim(Ai ∩B) > c for all i ∈ I.

3. dim
(
Ai ∩

∑
k<iAk

)
⩽ a for all i ∈ I.

Then |I| ⩽
⌊

b−a
c−a+1

⌋
.

Proof. If I is empty, the bound holds, so suppose otherwise. Then by condition 1,
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b ⩾ dim(B) ⩾ dim

(∑
i∈I

(Ai ∩B)

)

=
∑
i∈I

[
dim

(∑
k⩽i

(Ak ∩B)

)
− dim

(∑
k<i

(Ak ∩B)

)]

=
∑
i∈I

[
dim (Ai ∩B)− dim

(
Ai ∩

∑
k<i

(Ak ∩B)

)]

⩾
∑
i∈I

[
dim (Ai ∩B)− dim

(
Ai ∩

∑
k<i

Ak

)]
.

But by conditions 2 and 3,

dim (Ai ∩B)− dim

(
Ai ∩

∑
k<i

Ak

)
⩾ c− a+ 1 (32)

for all i ∈ I. Moreover, the left hand side of (32) is at least c+ 1 for the first element
of I, so b ⩾ (c− a+ 1)|I|+ a and the bound follows.

Remark 2. Alternatively, one can use Füredi’s reduction argument to reduce Lemma 34
to the special case a = 0, which is easier to prove.

Lemma 16 follows from Lemma 34 using the vector space construction. (Alternatively,
one can prove Lemma 16 directly using the set analogue of the proof of Lemma 34.)

We are now ready to prove Theorem 27.

Theorem 27. We have the following estimates for is, iv, us and uv.

1. For all integers a, b ⩾ c ⩾ 0,

is(a, b, c), iv(a, b, c) ≍
(
a+ b− 2c+ 1

a− c+ 1

)
.

2. For all integers a ⩾ 0 and b ⩾ 1,

us(a, b), uv(a, b) ≍
(
a+ b+ 1

a+ 1

)
.

3. For all integers b, c ⩾ a ⩾ 0,

is(a, b, c) = iv(a, b, c) =

⌊
b− a

c− a+ 1

⌋
+ 1 .
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4. For all integers a ⩾ 0 and c ⩾ b ⩾ 0, is(a, b, c) = iv(a, b, c) = 1.

5. For all integers a ⩾ 0, us(a, 0) = uv(a, 0) = 0.

Proof. To prove part 1 it suffices to show is(a, b, c) ≫
(
a+b−2c+1
a−c+1

)
and iv(a, b, c) ≪

(
a+b−2c+1
a−c+1

)
by Lemma 28. By Lemma 29, it suffices to prove the special case c = 0, which states
that is(a, b, 0) ≫

(
a+b+1
a+1

)
and iv(a, b, 0) ≪

(
a+b+1
a+1

)
for all integers a, b ⩾ 0. Let us first

prove the lower bound. By Lemma 32 with c = 0 and part 3 with a = 0 = c, we have
is(a, b, 0) ⩾ max0⩽c⩽b (c+ 1)

(
a+b−c

a

)
≍
(
a+b+1
a+1

)
. The maximum is attained at c =

⌈
b−a
a+1

⌉
.

Let us now prove the upper bound. We will show that iv(a, b, 0) ⩽ 2
(
a+b+1
a+1

)
and

uv(a, b) ⩽ 2
(
a+b+1
a+1

)
−
(
a+b
a

)
for all integers a, b ⩾ 0 by induction on a + b. By induction,

we may assume iv(c, a, 0) ⩽ 2
(
a+c+1

a

)
for all integers 0 ⩽ c ⩽ b− 1. Then

uv(a, b) ⩽
b−1∑
c=0

min

{
2

(
a+ c+ 1

a

)
,

(
a+ b

a

)}

⩽ 2
b∑

c=0

(
a+ c

a

)
−
(
a+ b

a

)
= 2

(
a+ b+ 1

a+ 1

)
−
(
a+ b

a

)
by Lemma 31 and iv(a, b, 0) ⩽ 2

(
a+b+1
a+1

)
by Lemma 30.

To prove part 2 it suffices to show us(a, b) ≫
(
a+b+1
a+1

)
and uv(a, b) ≪

(
a+b+1
a+1

)
by Lemma

28. We have already proved the upper bound, so let us prove the lower bound. By Lemma
33, us(a, b) ⩾ |I|us(c, d) + |

⋃
i∈I Bi| ⩾ |I|us(c, d) for all integers 0 ⩽ c ⩽ a and 0 ⩽ d ⩽ b

and all (a− c, b− d) set systems (Ai, Bi)i∈I , so us(a, b) ⩾
(
a+b−c−d

a−c

)
us(c, d) for all integers

0 ⩽ c ⩽ a and 0 ⩽ d ⩽ b.
Taking c = 0 and using the fact that us(0, d) = d for all integers d ⩾ 0, we obtain

us(a, b) ⩾ max0⩽d⩽b d
(
a+b−d

a

)
≍
(
a+b
a+1

)
. The maximum is attained at d =

⌈
b

a+1

⌉
. Taking

d = 1 and using the fact that us(c, 1) = c + 1 for all integers c ⩾ 0, we obtain us(a, b) ⩾
max0⩽c⩽a (c+1)

(
a+b−1−c

b−1

)
≍
(
a+b
a

)
. The maximum is attained at c =

⌈
a−b+1

b

⌉
. Combining

the two bounds, we obtain us(a, b) ≫
(
a+b
a+1

)
+
(
a+b
a

)
=
(
a+b+1
a+1

)
.

To prove part 3 it suffices to show is(a, b, c) ⩾
⌊

b−a
c−a+1

⌋
+1 and iv(a, b, c) ⩽

⌊
b−a

c−a+1

⌋
+1

by Lemma 28. Let us first prove the lower bound. By Lemma 29, it suffices to prove
the special case a = 0, which states that is(0, b, c) ⩾

⌊
b

c+1

⌋
+ 1 for all integers b, c ⩾ 0.

Let (Ai)i∈I be a sequence of disjoint sets of size c + 1, indexed by an ordered set I with
|I| =

⌊
b

c+1

⌋
+1. For each i ∈ I, let Bi =

⋃
k ̸=i Ak. Then it is easy to check that (Ai, Bi)i∈I

is a (0, b, c) modified set system.
We now prove the upper bound. Let (Ai, Bi)i∈I be an (a, b, c) modified vector space

system. If I is empty, the bound holds, so suppose otherwise. Let l be the last element of
I. Order I \{l} using the order induced by I. Then ((Ai)i∈I\{l}, Bl) satisfies the conditions
in Lemma 34, so the bound follows.
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We now prove part 4. By condition 1 in Definition 11 or 22, we have |Ai∩Bj| ⩽ |Bj| ⩽
b ⩽ c or dim(Ai ∩ Bj) ⩽ dim(Bj) ⩽ b ⩽ c for all i < j ∈ I for all (a, b, c) modified set
or vector space systems, respectively, so condition 3 in Definition 11 or 22 forces |I| ⩽ 1.
One can trivially construct (a, b, c) modified set and vector space systems with |I| = 1, so
is(a, b, c) = 1 = iv(a, b, c). Part 5 is trivial.

Remark 3. Using the set analogues of the proofs of Lemmas 30 and 31, one can prove
the set analogues of these lemmas, namely is(a, b, 0) ⩽

(
a+b
a

)
+ us(a, b) and us(a, b) ⩽∑b−1

c=0 min {is(c, a, 0),
(
a+b
a

)
}. One can then show is(a, b, 0), us(a, b) ≪

(
a+b+1
a+1

)
by induc-

tion just as in the proof of Theorem 27. However, Lemma 29 gives only is(a + d, b +
d, c+ d) ⩾ is(a, b, c) as opposed to iv(a+ d, b+ d, c+ d) = iv(a, b, c), since there is no set
analogue of Füredi’s reduction argument. Because of this, we cannot deduce an upper
bound for is(a, b, c) from the upper bound for is(a, b, 0) as we did for iv. This is the reason
for introducing all the vector space analogues in the first place and then using Lemma 28
to deduce their set analogues.

One could instead generalise Definition 9 to that of an (a, b, c) set system by replacing
conditions 2 and 3 by conditions 2 and 3 in Definition 11 and then define us(a, b, c) as
in Definition 25. Then the set analogues of the proofs of Lemmas 30 and 31 can be
generalised to prove that is(a, b, c) ⩽

(
a+b−2c
a−c

)
+ us(a, b, c) and

us(a, b, c) ⩽
b−1∑
d=0

min {is(d, a, c),
(
a+ b− 2c

a− c

)
}

for a, b ⩾ c.
One can then deduce upper bounds for is(a, b, c) and us(a, b, c) by induction. The

problem with this approach is that, even when proving the upper bounds for a, b ⩾ c,
the degenerate cases arise in the induction, leading to inferior bounds. Indeed, this must
be the case, since we trivially have us(a, b, c) ⩾ b by taking |I| = 1, so the upper bounds
obtained must increase not only with a− c and b− c, but also with c.

Remark 4. We needed F to be infinite for Füredi’s reduction argument. If one is only
interested in iv and uv as means to prove the estimates for is and us, one can simply take
F to be infinite. However, if one is interested in iv and uv in their own right, one might
ask whether our estimates still hold when F is finite. This is indeed the case and can be
deduced from the case when F is infinite, as follows.

Note that Lemma 28 still holds when F is finite, so our lower bounds for iv and uv still
hold. Let F ′ be an infinite field containing F . There is an algebraic technique known as
extension of scalars which, given a vector space V over F , constructs an associated vector
space V ′ over F ′. It is easy to check that for any (a, b, c) modified vector space system
(Ai, Bi)i∈I over F , (A′

i, B
′
i)i∈I is an (a, b, c) modified vector space system over F ′ and that

for any (a, b) vector space system (Ai, Bi)i∈I over F , (A′
i, B

′
i)i∈I is an (a, b) vector space

system over F ′ with dim
(∑

i∈I B
′
i

)
= dim

(∑
i∈I Bi

)
. Hence the upper bounds for iv and

uv over F follow from those over F ′.
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8 Known values of c(r, t)

In this section we first explain how, in principle, given r and t, one can determine c(r, t)
by a finite computation. We then discuss the known values of c(r, t). Finally, we complete
the work of Duffus and Hanson in [3] on the case r = 3 = t by determining C(3, 3).

One can extract explicit lower and upper bounds for c(r, t) and c′(r, t) from the proof
of Theorem 1. In Section 4, we saw that |G| ⩽ c′(r, t + 1) + k for all G ∈ C ′(r, t, k),
so one can obtain an explicit upper bound for |G| for all G ∈ C ′(r, t, k). One can also
extract an explicit upper bound for |G| for all G ∈ C(r, t, k) from the proof of Theorem
2. Hence, in principle, given r, t and k, one can determine C(r, t, k) and C ′(r, t, k) by a
finite computation. Note that −c(r, t) and −c′(r, t) are the smallest values of k for which
C(r, t, k) and C(r, t, k)∪C ′(r, t, k) are not empty, respectively. Hence, in principle, given r
and t, one can determine c(r, t) and c′(r, t) by a finite computation. In practice, however,
even for small values of r and t (and k), these computations are unfeasible.

For t ⩽ r, the value of c(r, t) is known. To the best of the author’s knowledge, no value
of c(r, t) is known with t > r. We first consider the case t = r − 2. Recall (see Section 1)
that for all integers r ⩾ 2 and n ⩾ r−2, sat(n,Kr) = (r−2)n−

(
r−1
2

)
and that the unique

extremal graph consists of a Kr−2 fully connected to an independent set of size n−(r−2).
Note that (for n ⩾ r− 1) this graph has minimum degree r− 2 and can be obtained from
Kr−1 by blowing up a vertex by n − (r − 2). Hence c(r, r − 2) =

(
r−1
2

)
= c′(r, r − 2),

C(r, r−2) = {Kr−1} and C ′(r, r−2) = ∅ for all integers r ⩾ 3. So the answer to Question
1 (whether c′(r, t) = c(r, t)) is “Yes.” when t = r − 2.

Next, we consider the case t = r − 1. It is easy to show that all K3-saturated graphs
G with δ(G) = 2 are blow-ups of either the complete bipartite graph K2,2 or the cycle C5.
Recall (see Section 5) that every Kr-saturated graph G with δ(G) < 2(r−2) has a conical
vertex. In particular, every Kr-saturated graph G with δ(G) = r− 1 has a conical vertex
for all integers r ⩾ 4. Hence, all Kr-saturated graphs G with δ(G) = r − 1 are blow-ups
of either Kr−3

2,2 or Cr−3
5 . So c(r, r − 1) =

(
r
2

)
+ 2 and C(r, r − 1) = {Cr−3

5 } for all integers
r ⩾ 3.

Finally, we consider the case t = r. Duffus and Hanson showed that c(3, 3) = 15
(Theorem 4 in [3]) and came close to determining C(3, 3). Let P be the Petersen graph
(we will give a precise description of P later). Duffus and Hanson noted that P is K3-
saturated and δ(P ) = 3. We have |P | = 10 and e(P ) = 15. Hence c(3, 3) ⩾ 15. Duffus
and Hanson showed that c(3, 3) ⩽ 15 as follows. Let G be a K3-saturated graph with
δ(G) = 3. We need to show that e(G) ⩾ 3|G| − 15.

Duffus and Hanson first showed that for such G, either e(G) > 3|G| − 15 or G ⊇ P
(Lemma 4.1 in [3]). They then showed that if G ⊇ P , e(G) ⩾ 3|G|−15 (proof of Theorem
4 in [3]), completing the proof. All that was missing to determine the extremal graphs,
or equivalently C(3, 3), was to examine when we have equality in this final step of the
argument.

It is easy to see from Duffus and Hanson’s proof that the copy of P they find in G has
a vertex of degree 3 in G (x in the proof of Lemma 4.1 in [3]), or in other words a vertex
whose only neighbours in G are those in P . This observation allows us to simplify Duffus
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and Hanson’s proof that c(3, 3) ⩽ 15 by replacing the final step of the argument with a
proof that if G ⊇ P and P contains a vertex of degree 3 in G, e(G) ⩾ 3|G|− 15. We then
determine C(3, 3) by considering when we have equality.

Let s be a vertex of P . Then P can be described as follows. The vertex set of P is
{s, x1, x2, x3, y1, y2, y3, z1, z2, z3} and the edges are as follows. s is adjacent to all the xi,
each xi is adjacent to yi and zi, yi and zj are adjacent for all i ̸= j and there are no other
edges. Let Q be the graph with the same description as P , but with the indices i ranging
from 1 to 4 instead. So |Q| = 13 and e(Q) = 24. It is easy to check that Q is K3-saturated
and δ(Q) = 3. Note that e(Q) = 3|Q| − 15. For both P and Q it is easy to check that all
vertices have distinct neighbourhoods. Hence {P,Q} ⊆ C(3, 3). This shows that, while
Theorem 2 guarantees that C(r, t) is always finite, it can contain more than one graph.
We now show that this containment is in fact an equality.

Theorem 35. C(3, 3) = {P,Q}.

Proof. Let G be a K3-saturated graph with δ(G) = 3. Suppose G ⊇ P and P contains a
vertex s of degree 3 in G. We need to show that e(G) ⩾ 3|G|−15, with equality only if G
is obtained from either P or Q by blowing up non-adjacent vertices of degree 3. Note that,
since P is K3-saturated and G is K3-free, P must be an induced subgraph of G. We will
use the previous description of P . For each v ∈ V (G) \ V (P ), let dP (v) = |Γ(v) ∩ V (P )|,
d>(v) = |{w ∈ Γ(v) \V (P ) : dP (w) > dP (v)}| and d=(v) = |{w ∈ Γ(v) \V (P ) : dP (w) =
dP (v)}|. We then have

e(G) = 15 +
∑

v∈V (G)\V (P )

(
dP (v) + d>(v) +

1

2
d=(v)

)
.

Our aim now is to show that dP (v)+ d>(v)+
1
2
d=(v) ⩾ 3 for all v ∈ V (G) \V (P ), so that

e(G) ⩾ 15 + 3(|G| − 10) = 3|G| − 15. We first prove three claims.
Claim 1: Every v ∈ V (G) \ V (P ) is adjacent to one of the xi.
Proof: G is K3-saturated and s has degree 3 in G.
Claim 2: Let v ∈ V (G) \ V (P ) be non-adjacent to y3, z2 and all their neighbours in

P . Then there exist distinct vertices u,w ∈ Γ(v) \ V (P ) with dP (u), dP (w) ⩾ 2 adjacent
to y3 and z2, respectively.

Proof: Since G is K3-saturated, there must exist vertices u,w ∈ Γ(v) \ V (P ) adjacent
to y3 and z2, respectively. Since y3 and z2 are adjacent and G is K3-free, u and w must be
distinct. By Claim 1, u and w must also be adjacent to one of the xi, so dP (u), dP (w) ⩾ 2.

Claim 3: Suppose v ∈ V (G) \ V (P ) and dP (v) = 2. Then, up to symmetry, Γ(v) ∩
V (P ) = {x1, y2}.

Proof: By Claim 1, v is adjacent to at least one of the xi. We first show that v is
adjacent to exactly one of the xi. Suppose for the sake of contradiction that v is adjacent
to two of the xi, say x1 and x2. Then, since dP (v) = 2, v is not adjacent to y3 and all of its
neighbours in P . Hence, since G is K3-saturated, there must be a vertex w ∈ V (G)\V (P )
adjacent to both v and y3. But then, since x3 is adjacent to y3 and G is K3-free, w cannot
be adjacent to any of the xi, contradicting Claim 1.
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So v is adjacent to exactly one of the xi, say x1. Then v is not adjacent to s, since s
has degree 3 in G, and not adjacent to y1 and z1, since x1 is adjacent to both y1 and z1
and G is K3-free. Hence the other neighbour of v in P must be one of y2, y3, z2 or z3, so
up to symmetry, Γ(v) ∩ V (P ) = {x1, y2}.

We now show that dP (v) + d>(v) +
1
2
d=(v) ⩾ 3 for all v ∈ V (G) \ V (P ). By Claim 1,

dP (v) ⩾ 1. We consider the three cases dP (v) = 1, dP (v) = 2 and dP (v) ⩾ 3 separately.
Case 1: dP (v) = 1.
Proof: By Claim 1, the unique neighbour of v in P must be one of the xi, say x1. Then

by Claim 2, there exist distinct vertices u,w ∈ Γ(v)\V (P ) with dP (u), dP (w) ⩾ 2. Hence
d>(v) ⩾ 2, so dP (v) + d>(v) +

1
2
d=(v) ⩾ 3.

Case 2: dP (v) = 2.
Proof: By Claim 3, without loss of generality, Γ(v) ∩ P = {x1, y2}. Then by Claim 2,

there exist distinct vertices u,w ∈ Γ(v) \ V (P ) with dP (u), dP (w) ⩾ 2. Hence d>(v) +
d=(v) ⩾ 2, so dP (v) + d>(v) +

1
2
d=(v) ⩾ 3.

Case 3: dP (v) ⩾ 3.
Proof: It immediately follows that dP (v) + d>(v) +

1
2
d=(v) ⩾ 3.

This concludes the proof that dP (v) + d>(v) +
1
2
d=(v) ⩾ 3 for all v ∈ V (G) \ V (P )

and hence e(G) ⩾ 3|G| − 15. Suppose now that e(G) = 3|G| − 15. We need to show that
G is obtained from either P or Q by blowing up non-adjacent vertices of degree 3. We
must have dP (v) + d>(v) +

1
2
d=(v) = 3 for all v ∈ V (G) \ V (P ), which translates to the

following.

• For v ∈ V (G) \ V (P ) with dP (v) = 1, we have d>(v) = 2 and d=(v) = 0.

• For v ∈ V (G) \ V (P ) with dP (v) = 2, we have d>(v) = 0 and d=(v) = 2.

• For v ∈ V (G) \ V (P ) with dP (v) ⩾ 3, we have dP (v) = 3 and d=(v) = 0.

Our aim now is to show that there do not exist vertices v ∈ V (G)\V (P ) with dP (v) = 2.
We first prove the following claim.

Claim 4: Suppose v ∈ V (G) \ V (P ) and Γ(v) ∩ V (P ) = {x1, y2}. Then {a ∈ Γ(v) \
V (P ) : dP (a) = 2} = {u,w}, for some vertices u and w with Γ(u)∩ V (P ) = {x2, y3} and
Γ(w) ∩ V (P ) = {x3, z2}.

Proof: By Claim 2, there exist distinct vertices u,w ∈ Γ(v)\V (P ) with dP (u), dP (w) ⩾
2 adjacent to y3 and z2, respectively. Since d>(v) = 0, we must have dP (u) = 2 = dP (w).
Then since u and w are distinct and d=(v) = 2, we must have {a ∈ Γ(v)\V (P ) : dP (a) =
2} = {u,w}. Now, u cannot be adjacent to x1 or x3, since x3 and y3 are adjacent and
G is K3-free, so u must be adjacent to x2 by Claim 1. Since dP (u) = 2, we must have
Γ(u) ∩ V (P ) = {x2, y3}. Similarly, w cannot be adjacent to x1 or x2, since x2 and z2 are
adjacent and G is K3-free, so w must be adjacent to x3 by Claim 1. Since dP (w) = 2, we
must have Γ(w) ∩ V (P ) = {x3, z2}.

We now show that there do not exist vertices v ∈ V (G)\V (P ) with dP (v) = 2. Suppose
for the sake of contradiction that there is a vertex v ∈ V (G) \ V (P ) with dP (v) = 2.
By Claim 3, without loss of generality, Γ(v) ∩ V (P ) = {x1, y2}. Then by Claim 4,
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{a ∈ Γ(v) \ V (P ) : dP (a) = 2} = {u,w}, for some vertices u and w with Γ(u) ∩ V (P ) =
{x2, y3} and Γ(w) ∩ V (P ) = {x3, z2}. By Claim 4 again and symmetry, {a ∈ Γ(u) \
V (P ) : dP (a) = 2} = {b, c}, for some vertices b and c with Γ(b) ∩ V (P ) = {x3, y1} and
Γ(c) ∩ V (P ) = {x1, z3}. But then v ∈ {a ∈ Γ(u) \ V (P ) : dP (a) = 2} = {b, c}, which is
impossible since Γ(v) ∩ V (P ) is distinct from Γ(b) ∩ V (P ) and Γ(c) ∩ V (P ).

We now consider the case where vertices v ∈ V (G) \V (P ) with dP (v) = 1 do not exist
and the case where vertices v ∈ V (G) \ V (P ) with dP (v) = 1 do exist separately. These
cases correspond to the case where G is obtained from P by blowing up non-adjacent
vertices of degree 3 and the case where G is obtained from Q by blowing up non-adjacent
vertices of degree 3, respectively.

Case 1: There do not exist vertices v ∈ V (G) \ V (P ) with dP (v) = 1.
Proof: We have dP (v) = 3 for all v ∈ V (G) \ V (P ). Moreover, all these vertices are

non-adjacent, since d=(v) = 0 for such vertices. Since G is K3-free, the neighbourhoods
of these vertices are independent subsets of V (P ). Since G is K3-saturated, these sets are
in fact maximally independent subsets of V (P ). Finally, since the vertices outside V (P )
are non-adjacent and G is K3-saturated, these maximally independent subsets of V (P )
are also intersecting.

It is easy to check that in P , all maximally independent subsets of size 3 are the
neighbourhood of a vertex. Hence the neighbourhood of every vertex outside V (P ) is the
neighbourhood in P of some vertex in V (P ). Since these neighbourhoods are intersecting
and P is K3-free, these vertices in V (P ) are non-adjacent. Hence G is obtained from P
by blowing up non-adjacent vertices (of degree 3).

Case 2: There do exist vertices v ∈ V (G) \ V (P ) with dP (v) = 1.
Proof: We first prove the following claim.
Claim 5: Suppose v ∈ V (G) \ V (P ) and dP (v) = 1. Then, up to symmetry, Γ(v) =

{x1, b, c}, for some vertices b, c ∈ V (G) \ V (P ) with Γ(b) ∩ V (P ) = {x2, y3, z3} and
Γ(c) ∩ V (P ) = {x3, y2, z2}. Moreover, every vertex w ∈ V (G) \ V (P ) with dP (w) = 3 is
adjacent to x1 if and only if w ̸∈ {b, c}.

Proof: By Claim 1, without loss of generality, Γ(v) ∩ V (P ) = {x1}. Since d>(v) = 2
and d=(v) = 0, Γ(v)\V (P ) = {b, c}, for some vertices b and c with dP (b) = 3 = dP (c). Let
S = {x2, x3, y2, y3, z2, z3}. Then v is not adjacent to every vertex in S and every neighbour
in P of a vertex in S and G is K3-saturated, so S ⊆ (Γ(b)∩V (P ))∪ (Γ(c)∩V (P )). Since
G is K3-free, Γ(b) ∩ V (P ) and Γ(c) ∩ V (P ) must be independent subsets of V (P ). But
there is a unique way of covering S by two independent subsets of V (P ) of size 3, so
without loss of generality, Γ(b)∩V (P ) = {x2, y3, z3} and Γ(c)∩V (P ) = {x3, y2, z2}. Note
that b and c are not adjacent to x1, since G is K3-free. Finally, if w ̸∈ {b, c}, w must be
adjacent to x1, b or c, since w is not adjacent to v and G is K3-saturated. But w is not
adjacent to b and c, since d=(w) = 0, so w must be adjacent to x1.

Pick a vertex a ∈ V (G)\V (P ) with dP (a) = 1. By Claim 5, without loss of generality,
Γ(a) = {x1, b, c}, for some vertices b, c ∈ V (G)\V (P ) with Γ(b)∩V (P ) = {x2, y3, z3} and
Γ(c) ∩ V (P ) = {x3, y2, z2}. Then G[V (P ) ∪ {a, b, c}] = Q.

We now show that Γ(v) = Γ(a) for every v ∈ V (G) \ V (P ) with dP (v) = 1. We first
show that Γ(v) ∩ V (P ) = {x1}. Indeed, if not, by Claim 5, without loss of generality,
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Γ(v) = {x2, d, e}, for some vertices d, e ∈ V (G) \ V (P ) with Γ(d) ∩ V (P ) = {x1, y3, z3}
and Γ(e)∩V (P ) = {x3, y1, z1}. But then Γ(v)∩Γ(a) = ∅, which is a contradiction, since v
and a are not adjacent and G is K3-saturated. So Γ(v)∩V (P ) = {x1}. By Claim 5 again,
Γ(v) = {x1, d, e}, for some vertices d, e ∈ V (G) \ V (P ), and for every w ∈ V (G) \ V (P )
with dP (w) = 3, w ̸∈ {d, e} if and only if w is adjacent to x1 if and only if w ̸∈ {b, c}.
Hence {d, e} = {b, c}, so Γ(v) = Γ(a).

We now show that for every v ∈ V (G) \ V (Q) with dP (v) = 3, we have Γ(v) =
Γ(w) ∩ V (Q), for some vertex w ∈ {s, y1, z1}. Since d=(v) = 0 and Γ(u) ⊆ V (Q) for
all u ∈ V (G) \ V (P ) with dP (u) = 1, we have Γ(v) ⊆ V (P ). Since G is K3-free, Γ(v)
is an independent subset of V (P ). Since G is K3-saturated, Γ(v) is in fact a maximally
independent subset of V (P ). Moreover, by Claim 5, x1 ∈ Γ(v). But the only maximally
independent subsets of V (P ) of size 3 containing x1 are the neighbourhoods in Q of s, y1
and z1.

Finally, note that the set {s, y1, z1, a} of vertices in V (Q) of degree 3 in Q is an
independent set. Hence G is obtained from Q by blowing up (non-adjacent) vertices of
degree 3.

Recall (see Section 5) that Conjecture 1 is true for t < 2(r − 2). In particular, Con-
jecture 1 is true when t = r ⩾ 5. Recall also (see Section 5 again) that Conjecture 1 is
true when t = r = 4. Hence c(r, r) =

(
r+1
2

)
+9 and C(r, r) = {P r−3, Qr−3} for all integers

r ⩾ 3.
Finally, we show that c′(3, 2) = c(3, 2) = 5 and C ′(3, 2) = {P}. So when r = 3 and

t = 2 the answer to Question 1 is again “Yes.”, but this time C ′(r, t) is not empty. Let
G be a K3-saturated graph with δ(G) ⩾ 3. We need to show that e(G) ⩾ 2|G| − 5, with
equality if and only if G = P . If |G| < 10, we have e(G) ⩾ 3|G|/2 > 2|G| − 5, so suppose
|G| ⩾ 10. If δ(G) ⩾ 4, we have e(G) ⩾ 2|G|, so suppose δ(G) = 3. Then by Theorem
35, we have e(G) ⩾ 3|G| − 15 ⩾ 2|G| − 5, with equality if and only if G is obtained from
either P or Q by blowing up non-adjacent vertices of degree 3 and |G| = 10. But |P | = 10
and |Q| = 13, so we have equality if and only if G = P .

The known values of c(r, t), C(r, t), c′(r, t) and C ′(r, t) are summarised in the table
below. The values of c′(r, r− 1) and C ′(r, r− 1) are only known for r = 3 and the values
of c′(r, r) and C ′(r, r) are unknown.

c(r, t) C(r, t) c′(r, t) C ′(r, t)

t = r − 2
(
r−1
2

)
{Kr−1}

(
r−1
2

)
∅

t = r − 1
(
r
2

)
+ 2 {Cr−3

5 } c′(3, 2) = 5 C ′(3, 2) = {P}

t = r
(
r+1
2

)
+ 9 {P r−3, Qr−3}

Table 1: The known values of c(r, t), C(r, t), c′(r, t) and C ′(r, t).
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9 Ideas for further work

This section is organised as follows. In Section 9.1 we speculate about the exact value of
c(3, t) for large t. In Section 9.2 we discuss how one might remove the min (r,

√
t− r + 3)

factor from the upper bounds in Theorems 1 and 3 .

9.1 A speculative exact value of c(3, t)

Recall our lower bound

c(3, t) ⩾ t|Gt| − e(Gt) =
1

2

(
2(t− 1)

t− 1

)
+ 2t(t− 1) (33)

for t ⩾ 3 (see the proof of Theorem 1 in Section 6). Note that we have equality when
t = 3 and indeed G3 = P . By Theorem 1, (33) is tight up to a constant factor. Moreover,
the definition of Gt seems fairly natural. Given all this, one might think that perhaps
we have equality in (33), but this turns out to not be the case for t ⩾ 6. Indeed, for
each integer t ⩾ 4, let Ht be the graph obtained from Gt−1 by blowing up the vertices in
R (see Section 3) by two. Then it is easy to check that Ht is K3-saturated, δ(Ht) = t,
|Ht| = 2

(
2(t−2)
t−2

)
+ 2(t− 2) and e(Ht) = 2(t− 1)

(
2(t−2)
t−2

)
. Hence

c(3, t) ⩾ t|Ht| − e(Ht) = 2

(
2(t− 2)

t− 2

)
+ 2t(t− 2) (34)

for t ⩾ 4. For t ⩾ 6, the right hand side of (34) is strictly greater than that of (33),
though only by a lower order term. Perhaps we have equality in (34) for large enough t
(and perhaps even for t ⩾ 6).

Problem 1. Determine the exact value of c(3, t).

9.2 Ideas to remove the min (r,
√
t − r + 3) factor

In this section we discuss how one might remove the min (r,
√
t− r + 3) factor from the

upper bounds in Theorems 1 and 3 to match the lower bounds. In Theorems 1 and 3,
the factor arises from having to sum over all possible values of c and b in the proofs of
Lemma 14 and Theorem 3, respectively. More precisely, in the proofs of Lemma 14 and
Theorem 3 we had the following.

Definition 36. For integers a, b and c with a ⩾ c ⩾ −1, an (a, b, c) variable modified
set system is a sequence (Ai, Bi, ci)i∈I of triples, where Ai and Bi are finite sets and
max (0, 1− b) ⩽ ci ⩽ c is an integer, indexed by a finite, ordered set I, with the following
properties.

1. |Ai ∩
⋃

k<iAk| ⩽ a and |Bi| ⩽ b+ 2ci for all i ∈ I.

2. |Ai ∩Bi| ⩽ ci for all i ∈ I.

3. |Ai ∩Bj| > cj for all i < j ∈ I.
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In the proof of Lemma 14, (Ai, Ei, r − 3 − w(Di))i∈Ja,b was a (t − a, t − 2r + 6 −
b, min (t− a− 1, r − 3)) variable modified set system for all integers 1 ⩽ a, b ⩽ t by
(14), (15), (11), (12), (3), (16) and the definition of Ia,b,c, where Ja,b =

⋃
t−a>r−3−c Ia,b,c.

In the proof of Theorem 3, (Ai, Di, r − 3 − w(Ci))i∈(Ia\Ja)\{f} was a (t − a, t − 2r +
6, min (t− a− 1, r − 3)) variable modified set system for all integers 1 ⩽ a ⩽ t by (30),
(26), (27), (28), (19), (31) and the definition of Ja.

In the proofs of Lemma 14 and Theorem 3 we bounded |I| for these (a, b, c) variable
modified set systems as follows. For each integer max (0, 1− b) ⩽ d ⩽ c, let Id = {i ∈
I : ci = d}. Then the Id partition I and |Id| ≪

(
a+b+1
a−d+1

)
for all d by Theorem 6, so

|I| ≪
∑

max (0,1−b)⩽d⩽c

(
a+b+1
a−d+1

)
. Recall that by partitioning I into the Id, we discarded the

information that condition 3 in Definition 36 holds for i and j in different parts. One
might think that if one could somehow bound |I| directly, avoiding this partitioning, as
we did for case 3 in the proof of Lemma 14 and for cases 2 and 3 in the proof of Theorem
3, one would obtain a better bound for |I|, enabling one to remove the min (r,

√
t− r + 3)

factor, but this turns out to not be the case. Indeed, we now give an example of an (a, b, c)
variable modified set system which shows that, even if one obtained a better bound for
|I|, the min (r,

√
t− r + 3) factor would still arise.

Let a, b and c be integers with a ⩾ c ⩾ −1. Let I be the set of all integers
max (0, 1− b) ⩽ d ⩽ c, ordered with the dual of the usual order. For each d ∈ I, let
(Ai, Bi)i∈Id be the collection of all partitions of a set Sd of size a + b− 1 into subsets Ai

and Bi of size a − d and b + d − 1, respectively. Let T be an ordered set of size c + 1
disjoint from all the Sd. For each integer 0 ⩽ e ⩽ c + 1, let Te be the set of the first e
elements of T . Take the Id to be disjoint and order them arbitrarily. Let J =

⋃
d∈I Id,

ordered with the sum of the orders on the Id. For each d ∈ I and i ∈ Id, let A
′
i = Ai ∪Td,

B′
i = Bi ∪ Td+1 and ci = d. Then it is easy to check that (A′

i, B
′
i, ci)i∈J is an (a, b, c)

variable modified set system with |J | =
∑

max (0,1−b)⩽d⩽c

(
a+b−1
a−d

)
.

Note that this comes close to our upper bound. In particular, in the proof of Lemma
14, (14), (15), (11), (12), (3) and (16) can be satisfied with

∣∣⋃
t−1>r−3−c I1,1,c

∣∣ as large as

∑
0⩽d⩽r−3
2r−t−4⩽d

(
2t− 2r + 3

t− d− 1

)
≍ 4t−r min (r,

√
t− r + 3)√

t− r + 3

(for t > r− 2) and in the proof of Theorem 3, (30), (26), (27), (28), (19) and (31) can
be satisfied with |(I1 \ J1) \ {f}| as large as

∑
0⩽d⩽r−3
2r−t−5⩽d

(
2t− 2r + 4

t− d− 1

)
≍ 4t−r min (r,

√
t− r + 3)√

t− r + 3
.

So a different approach is required to remove the min (r,
√
t− r + 3) factor. In the proofs

of Lemma 14 and Theorem 3 we had a sequence (Ai, Bi)i∈I of pairs of sets of vertices in
a graph, indexed by a finite, ordered set I, such that w(Ai ∩ Bi) ⩽ r − 3 for all i ∈ I
and w(Ai ∩ Bj) > r − 3 for all i < j ∈ I ((3) and (4) in the proof of Lemma 14 and
(19) and (20) in the proof of Theorem 3). We then applied Lemma 13 to G[Ai ∩ Bi] for
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each i ∈ I to obtain a set Si ⊆ Ai ∩ Bi such that |Si| − w(Si) = |Ai ∩ Bi| − w(Ai ∩ Bi)
and |Si| ⩾ 2w(Si) and showed that we have |Ai ∩ Bi \ Si| ⩽ r − 3 − w(Si) for all i ∈ I
and |Ai ∩ Bj \ Sj| > r − 3 − w(Sj) for all i < j ∈ I ((8), (9), (11) and (12) in the proof
of Lemma 14 and (24), (25), (27) and (28) in the proof of Theorem 3)). But the same
argument shows that in fact |Ai ∩ Bj \ Sk| > r − 3 − w(Sk) for all i < j ∈ I and k ∈ I.
Hence, in the proofs of Lemma 14 and Theorem 3 we had the following.

Definition 37. For integers a, b, c and d with a ⩾ d, b ⩾ c+ d and c, d ⩾ 0, an (a, b, c, d)
generalised modified set system is a sequence (Ai, Bi, Ci)i∈I of triples of finite sets with
Ci ⊆ Ai ∩Bi, indexed by a finite, ordered set I, with the following properties.

1. |Ai ∩
⋃

k<iAk| ⩽ a, |Bi| ⩽ b and |Ci| ⩾ c for all i ∈ I.

2. |Ai ∩Bi \ Ci| ⩽ d for all i ∈ I.

3. |Ai ∩Bj \ Ck| > d for all i < j ∈ I and k ∈ I.

In the proof of Lemma 14, (Ai, Bi, Di)i∈Ia,b,c was a (t−a, t−b, 2c, r−3−c) generalised
modified set system for all integers 1 ⩽ a, b ⩽ t and 0 ⩽ c ⩽ min (r − 3, t− r + 2− b) with
t−a > r−3−c by (14), the definition of Ia,b, (9), (11) and the generalisation of (12). In the
proof of Theorem 3, (Ai, Bi, Ci)i∈Ia,b was a (t−a, t, 2b, r−3−b) generalised modified set
system for all integers 1 ⩽ a ⩽ t and max (0, a− t+ r − 2) ⩽ b ⩽ min (r − 3, t− r + 2)
by the definition of Ia, (18), (25), (27) and the generalisation of (28).

In the proofs of Lemma 14 and Theorem 3 we bounded |I| for these (a, b, c, d) gener-
alised modified set systems as follows. Taking k = j in condition 3 in Definition 37, we
obtain that (Ai, Bi \ Ci)i∈I is an (a, b − c, d) modified set system, so |I| ≪

(
a+b−c−2d+1

a−d+1

)
by Theorem 6. The author believes that using condition 3 for all k ∈ I rather than just
k = j, one should be able to obtain a better bound for |I|, enabling one to remove the
min (r,

√
t− r + 3) factor.

Problem 2. Estimate the maximum possible size of the index set in a generalised modified
set system.
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