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Abstract

In a rainbow version of the classical Turán problem one considers multiple graphs
on a common vertex set, thinking of each graph as edges in a distinct color, and
wants to determine the minimum number of edges in each color, or their sum, which
guarantees existence of a rainbow copy (having each edge from a different graph)
of a given graph. Here, we find an optimal solution for this problem, both for the
minimum and the sum, for any directed star and any number of colors.

Mathematics Subject Classifications: 05C20, 05C35

1 Introduction

One of the central topics in extremal graph theory, known as the Turán problem, is to
determine the maximum number of edges of a graph on n vertices that does not contain
a copy of a given graph F as a subgraph. Equivalently, the minimum number of edges
that forces the existence of F as a subgraph. Research on this topic and its various
generalizations, provides a deep understanding of the relationship between various global
properties and local structures of graphs.

Recently, a rainbow version of this problem has been intensively studied. In this
variant, for an integer c ⩾ 1 we consider a collection of c graphs G = (G1, . . . , Gc) on a
common vertex set and say that a graph F is a rainbow subgraph of G (or G contains F )
if there exists an injective function φ : E(F ) → [c] such that for each e ∈ E(F ) it holds
e ∈ Gφ(e). In other words, we think of each graph in G as edges in a distinct color and
G as a c-edge-colored multigraph with each color spanning a simple graph. We want to
force the existence of a rainbow copy of F in G by having a large number of edges in each
graph. Typically, by bounding the value of min1⩽i⩽c e(Gi) [1, 2], i.e., the number of edges
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in each graph, or the sum
∑

1⩽i⩽c e(Gi) [4, 10], but other measures are also considered,
in particular the product

∏
1⩽i⩽c e(Gi) [7, 8], or more general functions of the number of

edges [5, 9].
Such a rainbow Turán problem was also considered for directed graphs in [3], where

the optimal solution (up to a lower order error term) for min1⩽i⩽c e(Gi) and
∑

1⩽i⩽c e(Gi)
was provided, for any number of colors, when a directed or transitive rainbow triangle is
forbidden. Here, we continue this line of research for directed graphs. As in the undirected
setting, a natural next case to consider is the problem for forbidden trees, especially since
a solution for trees gives lower bounds for any denser forbidden structures. It was shown
in [9] that among all trees the least restrictive is to forbid stars, i.e., a solution for stars
gives an upper bound for any tree, which motivates the study of stars. In contrast to the
undirected setting, the rainbow Turán problem for directed stars is not so straightforward.
In particular, as shown in Theorem 4, there are different and quite unintuitive extremal
constructions.

Let Sp,q be the orientation of a star on p+q+1 vertices with center vertex of indegree p
and outdegree q. Forbidding a rainbow Sp,q in a collection of graphs G = (G1, . . . , Gc) is
analogous to forbidding a rainbow Sq,p in the collection of graphs obtained by changing
the orientation of every edge in each graph from G. Thus it is enough to consider this
rainbow Turán problem for Sp,q only when p ⩽ q. As this problem is trivial when the
number of colors c is less than the number of edges in the forbidden rainbow graph, we
consider only c ⩾ p+ q.

In Section 2 we consider a star S0,q as the forbidden rainbow graph and prove, for every
n > c ⩾ q ⩾ 1, exact bounds for

∑c
i=1 e(Gi) (Theorem 1) and min1⩽i⩽c e(Gi) (Theorem 2).

In Section 3 we consider Sp,q as the forbidden rainbow graph for any q ⩾ p ⩾ 1 and prove
bounds for

∑c
i=1 e(Gi) (Theorem 3) and min1⩽i⩽c e(Gi) (Theorem 4), which are tight up

to a lower order error term. Additionally, in Section 4 we provide exact bounds for any
c ⩾ 2 and n ⩾ 3 when a rainbow S1,1, i.e., directed path of length 2, is forbidden, for both
the sum (Theorem 5) and the minimum (Theorem 6) of the number of edges.

2 Rainbow directed S0,q

In this section the forbidden rainbow graph is a directed star with all edges oriented away
from the center. As noted earlier, the problem is the same if we forbid a directed star
with all edges oriented to the center. The following theorem provides the optimal bound
for the sum of the number of edges in all graphs.

Theorem 1. For integers n > c ⩾ q ⩾ 1, every collection of directed graphs G1, . . . , Gc

on a common set of n vertices containing no rainbow S0,q satisfies

c∑
i=1

e(Gi) ⩽ (q − 1)(n2 − n).

Moreover, this bound is sharp.
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Figure 1: The optimal construction for 3 colors and forbidden rainbow S0,3.

Proof. The sharpness of the bound follows from taking a collection of q − 1 complete
graphs, but there are more extremal constructions. We split the vertex set into disjoint
subsets and assign to each of them a different set of q − 1 colors. This way each vertex
has q − 1 colors assigned. Then, for any two vertices u, v and color i ∈ [c], we add
edge uv to Gi if color i is assigned to u. Clearly this construction does not contain a
rainbow S0,q as no vertex has positive outdegree in q graphs, and each vertex has the sum
of outdegrees over all graphs equal to (q−1)(n−1) giving the total number of edges equal
to (q − 1)(n2 − n). An example construction of this type is shown in Figure 1.

To prove the upper bound, consider a collection of graphs G1, G2, . . . , Gc on a common
set V of n vertices that does not contain a rainbow S0,q. Let v ∈ V be an arbitrary vertex.
We will show that the total number of edges outgoing from v is bounded by (q−1)(n−1).
Let H be an auxiliary bipartite graph between the vertices V \{v} and colors in [c] created
by connecting vertex u ∈ V \ {v} and color i ∈ [c] if vu ∈ E(Gi). The number of edges
in H is equal to the number of outgoing edges from v that we want to bound. Note
that the existence of a matching of size q in H means that there exists a rainbow S0,q

with center v, which is not possible. Therefore, the maximum matching in H is of size
at most q − 1. Recall that König’s theorem states that the maximum matching of H is
at least as large as the minimum vertex cover. Hence the minimum vertex cover is also
of size at most q − 1. As n − 1 ⩾ c, this implies that the maximum number of edges
in H is bounded by (q − 1)(n− 1), as desired. By summing it over all vertices we obtain∑c

i=1 e(Gi) ⩽ (q − 1)(n2 − n).

Note that the bound n > c in Theorem 1 is indeed needed as demonstrated by the
following collections of graphs. If c ⩾ n ⩾ q, for each vertex v, add edges in each color
from v to q − 1 other arbitrary vertices. This way

c∑
i=1

e(Gi) = (q − 1)cn > (q − 1)(n2 − n)

and there is no rainbow S0,q. While if n ⩽ q, then a collection of complete directed graphs
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does not contain rainbow S0,q and satisfies

c∑
i=1

e(Gi) = c(n2 − n) > (q − 1)(n2 − n).

The same constructions also provide an exact bound for min1⩽i⩽c e(Gi) for any n ⩽ c.
Theorem 1 implies that for integers n > c ⩾ q ⩾ 1, every collection of directed graphs

G1, . . . , Gc on a common set of n vertices containing no rainbow S0,q satisfies

min
1⩽i⩽c

e(Gi) ⩽
q − 1

c

(
n2 − n

)
.

Moreover, if n(q − 1) is divisible by c, then one can make a construction as detailed in
the beginning of the proof of Theorem 1, in which the number of edges in each graph is
the same (see Figure 1). This means that for such n the above bound is sharp. We can
actually extend this to obtain the optimal bound for every n > c.

Theorem 2. For integers n > c ⩾ q ⩾ 1, every collection of directed graphs G1, . . . , Gc

on a common set of n vertices containing no rainbow S0,q satisfies

min
1⩽i⩽c

e(Gi) ⩽

⌊
n(q − 1)

c

⌋
(n− 1) + r,

where r is the remainder of n(q − 1) when divided by c. Moreover, this bound is sharp.

Proof. We proceed similarly as in the proof of Theorem 1. Consider a collection of
graphs G1, G2, . . . , Gc on a common set V of n vertices that does not contain a rain-
bow S0,q. For any vertex v ∈ V we consider an auxiliary bipartite graph H between the
vertices V \{v} and colors in [c] created by connecting vertex u ∈ V \{v} and color i ∈ [c]
if vu ∈ E(Gi). Since the existence of a matching of size q in H means that there exists a
forbidden rainbow S0,q centered in v, the maximum matching in H is of size q − 1. From
König’s theorem the minimum vertex cover is also of size at most q − 1. Let av be the
number of vertices in the minimum vertex cover that are in the part of H related with
the colors. Similarly, let bv denote the number of vertices in the same minimum vertex
cover that are in the other part of H, related with the vertices V \ {v}. In particular, in
av colors there are at most n−1 edges outgoing from v and in all other colors there are at
most bv edges outgoing from v. Let a =

∑
v∈V av and b =

∑
v∈V bv. Since av + bv ⩽ q− 1,

we have a+ b ⩽ n(q − 1).
There exists a color i which appears at most

⌊
a
c

⌋
times in the minimum vertex covers,

which gives that

e(Gi) ⩽
⌊a
c

⌋
(n− 1) + b ⩽

⌊
n(q − 1)− b

c

⌋
(n− 1) + b.

Note that increasing b by 1 either increases the above bound by 1 or decreases it by n−2,
and the decrease happens after at most c− 1 increases. Since n > c, the maximum value
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of the bound is achieved in the last moment before the first decrease, which occurs for b
equal to the remainder of n(q − 1) when divided by c, as desired.

The sharpness of the bound follows from a modification of a construction described in
the proof of Theorem 1. We enumerate the vertex set by consecutive integers from 1 to n
and assign to every vertex j ∈ [n] all colors from (j − 1)(q− 1) to j(q− 1)− 1 considered
modulo c. This way each vertex has q − 1 colors assigned and in total we have n(q − 1)
assignments. Now, remove the last r assignments. Since r is the remainder of n(q − 1)
when divided by c, after the removal each color was assigned the same number of times.
For every i ∈ [c], add to Gi an edge from each vertex with color i assigned to any other

vertex. This gives
⌊
n(q−1)

c

⌋
(n− 1) edges in each graph. Note that every vertex v having

x assignments removed has positive outdegree in exactly q− 1−x graphs, so we may still
add edges from v to arbitrary x vertices and avoid creating a rainbow S0,q. This addition
increases the number of edges in each graph by the total number of removed assignments,
which is equal to r. Altogether we obtain the required number of edges in each graph.

3 General rainbow directed star

In this section, for integers p, q, c ⩾ 1, we consider a collection of c directed graphs
G1, . . . , Gc on a common vertex set and forbid rainbow star Sp,q, which is a star with
the center of indegree p and outdegree q. Since the problem is trivial if c < p + q and
symmetric with respect to p and q, it is enough to consider only c ⩾ p+ q and p ⩽ q. The
following theorem provides the optimal bound for the total number of edges in all graphs.

Theorem 3. For integers q ⩾ p ⩾ 1, c ⩾ p+ q and n, every collection of directed graphs
G1, . . . , Gc on a common set of n vertices containing no rainbow Sp,q satisfies

c∑
i=1

e(Gi) ⩽

(p+ q − 1)n2 + o(n2) if c ⩽ p+ 2q − 1 + 2
√
pq,(

(c−p+1)2

4(c−q+1)
+ p− 1

)
n2 + o(n2) if c ⩾ p+ 2q − 1 + 2

√
pq.

Moreover, the above bounds are tight up to a lower order error term.

Proof. The claimed bound is tight in the first case when the collection consists of exactly
p + q − 1 complete directed graphs and all other graphs are empty. This construction
obviously has no rainbow Sp,q. In the second case, as the first p − 1 graphs we take
complete directed graphs, while for the remaining graphs we split the vertex set into two
disjoint sets A of size c−p+1

2(c−q+1)
n and C of size c+p−2q+1

2(c−q+1)
n. For i ∈ [q−1]\ [p−1], in graph Gi

we add all edges inside A and from C to A. While for i ∈ [c] \ [q − 1], in graph Gi we
add all edges from C to A. Note that vertices in A have nonzero outdegree only in q − 1
graphs, while vertices in C have nonzero indegree in p− 1 graphs, so none of them can be
the center of a rainbow Sp,q. The total number of edges in all graphs in such construction
is equal to

(p− 1)n2 + |A|2(q − p) + |A||C|(c− p+ 1) + o(n2) =

(
(c− p+ 1)2

4(c− q + 1)
+ p− 1

)
n2 + o(n2),
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as desired.
To prove the upper bound, consider a collection of directed graphs G1, . . . , Gc on a

common set V of n vertices containing no rainbow Sp,q. Note that a vertex in V may have
nonzero indegree in p graphs and nonzero outdegree in different q graphs, for example
if a pair of vertices is connected by edges in all the graphs in both directions. Or more
generally, if a vertex is the center of a noninjective homomorphic image of a rainbow Sp,q.
Recall that a colored graph removal lemma, implied by the Szemerédi Regularity Lemma
(see [6] or Theorem 4.3 in [9]), states that for any graph F if a collection of graphs
on n vertices has o(n|V (F )|) homomorphic images of a rainbow F , then one can delete
o(n2) edges in total to remove all homomorphic images of a rainbow F . Therefore, since
the collection G1, . . . , Gc contains no rainbow Sp,q, it contains o(np+q+1) homomorphic
images of a rainbow Sp,q and we can remove all of them by deleting o(n2) edges in total.
Thus, we may assume that no vertex in V has nonzero indegree in p graphs and nonzero
outdegree in q different graphs.

We split the vertex set V into three disjoint sets. Let B be the set of vertices incident
to edges in at most p+ q − 1 graphs, A be the set of vertices in V \B that have nonzero
outdegree in at most q − 1 graphs, and C be the set of vertices in V \ B having nonzero
indegree in at most p− 1 graphs. Let us denote α = |A|, β = |B| and γ = |C|.

Note that any two vertices in A may be connected by at most 2(q− 1) edges (q− 1 in
each direction), vertices in B by at most 2(p+q−1) edges, while vertices in C by at most
2(p− 1) edges. Additionally, between any vertices in A and B we have at most p+2q− 2
edges (q− 1 from A to B and p+ q− 1 from B to A), between vertices in B and C there
are at most 2p+ q− 2 edges, while between vertices in A and C we have at most c+ p− 1
edges. This gives an upper bound for the total number of edges in all the graphs of

(q−1)α2 + (p+q−1)β2 + (p−1)γ2 + (p+2q−2)αβ + (2p+q−2)βγ + (c+p−1)αγ

=

(
(c− p+ 1)2

4(c− q + 1)
+ p− 1

)
(α + γ)2 − (c− q + 1)

(
c− p+ 1

2(c− q + 1)
(α + γ)− α

)2

+ (p+ q − 1)β2 + (p+ 2q − 2)αβ + (2p+ q − 2)βγ

⩽

(
(c− p+ 1)2

4(c− q + 1)
+ p− 1

)
(α + γ)2 + (p+ q − 1)β2 + (p+ 2q − 2)β(α + γ)

=

(
(c− p+ 1)2

4(c− q + 1)
+ p− 1

)
(n− β)2 + (p+ q − 1)β2 + (p+ 2q − 2)β(n− β).

The obtained bound is a quadratic function of β ∈ [0, n] with the coefficient of β2

equal to (c+p−2q+1)2

4(c−q+1)
, so it is convex and its maximum is reached for β = 0 or β = n. It is

easy to verify that for c ⩽ p+ 2q− 1 + 2
√
pq the maximum occurs when β = n, while for

c ⩾ p+ 2q − 1 + 2
√
pq it occurs when β = 0, which gives the desired bounds.

The bound in Theorem 3 is not realizable for p ⩾ 2 in any collection of directed
graphs each having the same number of edges. This is due to the fact that in order to
have exactly c+ p− 1 edges between the vertices in A and C, all edges from A to C must
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be in the same p− 1 colors, and so in other colors we have fewer edges. Thus, for p ⩾ 2
the optimal bound for min1⩽i⩽c e(Gi) is different. On the other hand, when p = 1 the
second bound in Theorem 3 can be obtained in such a collection of directed graphs, so
this theorem implies the optimal bound for min1⩽i⩽c e(Gi) for c ⩾ 2q + 2

√
q. It occurs

that the same construction gives the optimal bound already for c ⩾ max{q+√
q, 2q− 2},

but for smaller values of c there are different optimal constructions.
The theorem below gives the optimal bound for min1⩽i⩽c e(Gi) for any integers p and q.

Theorem 4. For integers q ⩾ p ⩾ 1, c ⩾ p + q and n, every collection of directed
graphs G1, . . . , Gc on a common set of n vertices containing no rainbow Sp,q satisfies the
following. The values

t1 = 2p+ q − 1, t2 =

{
(q−1)(p+q−1)

q−p−1
if q ⩾ p+ 2,

∞ if q ⩽ p+ 1,

t3 = p+ q − 1 +
√
pq, t4 = q − 1 +

√
(q − 1)(q − p)

satisfy t1 ⩽ t2, t1 ⩽ t3, and either t2 ⩽ t3 ⩽ t4 or t4 ⩽ t3 ⩽ t2.
If t2 ⩽ t3 ⩽ t4, then

min
1⩽i⩽c

e(Gi) ⩽



(p+q−1)2

c2
n2 + o(n2) if c ⩽ t1,

(c−q+1)2(p+q−1)2

4c2p(c−p−q+1)
n2 + o(n2) if t1 ⩽ c ⩽ t2,

q−1
c
n2 + o(n2) if t2 ⩽ c ⩽ t4,

(c2−(p−1)(q−1))2

4c2(c−p+1)(c−q+1)
n2 + o(n2) if c ⩾ t4.

While if t4 ⩽ t3 ⩽ t2, then

min
1⩽i⩽c

e(Gi) ⩽


(p+q−1)2

c2
n2 + o(n2) if c ⩽ t1,

(c−q+1)2(p+q−1)2

4c2p(c−p−q+1)
n2 + o(n2) if t1 ⩽ c ⩽ t3,

(c2−(p−1)(q−1))2

4c2(c−p+1)(c−q+1)
n2 + o(n2) if c ⩾ t3.

Moreover, the above bounds are tight up to a lower order error term.

Proof. First, we prove the inequalities between thresholds ti for i ∈ [4]. Note that t3 ⩾ t1
since q ⩾ p. If q ⩽ p + 1, then clearly t4 ⩽ t3 ⩽ t2 and t1 ⩽ t2. While for q ⩾ p + 2 we
have

t2 =
(q − 1)(p+ q − 1)

q − p− 1
=

(q − p− 1 + p)(q − p− 1 + 2p)

q − p− 1
= q + 2p− 1 +

2p2

q − p− 1
⩾ t1.

One can also verify that for q ⩾ p + 2 each of the inequalities t2 ⩽ t3 and t3 ⩽ t4 is
equivalent to the inequality q(q − p − 1)2 ⩾ p(p + q − 1)2, so either t2 ⩽ t3 ⩽ t4 or
t4 ⩽ t3 ⩽ t2, as desired.
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Consider a collection of directed graphs G1, . . . , Gc on a common set V of n vertices
containing no rainbow Sp,q. Similarly as in the proof of Theorem 3 we use a colored
graph removal lemma to remove all homomorphic images of a rainbow Sp,q by deleting
o(n2) edges in total. Thus, we may assume that no vertex in V has nonzero indegree in
p graphs and nonzero outdegree in q different graphs.

We split the vertex set V into disjoint sets. Let B be the set of vertices incident to
edges in at most p + q − 1 graphs, A be the set of vertices in V \ B that have nonzero
outdegree in at most q − 1 graphs, and C be the set of vertices in V \ B having nonzero
indegree in at most p − 1 graphs. Additionally, for each i ∈ [c], let Ai ⊂ A be the set of
vertices in A that have nonzero outdegree in Gi, similarly Ci ⊂ C be the set of vertices
in C that have nonzero indegree in Gi, while Bi ⊂ B be the set of vertices in B incident
to edges in Gi. For every i ∈ [c], we denote αi = |Ai|, βi = |Bi|, γi = |Ci|, α = |A|,
β = |B| and γ = |C|.

Observe that for every i ∈ [c],

e(Gi) ⩽ (αi + βi + γ)(α + βi + γi), (1)

because edges of Gi can go only from vertices in Ai ∪Bi ∪ C to vertices in A ∪Bi ∪ Ci.
For integers x, y ⩾ 1, by averaging over all colors, there is j ∈ [c] such that

yα+ xαj + (x+ y)βj + xγ + yγj ⩽
1

c

c∑
i=1

yα+ xαi + (x+ y)βi + xγ + yγi.

Since

c∑
i=1

αi ⩽ (q − 1)α,
c∑

i=1

βi ⩽ (p+ q − 1)β and
c∑

i=1

γi ⩽ (p− 1)γ,

from (1) we obtain

e(Gj) ⩽
1

xy
(xαj + xβj + xγ)(yα+ yβj + yγj)

⩽
1

4xy

(
yα+ xαj + (x+ y)βj + xγ + yγj

)2
⩽

1

4c2xy

(
(yc+ x(q − 1))α + (x+ y)(p+ q − 1)β + (xc+ y(p− 1))γ

)2
. (2)

In particular, for x = 1 and y = 1, since p ⩽ q and α + γ = n− β, this gives

e(Gj) ⩽
1

4c2
(
(c+ q − 1)α + 2(p+ q − 1)β + (c+ p− 1)γ

)2
⩽

1

4c2
(
(c+ q − 1)(α + γ) + 2(p+ q − 1)β

)2
=

1

4c2
(
(c+ q − 1)n+ (2p+ q − 1− c)β

)2
.
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If c ⩽ t1, then the above expression is maximized at β = n and we obtain

e(Gj) ⩽
(p+ q − 1)2

c2
n2,

which gives the first bound in both cases of the theorem. This bound is achieved if A = ∅,
C = ∅ and B is divided into

(
c

p+q−1

)
equal-sized sets, one for each subset of p + q − 1

colors assigned to the set, with edges in Gi, for i ∈ [c], between any vertices from sets
having color i assigned. This is depicted in Figure 2 for p = 1, q = 2 and c = 3.

Figure 2: The optimal construction for 3 colors and a forbidden rainbow S1,2.

Consider now c ⩾ t1 and take x = c− p− q + 1 and y = p. This gives

yc+ x(q − 1) = (x+ y)(p+ q − 1) = (c− q + 1)(p+ q − 1),

so from (2) we obtain

e(Gj) ⩽
1

4c2p(c−p−q+1)

(
(c−q+1)(p+q−1)(α+β) + ((c−p−q+1)c+ p(p−1))γ

)2
=

1

4c2p(c−p−q+1)

(
(c− q + 1)(p+ q − 1)n− (pq − (c− p− q + 1)2)γ

)2
.

If c ⩽ t3, then the above expression is maximized at γ = 0 and gives

e(Gj) ⩽
(c− q + 1)2(p+ q − 1)2

4c2p(c− p− q + 1)
n2.

This bound is achieved when C = ∅, the set B is of size (q−1)(p+q−1)−c(q−p−1)
2p(c−p−q+1)

n and is

divided into
(

c
p+q−1

)
equal-sized sets, one for each subset of p+q−1 colors assigned to the

set, while set A is of size (p+q−1)(c−2p−q+1)
2p(c−p−q+1)

n and is divided into
(

c
q−1

)
equal-sized sets, one

for each subset of q−1 colors assigned to the set. We put edges in Gi, for i ∈ [c], between
any vertex from a set in A∪B having color i assigned to any other vertex in A or a vertex
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in B having color i assigned. This construction is possible only if the mentioned sizes of
sets A and B are non-negative, which occurs when c ⩾ t1 and c ⩽ t2, and so it proves
the second bound in both cases of the theorem. Note that if q ⩽ p + 1, then the size
of B is always positive, which explains why t2 is defined in this way. This construction is
illustrated in Figure 3 for p = 1, q = 2 and c = 3, despite the fact that in this case the
optimal size of B is equal to 0.

Figure 3: A construction for 3 colors and a forbidden rainbow S1,2 with nonempty sets A
and B.

In order to prove the third bound in the first case of the theorem, consider c satisfying
t2 ⩽ c ⩽ t4 and take x = c and y = q − 1. From (2) we get

e(Gj) ⩽
1

4c3(q − 1)

(
2c(q − 1)α + (c+ q − 1)(p+ q − 1)β + (c2 + (p− 1)(q − 1))γ

)2
.

The assumption c ⩽ t4 implies that c2 + (p− 1)(q − 1) ⩽ 2c(q − 1), so

e(Gj) ⩽
1

4c3(q − 1)

(
2c(q − 1)(α + γ) + (c+ q − 1)(p+ q − 1)β

)2
=

1

4c3(q − 1)

(
2c(q − 1)n− (c(q − p− 1)− (q − 1)(p+ q − 1))β

)2
.

Since c ⩾ t2, the expression above is maximized at β = 0 and gives

e(Gj) ⩽
q − 1

c
n2,

which proves the third bound in the first case of the theorem. This is the same bound as
when forbidding a rainbow S0,q, so it is achieved when B = C = ∅, while set A is divided
into

(
c

q−1

)
equal-sized sets, one for each subset of q − 1 colors assigned to the set, and we
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Figure 4: A construction for 4 colors and a forbidden rainbow S2,2 with nonempty sets A
and C.

put edges in Gi, for i ∈ [c], between any vertex from a set having color i assigned to any
other vertex. This is depicted for q = 3 and c = 3 in Figure 1.

Finally, consider the last remaining bound, where we have c ⩾ t3 and c ⩾ t4. From (2)
for x = c− p+ 1 and y = c− q + 1 we obtain

e(Gj) ⩽
1

4c2(c−p+1)(c−q+1)

(
(c2−(p−1)(q−1))(α+γ) + (2c−p−q+2)(p+q−1)β

)2
=

1

4c2(c−p+1)(c−q+1)

(
(c2 − (p−1)(q−1))n− ((c− p− q + 1)2 − pq)β

)2
.

Since c ⩾ t3, the above expression is maximized at β = 0 and gives

e(Gj) ⩽
(c2 − (p− 1)(q − 1))2

4c2(c− p+ 1)(c− q + 1)
.

This is achieved when B = ∅, the set A is of size (c−p+1)2+(p−1)(q−p)
2(c−p+1)(c−q+1)

n and is divided into(
c

q−1

)
equal-sized sets, one for each subset of q−1 colors assigned to the set, similarly, the

set C is of size (c−q+1)2−(q−1)(q−p)
2(c−p+1)(c−q+1)

n and is divided into
(

c
p−1

)
equal-sized sets, one for each

subset of p− 1 colors assigned to the set. We put edges in Gi, for i ∈ [c], from any vertex
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in A having color i assigned and any vertex in C to any vertex in A and any vertex in C
having color i assigned. This is depicted in Figure 4 for c = 4 and a forbidden S2,2 just
for illustration, despite the fact that in this case it is not the extremal construction. The
sizes of sets A and C are non-negative if c ⩾ t4, so it gives the last bound in both cases
of the theorem.

4 Rainbow directed S1,1

In this section we consider c ⩾ 2 directed graphs G1, G2, . . . , Gc on a common vertex set
and forbid a rainbow star S1,1, which is a directed path of length 2. The following theorem
provides the optimal bound for the sum of the number of edges in all graphs.

Theorem 5. For integers c ⩾ 2 and n ⩾ 3, every collection of directed graphs G1, . . . , Gc

on a common set of n vertices containing no rainbow S1,1 satisfies

c∑
i=1

e(Gi) ⩽

{
n2 − n if c ⩽ 3,

c
⌊
n2

4

⌋
if c ⩾ 4.

Moreover, the above bounds are sharp.

Proof. The bound for c ⩽ 3 is obtained when G1 is a complete directed graph and all Gi

for i ∈ [c] \ {1} are empty graphs. While for c ⩾ 4 the bound is achieved when each
graph is the same balanced complete bipartite graph with all edges oriented in the same
direction. This is depicted in Figure 5.

Figure 5: The optimal construction for at least 4 colors and a forbidden rainbow S1,1.

We prove the upper bound by induction on n. For n = 3 and n = 4 it is easy to
verify that the bound holds. Consider then a collection of directed graphs G1, . . . , Gc on
a common set V of n ⩾ 5 vertices containing no rainbow S1,1 and assume that the bound
holds for all collections on a smaller number of vertices.

For a subset U ⊂ V and a vertex v ∈ V by e(U, v) we denote the total number of
edges in all graphs G1, . . . , Gc between the set U and the vertex v. If U consists of only
one vertex u, we write e(u, v) instead of e({u}, v) for brevity.

Assume first that there are two vertices u and v such that there exists an edge uv
in at least two colors. To avoid rainbow S1,1, for each vertex x ∈ V \ {u, v}, there are
no edges xu nor vx, and if ux ∈ E(Gi) and xv ∈ E(Gj), then i = j. This means that
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e({u, v}, x) ⩽ c. If there is no edge vu in any color, then e(u, v) ⩽ c and together with
the inductive assumption on V \ {u, v} for c ⩽ 3 we obtain

c∑
i=1

e(Gi) ⩽ c+ c(n− 2)+ (n− 2)2 − (n− 2) = n2 −n− (3− c)(n− 1)− (n− 3) ⩽ n2 −n,

while for c ⩾ 4 we have

c∑
i=1

e(Gi) ⩽ c+ c(n− 2) + c

⌊
(n− 2)2

4

⌋
= c

⌊
n2

4

⌋
.

On the other hand, if there is an edge vu in some color, then between {u, v} and x we
can have edges only in that color, so e({u, v}, x) ⩽ 2. Hence, for c ⩽ 3 we obtain

c∑
i=1

e(Gi) ⩽ 2c+ 2(n− 2) + (n− 2)2 − (n− 2) = n2 − n− 2(n− 4)− 2(3− c) ⩽ n2 − n,

while for c ⩾ 4 we have

c∑
i=1

e(Gi) ⩽ 2c+ 2(n− 2) + c

⌊
(n− 2)2

4

⌋
= c

⌊
n2

4

⌋
− (c− 4)(n− 3)− 2(n− 4) ⩽ c

⌊
n2

4

⌋
.

Therefore, we are left with the case when between any pair of vertices there are at most
two edges (at most one edge in each direction). But then

∑c
i=1 e(Gi) ⩽ 2

(
n
2

)
= n2 − n,

which gives the correct bound for c ⩽ 3 and is smaller than c
⌊
n2

4

⌋
for c ⩾ 4, as desired.

Since the extremal construction for c ⩾ 4 in Theorem 5 has the same number of edges
in each graph, this theorem immediately implies the optimal bound for min1⩽i⩽c e(Gi)
if c ⩾ 4. We will show that for c ⩽ 3 the same bound holds.

Theorem 6. For any integers c ⩾ 2 and n ⩾ 4, every collection of directed graphs
G1, . . . , Gc on a common set of n vertices containing no rainbow S1,1 satisfies

min
1⩽i⩽c

e(Gi) ⩽

⌊
n2

4

⌋
.

Moreover, this bound is sharp.

Proof. The bound is achieved when each graph is the same balanced complete bipartite
graph with all edges oriented in the same direction (see Figure 5).

Note that it is enough to consider c = 2, because if the theorem is true for 2 colors, then
it also holds for any larger number of colors. We proceed by induction on n. For n = 4 it
is easy to verify that the theorem holds (note that for n = 3 it is not true as one can have
a directed triangle oriented clockwise in G1 and anticlockwise in G2). Consider then two
directed graphs G1, G2 on a common set V of n ⩾ 5 vertices containing no rainbow S1,1

and assume that the theorem holds for all pairs of graphs on a smaller number of vertices.

the electronic journal of combinatorics 31(4) (2024), #P4.70 13



Assume first that there exists a vertex v ∈ V incident to at most 2 edges in each of
the graphs. Then, from the induction assumption on V \ {v} we obtain

min
1⩽i⩽2

e(Gi) ⩽ 2 +

⌊
(n− 1)2

4

⌋
=

⌊
n2 − 2n+ 9

4

⌋
⩽

⌊
n2

4

⌋
.

Therefore, we may assume that no such vertex exists in V . In particular, every vertex
has outdegree or indegree at least 2 in at least one of the graphs.

We split the vertex set V into disjoint sets based on colors and directions of incident
edges, similarly as in Section 3. Let α and γ be the number of vertices that have out-
degree 0, respectively indegree 0, in both graphs. For i ∈ [2], let βi be the number of
remaining vertices that are incident only to edges in Gi. The remaining vertices in V
can be divided into 4 sets depending whether outdegree or indegree is large and in which
graph. For i ∈ [2], let δ+i be the number of vertices having outdegree at least 2 in Gi and
δ−i the number of vertices having indegree at least 2 in Gi. Let M be the set of pairs of
vertices u, v such that uv ∈ E(G1) and vu ∈ E(G2). Note that every vertex appears in
at most one pair in M as otherwise it has no other incident edges which contradicts the
condition proven in the previous paragraph. Moreover, all δ+1 +δ−1 +δ+2 +δ−2 vertices must
appear in M . Thus, we can set m = |M | = 1

2
(δ+1 + δ−1 + δ+2 + δ−2 ).

Note that all edges in G1, except those in M , are going from γ + β1 + δ+1 vertices and
to α + β1 + δ−1 vertices. From symmetry, we may assume without loss of generality that

β1 +
1

2
δ+1 +

1

2
δ−1 ⩽ β2 +

1

2
δ+2 +

1

2
δ−2 ,

we obtain

e(G1) ⩽ (γ + β1 + δ+1 )(α + β1 + δ−1 ) +m

⩽

⌊
(γ + β1 + δ+1 + α + β1 + δ−1 )

2

4

⌋
+m

⩽

⌊
(γ + α + β1 + β2 +

1
2
δ+1 + 1

2
δ−1 + 1

2
δ+2 + 1

2
δ−2 )

2

4

⌋
+m

=

⌊
(n−m)2

4

⌋
+m

=

⌊
n2 −m(2n−m− 4)

4

⌋
⩽

⌊
n2

4

⌋
,

because m ⩽ 1
2
n and n ⩾ 4, which concludes the proof.
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