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Abstract

The problem of determining the maximum number of maximal independent sets
in certain graph classes dates back to a paper of Miller and Muller and a question
of Erdős and Moser from the 1960s. The minimum was always considered to be
less interesting due to simple examples such as stars. In this paper we show that
the problem becomes interesting when restricted to twin-free graphs, where no two
vertices have the same open neighbourhood. We consider the question for arbitrary
graphs, bipartite graphs and trees. The minimum number of maximal independent
sets turns out to be logarithmic in the number of vertices for arbitrary graphs, linear
for bipartite graphs and exponential for trees. In the latter case, the minimum and
the extremal graphs have been determined earlier by Taletskĭı and Malyshev, but
we present a shorter proof.

Mathematics Subject Classifications: 05C35, 05C69, 05C05

1 Introduction

1.1 History on the maximum number of maximal independent sets

Let imax(G) denote the number of maximal independent sets of a graph G, i.e., the number
of independent sets that are not contained in any larger independent set. Answering a
question on the number of (maximal) cliques posed by Erdős and Moser, Moon and
Moser [16], independently from Miller and Muller [15] (see also [21] for a short alternative
proof) proved (by considering the complement) that for a graph G of order n, where
n 󰃍 2,

imax(G) 󰃑

󰀻
󰁁󰀿

󰁁󰀽

3
n
3 if n ≡ 0 (mod 3),

4 · 3n−4
3 if n ≡ 1 (mod 3),

2 · 3n−2
3 if n ≡ 2 (mod 3).
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The extremal graphs are disjoint unions of (at most two) K2s and many K3s. In the
original setting (for the number of maximal cliques), the extremal graph is a balanced󰀉
n
3

󰀊
−partite graph. Wilf [20] proved that among all trees of order n the spiders (presented

in Figure 1) maximize the number of maximal independent sets. For a tree T with n
vertices,

imax(T ) 󰃑
󰀫
2

n
2
−1 + 1 if n ≡ 0 (mod 2),

2
n−1
2 if n ≡ 1 (mod 2).

(a) An odd spider (b) An even spider

Figure 1: Two spiders.

By induction, one can verify with Wilf’s idea that the extremal tree is unique when n is
odd, but this is not the case when n is even. Sagan [18] provided an alternative proof for
Wilf’s result and also characterized the extremal trees of even order as batons of length
1 or 3. Here batons are subdivisions of trees of diameter at most 3 in which the pendent
edges are subdivided once and the central edge (or one edge of a star) is not subdivided
or subdivided twice. Examples of such batons are presented in Figure 2. From this one
can also conclude that there are precisely n

2
− 1 extremal trees if n 󰃍 4 is even.

(a) A baton of length 1 (b) A baton of length 3

Figure 2: Batons of length 1 and 3.

Wilf also asked about the maximum of imax(G) when considering arbitrary connected
graphs of given order. This question was answered independently by Füredi [6] (for
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large n) and Griggs et al. [7]. They proved that for a connected graph G,

imax(G) 󰃑

󰀻
󰁁󰀿

󰁁󰀽

2 · 3n
3
−1 + 2

n
3
−1 if n ≡ 0 (mod 3),

3
n−1
3 + 2

n−4
3 if n ≡ 1 (mod 3),

4 · 3n−5
3 + 3 · 2n−8

3 if n ≡ 2 (mod 3).

For n 󰃍 6, the extremal graph is unique: if n ≡ k (mod 3), where k ∈ {0, 1, 2}, the graph
is obtained from a union of k complete graphs K4 and n−4k

3
=

󰀇
n
3

󰀈
− k complete graphs

K3 by choosing one vertex from each of these complete graphs and connecting them to
form a star of order

󰀇
n
3

󰀈
. The centre of this star has to belong to a K4, if there is (at

least) one. This is presented in Figure 3 in the case n ≡ 2 (mod 3).

· · ·

Figure 3: Connected graph with maximum value of imax.

1.2 The minimum number of maximal independent sets

Whenever a graph contains at least one edge, we must clearly have imax(G) 󰃍 2 (construct
maximal independent sets greedily starting from each of the ends of one edge), and this
bound is in fact attained by a star. As such, one can conclude that for trees or arbitrary
connected graphs of order n, the best lower bound one can aim for is imax(G) 󰃍 2.
If two leaves v, v′ of a tree have the same neighbour (we call such leaves twins), then v
belongs to a maximal independent set if and only if v′ does, so we can consider them
as essentially being one vertex. Generally, if two vertices v and v′ of a graph have the
same open neighbourhood, i.e., N(v) = N(v′), then every maximal independent set either
contains both or neither.
So by duplicating vertices (adding new vertices with the same open neighbourhood as
existing vertices), we can construct infinitely many graphs with the same number of
maximal independent sets. This is also the reason why the question for the minimum
number of maximal independent sets appears to be less interesting than its counterpart
for the maximum. As we will see, it becomes more interesting if we forbid duplicated
vertices:
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Definition 1. A graph is called twin-free if it has no two vertices with the same neigh-
bours.

Twin-free graphs have been studied in the past, e.g. in [4] in connection with identifying
codes. Note that every graph can be reduced to a twin-free graph (its “twin-free core”)
by removal of duplicates without affecting the number of maximal independent sets. We
therefore study the problem of determining the minimum of imax(G) for a twin-free graph
G of given order n in different graph classes: specifically, arbitrary graphs, bipartite
graphs, and trees.
We will see that for these three graph classes, the minimum of imax(G) is logarithmic,
linear and exponential in terms of the order n, respectively.
Our first main result determines the minimum of imax(G) for arbitrary connected twin-free
graphs of given order (in fact, it suffices to assume that there are no isolated vertices),
and characterizes the extremal graph uniquely. We first prove that the extremal graph
contains a clique of order imax(G), and that the neighbourhoods satisfy certain conditions.
Using a result from extremal set theory, we can then conclude with the following theorem.
This is presented in Section 2.

Theorem 2. Let k 󰃍 2 be an integer. If G is a twin-free graph of order n without isolated
vertices and imax(G) = k, then n 󰃑 2k−1 + k − 2. Furthermore, equality holds only if the
graph G is formed by taking a clique Kk−1 and adding, for every non-empty vertex subset
S of this clique, a vertex whose neighbourhood is precisely S.

The precise result for bipartite graphs is stated in the next theorem. In the proof in
Section 3, we associate a unique maximal independent set to every vertex v in one partition
class, which together with the other partition class gives the lower bound on the number
of maximal independent sets.

Theorem 3. Let G be a twin-free bipartite graph of order n 󰃍 2 without isolated vertices.
Then imax(G) 󰃍

󰀉
n
2

󰀊
+ 1, and this inequality is sharp.

The last result determines the minimum number of maximal independent sets in twin-free
trees. This was previously proven by Taletskĭı and Malyshev in [19]. We give a shorter
proof in Section 4, which starts by deriving the bounds, in contrast to [19] where the
extremal graphs are characterized first by excluding certain structures in the extremal
graphs. We use an inductive approach, based on a lemma of Wilf [20].

Theorem 4. Let n 󰃍 4 be an integer. Then for every twin-free tree T with n vertices, we
have

imax(T ) 󰃍

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

4 · 3n
5
−1 if n ≡ 0 (mod 5),

5 · 3n−6
5 if n ≡ 1 (mod 5),

2 · 3n−2
5 if n ≡ 2 (mod 5),

8 · 3n−8
5 if n ≡ 3 (mod 5),

3
n+1
5 if n ≡ 4 (mod 5),

and this inequality is sharp.
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For every n, Figure 4 depicts one example of a tree for which equality holds in Theorem 4.
Here, the blue and red edges possibly have to be added depending on n (mod 5). For large
n, there are multiple extremal trees. In Subsection 4.1 we briefly make some comments
on the characterization, which also already appears in [19].

󰀇
n−4
5

󰀈
times

(a) n ≡ 0, 1, 4 (mod 5)

󰀇
n−7
5

󰀈
times

(b) n ≡ 2, 3 (mod 5)

Figure 4: Constructions that attain equality in Theorem 4.

Finally, in Section 5, we conclude with some further directions related to the minimum of
imax(G) for twin-free graphs in other classes and some other related questions.

2 Twin-free graphs

We start with the proof that the minimum of the number of maximal independent sets
in a connected twin-free graph is logarithmic in the order. We first provide the extremal
construction and give a short argument for the lower bound imax(G) > log2(n). The more
precise Theorem 2 is proven afterwards in Subsection 2.1.

Proposition 5. There exists a connected twin-free graph with n = 2k−1 + k − 2 vertices
for which imax(G) = k.

Proof. Let Kk−1 be a clique on k − 1 vertices. For every non-empty vertex subset S of
this clique, we add a new vertex whose neighbours are exactly the vertices in S. Then the
graph G obtained by this process has k− 1 + (2k−1 − 1) vertices, and all neighbourhoods
are different, i.e., G is twin-free. Every independent set contains at most one vertex of
the clique Kk−1. We note that a maximal independent set I is uniquely determined by
I ∩ V (Kk−1), since V (G) \ V (Kk−1) is an independent set. If I ∩ V (Kk−1) = ∅, then
V (G) \ V (Kk−1) becomes a maximal independent set on its own. If I ∩ V (Kk−1) = {v},
then I = V (G)\N(v). As such, we conclude that imax(G) = k.

On the other hand, we can prove a lower bound that is based on the following observation.
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Figure 5: The construction in Proposition 5 for k = 4. The clique K3 is indicated in
white.

Lemma 6. Two vertices u and v belong to the same maximal independent sets of a graph
G if and only if they are twins.

Proof. If u and v belong to the same maximal independent sets, then they cannot be
neighbours, and they must have exactly the same neighbours: if for instance there is
a vertex w adjacent to u, but not to v, then there must be a maximal independent
set containing {v, w}, but not u. Hence u and v have to be twins. The converse is
immediate.

The following proposition already shows that the minimum of imax is of logarithmic order.

Proposition 7. For every connected twin-free graph G with n vertices, imax(G) > log2(n).

Proof. Let k = imax(G), and let the maximal independent sets of G be I1, . . . , Ik. For
every vertex v, consider the associated vector 󰂓v = (1v∈I1 , 1v∈I2 , . . . , 1v∈Ik). Since every
vertex belongs to at least one maximal independent set, no vertex gets assigned the zero
vector. Moreover, Lemma 6 shows that no two vertices have the same associated vector,
as G is assumed to be twin-free. Since there are only 2k − 1 distinct non-zero vectors, we
conclude that n 󰃑 2k − 1, i.e., k > log2(n).

This argument is further refined in the following subsection.

2.1 Proof of Theorem 2

Let us now prove Theorem 2, whose statement we first recall.
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Theorem 2. Let k 󰃍 2 be an integer. If G is a twin-free graph of order n without isolated
vertices and imax(G) = k, then n 󰃑 2k−1 + k − 2. Furthermore, equality holds only if the
graph G is formed by taking a clique Kk−1 and adding, for every non-empty vertex subset
S of this clique, a vertex whose neighbourhood is precisely S.

For k = 2, the statement holds by Proposition 7 and the fact that imax(K3) = 3 > 2.
Suppose for contradiction that Theorem 2 does not hold, and let k 󰃍 3 be the minimum
value for which this is the case. LetG be a graph of maximum order for which imax(G) = k,
and let I1, . . . , Ik be its maximal independent sets. As in the proof of Proposition 7, we
can conclude that every vertex of G belongs to at least one of these sets.

Lemma 8. Every maximal independent set Ii has a vertex ui that belongs to no maximal
independent set Ij with j ∕= i.

Proof. If this is not the case, add a vertex ui to the graph that is adjacent to all vertices
except those in Ii. Then Ii is extended by this new vertex, but all other maximal inde-
pendent sets remain the same. Note that the new vertex does not belong to any maximal
independent sets other than the extension of Ii. By Lemma 6, the new graph G′ is still
twin-free, and imax(G

′) = imax(G), contradicting the choice of G.

Lemma 9. In every graph H, we have imax(H) 󰃍 χ(H) 󰃍 ω(H).

Proof. It is sufficient to observe that every colour class of an optimal proper colouring is
an independent set, but the union of two colour classes is not. Since every independent set
can be (e.g. greedily) extended to at least one maximal independent set, imax(H) 󰃍 χ(H)
is immediate. The inequality χ(H) 󰃍 ω(H) is well known.

In the graph G that we took as counterexample to Theorem 2, any two vertices ui and
uj as defined in Lemma 8 with i ∕= j have to be adjacent. Otherwise, {ui, uj} could
be extended to a maximal independent set, contradicting the choice of ui and uj. So
U = {u1, . . . , uk} spans a complete graph, implying that ω(G) 󰃍 k = imax(G), which
means that we have equality in Lemma 9 when applied to G.

Lemma 10. A vertex v belongs to Ij if and only if it is not adjacent to uj.

Proof. If v belongs to Ij, then it can clearly not be adjacent to uj (which also belongs
to Ij). Conversely, if v, uj are not adjacent, then {v, uj} can be extended to a maximal
independent set, which must necessarily be Ij (by Lemma 8).

Remembering that the vectors 󰂓v as defined in the proof of Proposition 7 are all distinct
and neither equal to the all-0 vector (as every vertex belongs to a maximal independent
set) nor the all-1 vector (the corresponding vertex would be isolated), we know that every
vertex has at least one neighbour in the clique induced by U , and no two vertices v, v′ /∈ U
satisfy N(v) ∩ U = N(v′) ∩ U .

Lemma 11. Two vertices v, v′ are adjacent if and only if U ⊆ N(v) ∪N(v′).
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Proof. If v, v′ are adjacent and u ∈ U does not belong to N(v) ∪ N(v′), then {u, v}
and {u, v′} can be extended to distinct maximal independent sets containing u. This
contradicts the construction of U (Lemma 8), so U ⊆ N(v) ∪N(v′) in this case.
Conversely, if v, v′ are not adjacent, then the set {v, v′} can be extended to a maximal
independent set, which must contain a vertex of U by construction. As this vertex is not
in N(v) ∪N(v′), U is not fully contained in N(v) ∪N(v′) in this case.

If the union of the neighbourhoods of the vertices in an independent set in V (G) \ U
contains all of U , it can be extended to a maximal independent set without any vertices
in U , leading to a contradiction again. Equivalently, if the union of the neighbourhoods
of some vertices in V (G) \ U contains all of U , then it cannot be an independent set, so
it must contain two adjacent vertices whose neighbourhoods cover U by Lemma 11. This
observation naturally leads us to the following concept.

Definition 12. We say that a family F ⊆ 2[n] is union-efficient if for every subfamily
{A1, . . . , Am} of F for which ∪i∈[m]Ai = [n], there are two indices i, j ∈ [m] for which
Ai ∪ Aj = [n].

For every vertex vi ∈ V (G)\U , we consider the index set Ai = {j | uj ∈ N(vi), 1 󰃑 j 󰃑 k}.
As explained before, the family F ⊆ 2[k] consisting of all these Ai is union-efficient.
Note that F does not include ∅, [k] (as observed before), nor [k] \ j for any j ∈ [k]. The
latter holds because Ai = [k] \ j would mean that vi is adjacent to (a) all vertices in
U except uj, and (b) precisely those vertices in V (G) \ U that are adjacent to uj (by
Lemma 11). But then vi and uj would be twins, a contradiction. It is easy to see that F
stays union-efficient if we add these k + 2 sets to F .
Formulated in the terminology of union-efficient families (the equivalence is explained
in [2]), the following theorem is a result by Milner (see [5]), with the uniqueness result
proven by Bollobás and Duchet [1], and by Mulder [17].

Theorem 13. Let n 󰃍 3, and let E ⊆ 2[n] be a union-efficient family. Then |E| 󰃑 2n−1+n.
Equality is attained if and only if (up to isomorphism) E = 2[n−1]∪

󰀃
[n]

󰃍n−1

󰀄
(i.e., E contains

all subsets of [n− 1] and all subsets of [n] with at least n− 1 elements).

Theorem 13 implies that |F| 󰃑 2k−1 − 2, thus

|V (G)| = |U |+ |V (G) \ U | 󰃑 k + 2k−1 − 2,

and equality holds if and only if (up to renaming) F = 2[k−1] \ {[k − 1], ∅}. In this
case, G consists of the clique induced by u1, . . . , uk−1 and the 2k−1 − 1 vertices in V (G) \
{u1, . . . , uk−1} whose neighbourhoods are precisely all the different nonempty subsets of
{u1, . . . , uk−1} (uk is the unique vertex adjacent to all of them). This is precisely the
characterization of the extremal graph described in Theorem 2, completing our proof.

Note that a twin-free graph has at most one isolated vertex, and that adding an isolated
vertex does not change the number of maximal independent sets. Thus, if we drop the
condition that there are no isolated vertices, we obtain the following version of Theorem 2.
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Corollary 14. Let k 󰃍 2 be an integer. If G is a twin-free graph of order n and imax(G) =
k, then n 󰃑 2k−1 + k − 1. Furthermore, equality holds only if the graph G is formed by
taking a clique Kk−1 and adding, for every vertex subset S of this clique, a vertex whose
neighbourhood is precisely S.

3 Twin-free bipartite graphs

In this section, we show that the minimum value of imax(G) for twin-free bipartite graphs
is linear in the order. We start by proving Theorem 3, which we recall for convenience.

Theorem 3. Let G be a twin-free bipartite graph of order n 󰃍 2 without isolated vertices.
Then imax(G) 󰃍

󰀉
n
2

󰀊
+ 1, and this inequality is sharp.

Proof. For the lower bound, we prove a stronger statement: if G is a twin-free bipartite
graph without isolated vertices whose bipartition classes A,B have sizes a 󰃑 b (b 󰃑 2a−1
is necessary for existence), then imax(G) 󰃍 b+ 1.
For every vertex v ∈ B, consider the set Iv = (A \N(v)) ∪ {u ∈ B | N(u) ⊆ N(v)}. This
is a maximal independent set by construction. Since for every two vertices u, v ∈ B their
neighbourhoods N(u) and N(v) are different, we have Iu ∕= Iv if u ∕= v. Finally, A is also
a maximal independent set (since G has no isolated vertices) that does not coincide with
any of the Iv. Thus G has at least b + 1 maximal independent sets. Since b 󰃍

󰀉
n
2

󰀊
, the

lower bound is clear.
Equality is attained by K2 and for example by taking a balanced complete bipartite graph
K⌊n

2 ⌋,⌈n
2 ⌉ and removing a matching M of size

󰀉
n
2

󰀊
− 1 when n 󰃍 4 (note that no bipartite

twin-free connected graph of order 3 exists). The graph K⌊n
2 ⌋,⌈n

2 ⌉ \M is clearly bipartite,

connected and twin-free (note that a bipartite graph is twin-free if and only if its bipartite
complement is, provided that neither of the two has two isolated vertices). It has two types
of maximal independent sets: each of the bipartition classes is a maximal independent
set, and for each of the

󰀉
n
2

󰀊
− 1 edges in M , the ends form a maximal independent set of

cardinality 2. There are no others: once two vertices from the same bipartition class are
contained in an independent set I, no vertices from the other class can be included. By
maximality, I must be one of the bipartition classes in this case. If an independent set
I contains vertices from both classes, then they have to be the ends of an edge in M , as

they would otherwise be adjacent. Hence imax

󰀓
K⌊n

2 ⌋,⌈n
2 ⌉ \M

󰀔
=

󰀉
n
2

󰀊
+ 1.

The same bound seems to hold more generally for triangle-free graphs, but we do not
have a proof at this point.

Conjecture 15. Let G be a twin-free and triangle-free graph of order n without isolated
vertices. Then imax(G) 󰃍

󰀉
n
2

󰀊
+ 1. Furthermore, if n is even, graphs that attain equality

are bipartite.

If we drop the condition that there are no isolated vertices, the minimum only changes
by at most 1 by the same reasoning that gave us Corollary 14: a twin-free graph has at
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most one isolated vertex, and adding an isolated vertex does not change the number of
maximal independent sets. The same is true for triangle-free graphs under Conjecture 15.

Corollary 16. For every twin-free bipartite graph G of order n, we have imax(G) 󰃍󰀉
n−1
2

󰀊
+ 1 =

󰀇
n
2

󰀈
+ 1, and this inequality is sharp.

The graphs in the proof that were constructed to show that the inequality is sharp are
not unique—there are many more extremal graphs, see Table 1.

n min imax(G) # extremal bip. graphs # extremal K3-free graphs
4 3 1 1
5 4 1 1
6 4 2 2
7 5 4 5
8 5 4 4
9 6 16 18
10 6 11 11
11 7 73 79
12 7 33 33

Table 1: The number of connected twin-free bipartite/triangle-free graphs for which the
minimum in Theorem 3 is attained.

Let us also present a bijection with certain binary matrices.

Proposition 17. The connected twin-free bipartite graphs of order 2k for which imax(G) =
k+1 are in one-to-one correspondence with k×k-binary matrices satisfying the following
conditions:

• there is an all-1 row and an all-1 column,

• all columns are distinct, and all rows are distinct,

• the union (bitwise maximum) of any two rows is a row of the matrix itself.

Proof. In the proof of Theorem 3, it was shown that imax(G) 󰃍 max{|A|, |B|}+ 1, where
V (G) = A∪B is the bipartition of G. Hence the equality imax(G) = k+1 can only occur
among balanced bipartite graphs, i.e., when |A| = |B|. The bipartite graph can now be
presented by its reduced adjacency matrix M, which is a k × k-matrix. From the proof,
we also conclude that there is a vertex v ∈ B for which Iv = B and thus N(v) = A.
Similarly, there is a vertex w ∈ A with N(w) = B. Thus M has a row and a column
containing only 1s. The graph G being twin-free is equivalent to M having distinct rows
and distinct columns.
If there is a bipartition class, say B, of G for which the union of the neighbourhoods of
some of its vertices, B1 ⊆ B (B1 ∕= ∅), is not equal to the neighbourhood of a vertex in
B, then A \ N(B1) ∪ {u ∈ B | N(u) ⊆ N(B1)} would be another maximal independent
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set not counted in the proof of Theorem 3. So for every B1 ⊆ B, there is a b ∈ B with
N(B1) = N(b). The latter is the case if and only if this is true for every subset B1 of size
2, which is equivalent with the union of any 2 rows being a row itself.
In the reverse direction, assuming M does satisfy the conditions, we know that it is
the adjacency matrix of a connected twin-free bipartite graph G. Assume a maximal
independent set of G different from A consists of precisely the vertices in A1 ⊆ A and
B1 ⊆ B. Due to the third condition, there is a vertex b for which N(B1) = N(b). Then
B1 has to be precisely equal to {u ∈ B | N(u) ⊆ N(b)}, and A1 = A\N(b) since A1 ∪ B1

is a maximal independent set. Therefore the maximal independent sets are exactly those
of the form {Ib | b ∈ B}∪ {A}, and we have imax(G) = k+1. We conclude that we really
have a bijection.

Remark 18. This also gives a combinatorial proof that among square binary matrices M
with all columns resp. rows distinct and containing an all-1 row and an all-1 column, the
condition that the union of any set of columns of M is a column of M is equivalent with
the condition that the union of any set of rows of M is a row of M.

From this characterization, it can be derived that there are at least exponentially many

bipartite graphs G of order 2k for which imax(G) = k + 1. For example, 2⌊
k
3⌋ different

matrices satisfying the constraints in Proposition 17 can be obtained by taking a k × k
binary lower-triangular matrix M all of whose lower-triangular elements are 1 and then
additionally setting some entries M3i+1,3i+3 equal to 1 for some 0 󰃑 i <

󰀇
k
3

󰀈
. For k = 6,

this gives four possibile matrices of this form (a red entry can be either 0 or 1)

M =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0 0/1 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0/1
1 1 1 1 1 0
1 1 1 1 1 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
.

4 Twin-free trees

In this section, we consider the problem for trees. Let us start again by recalling the
theorem we want to prove. We first define a function f by f(1) = 1, f(2) = f(3) = 2, and
for n 󰃍 4

f(n) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

4 · 3n
5
−1 if n ≡ 0 (mod 5),

5 · 3n−6
5 if n ≡ 1 (mod 5),

2 · 3n−2
5 if n ≡ 2 (mod 5),

8 · 3n−8
5 if n ≡ 3 (mod 5),

3
n+1
5 if n ≡ 4 (mod 5).

The main theorem of this section can thus be stated as follows.
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Theorem 4. Let n 󰃍 4 be an integer. Then for every twin-free tree T with n vertices, we
have imax(T ) 󰃍 f(n), and this inequality is sharp.

Note that the inequality imax(T ) 󰃍 f(n) is also true for n ∈ {1, 2, 3}, although the
statement is void for n = 3 as there are no twin-free trees with 3 vertices (however,
imax(P3) = 2).
For n 󰃑 8, the values can be verified by determining imax(T ) for all trees of order n (these
are the base cases of our induction proof). So from now on, we consider n 󰃍 9 and assume
that the statement has been proven for every smaller order.
In the proof of Theorem 4, we will use the following estimates.

Lemma 19. The following statements hold:

(a) except for the pair (n,m) = (3, 3), we have f(n) · f(m) 󰃍 f(n+m) for all n,m 󰃍 2,
and

(b) f(n− 1) · f(m− 1) 󰃍 f(n+m− 1) for all n,m 󰃍 5.

Proof. Note that for n 󰃍 5, the function g(n) = f(n − 1)3−
n
5 󰃍 1 only depends on the

residue class modulo 5, namely

g(n) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

1 if n ≡ 0 (mod 5),

4 · 3− 6
5 if n ≡ 1 (mod 5),

5 · 3− 7
5 if n ≡ 2 (mod 5),

2 · 3− 3
5 if n ≡ 3 (mod 5),

8 · 3− 9
5 if n ≡ 4 (mod 5).

A direct verification shows that

g(i)g(j)

g(i+ j)
∈
󰁱
1,

25

24
,
16

15
,
10

9
,
32

27

󰁲
,

thus in particular g(i)g(j) 󰃍 g(i+ j) in all cases. So it follows that

f(n− 1)f(m− 1) = 3(n+m)/5g(n)g(m) 󰃍 3(n+m)/5g(n+m) = f(n+m− 1)

for all n,m 󰃍 5. Thus statement (b) holds. Since f(n) is increasing for n 󰃍 4, we have

f(n)f(m) 󰃍 f(n+m+ 1) > f(n+m)

for all n,m 󰃍 4. Thus we only need to verify (a) in those cases where either n or m
(without loss of generality n) is equal to 2 or 3. If both n and m are equal to 2 or 3, then
the inequality holds unless n = m = 3, as f(6) = 5 > f(2)2 = f(2)f(3) = f(3)2 = 4 =
f(5) > f(4) = 3.
Moreover, since f(2) = f(3) = 2, it actually suffices to consider n = 3 (again because f is
an increasing function: f(3)f(m) 󰃍 f(m+3) implies f(2)f(m) = f(3)f(m) 󰃍 f(m+2)).
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The inequality f(3)f(m) = 2f(m) 󰃍 f(m+ 3) is easily verified for m 󰃍 4 by checking all
five possible cases modulo 5 and finding that

f(3)f(m)

f(3 +m)
∈
󰁱
1,

16

15
,
10

9

󰁲
.

Next, we explain the inductive idea used by Wilf [20]. Let x be a leaf of T and y its
neighbour. Let u1, u2, . . . , ur be the neighbours of y different from x. Let Ui be the
component (subtree) of T \ {x, y} that contains ui, and let Wi,j, 1 󰃑 j 󰃑 si, be the
components of Ui \ ui. Finally, let wi,j be the neighbour of ui belonging to Wi,j. This is
illustrated in Figure 6.

. . . . . . . . .· · ·

x

y

u1 u2 ur

w1,1 w1,s1 w2,1 w2,s2 wr,srwr,1

W1,1 W1,s1 W2,1 W2,s2 Wr,srWr,1

U1 U2 Ur

Figure 6: Tree with subtrees.

Then the following formula holds, see [20, Lemma 1].

Lemma 20 ([20]). If T is a tree decomposed as in Figure 6, then

imax(T ) =
r󰁜

i=1

imax(Ui) +
r󰁜

i=1

si󰁜

j=1

imax(Wi,j).

With this formula, it is immediate to prove that the five constructions in Figure 4 give
equality in Theorem 4.
Let us now continue with our induction proof. Assume that T is a twin-free tree of order
n 󰃍 9. In the decomposition of Figure 6, assume without loss of generality that x is a
leaf that is an end of a diametral path. This implies that all but one of y’s neighbours
are leaves, and since we are only considering twin-free trees, it actually implies that y has
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degree 2, i.e., r = 1. Writing s = s1, U = U1, Wj = W1,j, u = u1 and wj = w1,j for
simplicity, the formula in Lemma 20 is reduced to

imax(T ) = imax(U) +
s󰁜

j=1

imax(Wj). (1)

Note that |U | = n− 2. The core of our induction lies in the following lemma.

Lemma 21. At least one of the following holds:

1. imax(U) 󰃍 f(n− 3) and
s󰁜

j=1

imax(Wj) 󰃍 f(n− 3), or

2. imax(U) 󰃍 f(n− 2) and
s󰁜

j=1

imax(Wj) 󰃍 f(n− 4), or

3. imax(U) 󰃍 2f(n− 5) and
s󰁜

j=1

imax(Wj) 󰃍 f(n− 5).

Proof. We divide the proof into two cases, depending on the root degree of U .
Case 1: s = 1.
Observe that if U is not twin-free (in which case u and a leaf of U are at distance 2 from
each other), then W1 is twin-free and by the induction hypothesis imax(U) = imax(W1) 󰃍
f(n − 3), so the first of the three statements holds. If U is twin-free, W1 might not be,
but can in this case be made twin-free by removing a vertex without affecting imax. Hence
we have imax(U) 󰃍 f(n− 2) and imax(W1) 󰃍 f(n− 4), so the second statement holds.
Case 2: s 󰃍 2.
First we observe that U is now always a twin-free tree and thus imax(U) 󰃍 f(n − 2) by
the induction hypothesis. We also observe that imax(Wj) 󰃍 f(|Wj|) if Wj is twin-free and
otherwise imax(Wj) 󰃍 f(|Wj|− 1) by the same argument as in Case 1; only the vertex wj

can become a twin of another vertex, and in that case W \ wj is twin-free.
If |Wj| 󰃑 4, then we have imax(Wj) = f(|Wj|): in each case, there is only one possible tree
up to isomorphism (Wj cannot be a star of order 4, since T would then not be twin-free).
Hence imax(Wj) < f(|Wj|) can only happen if |Wj| 󰃍 5.
We consider two subcases now: assume first that |Wj| > 1 for all j. We have imax(Wj) 󰃍
f(|Wj|− 1) whenever |Wj| 󰃍 5, and iterating part (b) of Lemma 19 gives us

󰁜

j:|Wj |󰃍5

imax(Wj) 󰃍 f

󰀳

󰁃

󰀳

󰁃
󰁛

j:|Wj |󰃍5

|Wj|

󰀴

󰁄− 1

󰀴

󰁄 ,

provided there are Wj of order 5 or greater. For all j with Wj < 5, we can use the fact
that imax(Wj) = f(|Wj|). Applying part (a) of the same lemma repeatedly now, we end
up with

s󰁜

j=1

imax(Wj) 󰃍 f

󰀣󰀣
s󰁛

j=1

|Wj|
󰀤

− 1

󰀤
= f(n− 4), (2)
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so statement 2 holds in this case. If there are no Wj of order 5 or greater, we can skip the
first step and only apply part (a) of Lemma 19. The exceptional case (3, 3) only occurs at
most once in the process, and we have f(3)2 = 4 = f(5), thus (2) still applies. In either
case, we are done.
Let us finally consider the case that there is a j (without loss of generality j = 1) such that
|Wj| = 1. There can only be one, as T is assumed to be twin-free. The same argument
as in the other subcase now yields

s󰁜

j=1

imax(Wj) =
s󰁜

j=2

imax(Wj) 󰃍 f

󰀣
s󰁛

j=2

|Wj|− 1

󰀤
= f(n− 5).

Moreover, this bound can be improved if there is a twin-free Wj of order at least 4: in
this case, we have imax(Wj) 󰃍 f(|Wj|). Iterating part (b) of Lemma 19 then yields

󰁜

j:|Wj |󰃍4

imax(Wj) 󰃍 f

󰀳

󰁃
󰁛

j:|Wj |󰃍4

|Wj|

󰀴

󰁄

and thus (2) again, in which case we are done. Likewise, since f(2) = f(3) = 2, we can
improve the bound to f(n− 4) if there is a Wj of order 2.
So if (2) does not hold, then Wj cannot be twin-free for any j 󰃍 2 (there are no twin-free
trees of order 3, and all other orders have been ruled out). This is only possible if the
degree of wj is 2. Moreover, imax(Wj \ wj) = imax(Wj) in this case. Taking w1 (which by
our assumption is a leaf) as the new root, we can apply Lemma 20 to U and deduce that

imax(U) =
s󰁜

j=2

imax(Wj) +
s󰁜

j=2

imax(Wj \ wj) = 2
s󰁜

j=2

imax(Wj) 󰃍 2f(n− 5).

Thus statement 3 applies in this case, which completes the proof.

Applying the inequalities in Lemma 21 to the formula in (1), we obtain

imax(T ) 󰃍 min
󰀃
2f(n− 3), f(n− 2) + f(n− 4), 3f(n− 5)

󰀄
.

It is however straightforward to verify from the definition of f(n) that f(n) 󰃑 2f(n− 3)
(with equality if and only if n ≡ 0, 2, 3 (mod 5)), f(n) 󰃑 f(n−2)+f(n−4) (with equality
if and only if n ≡ 1, 3 (mod 5)) and f(n) = 3f(n − 5) for all n 󰃍 9, so the inequality
imax(T ) 󰃍 f(n) follows immediately as a consequence, which finally completes the proof
of Theorem 4.

Theorem 4 also easily extends to forests, as the following corollary shows.

Corollary 22. For every twin-free forest F of order n 󰃍 2, we have imax(F ) 󰃍 f(n− 1).
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Proof. We use induction on n. For n 󰃑 4, the inequality is easy to check, so let us consider
n 󰃍 5. Suppose that F is disconnected and has a connected component T of order m
with n − 1 > m 󰃍 2. Taking the smallest such component, we can assume that m 󰃑 n

2

and thus n−m 󰃍
󰀉
n
2

󰀊
󰃍 3. By Theorem 4 and the induction hypothesis, we have

imax(F ) = imax(T ) · imax(F − T ) 󰃍 f(m) · f(n−m− 1) 󰃍 f(n− 1),

where the final inequality follows from part (a) of Lemma 19. Note here that m ∕= 3,
since there are no twin-free trees of order 3. The only remaining possibilities are that F
is connected (i.e., a tree), or that F consists of a tree and one isolated vertex. In either
case, the conclusion follows from Theorem 4.

4.1 The extremal trees

The extremal trees can be constructed iteratively by tracking the cases of equality in the
proof. A complete characterization is provided in [19]. Here we add a small correction for
n = 8: there are three extremal trees (rather than two as claimed in [19]), see Figure 7.
Due to the different constructions, it is not too surprising that the number of extremal
trees is not monotone as a function of n. The number of extremal trees for 4 󰃑 n 󰃑 19 is
summarized in Table 2.

n # Extremal trees
{4, 5, 7, 9} 1
{6, 14} 2

{8, 10, 11, 12} 3
13 11

{15, 16} 12
17 10
18 60
19 5

Table 2: Number of extremal trees (i.e., trees satisfying imax(T ) = f(n)) of order n.

5 Further thoughts

Füredi [6, Conjecture 4.3] asked about the maximum of imax for other graph classes.
This was done e.g. for triangle-free graphs in [3, 9], connected unicyclic graphs [13] and
graphs with bounded degrees [14]. Let max imax(G) denote the maximum number of
maximal independent sets in a graph class G. This maximum grows exponentially in all
cases mentioned, and limn→∞(max imax(G))1/n equals

√
2 and 3

√
3 for trees and graphs

respectively.
In this paper, we proved that the minimum number of imax for twin-free graphs, bipartite
graphs and trees is logarithmic, linear and exponential, respectively. Due to this big
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Figure 7: The three twin-free trees for n = 8 satisfying imax(T ) = 8.

difference in behaviour of the minimum of imax, it may even be considered more interesting
to study min imax(G) for some other graph classes G (restricted to twin-free graphs), since
even the behaviour in terms of the order may be unclear.

Question 23. What is the behaviour of min imax(G) for twin-free graphs in a graph class
G?

One plausible interesting direction can be to wonder what happens for k-partite graphs
as n → ∞. For bipartite graphs, the bound was linear, while the extremal construction in
Theorem 2 satisfies χ(G) ∼ log2(n). Similarly, one can wonder about graphs with bounded
clique number, with Conjecture 15 as a particular case.
Let ν(G) be the size of a maximum induced matching in G. Since every independent
set can be extended to a maximal independent set and a set containing one end of each
edge in an induced matching is an independent set, we conclude that imax(G) 󰃍 2ν(G).
Note that ν(G) 󰃍 Cn

∆2 (see [10]) grows linearly in n for graphs with fixed maximum degree
independent of n. For such sparse graph classes (bounded maximum degree independent
of n), min imax(G) is exponential in terms of n. Kahn and Park [11] proved that for
hypercubes Qn of order N = 2n, we have limn→∞ imax(Qn)

1/N = 21/4, while also ν(Qn) =
N
4
for every n 󰃍 2: in other words, imax(Qn) is of the form 2(1+o(1))ν(G). Note here that

the hypercube Qn is a twin-free graph if n 󰃍 3. For the twin-free trees in Figure 4, we
note that limn→∞ imax(T )

1/n = 31/5 while ν(G) = n
5
+ 1 (when 5 | n), so here 2ν(G)/n

is a lower bound for the limit that is not sharp. Studying limn→∞(min imax(G))1/n for
twin-free graphs in a graph class G might be interesting, especially if there is a natural
graph class for which the constant is larger than 31/5. One natural graph class to consider
are r-regular graphs for fixed r. It is known that imax(Cn) = P (n), where P (n) denotes
the nth Perrin number, which is defined by P (0) = 3, P (1) = 0, P (2) = 2 and the relation
P (n) = P (n− 2) + P (n− 3) for n 󰃍 3. For n 󰃍 3, the quantity P (n)1/n is minimized by
n = 4, and the second smallest value is attained for n = 6. Since C4 is not twin-free, for
the class G of twin-free 2-regular graphs, limn→∞(min imax(G))1/n = imax(C6)

1/6 = 51/6.
On the other side of the spectrum, when G is r-regular with r = n−1− t, i.e. G has small
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degree, the question may be interesting as well. Such graphs satisfy n
t+1

󰃑 imax 󰃑 2tn.

For t = n1/s and G being the Cartesian product of s Kts, we have for example that
imax(G) ∼ sn1−1/s.
There may well be quite a number of other problems where a parameter A can be un-
bounded in terms of another parameter B if A can increase when adding twins while B
does not. This was for example also the obstruction in the related problem for ν(G),
see [12].
One further direction is the relation between the vertex covering number τ(G) and imax(G).
Hoang and Trung [8] proved that imax(G) 󰃑 2τ(G) for every graph G. In the other direction
there is no such bound, since the complete bipartite graph Kn,n satisfies imax(G) = 2 and
τ(G) = n. When restricting to twin-free graphs, we know that τ(G) 󰃑 n − 1 < 2imax(G)

by Proposition 7 and thus τ(G) is bounded by a function of imax(G). So the following
question would tell us about the essential relationship between the two parameters.

Question 24. What is the maximum possible vertex covering number τ of a twin-free
graph with imax(G) = k?

Plausible candidates are τ(G) = O(imax(G)2), and for given order n, τ(G) − imax(G) 󰃑󰀇
n
2

󰀈
− 3. The first bound is attained by the complement of the Cartesian product Kr□Kr

(one can connect every Kr with an additional vertex), and the second one by the com-
plement of a cycle of K3s (i.e., a cycle Cr for which every edge is connected to a new
vertex).
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