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Abstract

In this note, we show that the difference between the chromatic and the cochro-
matic number of the random graph Gn,1/2 is not whp bounded by n1/2−o(1), ad-
dressing a question of Erdős and Gimbel.

Mathematics Subject Classifications: 05C15, 05C80

1 Introduction

The cochromatic number ζ(G) of a graph G is the minimum number of colours needed
for a vertex colouring where every colour class is either an independent set or a clique.
If χ(G) denotes the usual chromatic number, then clearly ζ(G) 6 χ(G). Using classical
methods, it is not hard to show that for the random graph Gn,1/2, with high probability1

we have ζ(Gn,1/2) ∼ χ(Gn,1/2) ∼ n
2 log2 n

.

Erdős and Gimbel [4] (see also [5]) asked the following question: For G ∼ Gn,1/2, does
the difference χ(G)− ζ(G) tend to infinity as n→∞? In other words, is there a function
f(n)→∞ such that, with high probability,

χ(G)− ζ(G) > f(n)?

At a conference on random graphs in Poznań2, Erdős offered $100 for the solution if the
answer was ‘yes’, and $1000 if the answer was ‘no’ (although later said to Gimbel that
perhaps $1000 was too much) [5]. The question is listed as Problem #625 on Thomas
Bloom’s Erdős Problems website [1].

In this note, we show that it is not the case that the difference χ(G) − ζ(G) is whp
bounded, and that in fact, it is not whp bounded by n1/2−o(1). It turns out that any

aMatematiska institutionen, Uppsala universitet, Box 480, 751 06 Uppsala, Sweden
(annika.heckel@math.uu.se).

1As usual, we say that a sequence (En)n>0 of events holds with high probability (whp) if P(En)→ 1 as
n→∞.

2most likely in 1991, or possibly in 1989, based on Erdős’s and Gimbel’s participation records
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function g(n) so that whp χ(G)− ζ(G) 6 g(n) cannot be smaller than the concentration
interval length of the chromatic number χ(Gn,1/2), for which corresponding lower bounds
were recently obtained [6, 8, 7]. Formally we prove the following statement.

Theorem 1. Let G ∼ Gn,1/2. There is a constant c > 0 so that for any sequence of
integers g(n) such that

P
(
χ(G)− ζ(G) 6 g(n)

)
> 0.999, (1)

there is a sequence of integers n∗ such that

g(n∗) > c

√
n∗ log log n∗

log3 n∗
.

The proof relies on a comparison of the chromatic and co-chromatic numbers of G ∼
Gn,1/2 and of the complement graph Ḡ ∼ Gn,1/2, which is obtained from G by exchanging
all the edges and non-edges. Clearly ζ(G) = ζ(Ḡ), so for a function g(n) as above, χ(G)
and χ(Ḡ) are likely to be at most g(n) apart from each other. Of course χ(G) and χ(Ḡ)
have the same distribution χ(Gn,1/2). Informally speaking, to see why g(n) has to be at
least the concentration interval length of this distribution, suppose that we have some
lower bound on the concentration interval length; for example, a statement saying that
any interval containing χ(Gn,1/2) with probability at least 0.9 has length at least `(n).
Then if X1, X2 ∼ χ(Gn,1/2) were independent samples of this distribution, they would
be reasonably likely to be at least about `(n) apart from each other. Of course χ(G)
and χ(Ḡ) are not independent, but the first is an increasing and the other a decreasing
function of the edges of G ∼ Gn,1/2, and so with the help of Harris’s Lemma we can draw
the same conclusion. So we know that χ(G) and χ(Ḡ) are both likely to be at most g(n)
apart, but also reasonably likely to be at least `(n) apart and it follows that g(n) > `(n).

Independently from this note, Raphael Steiner recently also discovered the connection
between χ(G)− ζ(G) and the concentration interval length of χ(Gn,1/2). For his work on
this and two other questions of Erdős, Gimbel and Straight, see [10].

2 Proof of Theorem 1

Turning to the details, let us first state the non-concentration result for χ(Gn,1/2) that we
will use, which follows by combining Theorem 8 from [8] and Theorem 1.2 from [7].

Theorem 2 ([8, 7]). There is a constant c > 0 so that for any sequence of intervals [sn, tn]
such that P

(
χ(Gn,1/2) ∈ [sn, tn]) > 0.9, there is a sequence of integers n∗ such that

tn∗ − sn∗ > c

√
n∗ log log n∗

log3 n∗
.

Theorem 1 follows directly from Theorem 2 and the following proposition.

Proposition 3. Let g(n) be a sequence of integers which satisfy (1), then there is a
sequence of intervals [sn, tn] with tn − sn = g(n) so that

P
(
χ(Gn,1/2) ∈ [sn, tn]) > 0.9.
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Proof of Proposition 3. Let G ∼ Gn,1/2 and let Ḡ be the complement graph of G (which
contains exactly the edges which are missing in G). Then Ḡ ∼ Gn,1/2 and ζ(Ḡ) = ζ(G),
so with probability at least 0.999,

χ(Ḡ) 6 ζ(Ḡ) + g(n) = ζ(G) + g(n) 6 χ(G) + g(n). (2)

Now let sn be the smallest integer k such that P(χ(G) 6 k) > 0.05, and define the
following events:

D = {χ(G) 6 sn},
U = {χ(Ḡ) 6 sn + g(n)}.

Then D is a down-set and U is an up-set in the edges of G ∼ Gn,1/2. By the definition of
sn,

P(D) > 0.05.

Furthermore, if D holds, then either (2) does not hold (which has probability at most
0.001), or (2) holds and implies U , so

P(U ∩ D) > P(D)−P
(
χ(Ḡ) > χ(G) + g(n)

)
> P(D)− 0.001.

By Harris’s Lemma (see for example §2, Lemma 3 in [3]),

P(U) > P(U ∩ D)/P(D) > 1− 0.001

P(D)
> 1− 0.001

0.05
= 0.98.

But since G and Ḡ have the same distribution, and by the definition of sn, this implies

P
(
sn 6 χ(G) 6 sn + g(n)

)
= 1−P

(
χ(G) 6 sn − 1

)
−P

(
χ(G) > sn + g(n)

)
> 1− 0.05− 0.02 > 0.9.

The claim follows.

3 Discussion

So how about Erdős and Gimbel’s original question: does χ(G) − ζ(G) tend to infinity
whp for G ∼ Gn,1/2? Theorem 1 suggests that the answer is ‘yes’, but of course does not
imply this.

If we had a result like Theorem 1, but with the conclusion that g(n) > h(n) for every
n and some h(n)�

√
n/ log n, this would imply that the answer to the original question

is ‘yes’: by an argument of Alon [2, 9], both χ(Gn,1/2) and ζ(Gn,1/2) are contained in a
sequence of intervals of length about

√
n/ log n, respectively, and consequently so is their

difference.3 Let [sn, tn] be such a sequence of intervals, then taking g(n) = tn would give

3Formally the statement is: For G ∼ Gn,1/2 and any function ω(n)→∞, there is a sequence of intervals
of length at most ω(n)

√
n/ log n that contains χ(G)− ζ(G) whp.
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that tn > h(n) �
√
n/ log n, which implies that sn �

√
n/ log n as well4, and so whp

χ(G)− ζ(G) > sn �
√
n/ log n.

It is reasonable to expect that the chromatic number χ(Gn,1/2) is close to its first
moment threshold, that is, the smallest k such that the expected number of k-colourings
is at least 1.5 Using the same heuristic for the cochromatic number ζ(Gn,1/2), the first
moment threshold there should be of order n/ log3 n smaller than that of the chromatic
number: for any k ∼ n/(2 log2 n), the expected number of k-cocolourings is multiplied by
a factor 2k = exp(Θ(n/ log n)) when compared to the expected number of k-colourings
(since we may choose for each colour class whether it is a clique or an independent set);
and decreasing the number of colours by 1 should multiply the expectation by a factor
exp(−Θ(log2 n)) (like it does for the chromatic number6). We therefore make the following
conjecture.

Conjecture 4. For G ∼ Gn,1/2, whp,

χ(G)− ζ(G) = Θ(n/ log3 n).
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