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Abstract

Let λ be a partition of a positive integer n. The genomic Schur function Uλ was
introduced by Pechenik–Yong in the context of the K-theory of Grassmannians.
Recently, Pechenik provided a positive combinatorial formula for the fundamental
quasisymmetric expansion of Uλ in terms of increasing gapless tableaux. In this
paper, for each 1 6 m 6 n, we construct an Hm(0)-module Gλ;m whose image under
the quasisymmetric characteristic is the mth degree homogeneous component of Uλ
by defining an Hm(0)-action on increasing gapless tableaux. We provide a method to
assign a permutation to each increasing gapless tableau, and use this assignment to
decompose Gλ;m into a direct sum of weak Bruhat interval modules. Furthermore,
we determine the projective cover of each summand of the direct sum decomposition.

Mathematics Subject Classifications: 20C08, 05E10, 05E05, 14M15

1 Introduction

Let X = Grk(Cn) be the Grassmannian of k-dimensional subspaces of Cn. The Schur
functions play a central role to understand the structure of the cohomology ring H∗(X,Z).
For example, the structure constants of Schur functions, called the Littlewood-Richardson
coefficients, are equal to that of Schubert classes [Xλ] (λ ∈ Reck,n−k) which form a Z-basis
of H∗(X,Z). Here, Reck,n−k is the set of partitions whose Young diagrams are contained
in a k × (n − k) rectangle and Xλ is the Schubert variety associated to λ. For more
information, see [15, Part III].

Since the early 2000s, several combinatorial interpretations for the K-theoretic
Littlewood-Richardson rule have been introduced. We briefly introduce the relevant re-
sults. Let K(X) be the Grothendieck ring of algebraic vector bundles over X. It is well
known that the classes of structure sheaves [OXλ ] (λ ∈ Reck,n−k) of Xλ form a Z-basis of
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K(X) (for instance, see [6, Remark 3.4.2]). For λ, µ, ν ∈ Reck,n−k, let cνλ,µ be the integer
defined by

[OXλ ] · [OXµ ] =
∑

ν∈Reck,n−k

cνλ,µ[OXν ].

The coefficient cνλ,µ is called a K-theoretic Schubert structure constant, or sometimes a
K-theoretic Littlewood-Richardson coefficient. In [7], Buch provided the first combina-
torial description for (−1)|ν|−|λ|−|µ|cνλ,µ by using set valued tableaux. Afterwards, several
combinatorial models for the K-theoretic Schubert structure constants have been con-
structed. For instance, see [20, 27, 33, 35]. In particular, Pechenik and Yong [27] gave a
combinatorial description for (−1)|ν|−|λ|−|µ|cνλ,µ by using genomic tableaux.

Genomic tableaux were first introduced by Pechenik and Yong [25] in the context of
the torus-equivariant K-theoretic Schubert calculus. These were defined as edge-labeled
tableaux with certain conditions and used as the key object in the first proof of a con-
jecture of Thomas and Yong [34] on the torus-equivariant K-theoretic Schubert structure
coefficients Kν

λ,µ, where λ, µ, ν ∈ Reck,n−k. Soon after, in [26], genomic tableaux were also
used to prove a mild modification of a conjecture of Knutson and Vakil [12] on Kν

λ,µ. In
a sequel paper [27], Pechenik and Yong studied combinatorial theory of non-edge-labeled
genomic tableaux, providing a combinatorial description for (−1)|ν|−|λ|−|µ|cνλ,µ in terms of
genomic tableaux as mentioned above. Therein, they defined a symmetric function Uλ,
called the genomic Schur function, as a generating function for genomic tableaux of shape
λ for all partitions λ. Further, they proved that {Uλ | λ is a partition} is a basis for the
ring of symmetric functions and pointed out that genomic Schur functions are not Schur-
positive in general. As an alternative positivity, Pechenik [24] showed that genomic Schur
functions are fundamental positive. Specifically, for any partition λ,

Uλ =
∑

T∈IGLT(λ)

Fcomp(T ), (1.1)

where IGLT(λ) is the set of increasing gapless tableaux of shape λ, comp(T ) is the compo-
sition associated to T , and Fcomp(T ) is the fundamental quasisymmetric function associated
to comp(T ). For the precise definitions, see Section 2.6. In addition, Pechenik left remarks
on interpretations of (1.1) in terms of representation theory of the 0-Hecke algebras. Before
discussing these remarks, we review the representation theory of 0-Hecke algebras.

The 0-Hecke algebra Hn(0) is the C-algebra obtained from the Hecke algebra Hn(q)
by specializing q to 0. In [22], Norton classified all irreducible Hn(0)-modules up to iso-
morphism. These modules correspond in a natural way to compositions α of n. We denote
by Fα the irreducible module corresponding to α. Duchamp, Krob, Leclerc, and Thibon
[14] revealed a deep connection between the representation theory of the 0-Hecke alge-
bras and the ring QSym of quasisymmetric functions by introducing the quasisymmetric
characteristic, which is a ring isomorphism

ch :
⊕
n>0

G0(Hn(0)-mod)→ QSym, [Fα] 7→ Fα.
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Here,Hn(0)-mod is the category of the finite dimensionalHn(0)-modules, G0(Hn(0)-mod)
is the Grothendieck group of Hn(0)-mod, and

⊕
n>0 G0(Hn(0)-mod) is considered as the

ring equipped with the induction product. In view of this correspondence, there have been
considerable attempts to provide a representation theoretic interpretation of noteworthy
quasisymmetric functions by constructing appropriate 0-Hecke modules. For instance,
Berg et al. [5] provided such interpretation for the dual immaculate functions, Tewari
and van Willigenburg [31] for the quasisymmetric Schur functions, and Searles [28] for
the extended Schur functions. Readers interested in relevant results may also refer to
[3, 8, 9, 10, 18, 32].

Very recently, Jung, Kim, Lee, and Oh [18] introduced the weak Bruhat interval mod-
ule B(σ, ρ) associated to [σ, ρ]L to provide a unified method to study the Hn(0)-modules
introduced in [3, 5, 10, 28, 31, 32]. Here, σ and ρ are arbitrary permutations in the sym-
metric group Sn and [σ, ρ]L is the left weak Bruhat interval from σ to ρ. Indeed, they
proved that all indecomposable direct summands of these Hn(0)-modules are contained
in the family of weak Bruhat interval modules up to isomorphism. They also investi-
gated several structural properties of weak Bruhat interval modules such as embeddings
into the regular representation of Hn(0), the induction product, restrictions, and (anti-
)involution twists of weak Bruhat interval modules. In addition, they implicitly remarked
that

⊕
n>0 G0(Bn) is isomorphic to QSym, where Bn is the full subcategory of Hn(0)-mod

whose objects are direct sums of weak Bruhat interval modules up to isomorphism, G0(Bn)
is the Grothendieck group of Bn, and

⊕
n>0 G0(Bn) is considered as the ring equipped

with the induction product. For more information, see [18]. Another uniform way to study
various 0-Hecke modules was also proposed in [29] by introducing diagram modules.

The aforementioned remarks of Pechenik are concerned with the problem of finding
an appropriate 0-Hecke module whose image, under the quasisymmetric characteristic,
is a homogeneous component of the genomic Schur function Uλ. It was shown that the
fifth degree homogeneous component of U(3,3) cannot be the image of quasisymmetric
characteristic of any projective H5(0)-module. The problem for finding indecomposable 0-
Hecke modules for a homogeneous component of Uλ was also considered. However, there
was no successful answer for this problem. We show here that for some partition λ of
n and 1 6 m 6 n, it is impossible to construct an indecomposable Hm(0)-module M
such that ch([M ]) is the mth degree homogeneous component Uλ;m of Uλ. Precisely, by
considering the Ext-group between irreducible H3(0)-modules, we show that there does
not exist any indecomposable H3(0)-module M such that ch([M ]) is the third degree
homogeneous component of U(2,1,1) (Remark 3.7).

The purpose of this paper is to provide a nice representation theoretic interpretation
of genomic Schur functions. To achieve our purpose, we construct an Hm(0)-module Gλ;m

by defining an Hm(0)-action on the C-span of the set IGLT(λ)m of increasing gapless
tableaux of shape λ with maximum entry m. The Hm(0)-module Gλ;m is well suited for
our purpose in that it satisfies the following properties:

• The image of Gλ;m under the quasisymmetric characteristic is Uλ;m.

• Gλ;m can be decomposed into a direct sum of weak Bruhat interval modules GE.
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• The projective cover of GE is also a weak Bruhat interval module.

While obtaining the decomposition of Gλ;m, we introduce a method of assigning a per-
mutation to each increasing gapless tableau. What is fascinating is that this assignment
allows us to study increasing gapless tableaux using the various properties of permuta-
tions. For more information, see Section 7(1). In addition, we leave a conjecture on a
representation theoretic interpretation of Pechenik’s combinatorial formula for the Schur
expansion of certain Uλ (Conjecture 7.1).

From now on, we describe our results in more detail. For convenience, we fix a partition
λ of n and a positive integer m less than or equal to n unless otherwise stated.

In Section 3, we construct an Hm(0)-module Gλ;m by defining an Hm(0)-action on the
C-span of IGLT(λ)m (Theorem 3.2). We then provide a direct sum decomposition of Gλ;m

into Hm(0)-submodules which will turn out to be weak Bruhat interval modules. To do
this, we define an equivalence relation ∼λ;m on IGLT(λ)m (Definition 3.9). Let Eλ;m be the
set of equivalence classes of IGLT(λ)m with respect to ∼λ;m. We prove that the C-span
of each equivalence class E ∈ Eλ;m is closed under the Hm(0)-action (Theorem 3.11), and
we thus obtain the direct sum decomposition

Gλ;m =
⊕

E∈Eλ;m

GE,

where GE is the Hm(0)-submodule of Gλ;m whose underlying space is the C-span of E.
Hereafter, we fix an equivalence class E ∈ Eλ;m.

In Section 4, we prove the existence and uniqueness of the source tableau and those of
the sink tableau in E, which play an important role in verifying that GE is isomorphic to
a weak Bruhat interval module. For the precise definitions of source and sink tableaux, see
Definition 4.1. Let us briefly describe our strategy to prove the existence and uniqueness
of source tableaux. We first give a characterization for source tableaux (Lemma 4.2).
Considering this characterization, we design an algorithm to construct a tableau source(T ),
where T is an arbitrary tableau in E (Algorithm 4.8). Then, we see that source(T ) is a
source tableau with source(T ) ∼λ;m T , which proves the existence of source tableaux in
E. Next, as a key lemma to prove the uniqueness of source tableaux in E, we verify
that source(T ) = T for any source tableau T ∈ E (Lemma 4.10). Finally, combining this
lemma with an observation that source(T1) = source(T2) for any T1, T2 ∈ E, we obtain
our desired result (Theorem 4.11). In a similar manner, we also prove the existence and
uniqueness of sink tableaux in E. For details, see Section 4.2. We denote by TE and T ′E
the unique source and sink tableaux, respectively.

In Section 5, we prove that GE is isomorphic to a weak Bruhat interval module of
Hm(0). To begin with, we introduce a relation �E on E defined by

T1 �E T2 if πσ · T1 = T2 for some σ ∈ Sm.

Then, to each T ∈ E we assign a permutation read(T ) ∈ Sm, called the standard-
ized reading word. With these preparations, we prove that TE �E T �E T ′E for all
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T ∈ E and (E,�E) forms a poset which is isomorphic to the left weak Bruhat inter-
val ([read(TE), read(T ′E)]L,�L) (Theorem 5.5). Specifically, we prove that the map

f : (E,�E)→ ([read(TE), read(T ′E)]L,�L), T 7→ read(T )

is a poset isomorphism. The structure of the posets (E,�E) for E ∈ Eλ;m enables us to
show that

ch([Gλ;m]) = Uλ;m for any λ ` m and 1 6 m 6 n

in Proposition 5.6. Since E is a basis for GE and [read(TE), read(T ′E)]L is a basis for
B(read(TE), read(T ′E)), it is natural to ask if the map f : (E,�E)→ [read(TE), read(T ′E)]L
can be lifted to an Hm(0)-module isomorphism

f̃ : GE → B(read(TE), read(T ′E)), T 7→ read(T ) for T ∈ E.

We give an affirmative answer for this question in Theorem 5.8 by proving that f̃ : GE →
B(read(TE), read(T ′E)) is an Hm(0)-module isomorphism.

Section 6 is devoted to finding a projective cover of GE. For a generalized composition
α of m, let Pα be the projective module whose underlying space is the C-span of the
set SRT(α) of standard ribbon tableaux of shape α. For the precise definition of Pα, see
Section 2.4. It is well known that a surjective Hm(0)-module homomorphism ψ : Pα →
GE is a projective cover of GE if and only if ker(ψ) ⊆ rad(Pα) (for instance, see [2,
Proposition 3.6]). We provide a sufficient condition for T ∈ SRT(α) to be contained
in rad(Pα) (Lemma 6.2). Then, by considering the specific generalized composition αE

defined in (6.4), we construct a surjective Hm(0)-module homomorphism η : PαE → GE

(Lemma 6.4). Finally, we prove that the set SRT(αE) ∩ ker(η) is a basis for ker(η) and
that every element in this basis satisfies the above sufficient condition. Hence, we obtain
ker(η) ⊆ rad(PαE) as desired (Theorem 6.5).

In the last section, we discuss further avenues to pursue.

2 Preliminaries

Given any integers m and n, define

[m,n] :=

®
{k ∈ Z | m 6 k 6 n} if m 6 n,

∅ otherwise.

Throughout this section, we assume that n is a nonnegative integer.

2.1 Compositions

A composition α of n, denoted by α |= n, is a finite ordered list of positive integers
(α1, α2, . . . , αk) satisfying

∑k
i=1 αi = n. We call k =: `(α) the length of α and n =:

|α| the size of α. For convenience we define the empty composition ∅ to be the unique
composition of size and length 0. A generalized composition α of n is a formal expression
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α(1) ?α(2) ? · · · ?α(k), where α(i) |= ni for positive integers ni’s with n1 +n2 + · · ·+nk = n.
If λ = (λ1, λ2, . . . , λ`(α)) |= n satisfies that λ1 > λ2 > · · · > λ`(α), then we say that λ is a
partition of n and denote it by λ ` n.

Given α = (α1, α2, . . . , α`(α)) |= n and I = {i1 < i2 < · · · < il} ⊂ [1, n− 1], let

set(α) := {α1, α1 + α2, . . . , α1 + α2 + · · ·+ α`(α)−1},
comp(I) := (i1, i2 − i1, . . . , n− il).

The set of compositions of n is in bijection with the set of subsets of [1, n− 1] under the
correspondence α 7→ set(α) (or I 7→ comp(I)). Let αc be the unique composition satisfying
that set(αc) = [1, n− 1] \ set(α). For a generalized composition α = α(1) ? α(2) ? · · · ? α(k),
let αc := (α(1))c ? (α(2))c ? · · · ? (α(k))c.

For compositions α = (α1, α2, . . . , α`(α)) and β = (β1, β2, . . . , β`(β)), let α · β be the
concatenation and α � β the near concatenation of α and β. In other words, α · β =
(α1, α2, . . . , α`(α), β1, β2, . . . , β`(β)) and α� β = (α1, α2, . . . , αk−1, α`(α) + β1, β2, . . . , β`(β)).
For a generalized composition α = α(1) ? α(2) ? · · · ? α(k), we define

[α] := {α(1) � α(2) � · · · � α(k) | � = · or �}.

We also define

α• := α(1) · α(2) · · · · · α(k), α� := α(1) � α(2) � · · · � α(k), (2.1)

and

α · β := α(1) ? α(2) ? · · · ? (α(k) · β). (2.2)

2.2 Diagrams

For α = (α1, α2, . . . , α`(α)) |= n, we define the ribbon diagram rd(α) of α by the connected
skew diagram without 2 × 2 boxes, such that the ith column from the left has αi boxes.
For a generalized composition α = α(1) ? α(2) ? · · · ? α(k) of n, we define the generalized
ribbon diagram rd(α) of α to be the skew diagram whose connected components are
rd(α(1)), rd(α(2)), . . . , rd(α(k)) such that rd(α(i+1)) is strictly to the northeast of rd(α(i))
for i = 1, 2, . . . , k − 1. For example, if α = (2, 1) ? (1, 1), then

rd(α) = .

A filling of rd(α) is a function T : rd(α)→ Z>0.
For λ = (λ1, λ2, . . . , λ`(λ)) ` n, we define the Young diagram yd(λ) of λ by a left-

justified array of n boxes where the ith row from the top has λi boxes for 1 6 i 6 `(λ).
We say that a box in yd(λ) is in the ith row if it is in the ith row from the top and in the
jth column if it is in the jth column from the left. We denote by (i, j) the box in the ith
row and jth column. For any box (i, j), let row((i, j)) = i and col((i, j)) = j. Denoting
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(i, j) ∈ yd(λ) means that 1 6 i 6 `(λ) and 1 6 j 6 λi. We also say that a lattice point on
yd(λ) is in the ith row if it is in the (i + 1)st horizontal line from the top and in the jth
column if it is in the (j + 1)st vertical line from the left. We denote by (i, j) the lattice
point in the ith row and jth column. For example, if λ = (3, 2, 2), then

yd(λ) =

(1, 3)

•
(3, 0)

,

the box (1, 3) is the box filled with red, and the lattice point (3, 0) is the point marked
by the blue dot. A filling of yd(λ) is a function T : yd(λ)→ Z>0. Throughout this paper,
we assume that

T ((i, j)) =∞ if (i, j) ∈ (Z>0 × Z>0) \ yd(λ) and

T ((i, j)) = −∞ if (i, j) ∈ (Z× Z) \ (Z>0 × Z>0).

For any filling T of yd(λ), let

max(T ) := max{T ((i, j)) | (i, j) ∈ yd(λ)}.

2.3 The 0-Hecke algebra and the quasisymmetric characteristic

To begin with, we recall that the symmetric group Sn is generated by simple transpositions
si := (i, i+ 1) with 1 6 i 6 n− 1. An expression for σ ∈ Sn of the form si1si2 · · · sip that
uses the minimal number of simple transpositions is called a reduced expression for σ.
The number of simple transpositions in any reduced expression for σ, denoted by `(σ), is
called the length of σ. Let w0 be the longest element in Sn, and w0(α) the longest element
in the parabolic subgroup of Sn generated by {si | i ∈ set(α)} for α |= n.

The 0-Hecke algebra Hn(0) is the C-algebra generated by π1, π2, . . . , πn−1 subject to
the following relations:

π2
i = πi for 1 6 i 6 n− 1,

πiπi+1πi = πi+1πiπi+1 for 1 6 i 6 n− 2,

πiπj = πjπi if |i− j| > 2.

For each 1 6 i 6 n− 1, let πi := πi − 1.
Consider any reduced expression si1si2 · · · sip for a permutation σ ∈ Sn. We define the

elements πσ and πσ of Hn(0) by

πσ := πi1πi2 · · · πip and πσ := πi1πi2 · · · πip .

It is well known that these elements are independent of the choice of reduced expressions,
and both {πσ | σ ∈ Sn} and {πσ | σ ∈ Sn} are bases for Hn(0).
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In [22], Norton classified all irreducible modules and projective indecomposable mod-
ules of the 0-Hecke algebras. It was shown that there are 2n−1 distinct irreducible Hn(0)-
modules and 2n−1 distinct projective indecomposable Hn(0)-modules, which are naturally
parametrized by compositions of n. For each α |= n, the irreducible module Fα correspond-
ing to α is the 1-dimensional Hn(0)-module spanned by a vector vα whose Hn(0)-action
is given by

πi · vα =

®
0 i ∈ set(α),

vα i /∈ set(α),
(1 6 i 6 n− 1).

Also, the projective indecomposable module corresponding to α is the submodule Pα :=
Hn(0)πw0(αc)πw0(α) of the regular representation of Hn(0). It is known that Pα/rad Pα ∼=
Fα for all α |= n, where rad Pα is the radical of Pα. For instance, see [17, 22].

Let R(Hn(0)) denote the Z-span of the isomorphism classes of finite dimensional
representations of Hn(0). The isomorphism class corresponding to an Hn(0)-module M
will be denoted by [M ]. The Grothendieck group G0(Hn(0)) is the quotient of R(Hn(0))
modulo the relations [M ] = [M ′] + [M ′′] whenever there exists a short exact sequence
0→M ′ →M →M ′′ → 0. The set {[Fα] | α |= n} is a free Z-basis for G0(Hn(0)). Let

G :=
⊕
n>0

G0(Hn(0)).

be the ring equipped with the induction product.
Let us review the connection between G and quasisymmetric functions. Quasisymmet-

ric functions are power series of bounded degree in variables x1, x2, x3, . . . with coefficients
in Z, which are shift invariant in the following sense: The coefficient of the monomial
xα1
1 x

α2
2 · · ·x

αk
k is equal to the coefficient of the monomial xα1

i1
xα2
i2
· · ·xαkik for any strictly

increasing sequence of positive integers i1 < i2 < · · · < ik indexing the variables and any
positive integer sequence (α1, α2, . . . , αk) of exponents.

Given a composition α, the fundamental quasisymmetric function Fα is defined by
F∅ = 1 and

Fα =
∑

16i16i26···6ik
ij<ij+1 if j∈set(α)

xi1xi2 · · ·xik .

It is well known that {Fα | α is a composition} is a basis for the ring QSym of quasisym-
metric functions. For instance, see [16] and [30, Proposition 7.19.1]. In [14], Duchamp,
Krob, Leclerc, and Thibon showed that

ch : G → QSym, [Fα] 7→ Fα,

called quasisymmetric characteristic, is a ring isomorphism.

2.4 Projective modules of the 0-Hecke algebra

In [17], Huang provided a combinatorial description of projective indecomposable modules
and their induction products by using standard ribbon tableaux of generalized composition
shape. Here, we introduce the description briefly.
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Definition 2.1. For a generalized composition α of n, a standard ribbon tableau (SRT)
of shape α is a filling of rd(α) with {1, 2, . . . , n} such that the entries are all distinct, the
entries in each row are increasing from left to right, and the entries in each column are
increasing from top to bottom.

We denote by SRT(α) the set of all SRTs of shape α. Define an Hn(0)-action on the
C-span of SRT(α) by

πi ·T =


T if i appears strictly above i+ 1 in T ,

0 if i and i+ 1 are in the same row of T ,

si ·T if i appears strictly below i+ 1 in T

(2.3)

for 1 6 i 6 n− 1 and T ∈ SRT(α). Here, si · T is obtained from T by swapping i and
i+ 1. Let Pα be the resulting module.

Theorem 2.2. ([17, Theorem 3.3]) The following hold.

(1) For any α |= n, Pα
∼= Pα as Hn(0)-modules.

(2) Let α = α(1) ? α(2) ? · · · ? α(k) be a generalized composition of n such that α(i) |= ni
for each 1 6 i 6 k. Then,

Pα
∼= (Pα(1) ⊗Pα(2) ⊗ · · · ⊗Pα(k)) ↑Hn(0)Hn1 (0)⊗Hn2 (0)⊗···⊗Hnk (0)

∼=
⊕
β∈[α]

Pβ

as Hn(0)-modules.

For a generalized composition α, let Tα ∈ SRT(α) be the standard ribbon tableau
obtained by filling rd(α) with entries 1, 2, . . . , n from top to bottom starting from the
left. Then Pα is cyclically generated by Tα.

2.5 Weak Bruhat interval modules of the 0-Hecke algebra

Given σ ∈ Sn and i ∈ [1, n−1], i is called a left descent of σ if `(siσ) < `(σ). Let DesL(σ)
be the set of all left descents of σ. The left weak Bruhat order �L on Sn is the partial
order on Sn whose covering relation �cL is defined as follows: σ �cL siσ if and only if
i /∈ DesL(σ). Given σ, ρ ∈ Sn, the closed interval {γ ∈ Sn | σ �L γ �L ρ} is called the
left weak Bruhat interval from σ to ρ and denoted by [σ, ρ]L.

Definition 2.3. ([18]) Let σ, ρ ∈ Sn. The weak Bruhat interval module associated to
[σ, ρ]L, denoted by B(σ, ρ), is the Hn(0)-module with the underlying space C[σ, ρ]L and
with the Hn(0)-action defined by

πi · γ :=


γ if i ∈ DesL(γ),

0 if i /∈ DesL(γ) and siγ /∈ [σ, ρ]L,

siγ if i /∈ DesL(γ) and siγ ∈ [σ, ρ]L.
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In [18], it was shown that the family of weak Bruhat interval modules contains various
Hn(0)-modules up to isomorphism. In particular, the family contains all projective inde-
composable modules and their induction products. Precisely, given α |= n and generalized
composition α = α(1) ? α(2) ? · · · ? α(k) of n,

Pα
∼= B(w0(α

c), w0w0(α)) and Pα
∼= B(w0(α

c
•), w0w0(α�)).

For the definitions of α• and α�, see (2.1). For more information on weak Bruhat interval
modules, see [18].

Remark 2.4. Duchamp, Hivert, and Thibon [13] constructed an Hn(0)-module arising
from a poset on [n]. One may ask if there is a relationship between the Hn(0)-modules
arising from posets and weak Bruhat interval modules. Very recently, Choi, Kim, and
Oh [11] addressed this question, proving that every weak Bruhat interval module can be
recovered as an Hn(0)-module arising from a regular poset.

For later use, we state the following useful property that can be easily proved: For any
σ, ρ ∈ Sn and ρ′ ∈ [σ, ρ]L, the linear map

pr : B(σ, ρ)→ B(σ, ρ′), γ 7→
®
γ if γ ∈ [σ, ρ′]L,

0 otherwise
(2.4)

is a surjective Hn(0)-module homomorphism.

2.6 Genomic Schur functions

In [27], Pechenik and Yong introduced the genomic Schur function as a generating function
for genomic tableaux to develop the combinatorial theory of genomic tableaux. Recently,
Pechenik [24] provided another way to define genomic Schur functions by using increasing
gapless tableaux.

Definition 2.5. Given λ ` n, an increasing gapless tableau of shape λ is a filling of yd(λ)
such that

(1) the entries in each row strictly increase from left to right,

(2) the entries in each column strictly increase from top to bottom, and

(3) the set T−1(k) is nonempty for all 1 6 k 6 max(T ).

Let IGLT(λ) be the set of all increasing gapless tableaux of shape λ. Given T ∈
IGLT(λ) and i ∈ [1,max(T )], let Topi(T ) (resp. Boti(T )) be the unique box B ∈ T−1(i)
such that row(B) is minimal (resp. maximal) among row(B′)’s for B′ ∈ T−1(i). In other
words, Topi(T ) (resp. Boti(T )) is the highest (resp. lowest) box in T having entry i. Also,
let

(r
(i)
b (T ), c

(i)
b (T )) := Boti(T ) and (r

(i)
t (T ), c

(i)
t (T )) := Topi(T ). (2.5)
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If T is clear in the context, we simply write r
(i)
b , c

(i)
b , r

(i)
t , and c

(i)
t instead of r

(i)
b (T ), c

(i)
b (T ),

r
(i)
t (T ), and c

(i)
t (T ), respectively. We call i a descent of T if r

(i)
t < r

(i+1)
b , or equivalently,

there is some instance of i strictly above some instance of i + 1 in T . Denote by Des(T )
the set of all descents of T and set comp(T ) := comp(Des(T )). Given 1 6 m 6 n, we
define

IGLT(λ)m := {T ∈ IGLT(λ) | max(T ) = m}.

Definition 2.6. ([24, 27]) For λ ` n, the genomic Schur function Uλ is defined by

Uλ :=
∑

16m6n

Ñ ∑
T∈IGLT(λ)m

Fcomp(T )

é
.

For 1 6 m 6 n, let Uλ;m :=
∑

T∈IGLT(λ)m
Fcomp(T ). From the definition, it immediately

follows that Uλ;m is the mth degree homogeneous component of Uλ.

Example 2.7. Note that

IGLT((2, 2)) =

ß
1 2
2 3

, 1 2
3 4

, 1 3
2 4

™
.

One can see that

comp

Å
1 2
2 3

ã
= (1, 1, 1), comp

Å
1 2
3 4

ã
= (2, 2), comp

Å
1 3
2 4

ã
= (1, 2, 1).

Thus,

U(2,2);3 = F(1,1,1), U(2,2);4 = F(2,2) + F(1,2,1), and U(2,2) = F(1,1,1) + F(2,2) + F(1,2,1).

Hereafter, we assume that n is a positive integer, m is a positive integer less than or
equal to n, and λ is a partition of n, unless otherwise stated.

3 0-Hecke modules arising from increasing gapless tableaux

In this section, we introduce an Hm(0)-module Gλ;m by defining an Hn(0)-action on the
C-span of IGLT(λ)m. Then, we decompose Gλ;m into a direct sum of Hm(0)-submodules
which will turn out to be weak Bruhat interval modules in Section 5.

3.1 An Hm(0)-action on CIGLT(λ)m

We start by introducing the necessary definitions.

Definition 3.1. Given T ∈ IGLT(λ) and 1 6 i 6 max(T ) − 1, we say that i is an
attacking descent if i ∈ Des(T ), and either

(a) there exists (j, k) ∈ yd(λ) such that T ((j, k)) = i and T ((j + 1, k)) = i+ 1, or
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(b) there exists a box B ∈ T−1(i+ 1) placed weakly above Boti(T ).

We notice that if i is a non-attacking descent of T , then all (i+ 1)’s lie strictly below
and strictly left of Boti(T ).

Take any 1 6 m 6 n. For each 1 6 i 6 m − 1, define a linear operator πi :
C IGLT(λ)m → C IGLT(λ)m by letting

πi(T ) :=


T if i is not a descent of T ,

0 if i is an attacking descent of T ,

si · T if i is a non-attacking descent of T

for T ∈ IGLT(λ)m and extending it by linearity. Here, si · T is the tableau obtained from
T by replacing i and i+ 1 with i+ 1 and i, respectively.

The following is the main theorem of this subsection.

Theorem 3.2. For any 1 6 m 6 n, the operators π1,π2, . . . ,πm−1 satisfy the same
relations as the generators π1, π2, . . . , πm−1 for Hm(0). In other words, π1,π2, . . . ,πm−1
define an Hm(0)-action on C IGLT(λ)m.

In order to prove this theorem, let us establish some necessary lemmas.

Lemma 3.3. For 1 6 i 6 m− 1, π2
i = πi.

Proof. Let T ∈ IGLT(λ)m and 1 6 i 6 m − 1. If πi(T ) = T or πi(T ) = 0, then it is
obvious that π2

i (T ) = πi(T ). If πi(T ) = si · T , then, every i+ 1 is strictly below each i in
T . This implies that i /∈ Des(si · T ), thus π2

i (T ) = πi(T ).

Lemma 3.4. For 1 6 i, j 6 m− 1 with |i− j| > 1, πiπj = πjπi.

Proof. Let T ∈ IGLT(λ)m and 1 6 i, j 6 m− 1 with |i− j| > 1. Suppose that πi(T ) = T
or πi(T ) = 0. If πj(T ) = T or πj(T ) = 0, then it is obvious that πiπj(T ) = πjπi(T ). If
πj(T ) = sj · T , then

T−1(i) = (sj · T )−1(i) and T−1(i+ 1) = (sj · T )−1(i+ 1).

Combining this with the assumption that πi(T ) = T or πi(T ) = 0, we have that
πi(πj(T )) = πj(πi(T )).

For the remaining case, suppose that πi(T ) = si ·T and πj(T ) = sj ·T . Since |i−j| > 1,

T−1(i) = (sj · T )−1(i) and T−1(i+ 1) = (sj · T )−1(i+ 1)

and
T−1(j) = (si · T )−1(j) and T−1(j + 1) = (si · T )−1(j + 1).

It follows that πi · (sj · T ) = si · (sj · T ) and πj · (si · T ) = sj · (si · T ). It is obvious that
si · (sj · T ) = sj · (si · T ), thus the assertion follows.

Lemma 3.5. For 1 6 i 6 m− 2, πiπi+1πi = πi+1πiπi+1.
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Proof. Given T ∈ IGLT(λ)m and 1 6 i 6 m− 2, we have three cases.

Case 1: πi(T ) = T . If πi+1(T ) = T or πi+1(T ) = 0, the proof is straightforward. Let us
assume that πi+1 · T = si+1 · T . Note that

πiπi+1πi(T ) = πi(si+1 · T ) and πi+1πiπi+1(T ) = πi+1πi(si+1 · T ). (3.1)

If πi(si+1 · T ) = si+1 · T or πi(si+1 · T ) = 0, one can easily see that the right hand sides of
the two equations in (3.1) are the same. For the remaining part of Case 1, suppose that
πi(si+1 · T ) = si · (si+1 · T ). Since

T−1(i) = (si · (si+1 · T ))−1(i+ 1) and T−1(i+ 1) = (si · (si+1 · T ))−1(i+ 2),

the assumption πi(T ) = T implies that πi+1(si · (si+1 · T )) = si · (si+1 · T ). Thus, we have
that

πiπi+1πi(T ) = si · (si+1 · T ) = πi+1πiπi+1(T ).

Case 2: πi(T ) = 0. If πi+1(T ) = T or πi+1(T ) = 0, then πiπi+1πi(T ) = 0 =πi+1πiπi+1(T ).
Assume that πi+1(T ) = si+1 · T . Let us consider the three subcases

πi(si+1 · T ) = si+1 · T, πi(si+1 · T ) = 0, and πi(si+1 · T ) = si · (si+1 · T ).

In case where πi(si+1 ·T ) = si+1 ·T , we have that r
(i)
t (si+1 ·T ) > r

(i+1)
b (si+1 ·T ). For the

definitions of r
(i)
t (si+1 · T ) and r

(i+1)
b (si+1 · T ), see (2.5). In addition, r

(i+2)
t (T ) > r

(i+1)
b (T )

since πi+1(T ) = si+1 · T . Therefore,

r
(i)
t (T ) = r

(i)
t (si+1 · T ) > r

(i+1)
b (si+1 · T ) = r

(i+2)
b (T ) > r

(i+2)
t (T ) > r

(i+1)
b (T ).

But, this contradicts the assumption that πi(T ) = 0, thus πi(si+1 · T ) cannot be si+1 · T .
In case where πi(si+1 · T ) = 0, we immediately have that πi+1πiπi+1(T ) = 0.
In case where πi(si+1 · T ) = si · (si+1 · T ), since

T−1(i) = (si · (si+1 · T ))−1(i+ 1) and T−1(i+ 1) = (si · (si+1 · T ))−1(i+ 2),

the assumption πi(T ) = 0 implies that πi+1(si · (si+1 · T )) = 0.

Case 3: πi(T ) = si · T . First, suppose that πi+1(T ) = T . Then

πiπi+1πi(T ) = πi(πi+1(si · T )) and πi+1πiπi+1(T ) = πi+1(si · T ).

If πi+1(si ·T ) = si ·T or πi+1(si ·T ) = 0, then one can easily show that πi(πi+1(si ·T )) =
πi+1(si · T ). In case where πi+1(si · T ) = si+1 · (si · T ), we have that

πi(πi+1(si · T )) = πi(si+1 · (si · T )) and πi+1(si · T ) = si+1 · (si · T ).

In addition, the assumption πi+1(T ) = T implies that r
(i+1)
t (T ) > r

(i+2)
b (T ), equivalently,

r
(i)
t (si+1 · (si · T )) > r

(i+1)
b (si+1 · (si · T )).
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Therefore, πi(si+1 · (si · T )) = si+1 · (si · T ).
Next, suppose that πi+1(T ) = 0. We claim that πi(πi+1(si · T )) = 0. If πi+1(si · T ) =

si · T , r
(i+1)
t (si · T ) > r

(i+2)
b (si · T ), equivalently, r

(i)
t (T ) > r

(i+2)
b (T ). Additionally, the

assumption πi(T ) = si · T implies that r
(i+1)
t (T ) > r

(i)
b (T ). Thus

r
(i+1)
t (T ) > r

(i)
b (T ) > r

(i)
t (T ) > r

(i+2)
b (T ).

It follows that i + 1 /∈ Des(T ), which contradicts the assumption πi+1(T ) = 0. Hence,
πi+1(si · T ) cannot be si · T . If πi+1(si · T ) = 0, then it is clear that πi(πi+1(si · T )) = 0.
If πi+1(si · T ) = si+1 · (si · T ), then

T−1(i+ 1) = (si+1 · (si · T ))−1(i) and T−1(i+ 2) = (si+1 · (si · T ))−1(i+ 1).

Thus, the assumption πi+1(T ) = 0 implies that πi(si+1 · (si · T )) = 0.

Finally, suppose that πi+1(T ) = si+1 · T . Then we have r
(i+2)
t (T ) > r

(i+1)
b (T ). In

addition, the assumption πi(T ) = si · T implies that r
(i+1)
t (T ) > r

(i)
b (T ). Thus,

r
(i+2)
t (T ) > r

(i+1)
b (T ) > r

(i+1)
t (T ) > r

(i)
b (T ).

Now, one can easily see that πiπi+1πi(T ) = πi+1πiπi+1(T ).

Theorem 3.2 now follows immediately from Lemma 3.3, Lemma 3.4, and Lemma 3.5.
Hereafter, for 1 6 m 6 n, we denote by Gλ;m the Hm(0)-module whose underlying space
is C IGLT(λ)m and whose Hm(0)-action is given by Theorem 3.2.

Example 3.6. (1) When T =
1 2 3 6
2 3 5 7
4 6

, we have

π3(T ) = s3 · T, π4(T ) = T, and πi(T ) = 0 for i = 1, 2, 5, 6.

Here, the indices in red are used to indicate the descents of the tableau.

(2) Note that

IGLT((2, 1, 1)) =

 1 2
3
4

,
1 3
2
4

,
1 4
2
3

,
1 2
2
3

,
1 3
2
3

 .

The descents of each tableau in IGLT((2, 1, 1)) are given as follows:

T
1 2
3
4

1 3
2
4

1 4
2
3

Des(T ) ⊆ [1, 3] {2, 3} {1, 3} {1, 2}

T
1 2
2
3

1 3
2
3

Des(T ) ⊆ [1, 2] {1, 2} {1, 2}

the electronic journal of combinatorics 31(4) (2024), #P4.73 14



Therefore, U(2,1,1) = (F(2,1,1) + F(1,2,1) + F(1,1,2)) + 2F(1,1,1). The following figures illustrate
the Hm(0)-action on G(2,1,1);m for m = 3, 4:

1 2
3
4

π1

π2
π3

0

1 3
2
4

π2

π3
π1

0

1 4
2
3

π3

π1, π2

0

1 2
2
3

π1, π2
0

1 3
2
3

π1, π2
0

⊕

G(2,1,1);4

G(2,1,1);3

In Proposition 5.6, we will prove that

ch([Gλ;m]) = Uλ;m for any λ ` n and 1 6 m 6 n, (3.2)

which implies that
∑

16m6n ch([Gλ;m]) = Uλ.
We close this subsection by providing a remark which tells us that for some λ ` n and

1 6 m 6 n, there is no indecomposable Hm(0)-module M satisfying ch([M ]) = Uλ;m.

Remark 3.7. In [13, Theorem 4.7], Duchamp, Hivert, and Thibon described the Ext-
quiver of Hm(0). For the definition of Ext-quivers, see [36, Definition 2.7.5]. According
to their result, for any α |= m, we have Ext1Hm(0)(Fα,Fα) = 0, equivalently, there is
no indecomposable Hm(0)-module M such that ch([M ]) = 2Fα. On the other hand,
in Example 3.6, we see that U(2,1,1);3 = 2F(1,1,1). Thus, we conclude that there is no
indecomposable H3(0)-module M satisfying ch([M ]) = U(2,1,1);3.

3.2 A direct sum decomposition of Gλ;m into Hm(0)-submodules

Let us start with necessary definitions and notation. Given T ∈ IGLT(λ)m, let

I(T ) :=
{
i ∈ [1,m]

∣∣ |T−1(i)| > 1
}
.

Recall that we let (r
(k)
b , c

(k)
b ) = Botk(T ) and (r

(k)
t , c

(k)
t ) = Topk(T ) for 1 6 k 6 max(T ).

Given i ∈ I(T ), let Γi(T ) be the lattice path from (r
(i)
b , c

(i)
b − 1) to (r

(i)
t − 1, c

(i)
t ) satisfying

the following two conditions:
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(i) if the path passes through two boxes horizontally, then the entry at the above box
is strictly smaller than i and the entry at the below box is weakly greater than i,
and

(ii) if the path passes through two boxes vertically, then the entry at the left box is
strictly smaller than i and the entry at the right box is weakly greater than i.

Pictorially,

(i)
a
b

=⇒ a < i 6 b and (ii) a b =⇒ a < i 6 b.

Example 3.8. Let

T =

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27
18 20
19 21
21

.

Note that I(T ) = {17, 21, 27, 29}. By following the way of defining lattice paths, we obtain
the lattice paths Γ17(T ),Γ21(T ),Γ27(T ), and Γ29(T ) as follows:

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27
18 20
19 21
21

Γ17(T )

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27
18 20
19 21
21

Γ21(T )

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27
18 20
19 21
21

Γ27(T )

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27
18 20
19 21
21

Γ29(T )

Given a lattice path Γ, let V (Γ) be the set of lattice points through which Γ passes.
For two lattice paths Γ and Γ′, we write Γ = Γ′ if V (Γ) = V (Γ′). Now, we define the
following equivalence relation on IGLT(λ)m.

Definition 3.9. Let λ ` n and T1, T2 ∈ IGLT(λ)m. The equivalence relation ∼λ;m on
IGLT(λ)m is defined by T1 ∼λ;m T2 if and only if{(

Γi(T1), T
−1
1 (i)

) ∣∣ i ∈ I(T1)
}

=
{(

Γi(T2), T
−1
2 (i)

) ∣∣ i ∈ I(T2)
}
.

If λ and m are clear in the context, we will drop the subscript from ∼λ;m. Let Eλ;m be
the set of equivalence classes of IGLT(λ)m with respect to ∼.
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Example 3.10. Let

T1 =
1 2 3 5
2 4 5 6
3 5 7

, T2 =
1 2 3 5
2 4 5 7
3 5 6

, T3 =
1 2 3 4
2 3 5 6
3 4 7

, and T4 =
1 2 4 5
2 3 5 6
4 5 7

.

Then, T1 ∼(4,3,2);5 T2, but T1 6∼(4,3,2);5 Tk for k = 3, 4.

Theorem 3.11. Let m and n be positive integers with m 6 n and let λ ` n. For any
1 6 i 6 m− 1 and E ∈ Eλ;m, πi · CE ⊆ CE.

Proof. Let T ∈ IGLT(λ)m. If πi ·T is T or 0, then πi ·T is clearly contained in E. Therefore,
we may assume that πi · T = si · T . In this case, all i’s are strictly above all (i+ 1)’s in T .
This implies that acting πi on T does not change any lattice paths. In addition, from the
definition of πi-action on T , it follows that for any j ∈ I(T ),

(
Γj(T ), T−1(j)

)
=

®
(Γj(πi · T ), (πi · T )−1(j)) if j ∈ I(T ) \ {i, i+ 1},(
Γsi(j)(πi · T ), (πi · T )−1(si(j))

)
if j ∈ I(T ) ∩ {i, i+ 1}.

Thus, we have that{(
Γj(T ), T−1(j)

) ∣∣ j ∈ I(T )
}

=
{(

Γj(πi · T ), (πi · T )−1(j)
) ∣∣ j ∈ I(πi · T )

}
,

which implies that πi · T ∈ E.

For each E ∈ Eλ;m, let GE be the Hm(0)-submodule of Gλ;m whose underlying space
is the C-span of E. Then, we have the following direct sum decomposition

Gλ;m =
⊕

E∈Eλ;m

GE.

4 Source and sink tableaux

The goal of this section is to show that there are two distinguished tableaux, called source
and sink tableaux, in each equivalence class E ∈ Eλ;m. To achieve our goal, we first give a
characterization for source and sink tableaux. Then, we construct two tableaux source(T )
and sink(T ) for each T ∈ E. Finally, we verify that source(T ) (resp. sink(T )) is the unique
source tableau (resp. sink tableau) in E, where T is an arbitrary chosen element in E.
Hereafter, E denotes an equivalence class of IGLT(λ)m with respect to ∼ and T denotes
a tableau contained in IGLT(λ)m unless otherwise stated.

To begin with, we give definitions for source tableaux and sink tableaux in IGLT(λ)m.

Definition 4.1. Let T ∈ IGLT(λ)m.

(1) T is said to be a source tableau if there does not exist T ′ ∈ IGLT(λ)m and 1 6 i 6
m− 1 such that πi · T ′ = T and T ′ 6= T .
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(2) T is said to be a sink tableau if there does not exist T ′ ∈ IGLT(λ)m and 1 6 i 6 m−1
such that πi · T = T ′ and T ′ 6= T .

The following lemma characterizes source and sink tableaux.

Lemma 4.2. The following hold.

(1) T is a source tableau if and only if for all i /∈ Des(T ), T ((r
(i)
t , c

(i)
t + 1)) = i+ 1, that

is, the box right adjacent to Topi(T ) is filled with i+ 1.

(2) T is a sink tableau if and only if i is an attacking descent for all i ∈ Des(T ).

Proof. (1) To prove the “only if” part, suppose that T is a source tableau. Assume,
on the contrary, there exists i /∈ Des(T ) such that i + 1 does not appear in the box

(r
(k)
t , c

(k)
t +1). Then one can easily see that si·T is contained in IGLT(λ)m. This contradicts

the assumption that T is a source tableau because πi · (si · T ) = T .
Next, let us prove the “if” part. Suppose contrary that T is not a source tableau.

Then, there exists T ′ ∈ IGLT(λ)m and 1 6 i 6 n − 1 such that πi · T ′ = T and T ′ 6= T .

This implies that i /∈ Des(T ), that is, r
(i)
t (T ) > r

(i+1)
b (T ). Thus, the box right adjacent to

Topi(T ) cannot be filled with i+ 1.
(2) The assertion immediately follows from the definitions of sink tableaux and at-

tacking descents.

4.1 Existence and uniqueness of source tableaux in E

In this subsection, we construct the desired tableau source(T ) and show that it is the
unique source tableau in E. To do this, we need the following preparation.

Given two lattice points P and P ′ in the same row, we denote the horizontal line from
P to P ′ by HL(P, P ′). For each i ∈ I(T ), we define a new lattice path Γ̃i(T ) by extending
Γi(T ) with the following algorithm.

Algorithm 4.3. Fix i ∈ I(T ).

Step 1. For each j ∈ I(T ), set Γ′j to be the lattice path obtained by connecting the following
three lattice paths:

HL((r
(j)
b , 0), (r

(j)
b , c

(j)
b − 1)), Γj(T ), and HL((r

(j)
t − 1, c

(j)
t ), (r

(j)
t − 1, λ

r
(j)
t −1

)).

Here, λ0 := λ1.

Step 2. Set (rt, ct) to be the lattice point in V (Γ′i) satisfying that

rt = min{r | (r, c) ∈ V (Γ′i)} and ct = min{c | (rt, c) ∈ V (Γ′i)}.

Step 3. If there exists j ∈ I(T ) such that

r′ < rt < r′′ and c′, c′′ > ct for some (r′, c′), (r′′, c′′) ∈ V (Γ′j), (4.1)

then go to Step 4. Otherwise, go to Step 5.

the electronic journal of combinatorics 31(4) (2024), #P4.73 18



Step 4. Let j0 = min{j | Γ′j satisfies (4.1)} and c0 = min
{
c | (rt, c) ∈ V (Γ′j0)

}
. Then, let Γ

be the lattice path satisfying that

V (Γ) = V (Γ′i) \ {(rt, c) | c > c0} ∪ {(r, c) ∈ V (Γ′j0) | r 6 rt and c > c0}.

Set Γ′i := Γ. Go to Step 2.

Step 5. Return Γ̃i(T ) := Γ′i and terminate the algorithm.

If T is clear in the context, we simply write the lattice path Γ̃i(T ) by Γ̃i for i ∈ I(T ).

Example 4.4. Let us revisit Example 3.8. By applying Algorithm 4.3 to each i ∈ I(T ),

we obtain Γ̃17, Γ̃21, Γ̃27, and Γ̃29 as follows:

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27
18 20
19 21
21

Γ̃17(T )

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27
18 20
19 21
21

Γ̃21(T )

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27
18 20
19 21
21

Γ̃27(T )

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27
18 20
19 21
21

Γ̃29(T )

For convenience, we introduce some terminologies related to Γ̃i’s. For any (r, c) ∈
yd(λ) and i ∈ I(T ), we say that (r, c) is below Γ̃i if there exists 0 6 r′ < r such that

(r′, c− 1), (r′, c) ∈ V (Γ̃i). Otherwise, we say that (r, c) is above Γ̃i. For each i ∈ I(T ), we

call the path HL((r
(i)
b , 0), (r

(i)
b , c

(i)
b − 1)) the bottom path of Γ̃i. Given i, j ∈ I(T ), if there

exist (r′, c′), (r′′, c′′) ∈ V (Γ̃j) such that r′ < r
(i)
b < r′′ and c′, c′′ < c

(i)
b , then we say that Γ̃j

crosses the bottom path of Γ̃i.
In order to enumerate the lattice paths Γ̃i’s in appropriate order, to each i ∈ I(T ),

we will give a label pT (i) ∈ {1, 2, . . . , |I(T )|}. To do this, for i ∈ I(T ), we set p′i ∈
{1, 2, . . . , |I(T )|} satisfying the following: Let i, j ∈ I(T ).

C1. If r
(i)
b < r

(j)
b , then p′i < p′j.

C2. If r
(i)
b > r

(j)
b , then p′i > p′j.

C3. When r
(i)
b = r

(j)
b , consider the lowest lattice point p ∈ V (Γ̃i)∩V (Γ̃j) such that neither

p + (−1, 0) nor p + (0, 1) are contained in V (Γ̃i) ∩ V (Γ̃j). If p + (−1, 0) ∈ V (Γ̃i),
then p′i < p′j. Otherwise, p′i > p′j.

We notice that {p′i | i ∈ I(T )} = {1, 2, . . . , |I(T )|}. By rearranging p′i’s with the following
algorithm, we define a function pT : I(T )→ {1, 2, . . . , |I(T )|}.

Algorithm 4.5. For each i ∈ I(T ), let pi := p′i, where p′i is the index defined above.
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Step 1. Let k = 1.

Step 2. Take ik and ik+1 in I(T ) such that pik = k and pik+1
= k + 1.

Step 3. If Γ̃ik+1
crosses the bottom path of Γ̃ik , then set pik := k + 1 and pik+1

:= k and go
to Step 1. Otherwise, go to Step 4.

Step 4. If k < |I(T )| − 1, then set k = k + 1 and go to Step 2. Otherwise, set pT (i) := pi
for each i ∈ I(T ) and go to Step 5.

Step 5. Return (pT (i))i∈I(T ) and terminate the algorithm.

By the construction of pT , it is clear that pT is a bijection.

Lemma 4.6. Given a source tableau T , enumerate the elements of I(T ) in increasing
order j1 < j2 < · · · < j|I(T )|. Then, pT (ju) = u for all 1 6 u 6 |I(T )|.

Proof. We claim that pT (ju) < pT (ju+1) for all 1 6 u < |I(T )|. Given 1 6 u < |I(T )|, we
have two cases

r
(ju)
b 6 r

(ju+1)
b and r

(ju)
b > r

(ju+1)
b .

In case where r
(ju)
b 6 r

(ju+1)
b , we have that Botju(T ) is above Γ̃ju+1 . This implies that p′ju

and p′ju+1
, defined in C1-C3, satisfy the inequality p′ju < p′ju+1

. By the construction of Γ̃ju
and Γ̃ju+1 , Γ̃ju+1 does not cross the bottom path of Γ̃ju . Thus, when applying Algorithm 4.5,
p′ju and p′ju+1

are never swapped in Step 3. This shows that pT (ju) < pT (ju+1).

In case where r
(ju)
b > r

(ju+1)
b , we have that p′ju > p′ju+1

. It follows from Lemma 4.2(1)
that for each ju < i 6 ju+1, there exists a box in T−1(i) which appears weakly below

Topju(T ), therefore r
(ju)
t 6 r

(ju+1)
b . By the construction of Γ̃ju+1 , each box (r, c) which

appears below Γ̃ju+1 and satisfies r 6 r
(ju+1)
b is filled with an integer greater than ju+1. This

implies that Topju(T ) is above Γ̃ju+1 . Combining this with the assumption r
(ju)
b > r

(ju+1)
b ,

we have that Γ̃ju crosses the bottom path of Γ̃ju+1 . Let

I1 := {i ∈ I(T ) | i < ju and p′ju+1
< p′i < p′ju},

I2 := {i ∈ I(T ) | i > ju+1 and p′ju+1
< p′i < p′ju}, and

I3 := {i ∈ I(T ) | Γ̃ju+1 crosses the bottom path of Γ̃i}.

Note that p′ju = p′ju+1
+ |I1| + |I2| + 1. One can see that, when applying Algorithm 4.5,

we encounter the situation that

k = p′ju+1
+ |I1|+ |I3|, ik = ju+1, and ik+1 = ju

in Step 2. In this situation, after applying Step 3, we have pju = k < k + 1 = pju+1 . Since

Γ̃ju+1 cannot cross the bottom path of Γ̃ju , the relative order pju < pju+1 does not change
until the algorithm terminates. Thus, we have that pT (ju) < pT (ju+1).

Since we have shown that pT (ju) < pT (ju+1) for all 1 6 u < |I(T )|, we immediately
have that pT (ju) = u for all 1 6 u 6 |I(T )|.
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Steps k ik ik+1 (p17, p21, p27, p29)

Step 1 1 · · (2, 4, 3, 1)

Steps 2, 3 1 29 17 (1, 4, 3, 2)

Step 1 1 · · (1, 4, 3, 2)

Steps 2, 3 1 17 29 (1, 4, 3, 2)

Step 4 2 · · (1, 4, 3, 2)

Steps 2, 3 2 29 27 (1, 4, 2, 3)

Step 1 1 · · (1, 4, 2, 3)

Steps 2, 3 1 17 27 (1, 4, 2, 3)

Step 4 2 · · (1, 4, 2, 3)

Steps 2, 3 2 27 29 (1, 4, 2, 3)

Step 4 3 · · (1, 4, 2, 3)

Steps 2, 3 3 29 21 (1, 4, 2, 3)

Steps 4, 5 3 · · (1, 4, 2, 3)

Table 4.1: The process of obtaining pT (i)’s in Example 4.7

For convenience, we simply write the lattice path Γ̃p−1
T (u) by Γ̃(u) for u ∈ [1, |I(T )| ].

Given u ∈ [1, |I(T )| ], let Au be the subdiagram of yd(λ) consisting of the boxes located

above Γ̃(u). Then, define

D(1)
u (T ) := Au \

( ⋃
16v<u

(
Av ∪ T−1(p−1T (v))

) )
and D(2)

u (T ) := T−1(p−1T (u)). (4.2)

Example 4.7. Let us revisit Example 3.8 and Example 4.4. One can easily see that

p′17 = 2, p′21 = 4, p′27 = 3, and p′29 = 1.

By applying Algorithm 4.5, one can compute pT (i)’s as Table 4.1, where ·’s in the third
and fourth columns are used to omit unnecessary information. Consequently, we have

pT (17) = 1, pT (21) = 4, pT (27) = 2, and pT (29) = 3.

We draw D
(1)
u (T ) and D

(2)
u (T ) for u = 1, 2, 3, 4 in Figure 4.1. Here, asterisks and colored

bullets are used to indicate the boxes in D
(1)
u (T ) and D

(2)
u (T ), respectively.

Now, we construct the desired tableau source(T ) with the following algorithm.

Algorithm 4.8. Let T ∈ IGLT(λ)m. Set e0 = 0 and M0 = 0. For 1 6 u 6 |I(T )|, let

eu := |D(1)
u (T )|+ 1 and Mu =

∑u
v=0 ev.

Step 1. Set v := 1.
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∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ •
∗ •Γ̃(1)

Γ̃(4)

Γ̃(2)

Γ̃(3)

D
(1)
1 (T ) and D

(2)
1 (T )

•

•

D
(1)
2 (T ) and D

(2)
2 (T )

•
∗ •

D
(1)
3 (T ) and D

(2)
3 (T )

∗ ∗
∗ •
•

D
(1)
4 (T ) and D

(2)
4 (T )

Figure 4.1: D
(1)
u (T ) and D

(2)
u (T ) for u = 1, 2, 3, 4 in Example 4.7

Step 2. Fill the boxes in D
(1)
v (T ) by Mv−1 + 1,Mv−1 + 2, . . . ,Mv−1 + ev− 1 from left to right

starting from the top.

Step 3. Fill the boxes in D
(2)
v (T ) by Mv.

Step 4. If v < |I(T )|, then set v := v + 1 and go to Step 2. Otherwise, fill the remaining
boxes by M|I(T )| + 1,M|I(T )| + 2, . . . ,m from left to right starting from the top. Set
source(T ) to be the resulting filling. Return source(T ) and terminate the algorithm.

Example 4.9. Revisit Example 4.7. We see that

T =

1 6 10 14 22 24 26 27
2 7 11 15 23 25 29
3 8 12 16 28 29
4 9 13 17
5 17 27
18 20
19 21
21

Algorithm 4.8

source(T ) = .

1 2 3 4 5 6 7 23
8 9 10 11 12 13 25
14 15 16 17 24 25
18 19 20 22
21 22 23
26 27
28 29
29

Let us collect some useful facts for source(T ) which can be easily seen.

S1. By Lemma 4.2(1), for any T ∈ IGLT(λ)m, source(T ) is a source tableau.

S2. For any T ∈ IGLT(λ)m, T ∼ source(T ) by the construction of source(T ).

S3. By the construction of source(T ), the set {(Γi(T ), T−1(i)) | i ∈ I(T )} determines
source(T ). In other words, if T1 ∼ T2, then source(T1) = source(T2).

Combining the facts S1 and S2 shows the existence of source tableaux in E. However,
the above facts S1, S2, and S3 do not guarantee the uniqueness of source tableaux in E.
To show the uniqueness, we need the lemma below.

Lemma 4.10. For any source tableau T , source(T ) = T .
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Proof. Let j0 = 0 and I(T ) = {j1 < j2 < · · · < j|I(T )|}. By Lemma 4.6, pT (ju) = u for all

1 6 u 6 |I(T )|, thus from the definition of D
(2)
u (T ) we have that

D(2)
u (T ) = T−1(ju) for all 1 6 u 6 |I(T )|. (4.3)

We claim that

D(1)
u (T ) = T−1([ju−1 + 1, ju − 1]) for all 1 6 u 6 |I(T )|. (4.4)

First, let us prove the inclusion D
(1)
u (T ) ⊇ T−1([ju−1 + 1, ju − 1]) for all 1 6 u 6 |I(T )|.

Take any 1 6 u 6 |I(T )| and i ∈ [ju−1 + 1, ju − 1]. Let B be the box filled with i in T .
Recall that for any 1 6 v 6 |I(T )|, Av is defined to be the subdiagram of yd(λ) consisting

of the boxes located above Γ̃(v). By the definition of D
(1)
u (T ), the desired inclusion is

obtained by proving that

B ∈ Au and B /∈ Av for all 1 6 v < u.

Suppose for the sake of contradiction that B /∈ Au. Combining the fact that T is an
increasing tableau with the inequality i < ju, we have that B is strictly left of Botju(T ).
This implies that B is strictly below Botju(T ). By Lemma 4.2(1), i + 1 appears weakly
below than i. Again, by Lemma 4.2(1), i+ 2 appears weakly below than i+ 1, so i+ 2 is
weakly below than i. Continuing this process, we see that ju appears weakly below than
i, that is, Botju(T ) is weakly below B. This contradicts the above observation that B is
strictly below Botju(T ). Thus, B ∈ Au.

Suppose for the sake of contradiction that B ∈ Av for some 1 6 v < u. Since i > jv,
B cannot be placed weakly left of Topjv(T ) while being above Γ̃v. Therefore, B is strictly
right of Topjv(T ). In addition, by Lemma 4.6, pT (jv) = v 6 u − 1 = pT (ju−1), so the

boxes strictly right of Topjv(T ) while being above Γ̃v are placed above Γ̃(u−1). Therefore,

if we prove that B is below Γ̃(u−1), then we obtain a contradiction to the assumption that
B ∈ Av. Assume that B is above Γ̃(u−1). Since i > ju−1, B is strictly above Topju−1

(T )

by the construction of Γ̃(u−1). On the other hand, by using Lemma 4.2(1) repeatedly, one
can see that there exists at least one ju−1 which appears weakly above i. It follows that
Topju−1

(T ) is weakly above B. This gives a contradiction to the previous observation, thus
B /∈ Av.

Next, let us prove the inclusion D
(1)
u (T ) ⊆ T−1([ju−1+1, ju−1]) for all 1 6 u 6 |I(T )|.

Equivalently, we claim that

D(1)
u (T ) ∩ T−1(i) = ∅ for any i ∈ [1,m] \ [ju−1 + 1, ju − 1].

To prove this, choose arbitrary 1 6 u 6 |I(T )| and i ∈ [1,m] \ [ju−1 + 1, ju − 1]. Note

that if i ∈ I(T ), then D
(1)
u (T ) ∩ T−1(i) = ∅ because

⋃
16v6|I(T )|D

(2)
v (T ) = T−1(I(T )) and

D
(1)
u (T ) ∩ D

(2)
v (T ) = ∅ for all 1 6 v 6 |I(T )|. Therefore, we may assume that i /∈ I(T ).

Take u0 ∈ {1, 2, . . . , |I(T )|} \ {u} such that i ∈ [ju0−1 + 1, ju0 − 1]. Since the method of
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proof for the case where u0 > u is similar with that for the case where u0 < u, we only
prove the latter case.

Suppose that u0 < u. Let B be the box filled with i. If i appears below Γ̃ju0
, then B is

strictly below Botju0
(T ) since i < ju0 . On the other hand, for all i 6 j < ju0 , combining

the fact j /∈ I(T ) with Lemma 4.2(1) yields that Botj+1(T ) is placed weakly below the
unique box filled with j. It follows that Botju0

(T ) is weakly below B. This contradicts the
previous observation that B is strictly below Botju0

(T ). This implies that i must appear

above Γ̃ju0
. If i appears above Γ̃ju0

, then B ∈ Au0 . Thus, D
(1)
u (T ) ∩ T−1(i) = ∅ by (4.2).

Now, combining Lemma 4.2(1) with the equations (4.3) and (4.4), we have that D
(1)
u (T )

is filled with ju−1 + 1, ju−1 + 2, . . . , ju− 1 from left to right starting from the top for each
1 6 u 6 |I(T )|. Note that

T
(
yd(λ) \

⋃
16u6|I(T )|

(
D(1)
u (T ) ∪ D(2)

u (T )
))

= {j|I(T )| + 1, j|I(T )| + 2, . . . ,m}.

Again, by Lemma 4.2(1), we have that yd(λ) \
⋃

16u6|I(T )|(D
(1)
u (T ) ∪ D

(2)
u (T )) is filled

with j|I(T )| + 1, j|I(T )| + 2, . . . ,m from left to right starting from the top. Hence, by the
construction of source(T ), we have that T = source(T ).

Now, we prove the main theorem of this subsection.

Theorem 4.11. For each E ∈ Eλ;m, there exists a unique source tableau in E.

Proof. Recall that the existence is already shown by using S1 and S2. For the unique-
ness, suppose that T1 and T2 are source tableaux contained in E. Combining S3 with
Lemma 4.10 yields that

T1 = source(T1) = source(T2) = T2.

Hence, the source tableau in E is unique.

For each E ∈ Eλ;m, define

TE := the unique source tableau contained in E.

4.2 Existence and uniqueness of sink tableaux in E

Similar to the previous subsection, we construct a tableau sink(T ) and show that it is the
unique sink tableau in E. To do this, we need the following preparation.

Given two lattice points P and P ′ in the same column, we denote the vertical line from
P to P ′ by VL(P, P ′). For each i ∈ I(T ), we define a new lattice path Γ̂i by extending Γi
with the following algorithm.

Algorithm 4.12. Fix i ∈ I(T ).
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Step 1. For each j ∈ I(T ), set Γ′j to be the lattice path obtained by connecting the following
three lattice paths:

VL((r
(i)
t − 1, c

(i)
t ), (0, c

(i)
t )), Γj(T ), and VL((r

(i)
b , c

(i)
b − 1), (R

(i)
b , c

(i)
b − 1)),

where R
(i)
b := max{r | (r, c(i)b − 1) ∈ yd(λ)}.

Step 2. Set (rb, cb) to be the lattice point in V (Γ′i) satisfying that

cb = min{c | (r, c) ∈ V (Γ′i)} and rb = min{r | (r, cb) ∈ V (Γ′i)}.

Step 3. If there exists j ∈ I(T ) such that

r′, r′′ > rb and c′ < cb < c′′ for some (r′, c′), (r′′, c′′) ∈ V (Γ′j), (4.5)

then go to Step 4. Otherwise, go to Step 5.

Step 4. Let j0 = min{j | Γ′j satisfies (4.5)} and r0 = min
{
r | (r, cb − 1) ∈ V (Γ′j0)

}
. Then,

let Γ be the lattice path satisfying that

V (Γ) = V (Γ′i) \ {(r, cb − 1) | r > r0} ∪ {(r, c) ∈ V (Γ′j0) | r > r0 and c 6 cb}.

Set Γ′i := Γ. Go to Step 2.

Step 5. Return Γ̂i(T ) = Γ′i and terminate the algorithm.

If T is clear in the context, we simply write the lattice path Γ̂i(T ) by Γ̂i for i ∈ I(T ).

Example 4.13. Let us consider

T =

1 2 3 4 5 6 7 23
8 9 10 11 12 13 25
14 15 16 17 24 25
18 19 20 22
21 22 23
26 27
28 29
29

.

(In fact, T is the source tableau in the equivalence class of the tableau given in Exam-
ple 3.8.) By applying Algorithm 4.12 to each i ∈ I(T ) = {22, 23, 25, 29}, one can see all

Γ̂i’s as below.

1 2 3 4 5 6 7 23
8 9 10 11 12 13 25
14 15 16 17 24 25
18 19 20 22
21 22 23
26 27
28 29
29

Γ̂22(T )

1 2 3 4 5 6 7 23
8 9 10 11 12 13 25
14 15 16 17 24 25
18 19 20 22
21 22 23
26 27
28 29
29

1 2 3 4 5 6 7 23
8 9 10 11 12 13 25
14 15 16 17 24 25
18 19 20 22
21 22 23
26 27
28 29
29

Γ̂23(T )

1 2 3 4 5 6 7 23
8 9 10 11 12 13 25
14 15 16 17 24 25
18 19 20 22
21 22 23
26 27
28 29
29

Γ̂25(T ) Γ̂29(T )
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For convenience, we introduce some terms related to Γ̂i’s. For any (r, c) ∈ yd(λ)

and i ∈ I(T ), we say that (r, c) is right of Γ̂i if there exists 0 6 c′ < c such that

(r − 1, c′), (r, c′) ∈ V (Γ̂i). Otherwise, we say that (r, c) is left of Γ̂i. For each i ∈ I(T ),

we call the path VL((0, c
(i)
t ), (r

(i)
t − 1, c

(i)
t )) the rightmost path of Γ̂i. Given i, j ∈ I(T ), if

there exist (r′, c′), (r′′, c′′) ∈ V (Γ̂j) such that r′, r′′ < r
(i)
t and c′ < c

(i)
t < c′′, then we say

that Γ̂j crosses the rightmost path of Γ̂i.
For each i ∈ I(T ), we will define a label qi(T ) ∈ {1, 2, . . . , |I(T )|} to enumerate the

lattice paths {Γ̂i | i ∈ I(T )}. To do this, we first set q′i ∈ {1, 2, . . . , |I(T )|} satisfying the
following conditions: Let i, j ∈ I(T ).

C1′. If c
(i)
t < c

(j)
t , then q′i < q′j.

C2′. If c
(i)
t > c

(j)
t , then q′i > q′j.

C3′. When c
(i)
t = c

(j)
t , consider the highest lattice point q ∈ V (Γ̂i) ∩ V (Γ̂j) such that

neither q+(0,−1) nor q+(1, 0) are contained in V (Γ̂i)∩V (Γ̂j). If q+(0,−1) ∈ V (Γ̂i),
then q′i < q′j. Otherwise, q′i > q′j.

We notice that {q′i | i ∈ I(T )} = {1, 2, . . . , |I(T )|}. By rearranging q′i’s with the following
algorithm, we define a function qT : I(T )→ {1, 2, . . . , |I(T )|}.

Algorithm 4.14. For i ∈ I(T ), let qi := q′i, where q′i is the index defined above.

Step 1. Let k = 1.

Step 2. Take ik and ik+1 in I(T ) such that qik = k and qik+1
= k + 1.

Step 3. If Γ̂ik+1
crosses the rightmost path of Γ̂ik , then set qik := k + 1 and qik+1

:= k and
go to Step 1. Otherwise, go to Step 4.

Step 4. If k < |I(T )| − 1, then set k = k+ 1 and go to Step 2. Otherwise, set qT (i) := qi for
each i ∈ I(T ) and go to Step 5.

Step 5. Return (qT (i))i∈I(T ) and terminate the algorithm.

By the construction of qT , it is clear that qT is a bijection.

Lemma 4.15. Given a sink tableau T , let us enumerate the elements of I(T ) in increasing
order j1 < j2 < · · · < j|I(T )|. Then, we have qT (ju) = u for all 1 6 u 6 |I(T )|.

Proof. We claim that qT (ju) < qT (ju+1) for any 1 6 u < |I(T )|. Given 1 6 u < |I(T )|,
we have two cases

c
(ju)
t 6 c

(ju+1)
t and c

(ju)
t > c

(ju+1)
t .

In case where c
(ju)
t 6 c

(ju+1)
t , Topju(T ) is left of Γ̂ju+1 . This implies that q′ju and q′ju+1

,

defined in C1′-C3′, satisfy the inequality q′ju < q′ju+1
. By the construction of Γ̂ju and
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Γ̂ju+1 , Γ̂ju+1 does not cross the rightmost path of Γ̂ju . Thus, Algorithm 4.14 does not allow
that q′ju and q′ju+1

are swapped in Step 3. This implies that qT (ju) < qT (ju+1).

In case where c
(ju)
t > c

(ju+1)
t , we have that q′ju > q′ju+1

. It follows from Lemma 4.2(2)
that for each ju < i 6 ju+1, there exists a box in T−1(i) which appears weakly right

of Topju(T ), therefore c
(ju)
b 6 c

(ju+1)
t . In addition, by the construction of Γ̂ju+1 , each box

(r, c) which appears right of Γ̂ju+1 and satisfies c 6 c
(ju+1)
t is filled with an integer greater

than ju+1. This implies that Botju(T ) is left of Γ̂ju+1 . Combining this with the assumption

c
(ju)
t > c

(ju+1)
t , we have that Γ̂ju crosses the rightmost path of Γ̂ju+1 . Let

I1 := {i ∈ I(T ) | i < ju and q′ju+1
< q′i < q′ju},

I2 := {i ∈ I(T ) | i > ju+1 and q′ju+1
< q′i < q′ju}, and

I3 := {i ∈ I(T ) | Γ̂ju+1 crosses the rightmost path of Γ̂i}.

Note that q′ju = q′ju+1
+ |I1|+ |I2|+ 1. One can see that, when applying Algorithm 4.14,

we encounter the situation that

k = q′ju+1
+ |I1|+ |I3|, ik = ju+1, and ik+1 = ju

in Step 2. In this situation, after applying Step 3, we have qju = k < k + 1 = qju+1 . Since

Γ̂ju+1 cannot cross the rightmost path of Γ̂ju , the relative order qju < qju+1 does not change
until the algorithm terminates. Thus, we have that qT (ju) < qT (ju+1).

Since we have shown that qT (ju) < qT (ju+1) for all 1 6 u < |I(T )|, we immediately
have that qT (ju) = u for all 1 6 u 6 |I(T )|.

For convenience, we simply write the lattice path Γ̂q−1
T (u) by Γ̂(u) for u ∈ [1, |I(T )| ].

Given u ∈ [1, |I(T )| ], let Âu be the subdiagram of yd(λ) consisting of the boxes located

left of Γ̂(u). Then, we define

D̂(1)
u (T ) := Âu \

( ⋃
16v<u

(Âv ∪ T−1(q−1T (v)))
)

and D̂(2)
u (T ) := T−1(q−1T (u)). (4.6)

Example 4.16. Let us revisit Example 4.13. One can easily see that

q′22 = 2, q′23 = 4, q′25 = 3, and q′29 = 1.

By applying Algorithm 4.14, one can compute qT (i)’s as Table 4.2, where ·’s in the third
and fourth columns are used to omit unnecessary information. Consequently, we have

qT (22) = 1, qT (23) = 3, qT (25) = 4, and qT (29) = 2.

We draw D̂
(1)
u (T ) and D̂

(2)
u (T ) for u = 1, 2, 3, 4 in Figure 4.2. Here, asterisks and colored

bullets are used to indicate the boxes in D̂
(1)
u (T ) and D̂

(2)
u (T ), respectively.

Now, we construct the desired tableau sink(T ) with the following algorithm.
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Steps k ik ik+1 (q22, q23, q25, q29)

Step 1 1 · · (2, 4, 3, 1)

Steps 2, 3 1 29 22 (1, 4, 3, 2)

Step 1 1 · · (1, 4, 3, 2)

Steps 2, 3 1 22 29 (1, 4, 3, 2)

Step 4 2 · · (1, 4, 3, 2)

Steps 2, 3 2 29 25 (1, 4, 3, 2)

Step 4 3 · · (1, 4, 3, 2)

Steps 2, 3 3 25 23 (1, 3, 4, 2)

Step 1 1 · · (1, 3, 4, 2)

Steps 2, 3 1 22 29 (1, 3, 4, 2)

Step 4 2 · · (1, 3, 4, 2)

Steps 2, 3 2 29 23 (1, 3, 4, 2)

Steps 4 3 · · (1, 3, 4, 2)

Steps 2, 3 3 23 25 (1, 3, 4, 2)

Steps 4, 5 3 · · (1, 3, 4, 2)

Table 4.2: The process of obtaining qT (i)’s in Example 4.16

Algorithm 4.17. Let T ∈ IGLT(λ)m. Set f0 = 0 and N0 = 0. Then, for 1 6 u 6 |I(T )|,
let fu := |D̂(1)

u (T )|+ 1 and Nu =
∑u

v=0 fv.

Step 1. Set v := 1.

Step 2. Fill the boxes in D̂
(1)
v (T ) by Nv−1+1, Nv−1+2, . . . , Nv−1+fv−1 from top to bottom

starting from the left.

Step 3. Fill the boxes in D̂
(2)
v (T ) by Nv.

Step 4. If v < |I(T )|, then set v := v + 1 and go to Step 2. Otherwise, fill the remaining
boxes by N|I(T )| + 1, N|I(T )| + 2, . . . ,m from top to bottom starting from the left.
Then, define sink(T ) to be the resulting filling and terminate the algorithm.

Example 4.18. Revisit Example 4.16. We see that

T =

1 2 3 4 5 6 7 23
8 9 10 11 12 13 25
14 15 16 17 24 25
18 19 20 22
21 22 23
26 27
28 29
29

Algorithm 4.17

sink(T ) = .

1 8 12 16 22 24 26 27
2 9 13 17 23 25 29
3 10 14 18 28 29
4 11 15 19
5 19 27
6 20
7 21
21
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∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ •
∗ •
∗
∗

Γ̂(22)Γ̂(29) Γ̂(23)Γ̂(25)

D̂
(1)
1 (T ) and D̂

(2)
1 (T )

∗
•

•

D̂
(1)
2 (T ) and D̂

(2)
2 (T )

∗ ∗ ∗ •
∗ ∗

•

D̂
(1)
3 (T ) and D̂

(2)
3 (T )

•
∗ •

D̂
(1)
4 (T ) and D̂

(2)
4 (T )

Figure 4.2: D̂
(1)
u (T ) and D̂

(2)
u (T ) for u = 1, 2, 3, 4 in Example 4.16

Let us collect some useful facts for sink(T ) which can be easily seen.

S1′. By Lemma 4.2(2), for any T ∈ IGLT(λ)m, sink(T ) is a sink tableau.

S2′. For any T ∈ IGLT(λ)m, T ∼ sink(T ) by the construction of sink(T ).

S3′. By the construction of sink(T ), the set {(Γi(T ), T−1(i)) | i ∈ I(T )} determines sink(T ).
In other words, if T1 ∼ T2, then sink(T1) = sink(T2).

Combining the facts S1′ and S2′ shows the existence of sink tableaux in E. However,
the above facts S1′, S2′, and S3′ do not guarantee the uniqueness of sink tableaux in E.
To show the uniqueness, we need the lemma below.

Lemma 4.19. For any sink tableau T , sink(T ) = T .

Proof. Let j0 = 0 and I(T ) = {j1 < j2 < · · · < j|I(T )|}. By Lemma 4.15, qT (ju) = u for

all 1 6 u 6 |I(T )|, thus from the definition of D̂
(2)
u (T ) we have that

D̂(2)
u (T ) = T−1(ju) for all 1 6 u 6 |I(T )|. (4.7)

We claim that

D̂(1)
u (T ) = T−1([ju−1 + 1, ju − 1]) for all 1 6 u 6 |I(T )|. (4.8)

First, let us prove the inclusion D̂
(1)
u (T ) ⊇ T−1([ju−1 + 1, ju − 1]) for all 1 6 u 6 |I(T )|.

Take any 1 6 u 6 |I(T )| and i ∈ [ju−1 + 1, ju − 1]. Let B be the box filled with i in T .

Recall that for any 1 6 v 6 |I(T )|, Âv is defined to be the subdiagram of yd(λ) consisting

of the boxes located left of Γ̂(v). By the definition of D̂
(1)
u (T ), the desired inclusion is

obtained by proving that

B ∈ Âu and B /∈ Âv for all 1 6 v < u.
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Suppose for the sake of contradiction that B /∈ Âu. Combining the fact that T is an
increasing tableau with the inequality i < ju, we have that B is strictly above Topju(T ).
This implies that B is strictly right of Topju(T ). By Lemma 4.2(2), i + 1 is weakly right
of i. Again, by Lemma 4.2(2), i+ 2 appears weakly right of i+ 1, so i+ 2 is weakly right
of i. Continuing this process, we see that ju appears weakly right of i, that is, Topju(T )
is weakly right of B. This contradicts the above observation that B is strictly right of
Topju(T ). Thus, B ∈ Âu.

Suppose for the sake of contradiction that B ∈ Âv for some 1 6 v < u. Since i > jv, B
cannot be placed weakly above of Botjv(T ) while being left of Γ̂v. Therefore, B is strictly
below of Botjv(T ). In addition, by Lemma 4.15, qT (jv) = v 6 u − 1 = qT (ju−1), so the

boxes strictly below of Botjv(T ) while being left of Γ̂v are placed left of Γ̂(u−1). Therefore,

if we prove B is right of Γ̂(u−1), then we obtain a contradiction to the assumption that
B ∈ Âv. Suppose that B is left of Γ̂(u−1). Since i > ju−1, B is strictly left of Botju−1(T ).
On the other hand, by using Lemma 4.2(2) repeatedly, one can see that there exists at
least one ju−1 which appears weakly left of i. It follows that Botju−1(T ) is weakly left of

B. This gives a contradiction to the previous observation, thus B /∈ Âv.
Next, let us prove the inclusion D̂

(1)
u (T ) ⊆ T−1([ju−1+1, ju−1]) for all 1 6 u 6 |I(T )|.

Equivalently, we claim that

D̂(1)
u (T ) ∩ T−1(i) = ∅ for any i ∈ [1,m] \ [ju−1 + 1, ju − 1].

In order to prove this, we let 1 6 u 6 |I(T )| and i ∈ [1,m] \ [ju−1 + 1, ju − 1]. Since⋃
16v6|I(T )| D̂

(2)
v (T ) = T−1(I(T )) and D̂

(1)
u (T ) ∩ D̂

(2)
v (T ) = ∅ for all 1 6 v 6 |I(T )|,

D̂
(1)
u (T ) ∩ T−1(i) = ∅ if i ∈ I(T ). Therefore, we may assume that i /∈ I(T ). Take u0 ∈
{1, 2, . . . , |I(T )|} \ {u} such that i ∈ [ju0−1 + 1, ju0 − 1]. Since the method of proof for the
case where u0 > u is similar with that for the case where u0 < u, we only prove the latter
case.

Suppose that u0 < u. Let B be the box filled with i. If i appears right of Γ̂ju0
, then B is

strictly right of Topju0
(T ) since i < ju0 . On the other hand, for all i 6 j < ju0 , combining

the fact j /∈ I(T ) with Lemma 4.2(2) yields that Topj+1(T ) is placed weakly right of the
unique box filled with j. It follows that Topju0

(T ) is weakly right of B. This contradicts

the previous observation that B is strictly right of Topju0
(T ). Therefore, i must appear

left of Γ̂ju0
. It follows that B ∈ Âu0 . Thus, D̂

(1)
u (T ) ∩ T−1(i) = ∅ by (4.6).

Now, combining Lemma 4.2(2) with the equations (4.7) and (4.8), we have that D̂
(1)
u (T )

is filled with ju−1 + 1, ju−1 + 2, . . . , ju − 1 from top to bottom starting from the left for
each 1 6 u 6 |I(T )|. Note that

T
(
yd(λ) \

⋃
16u6|I(T )|

(
D̂(1)
u (T ) ∪ D̂(2)

u (T )
))

= {j|I(T )| + 1, j|I(T )| + 2, . . . ,m}

and that yd(λ) \
⋃

16u6|I(T )|(D̂
(1)
u (T ) ∪ D̂

(2)
u (T )) is filled with j|I(T )| + 1, j|I(T )| + 2, . . . ,m

from top to bottom starting from the left. Hence, by the construction of sink(T ), we have
that T = sink(T ).
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Now, we prove the main theorem of this subsection.

Theorem 4.20. For each E ∈ Eλ;m, there exists a unique sink tableau in E.

Proof. Recall that the existence is already shown by using S1′ and S2′. For the uniqueness,
suppose that T1 and T2 are sink tableaux contained in E. Combining S3′ with Lemma 4.19
yields that

T1 = sink(T1) = sink(T2) = T2.

Hence, the source tableau in E is unique.

For each E ∈ Eλ;m, define

T ′E := the unique sink tableau contained in E.

5 A weak Bruhat interval module description of GE

The purpose of this section is to prove that the Hm(0)-module GE is equipped with the
structure of weak Bruhat interval module. In Section 5.1, we define a relation �E on E
and assign a permutation read(T ) ∈ Sm to each T ∈ E. Then, we show that (E,�E) is a
poset which is isomorphic to ([read(TE), read(T ′E)]L,�L). In Section 5.2, by extending this
isomorphism, we prove that GE is isomorphic to B(read(TE), read(T ′E)) as Hm(0)-modules.

Hereafter, we let Des(TE) = {d1 < d2 < · · · < dk}, d0 := 0, and dk+1 := m.

5.1 A poset structure on E

To begin with, we introduce necessary notation and definitions. Define a relation �E on
E by

T1 �E T2 if πσ · T1 = T2 for some σ ∈ Sm.

For each 1 6 j 6 k + 1, let
Hj := T−1E ([dj−1 + 1, dj]).

By considering Lemma 4.2, one can easily show the following properties:

(P1) For each 1 6 j 6 k+ 1, the set Hj is a horizontal strip, a set of boxes which contains
at most one box in each column of yd(λ).

(P2) For any B ∈ Hj, if B′ ∈ Hj appears to the right of B, then B′ is placed weakly above
B.

(P3) For any B ∈ Hj, if B′ ∈ Hj is the leftmost box among the boxes in Hj placed strictly
right of B, then TE(B) = TE(B′) or B′ = B+(0, 1), that is, B′ is placed immediately
right of B.
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j 1 2 3 4

w(j)(TE) 5 4 3 2 1 8 7 6 12 11 11 10 10 9 15 14 14 14 13

w(j)(TE) 5 4 3 2 1 8 7 6 12 11 10 9 15 14 13

Table 5.1: w(j)(TE) and w(j)(TE) in Example 5.3

Example 5.1. When

TE =

1 2 3 4 5 11 12 14 15
6 7 8 10 11 14
9 10
13 14

,

we have that Des(TE) = {5, 8, 12}. In this case, Hj (1 6 j 6 4) are given as follows:

H1 H1 H1 H1 H1 H3 H3 H4 H4
H2 H2 H2 H3 H3 H4
H3 H3
H4 H4

.

For each 1 6 j 6 k + 1, let w(j)(T ) be the word obtained by reading the entries of
T contained in Hj from right to left. Note that if an integer i appears multiple times
in w(j)(T ), then the integer i’s are placed consecutively. We define w(j)(T ) as the word
obtained from w(j)(T ) by erasing all i’s except one i for each i that appears in w(j)(T ).

Definition 5.2. For T ∈ E, the standardized reading word read(T ) of T is defined to be
the word w(1)(T )w(2)(T ) · · ·w(k+1)(T ) obtained by concatenating w(j)(T ) for 1 6 j 6 k+1.

Hereafter, we will identify read(T ) with the permutation in Sm written in one-line
notation.

Example 5.3. We revisit Example 5.1. For each j = 1, 2, 3, 4, w(j)(TE) and w(j)(TE) are
obtained as in Table 5.1. Therefore,

read(TE) = 5 4 3 2 1 8 7 6 12 11 10 9 15 14 13 ∈ S15.

Lemma 5.4. Let T1, T2 ∈ E.

(1) Suppose that i is a non-attacking descent of T1. Then,

read(πi · T1) = si read(T1) and read(T1) ≺L read(πi · T1).

(2) If T1 �E T2, then read(T1) �L read(T2) and

πread(T2)read(T1)−1 · T1 = sip · · · · · si2 · si1 · T1 = T2,

where sip · · · si2si1 is a reduced expression for read(T2)read(T1)
−1.
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Proof. (1) By Definition 5.2, si read(T1) = read(πi · T1) is obvious. We will prove that
read(T1) ≺L read(πi · T1).

Let j(i) and j(i+1) be the unique indices in {1, 2, . . . , k + 1} such that i ∈ T1(Hj(i)) and
i+ 1 ∈ T1(Hj(i+1)), respectively. We claim that

j(i) < j(i+1). (5.1)

Since i is a non-attacking descent of T1, we have

r
(i)
b (T1) < r

(i+1)
t (T1). (5.2)

If j(i) = j(i+1), then the properties (P1)–(P3) written in the first paragraph of this

subsection imply that r
(i)
t (T1) > r

(i+1)
b (T1). This contradicts (5.2), thus j(i) 6= j(i+1).

Suppose that j(i) > j(i+1). By (5.2), every box in T−11 (i + 1) is placed strictly below
Boti(T1). In addition, if there exist B ∈ T−11 (i + 1) such that B is placed weakly below
and weakly right of Boti(T1), then TE(Boti(T1)) < TE(B) which implies j(i) 6 j(i+1). This
contradicts the assumption j(i) > j(i+1), so every box in T−11 (i+1) is placed strictly below
and strictly left of Boti(T1).

Assume that there exist B1, B2 ∈ Hj(i+1) such that T1(B1) = T1(B2) and row(B1) 6
row(Boti(T1)) 6 row(B2). Since every box in T−11 (i+1) is placed strictly below and strictly
left of Boti(T1), we have T1(B1) > i+ 1. It follows that ΓT1(B1)(T1) passes below Boti(T1).
However, since j(i) > j(i+1), x > y for all x ∈ TE(Hj(i)) and y ∈ TE(Hj(i+1)), so ΓTE(B1)(TE)
passes above Boti(T1). This implies that T1 6∼ TE, which gives a contradiction. Thus, we
have

row(Boti(T1)) < row(B) for all B ∈ Hj(i+1) .

Let B
(i)
L be the leftmost box in Hj(i) and B

(i+1)
R the rightmost box in Hj(i+1) . Suppose

that there exist B1, B2 ∈ Hj(i) such that T1(B1) = T1(B2) and row(B1) 6 row(B
(i+1)
R ) 6

row(B2). By the above observation, B1 is strictly left of every box in T−11 (i), so T1(B1) <

i < i + 1 6 T1(B
(i+1)
R ). It follows that ΓT1(B1)(T1) passes above B

(i+1)
R . However, since

j(i) > j(i+1), we have TE(B1) > TE(B
(i+1)
R ) and so ΓTE(B1)(TE) passes below B

(i+1)
R . This

implies that T1 6∼ TE, which gives a contradiction. Thus, we have

row(B
(i)
L ) < row(B

(i+1)
R ). (5.3)

In addition, if col(B
(i)
L ) 6 col(B

(i+1)
R ), then TE(B

(i)
L ) < TE(B

(i+1)
R ), which implies that

j(i) < j(i+1). Thus, we have

col(B
(i+1)
R ) < col(B

(i)
L ). (5.4)

By considering the construction of source(T1) in Section 4.1 together with the inequal-
ities j(i+1) < j(i), (5.3), and (5.4), we deduce that there exists p ∈ I(TE) such that Γp(TE)

passes right of B
(i+1)
R and left of B

(i)
L . Since T1 ∈ E, this implies that

i+ 1 6 T1(B
(i+1)
R ) < T1(T

−1
E (p)) < T1(B

(i)
L ) 6 i
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which gives a contradiction. Therefore, we obtain (5.1).
Now, combining the definition of read with the claim above yields that i is placed to

left of i+ 1 in read(T1). Thus, read(T1) ≺L si read(T1) = read(πi · T1).
(2) Let σ ∈ Sm satisfying πσ · T1 = T2. Take a reduced expression sjq · · · sj2sj1 for σ.

Note that for all 1 6 r 6 q, jr cannot be an attacking descent of πjr−1 · · · πj2πj1 ·T1, other-
wise πσ ·T1 = 0. That is, jr is a non-descent or non-attacking descent of πjr−1 · · · πj2πj1 ·T1
for all 1 6 r 6 q. Enumerate the indices r ∈ [1, q] such that jr is a non-attacking descent
of πjr−1 · · · πj2πj1 · T1 by

a1 < a2 < · · · < ap

in increasing order. By (1), for all 1 6 r 6 p,

read(πar−1 · · · πa2πa1 · T1) �L sarread(πar−1 · · · πa2πa1 · T1) = read(πar · · · πa2πa1 · T1).

This implies that read(T1) �L read(T2) and sap · · · sa2sa1 is a reduced expression of
read(T2)read(T1)

−1. By the definition of ar’s, we have that πap · · · πa2πa1 · T1 = πσ · T1,
and hence

πread(T2)read(T1)−1 · T1 = πap · · · πa2πa1 · T1 = πσ · T1 = T2.

Theorem 5.5. Let E ∈ Eλ;m.

(1) For any T ∈ E, TE �E T �E T ′E.

(2) (E,�E) is a poset which is isomorphic to ([read(TE), read(T ′E)]L,�L).

Proof. (1) Let T ∈ E. Let us prove TE �E T . If T is a source tableau, then T = TE by
Theorem 4.11, thus TE �E T . Otherwise, by Lemma 4.2(1), we can choose i1 /∈ Des(T )
such that Topi1(T ) is strictly below Boti1+1(T ). One can easily see that i1 is non-attacking
descent of si1 · T and so πi1 · (si1 · T ) = T . By Theorem 3.11, we have si1 · T ∈ E. In
addition, read(si1 · T ) ≺L read(T ) by Lemma 5.4(1). If si1 · T is a source tableau, then
si1 · T = TE by Theorem 4.11, thus TE �E T . Otherwise, following a similar procedure as
described above, we can choose i2 /∈ Des(si1 · T ) such that

πi2 · (si2si1 · T ) = si1 · T, si1 · T ∈ E, and read(si2si1 · T ) ≺L read(si1 · T ).

Continuing this process, we have sip · · · si2si1 ·T = TE for some p ∈ Z>0 since E is a finite
set and the inequalities read(sip · · · si2si1 · T ) ≺L · · · ≺L read(si1 · T ) ≺L read(T ) ensure
that the tableaux T, si1 ·T, . . . , sip · · · si2si1 ·T are all distinct. By the choice of i1, i2, . . . , ip,
we have (πi1πi2 · · · πik) · TE = T , thus TE �E T .

Next, let us prove that T �E T ′E. If T is a sink tableau, then T = T ′E by Theo-
rem 4.20. Otherwise, by Lemma 4.2(2), we can choose a non-attacking descent i1 of T .
By Lemma 5.4(1), read(T ) ≺L read(πi1 · T ). If πi1 · T is a sink tableau, then T �E T ′E.
Otherwise, by Lemma 4.2(2), we can choose a non-attacking descent i2 of πi1 · T . Again,
by Lemma 5.4(1), read(πi1 · T ) ≺L read(πi2πi1 · T ). Continuing this process, we have
πip′ · · · πi2πi1 · T = T ′E for some p′ ∈ Z>0 since E is a finite set and the inequali-
ties read(T ) ≺L read(πi1 · T ) ≺L · · · ≺L read(sip · · · si2si1 · T ) ensure that the tableaux
T, πi1 · T, . . . , πip · · · πi2πi1 · T are all distinct. Therefore, T �E T ′E.
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(2) Let f : E → [read(TE), read(T ′E)]L be a map sending T to read(T ). Combining
Lemma 5.4(2) with Theorem 5.5(1) yields that read(T ) ∈ [read(TE), read(T ′E)]L for all
T ∈ E. Thus, f is well defined. The injectivity of f immediately follows from the definition
of read.

Let us prove the surjectivity of f . Take any γ ∈ [read(TE), read(T ′E)]L and let

T = πγ read(TE)−1 · TE.

We claim that γ = read(T ). Let us prove our claim by using mathematical induction
on `(γ read(TE)−1). When `(γ read(TE)−1) = 0, we have γ = read(TE) and T = TE.
Thus, γ = read(T ). Suppose that `(γ read(TE)−1) > 0 and the claim holds for all ω ∈
[read(TE), read(T ′E)]L with `(ω) < `(γ). Take any reduced expression sip · · · si2si1 for
γ read(TE)−1. Let

γ′ = sipγ and T ′ = πγ′ read(TE)−1 · TE.

One can easily see that γ′ ∈ [read(TE), read(T ′E)]L and `(γ′) < `(γ). By the induction
hypothesis, we have read(T ′) = γ′. Since read(T ′) = γ′ 6= γ = read(T ), we have T 6= T ′.
In addition, since πip · T ′ = T , the integer ip is a non-attacking descent of T ′. Thus,

read(T ) = sip read(T ′) = sipγ
′ = γ.

Here, the first equality follows from Lemma 5.4(1).
For the remaining part of the proof, we claim that for any T1, T2 ∈ E,

T1 �E T2 if and only if read(T1) �L read(T2).

The “only if” part was proved in Lemma 5.4(2). In order to prove “if” part, suppose that
read(T1) �L read(T2). Since TE �E T1, Lemma 5.4(2) implies that read(TE) �L read(T1).
Therefore, there exists a reduced expression sip · · · si2si1 for read(T2)read(TE)−1 such that
sip′ · · · si2si1 = read(T1)read(TE)−1 for some 1 6 p′ 6 p. Again, by Lemma 5.4(2),

πip′ · · · πi2πi1 · TE = T1 and πip · · · πip′+1
πip′ · · · πi2πi1 · TE = T2.

This implies that πip · · · πip′+2
πip′+1

· T1 = T2, thus T1 �E T2.

We conclude this subsection by proving the equality in (3.2).

Proposition 5.6. For any λ ` n and 1 6 m 6 n, ch([Gλ;m]) = Uλ;m. Consequently,∑
16m6n

ch([Gλ;m]) = Uλ.

Proof. Enumerate the equivalence classes in Eλ;m by E1, E2, . . . , Ep. For each 1 6 i 6 p,
let (Ei,�tEi) be a linear extension of the poset (Ei,�Ei). We define a total order � on
IGLT(λ)m by

T1 � T2 if i1 < i2 or (i1 = i2 and T1 �tEi1 T2),
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where 1 6 i1, i2 6 p such that T1 ∈ Ei1 and T2 ∈ Ei2 . Enumerate the elements in
IGLT(λ)m by T1 � T2 � · · · � T|IGLT(λ)m|. Let

M0 := {0} and Mj := C{Ti | 1 6 i 6 j} for 1 6 j 6 |IGLT(λ)m|.

Then
{0} = M0 ⊆M1 ⊆ · · · ⊆M|IGLT(λ)m| = Gλ;m

is a filtration of Gλ;m and Mj/Mj−1 is one-dimensional for each 1 6 j 6 |IGLT(λ)m|.
Therefore, ch([Gλ;m]) =

∑|IGLT(λ)m|
j=1 ch([Mj/Mj−1]) =

∑
T∈IGLT(λ)m

Fcomp(T ) = Uλ;m.

5.2 A weak Bruhat interval module structure on GE

The purpose of this subsection is to prove that GE
∼= B(read(TE), read(T ′E)) as Hm(0)-

modules.

Lemma 5.7. (cf. [10, Lemma 5.5]) Let T ∈ E and 1 6 i 6 m−1. Suppose that i ∈ T (Hj1)
and i+ 1 ∈ T (Hj2) for some 1 6 j1, j2 6 k + 1.

(1) i ∈ Des(T ) if and only if j1 < j2.

(2) i ∈ Des(T ) if and only if i /∈ DesL(read(T )).

Proof. If j2 6 j1, then i+ 1 appears to the left of i in read(T ). Otherwise, i+ 1 appears to
the right of i in read(T ). It follows that i /∈ DesL(read(T )) if and only if j1 < j2. Therefore,
it suffices to show that (1) holds.

To prove the “only if” part of (1), assume that i is a descent of T . By Theorem 5.5(1),
we can take a permutation σ ∈ Sm such that

T = πσ · TE = spl · · · · · sp2 · sp1 · TE,

where l := `(σ) and spl · · · sp2sp1 is a reduced expression for σ.
We use the induction on l to show the assertion. In case where l = 0, we have T = TE.

Since i is a descent of TE and i ∈ TE(Hj1), we have i+1 ∈ TE(Hj1+1) and so j1 < j1+1 = j2.
Suppose that l = 1. Let σ = sp for some 1 6 p 6 m− 1. Then, T and TE are same except
for p and p+ 1. In addition, p cannot be a descent of T . Therefore, we have only to check
the cases where i = p−1, p+1. Assume that i = p−1. Since T = si+1 ·TE, the assumption
i+ 1 ∈ T (Hj2) implies that i+ 2 ∈ TE(Hj2). Moreover, since i+ 1 is a descent in TE, i+ 1
is contained in TE(Hj2−1) by the definition of Hj’s. Since i is contained in TE(Hj1) and i+ 1
is contained in TE(Hj2−1), we have j1 6 j2− 1 and thus j1 < j2. The case i = p+ 1 can be
proved in the same manner as above.

For the induction step, we assume that l > 2 and the assertion is true for any U ∈ E
such that U = πγ · TE for some γ ∈ Sm satisfying `(γ) < l. Let T ′ = πσ′ · TE with
σ′ = splσ = spl−1

· · · sp2sp1 . Note that pl is not a descent of T and T is identical to T ′

except for pl and pl + 1. Therefore, it is enough to check the cases where i = pl− 1, pl + 1.
Since the case i = pl + 1 can be proved in the same manner as in the case i = pl − 1, we
only deal with the case i = pl − 1.
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Suppose that i = pl − 1 is a descent of T . Let q ∈ [1, k + 1] be the index satisfying
pl + 1 ∈ T (Hq). Then

pl − 1 ∈ T ′(Hj1), pl ∈ T ′(Hq), and pl + 1 ∈ T ′(Hj2).

Since pl is a descent of T ′, the induction hypothesis implies that q < j2. If pl − 1 is a
descent of T ′, then the induction hypothesis again implies that j1 < q, thus j1 < j2. For
the remaining case, assume that pl − 1 is not a descent of T ′. Then, we have

r
(pl)
b (T ′) 6 r

(pl−1)
t (T ′).

If r
(pl)
b (T ′) = r

(pl−1)
t (T ′), then j1 6 q by the definition of Hj’s. Since q < j2, we have

j1 < j2. Assume that r
(pl)
b (T ′) < r

(pl−1)
t (T ′). Then T ′′ := spl−1 · T ′ is contained in E and

πpl−1 · T ′′ = T ′. Note that

pl − 1 ∈ T ′′(Hq), pl ∈ T ′′(Hj1), and pl + 1 ∈ T ′′(Hj2).

Combining the assumption that pl − 1 is a descent of T with the equality T = πpl · T ′

yields that r
(pl−1)
t (T ′) < r

(pl+1)
b (T ′). Since T ′′ = spl−1 · T ′, we have that

r
(pl)
t (T ′′) < r

(pl+1)
b (T ′′).

Therefore, pl is a descent of T ′′. Since T ′′ �E T , by Theorem 5.5(2), there exists σ′′ ∈ Sm

such that πσ′′ · TE = T ′′ and `(σ′′) < l. Hence, by the induction hypothesis, we have that
j1 < j2.

Next, we prove the “if” part of (1). Suppose that j1 < j2, but i is not a descent of T .
If Topi(T ) and Boti+1(T ) are in the same row in T , then Boti+1(T ) lies to the immediate
right of Topi(T ). This, together with the properties (P1)–(P3), implies that Topi(T ) is the
rightmost box of Hj1 and Boti+1(T ) is the leftmost box of Hj2 . Note that for each 1 6 t 6 k,
the rightmost box of Ht is located strictly above the leftmost box of Ht+1. Therefore, there
exists j1 < t0 < j2 such that the leftmost box in Ht0 is located strictly below Topi(T ) and
the rightmost box in Ht0 is located strictly above Boti+1(T ). By the definition of Ht0 , there
exists p ∈ TE(Ht0) such that p ∈ I(TE) and

r
(p)
t (TE) < r

(i)
t (T ) = r

(i+1)
b (T ) < r

(p)
b (TE).

Since Topi(T ) (resp. Boti+1(T )) is contained in Hj1 (resp. Hj2) and j1 < t0 < j2, we have

TE(Topi(T )) < p < TE(Boti+1(T )). It follows that the lattice path Γ̃p(TE) passes through

VL((r
(i)
t − 1, c

(i)
t ), (r

(i)
t , c

(i)
t )). In addition, since T and TE are in the same class E, there

exists p′ ∈ I(T ) such that Γ̃p′(T ) = Γ̃p(TE). By the definition of Γ̃p′(T ), it follows that
i < p′ < i+1, which is absurd. Thus, Boti+1(T ) is strictly above Topi(T ). Let T ′ := si ·T . It
is clear that T ′ is an increasing gapless tableau, i ∈ Des(T ′), i ∈ T ′(Hj2), and i+1 ∈ T ′(Hj1).
Thus, by the “only if” part, we have j2 < j1, which contradicts the assumption j1 < j2.
Hence, we conclude that i is a descent of T .
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Now, we are ready to prove the main theorem of this subsection.

Theorem 5.8. For any E ∈ Eλ;m, as Hm(0)-modules,

GE
∼= B(read(TE), read(T ′E)).

Proof. Let f̃ : GE → B(read(TE), read(T ′E)) be the linear map sending T 7→ read(T ) for

all T ∈ E. By Theorem 5.5(2), f̃ is a bijection, so it suffices to show that

f̃(πi · T ) = πi · f̃(T ) for any 1 6 i 6 m− 1 and T ∈ E.

Take any 1 6 i 6 m − 1 and T ∈ E. By Lemma 5.7(2), if i /∈ Des(T ), then i ∈
DesL(read(T )), thus

f̃(πi · T ) = f̃(T ) = read(T ) = πi · read(T ) = πi · f̃(T ).

Suppose that i is a non-attacking descent of T . Then Lemma 5.4(1) implies that read(T ) �L
read(πi · T ) = si read(T ), thus

f̃(πi · T ) = read(πi · T ) = si read(T ) = πi · read(T ) = πi · f̃(T ).

Suppose that i is an attacking descent of T . By Lemma 5.7(2), we have i /∈ DesL(read(T ))
and so

πi · read(T ) = 0 or πi · read(T ) = si read(T ) ∈ [read(TE), read(T ′E)]L.

Assume that πi · read(T ) = si read(T ). Then by Theorem 5.5(2), there exists T ′ ∈ E such
that read(T ′) = si read(T ). By the definition of read(T ), we have T ′ = si · T . However,
from the assumption that i is an attacking descent of T , one can easily see that si · T is
not in E, which gives a contradiction. It follows that πi · read(T ) = 0. On the other hand,

since i is an attacking descent of T , f̃(πi · T ) = 0, thus f̃(πi · T ) = 0 = πi · f̃(T ).

6 The projective cover of GE

The purpose of this section is to find the projective cover of GE. To begin with, we
introduce the necessary terminology.

Let A,B be finitely generated Hm(0)-modules. A surjective Hm(0)-module homomor-
phism f : A→ B is called an essential epimorphism if an Hm(0)-module homomorphism
g : X → A is surjective whenever f ◦ g : X → B is surjective. A projective cover of A is
an essential epimorphism f : P → A with P a projective Hm(0)-module. The following
lemma is useful when determining whether a surjective Hm(0)-module homomorphism is
an essential epimorphism.

Lemma 6.1. ([2, Proposition 3.6]) The following are equivalent for an epimorphism f :
A→ B, where A and B are finitely generated modules over a left artin ring.
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(a) f is an essential epimorphism.

(b) ker(f) ⊂ rad(A).

According to Lemma 6.1, knowing membership conditions of ker(f) and rad(A) can
help determine whether f is an essential epimorphism or not. To study a membership
condition for rad(A), let us collect some definitions and notation.

Let α be a generalized composition. For any T ∈ SRT(α), let read(T ) be the word
obtained from T by reading the entries from left to right starting with the bottom row.
Combining [17, Theorem 3.3 and Proposition 5.1] with [18, Theorem 1(3)], one can see
that the C-linear map

Φ : Pα → B(w0(α
c
•), w0w0(α�)), T 7→ read(T ) for T ∈ SRT(α) (6.1)

is an Hm(0)-module isomorphism. In addition, if we define a partial order �SRT(α) on
SRT(α) by

T1 �SRT(α) T2 if πσ ·T1 = T2 for some σ ∈ Sm,

then the map

Φ′ : (SRT(α),�SRT(α))→ ([w0(α
c
•), w0w0(α�)]L,�L), T 7→ Φ(T ) for T ∈ SRT(α)

is an order isomorphism. For the definitions of α• and α�, see (2.1).
Let T •

α and T �
α be the unique standard ribbon tableaux of shape α satisfying

read(T •
α ) = w0(α

c
•) and read(T �

α ) = w0(α
c
�),

respectively. Considering the isomorphism Φ defined in (6.1), one can see that

read(T •
α ) = read(Tα•) and read(T �

α ) = read(Tα�).

For the definitions of Tα• and Tα� , see the last paragraph in Section 2.4. For instance, if
α = (2, 1) ? (1, 1), then w0(α

c
•) = 21345 and w0(α

c
�) = 21435, therefore

T •
α =

4 5
1 3
2

and T �
α =

3 5
1 4
2

.

It follows from the definitions of T •
α ,T

�
α that T •

α �SRT(α) T �
α . Thus, we can define

[T •
α ,T

�
α ] := {T ∈ SRT(α) | T •

α �SRT(α) T �SRT(α) T �
α }.

Under a special assumption on α, Choi, Kim, Nam, and Oh [10, Lemma 5.9] provided
a necessary condition for standard ribbon tableaux of shape α to be included in the radical
of Pα. It motivates us to state the following lemma which plays a key role in proving the
main theorem of this section. To avoid excessive overlap with their proof, we omit some
part of the proof in the following lemma.
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Lemma 6.2. Let α be a generalized composition of m and T be a standard ribbon tableau
of shape α. If T 6�SRT(α) T �

α , then T ∈ rad(Pα).

Proof. Given T ∈ SRT(α), let sil · · · si2si1 be a reduced expression for the permutation
read(T )read(T •

α )−1 in Sm. Considering the equality read(T •
α ) = w0(α

c
•) together with

the order isomorphism Φ′, we have that T = πread(T )read(T •α )−1 · T •
α . By following the

proof of [10, Lemma 5.9], one can see that

T ∈ rad(Pα) if ij ∈ Des(T �
α ) for some 1 6 j 6 l, (6.2)

where Des(T ) := {i ∈ [1, n− 1] | i appears weakly below i+ 1 in T }.
On the other hand, the equality read(T �

α ) = w0(α
c
�) implies that read(T ) �L

read(T �
α ) if and only if ij ∈ set(αc

�) for all 1 6 j 6 l. From the definition of T �
α , it follows

that Des(T �
α ) = set(α�). Putting these together, we have that if read(T ) 6�L read(T �

α ),
then ij ∈ Des(T �

α ) for some 1 6 j 6 l. Combining this observation with (6.2) yields that
if read(T ) 6�L read(T �

α ), then T ∈ rad(Pα). Now, considering the order isomorphism
Φ|−1SRT(α), we see that if T 6�SRT(α) T �

α , then T ∈ rad(Pα).

Next, let us introduce the notation needed to describe the projective cover of GE.
Recall that Des(TE) = {d1 < d2 < · · · < dk}, d0 = 0, and dk+1 = m. Let α(1) := (d1). For
1 < j 6 k + 1, define

α(j) :=

α(j−1) · (dj − dj−1) if Botdj−2+1(TE) is weakly left of Topdj(TE),

α(j−1) ? (dj − dj−1) if Botdj−2+1(TE) is strictly right of Topdj(TE).
(6.3)

For the definition of α(j−1) · (dj − dj−1), see (2.2). Let

αE := α(k+1). (6.4)

Given T ∈ SRT(αE), we define TT to be the filling of yd(λ) whose boxes in each
Hj (1 6 j 6 k + 1) are filled with the entries of the jth column of T in the follow-
ing manner:

(i) Let ε1 < ε2 < · · · < εl be the entries of the jth column of T and let C1, C2, . . . , Cd
be the connected components of Hj such that Ci is left of Ci+1 for 1 6 i < d.

(ii) Let c0 := 1 and let ci :=
∑i

p=1 |Cp| − i+ 1 for 1 6 i 6 d.

(iii) For each 1 6 i 6 d, fill Ci with εci−1
, εci−1+1, . . . , εci from left to right.

For later use, we notice that si · TT = Tsi·T for any i ∈ [1,m− 1] and T ∈ SRT(αE).
Now, we define a C-linear map η : PαE → GE by

T 7→
®
TT if TT is contained in E,

0 otherwise

for T ∈ SRT(αE) and extending it by linearity.
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Example 6.3. (1) Let

TE =

1 2 3 4
2 3
5
6

.

Note that Des(TE) = {1, 2, 4, 5}. The following figure illustrates Hj:

H1 H2 H3 H3
H2 H3
H4
H5

On the other hand, one can see that αE = (1, 1, 2) ? (1, 1). Let

T0 =
5 6

3
1 2 4

, T1 =
3 4

5
1 2 6

, T2 =
2 4

3
1 5 6

.

Then, we have that

TT0 =

1 2 3 4
2 3
5
6

, TT1 =

1 2 5 6
2 5
3
4

, and TT2 =

1 5 3 6
5 3
2
4

.

For instance, one can obtain TT2 with the datum in Table 6.1. Since TT0 = TE and TT1 = T
are contained in E, η(T0) = TE and η(T1) = T . On the other hand, since TT2 is not an
increasing tableau, it is not contained in E and thus η(T2) = 0.

(2) Letting

TE =
1 2 4 5
2 3
4

,

we have that

αE = (1, 1, 1, 2) and
H1 H2 H4 H4
H2 H3
H4

.

When T =
3

1 2 4 5
, one sees that

TT =
1 2 3 5
2 4
3

.

The filling TT is an increasing gapless tableau, but η(T ) = 0 since TT is not contained
in E.
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j ε1, ε2, . . . , εl C1, C2, . . . , Cd c0, c1, . . . , cd TT2(Hj)

1 1 {(1, 1)} 1, 1
1

2 5 {(2, 1)}, {(1, 2)} 1, 1, 1
5

5

3 3, 6 {(2, 2)}, {(1, 3), (1, 4)} 1, 1, 2
3 6

3

4 2 {(3, 1)} 1, 1
2

5 4 {(4, 1)} 1, 1
4

Table 6.1: Datum for constructing TT2 in Example 6.3(1)

As a first step to prove that the map η : PαE → GE is a projective cover of GE, we
show that η : PαE → GE is a surjective Hm(0)-module homomorphism.

Lemma 6.4. The map η : PαE → GE is a surjective Hm(0)-module homomorphism.

Proof. For each T ∈ E, let TT be the filling of rd(αE) whose jth column is filled with the
elements of T (Hj) so that they are increasing from top to bottom for all 1 6 j 6 k+1. Then
it follows straightforwardly from the definitions of read, and read that read(T ) = read(TT )
for all T ∈ E. By the definition of αE, we have TαE = TTE . For the definition of TαE ,
see Section 2.4. In addition, from Theorem 5.8 and (6.1), we have the Hm(0)-module
isomorphisms

f̃ : GE → B(read(TE), read(T ′E)), T 7→ read(T ) for T ∈ E

and

Φ : Pα → B(w0(α
c
•), w0w0(α�)), T 7→ read(T ) for T ∈ SRT(α).

Putting these altogether, we see that

w0(α
c
•) = read(TαE) = read(TTE) = read(TE).

If we prove read(T ′E) �L w0w0(α�), then the linear map

pr : B(w0(α
c
•), w0w0(α�))→B(read(TE), read(T ′E)), γ 7→

®
γ if γ ∈ [read(TE), read(T ′E)]L,

0 otherwise

is a surjective Hn(0)-module homomorphism by (2.4). In addition, we have

η = f̃−1 ◦ pr ◦ Φ,
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which implies that η is a surjective Hm(0)-module homomorphism. Thus, it suffices to
show that

read(T ′E) �L w0w0(α�). (6.5)

In order to prove (6.5), we first show that TT ∈ SRT(αE) for all T ∈ E. Choose a
T ∈ E and an arbitrary 1 < j 6 k + 1. Let

x = the entry at the uppermost box in the (j − 1)st column of TT and

y = the entry at the lowermost box in the jth column of TT .

It suffices to show that x < y only in the case where the (j − 1)st column and the jth
column are connected. Note that the (j − 1)st column and the jth column are connected
if and only if Botdj−2+1(TE) is weakly left of Topdj(TE). Assume that Botdj−2+1(TE) is
weakly left of Topdj(TE). If Topdj(TE) is weakly below Botdj−2+1(TE), then x < y since T
is an increasing tableau. Suppose Topdj(TE) is strictly above Botdj−2+1(TE). For the sake
of contradiction assume that x > y. Take σ ∈ Sm satisfying that T = πσ · TE and a
reduced expression sip · · · si2si1 for σ. Since x appears at Botdj−2+1(TE) and y appears at
Topdj(TE) in T , there exists 1 6 r 6 p such that

T ′(Botdj−2+1(TE)) < T ′(Topdj(TE)) and πir · T ′(Botdj−2+1(TE)) > πir · T ′(Topdj(TE)).

Here, T ′ = πir−1 · · · πi2πi1 · TE. Since the πir -action swap ir and ir + 1, the following hold:

T ′(Botdj−2+1(TE)) = ir, T ′(Topdj(TE)) = ir + 1, and

ir is a non-attacking descent in T ′.
(6.6)

However, since Botdj−2+1(TE) is below Topdj(TE) in T ′, the descent ir of T ′ cannot be
non-attacking. Hence, (6.6) cannot occur, which shows that x < y.

Since TT ′E
∈ SRT(αE), we have

read(T ′E) = read(TT ′E
) �L w0w0(α�)

as desired.

We are ready to prove the main theorem of this section.

Theorem 6.5. For any E ∈ Eλ;m, η : PαE → GE is a projective cover of GE.

Proof. By Lemma 6.2, we have C(SRT(αE) \ [T •
αE
,T �

αE
]) ⊆ rad(PαE). Therefore, by

Lemma 6.1, it suffices to show that

ker(η) ⊆ C(SRT(αE) \ [T •
αE
,T �

αE
]). (6.7)

First, we claim that TT �αE
is an increasing tableau. Take any boxes B1, B2 ∈ yd(λ) with

B1 6= B2 and B2 is positioned weakly southeast of B1, that is, B2 ∈ B1+(Z>0×Z>0\(0, 0)).
We need to show that TT �αE

(B1) < TT �αE
(B2). To prove it, we collect necessary notation.
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Let jB1 , jB2 ∈ [1, k + 1] such that B1 ∈ HjB1
and B2 ∈ HjB2

. For 1 6 j 6 k + 1, let
Cj be the set of the boxes in the jth column of rd(αE) from left to right. Then, we have
TT �αE

(HjB1
) = T �

αE
(CjB1

) and TT �αE
(HjB2

) = T �
αE

(CjB2
). Letting (αE)� = (a1, a2, . . . , ap),

set
A0 := 0 and Ar := a1 + · · ·+ ar for 1 6 r 6 p.

By the definition of T �
αE

, for each 1 6 r 6 p, there exist ur, u
′
r ∈ [1, k + 1] such that⋃

ur6j6u′r
T �

αE
(Cj) = [Ar−1 + 1, Ar]. Take rB1 and rB2 in [1, p] satisfying that CjB1

⊆
[ArB1

−1 + 1, ArB1
] and CjB2

⊆ [ArB2
−1 + 1, ArB2

], respectively.
Considering the assumption that B2 is positioned weakly southeast of B1 together with

the definitions of HjB1
and HjB2

, we see that jB1 6 jB2 , thus rB1 6 rB2 . If rB1 < rB2 , then
we have T �

αE
(B1) < T �

αE
(B2) by the definition of rB1 and rB2 . For the remaining case,

suppose that rB1 = rB2 . Note that Cj and Cj+1 are disconnected for all j ∈ [urB1
, u′rB1

−1].

This implies that Botdj−2+1(TE) is strictly right of Topdj(TE), equivalently, the leftmost
box in Hj−1 is strictly right of the rightmost box of Hj. Combining this observation with
the definitions of Hj−1 and Hj yields that the leftmost box in Hj−1 is strictly above the
rightmost box of Hj. Therefore, if jB1 < jB2 , then B2 /∈ B1 + (Z>0 × Z>0 \ (0, 0)). If
jB1 = jB2 , then combining B2 ∈ B1 + (Z>0 × Z>0 \ (0, 0)) with (P2) written in the first
paragraph of Section 5.1 yields that B1 and B2 are in the same row. It follows that B2 is
strictly east of B1, thus TT �αE

(B1) < TT �αE
(B2).

Next, we claim that TT �αE
∈ E, equivalently, TT �αE

∼ TE. Take any i ∈ I(TE). By

the construction of TT �αE
, |I(TT �αE

)| = |I(TE)| and there exists i′ ∈ [1,m] such that

T−1
T �αE

(i′) = T−1E (i). Let us show that Γi′(TT �αE
) = Γi(TE). Let

Recti :=
¶

(r, c) ∈ yd(λ) \ T−1E (i) | r(i)t 6 r 6 r
(i)
b and c

(i)
b 6 c 6 c

(i)
t

©
.

Choose any B ∈ Recti and let j1, j2 ∈ [1, k + 1] with

B ∈ Hj1 and T−1E (i) ⊂ Hj2 .

Set x = TE(B) and x′ = TT �αE
(B). In order to prove Γi′(TT �αE

) = Γi(TE), it suffices to

show that x < i if and only if x′ < i′. We omit the proof of the “if” part since it can be
proved in the same manner as the “only if” part.

To prove the “only if” part, suppose that x < i, but x′ > i′. Since B /∈ T−1E (i) and
x′ = TT �αE

(B), we have x′ > i′. Putting Lemma 4.2, the inequality x < i, and B ∈ Recti

together, one can derive that j1 < j2. By the definition of T �
αE

, given l1, l2 ∈ [1, k + 1]
with l1 < l2, if there exists a ∈ T �

αE
(Cl1) and b ∈ T �

αE
(Cl2) such that a > b, then Cp is

disconnected to Cp+1 for all l1 6 p < l2. Because x′ ∈ TT �αE
(Hj1) and i′ ∈ TT �αE

(Hj2), this

property, together with the inequalities x′ > i′ and j1 < j2, implies that Cp is disconnected
to Cp+1 for all j1 6 p < j2. By (6.3), Botdp−1+1(TE) is strictly right of Topdp+1

(TE) for all
j1 6 p < j2. Since Botdp−1+1(TE) is the leftmost box of Hp and Topdp+1

(TE) is the rightmost
box of Hp+1 for all j1 6 p < j2, every box in Hj1 is placed strictly right of each box in Hj2 .
Since B ∈ Hj1 and T−1E (i) ⊂ Hj2 , this is a contradiction to the choice of B ∈ Recti. Thus,
if x < i, x′ must be less than i′ as desired.
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Now, we have η(T �
αE

) = TT �αE
∈ E. Combining this with Lemma 6.4, we see that

η(T ) = TT ∈ E for all T ∈ [T •
αE
,T �

αE
]. In addition, the definition of η together with

Lemma 6.4 imply that

|{T ∈ SRT(αE) | TT ∈ E}| = dim(Im(η)) = |SRT(αE)| − dim(ker(η)).

It follows that the set {T ∈ SRT(αE) | TT /∈ E} is a basis for ker(η). Putting these
together yields the inclusion (6.7).

Remark 6.6. Lemma 6.2 provides a method for finding a projective cover of weak Bruhat
interval modules of the form B(w0(α), ρ), where α |= n and ρ ∈ Sn with w0(α) �L ρ.
This approach was recently applied to find a projective cover of poset modules associated
with regular Schur labeled skew shape posets. For further details, refer to [19, Section 5].

Independently, Bardwell and Searles [4] have introduced a type-independent method
for finding projective covers of various modules of the 0-Hecke algebras of finite Coxeter
type. For more information, see [4, Theorem 4.2].

7 Further avenues

(1) Pechenik and Yong [27] studied a theory of genomic tableaux parallel to the theory for
increasing gapless tableaux developed by Thomas and Yong [33]. In order to relate genomic
tableaux with increasing gapless tableaux, Pechenik and Yong [27] introduced a map,
called the K-standardization, sending a genomic tableau to an increasing gapless tableau.
From the viewpoint of this correspondence, increasing gapless tableaux play a similar role
to standard Young tableaux. However, to the best of the authors’ knowledge, while the
relationship between standard Young tableaux and permutations is well understood, the
relationship between increasing gapless tableaux and permutations is not well studied.
Our standardized reading read can be helpful to study the relationship because it maps
increasing gapless tableaux to permutations. For this reason, it would be interesting to
investigate the standardized reading read and the set {read(T ) | T ∈ E} for each E ∈ Eλ;m.

(2) For α |= n, Tewari and van Willigenburg [31] introduced Hn(0)-modules Sα such
that ch([Sα]) is equal to the quasisymmetric Schur function Sα. As a generalization of Sα,
in [32], they also introduced Hn(0)-modules Sσα for all σ ∈ S`(α). Then, they decomposed
Sσα into a direct sum of cyclic submodules Sσα,E. In the case where σ = id, König [21]
proved that all Sid

α,E are indecomposable. Later, Choi, Kim, Nam, and Oh [8] showed
König’s method still works for all σ ∈ S`(α) under suitable adjustments, proving that all
Sσα,E are also indecomposable.

In this paper, we give a direct sum decomposition Gλ;m =
⊕

E∈Eλ;m
GE. A natural

question that arises is whether or not GE is indecomposable for all E ∈ Eλ;m. However,
there exists E ∈ Eλ;m such that GE is not indecomposable. For example, the set

E =

T1 =
1 2 3
2 3
4

, T2 =
1 2 4
2 4
3


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is an equivalence class in E(3,2,1);4 such that GE = C(T1−T2)⊕CT2. It would be interesting
to characterize for which E ∈ Eλ;m the Hm(0)-module GE is indecomposable.

(3) In [27, Example 6.7], Pechenik and Yong pointed out that Uλ is not Schur-positive
for some partition λ. Later, Pechenik [24] provided a signed Schur expansion for Uλ.
Therein, it was also proved that Uλ is Schur-positive for all partitions λ with `(λ) = 2.
To be precise, for all λ = (λ1, λ2) ` n,

Uλ =
∑

lλ6m6n

∑
µ∈Par(λ;m)

sµ, (7.1)

where lλ := max{λ1, λ2 + 1}, Par(λ;n) := {(λ1, λ2)}, and

Par(λ;m) :=

®{
(λ1 − km, λ1 − km, 1km)

}
if λ1 = λ2,{

(λ1 − km, λ2 − km, 1km), (λ1 − km, λ2 − km + 1, 1km−1)
}

if λ1 > λ2

for all l 6 m < n. Here, km := n−m and sµ := 0 if µ is not a partition.
In this paper, we have constructed theHm(0)-module Gλ;m and show that ch([Gλ;m]) =

Uλ;m. On the other hand, for each α |= m, Searles [28] introduced the Hm(0)-module Xα

such that ch([Xα]) = ESα, where ESα is the extended Schur function introduced in [1].
It was shown in [1, Proposition 6.15] that ESλ = sλ for all λ ` m. The study of the
representation theoretic interpretation for (7.1) will be pursued in the near future by
using the 0-Hecke modules Gλ;m (lλ 6 m 6 n) and Xµ (µ ∈ Par(λ;m)). In this direction,
we leave the following conjecture.

Conjecture 7.1. Let λ be a partition with `(λ) 6 2. For each lλ 6 m 6 n, there exists
a partition {Eµ | µ ∈ Par(λ;m)} of Eλ;m satisfying the following two conditions:

(1) For each µ ∈ Par(λ;m),
∑

E∈Eµ ch([GE]) = sµ.

(2) For each µ ∈ Par(λ;m), there exist a total order ≺µ on Eµ = {E1 ≺µ E2 ≺µ · · · ≺µ
E|Eµ|} and a filtration

M0 = {0} ⊆M1 ⊆M2 ⊆ · · · ⊆M|Eµ| = Xµ

of Hm(0)-modules such that GEi
∼= Mi/Mi−1 for all 1 6 i 6 |Eµ|.

Let λ = (λ1, λ2) ` n. In case where λ1 = λ2, Pechenik defined a descent preserving
bijection from IGLT(λ) to

⋃
lλ6m6n

⋃
µ∈Par(λ;m) SYT(µ) in [23, Proof of Proposition 2.1].

Here, SYT(µ) is the set of standard Young tableaux of shape µ. In order to prove (7.1),
Pechenik used this bijection and a similar bijection for the case where λ1 > λ2. For details,
see [24, Proof of Proposition 4.3]. Using these bijections, we observe that Conjecture 7.1
is true when |λ| 6 8. Further, in this case, we also observe that the bijection induces an
Hm(0)-module isomorphism from GEi to Mi/Mi−1 for all 1 6 i 6 |Eµ|.
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