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Abstract

Let A be a partition of a positive integer n. The genomic Schur function Uy was
introduced by Pechenik—Yong in the context of the K-theory of Grassmannians.
Recently, Pechenik provided a positive combinatorial formula for the fundamental
quasisymmetric expansion of Uy in terms of increasing gapless tableaux. In this
paper, for each 1 < m < n, we construct an H,,(0)-module G .,,, whose image under
the quasisymmetric characteristic is the mth degree homogeneous component of Uy
by defining an H,,(0)-action on increasing gapless tableaux. We provide a method to
assign a permutation to each increasing gapless tableau, and use this assignment to
decompose G ., into a direct sum of weak Bruhat interval modules. Furthermore,
we determine the projective cover of each summand of the direct sum decomposition.

Mathematics Subject Classifications: 20C08, 05E10, 05E05, 14M15

1 Introduction

Let X = Grg(C") be the Grassmannian of k-dimensional subspaces of C". The Schur
functions play a central role to understand the structure of the cohomology ring H*(X,Z).
For example, the structure constants of Schur functions, called the Littlewood-Richardson
coefficients, are equal to that of Schubert classes [X,] (A € Recy ,—k) which form a Z-basis
of H*(X,Z). Here, Recy i is the set of partitions whose Young diagrams are contained
in a k x (n — k) rectangle and X, is the Schubert variety associated to A. For more
information, see [15, Part III].

Since the early 2000s, several combinatorial interpretations for the K-theoretic
Littlewood-Richardson rule have been introduced. We briefly introduce the relevant re-
sults. Let K(X) be the Grothendieck ring of algebraic vector bundles over X. It is well
known that the classes of structure sheaves [Ox,]| (A € Recy,—k) of X, form a Z-basis of

@Corresponding Author. Center for quantum structures in modules and spaces, Seoul National
University, Seoul 08826, Republic of Korea (ykim.math@gmail.com).

bDiscrete Mathematics Group, Institute for Basic Science, 55 Expo-ro Yuseong-gu, Daejeon 34126,
South Korea (syoo19@ibs.re.kr).

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(4) (2024), #P4.73 https://doi.org/10.37236/12896


https://doi.org/10.37236/12896

K(X) (for instance, see [6, Remark 3.4.2]). For A, u, v € Recy &, let ¢§ , be the integer
defined by
Ox,]-10x)= Y &,.0x]

vERecg n—_k

The coefficient ¢ , is called a K-theoretic Schubert structure constant, or sometimes a
K -theoretic Littlewood-Richardson coefficient. In [7], Buch provided the first combina-
torial description for (—1)‘”““'““‘0?’ ., by using set valued tableaux. Afterwards, several
combinatorial models for the K-theoretic Schubert structure constants have been con-
structed. For instance, see [20, 27, 33, 35]. In particular, Pechenik and Yong [27] gave a
combinatorial description for (—1)"’|*|’\‘*|“|CK’M by using genomic tableauz.

Genomic tableaux were first introduced by Pechenik and Yong [25] in the context of
the torus-equivariant K-theoretic Schubert calculus. These were defined as edge-labeled
tableaux with certain conditions and used as the key object in the first proof of a con-
jecture of Thomas and Yong [34] on the torus-equivariant K-theoretic Schubert structure
coefficients Ky ,, where A, i, v € Recy, k. Soon after, in [26], genomic tableaux were also
used to prove a mild modification of a conjecture of Knutson and Vakil [12] on K¥ ,. In
a sequel paper [27], Pechenik and Yong studied combinatorial theory of non-edge-labeled
genomic tableaux, providing a combinatorial description for (—1)"’""\‘““%; ., o terms of
genomic tableaux as mentioned above. Therein, they defined a symmetric function U,
called the genomic Schur function, as a generating function for genomic tableaux of shape
A for all partitions A. Further, they proved that {U, | A is a partition} is a basis for the
ring of symmetric functions and pointed out that genomic Schur functions are not Schur-
positive in general. As an alternative positivity, Pechenik [24] showed that genomic Schur
functions are fundamental positive. Specifically, for any partition A,

U)\ = Z Fcomp (T)> (11)

TelGLT (A

where IGLT(A) is the set of increasing gapless tableauz of shape A, comp(7T) is the compo-
sition associated to T', and Feomp(r) is the fundamental quasisymmetric function associated
to comp(T"). For the precise definitions, see Section 2.6. In addition, Pechenik left remarks
on interpretations of (1.1) in terms of representation theory of the 0-Hecke algebras. Before
discussing these remarks, we review the representation theory of 0-Hecke algebras.

The 0-Hecke algebra H,(0) is the C-algebra obtained from the Hecke algebra H,(q)
by specializing ¢ to 0. In [22], Norton classified all irreducible H,,(0)-modules up to iso-
morphism. These modules correspond in a natural way to compositions a of n. We denote
by F, the irreducible module corresponding to . Duchamp, Krob, Leclerc, and Thibon
[14] revealed a deep connection between the representation theory of the 0-Hecke alge-
bras and the ring QSym of quasisymmetric functions by introducing the quasisymmetric
characteristic, which is a ring isomorphism

ch : @ Go(H,(0)-mod) — QSym, [F,]— F,.
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Here, H,(0)-mod is the category of the finite dimensional H,,(0)-modules, Go(H,(0)-mod)
is the Grothendieck group of H,(0)-mod, and €, ., Go(H,(0)-mod) is considered as the
ring equipped with the induction product. In view of this correspondence, there have been
considerable attempts to provide a representation theoretic interpretation of noteworthy
quasisymmetric functions by constructing appropriate 0-Hecke modules. For instance,
Berg et al. [5] provided such interpretation for the dual immaculate functions, Tewari
and van Willigenburg [31] for the quasisymmetric Schur functions, and Searles [28] for
the extended Schur functions. Readers interested in relevant results may also refer to
3, 8, 9, 10, 18, 32].

Very recently, Jung, Kim, Lee, and Oh [18] introduced the weak Bruhat interval mod-
ule B(o, p) associated to [o, p]r, to provide a unified method to study the H, (0)-modules
introduced in [3, 5, 10, 28, 31, 32]. Here, o and p are arbitrary permutations in the sym-
metric group &,, and [o, p|., is the left weak Bruhat interval from o to p. Indeed, they
proved that all indecomposable direct summands of these H,,(0)-modules are contained
in the family of weak Bruhat interval modules up to isomorphism. They also investi-
gated several structural properties of weak Bruhat interval modules such as embeddings
into the regular representation of H,(0), the induction product, restrictions, and (anti-
)involution twists of weak Bruhat interval modules. In addition, they implicitly remarked
that ,,. Go(£n) is isomorphic to QSym, where %, is the full subcategory of H,,(0)-mod
whose objects are direct sums of weak Bruhat interval modules up to isomorphism, Gy(%4,,)
is the Grothendieck group of %, and €D, ., Go(#,) is considered as the ring equipped
with the induction product. For more information, see [18]. Another uniform way to study
various 0-Hecke modules was also proposed in [29] by introducing diagram modules.

The aforementioned remarks of Pechenik are concerned with the problem of finding
an appropriate 0-Hecke module whose image, under the quasisymmetric characteristic,
is a homogeneous component of the genomic Schur function U,. It was shown that the
fifth degree homogeneous component of U3y cannot be the image of quasisymmetric
characteristic of any projective H5(0)-module. The problem for finding indecomposable 0-
Hecke modules for a homogeneous component of Uy was also considered. However, there
was no successful answer for this problem. We show here that for some partition A of
n and 1 < m < n, it is impossible to construct an indecomposable H,,(0)-module M
such that ch([M]) is the mth degree homogeneous component Uy, of U,. Precisely, by
considering the Ext-group between irreducible H3(0)-modules, we show that there does
not exist any indecomposable H3(0)-module M such that ch([M]) is the third degree
homogeneous component of U1 1) (Remark 3.7).

The purpose of this paper is to provide a nice representation theoretic interpretation
of genomic Schur functions. To achieve our purpose, we construct an H,,(0)-module G,
by defining an H,,(0)-action on the C-span of the set IGLT()),, of increasing gapless
tableaux of shape A with maximum entry m. The H,,(0)-module G, is well suited for
our purpose in that it satisfies the following properties:

e The image of G, under the quasisymmetric characteristic is Uy.,.

e G,,, can be decomposed into a direct sum of weak Bruhat interval modules Gg.
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e The projective cover of Gg is also a weak Bruhat interval module.

While obtaining the decomposition of G.,, we introduce a method of assigning a per-
mutation to each increasing gapless tableau. What is fascinating is that this assignment
allows us to study increasing gapless tableaux using the various properties of permuta-
tions. For more information, see Section 7(1). In addition, we leave a conjecture on a
representation theoretic interpretation of Pechenik’s combinatorial formula for the Schur
expansion of certain U, (Conjecture 7.1).

From now on, we describe our results in more detail. For convenience, we fix a partition
A of n and a positive integer m less than or equal to n unless otherwise stated.

In Section 3, we construct an H,,(0)-module G,,, by defining an H,,(0)-action on the
C-span of IGLT(\),, (Theorem 3.2). We then provide a direct sum decomposition of Gy,
into H,,(0)-submodules which will turn out to be weak Bruhat interval modules. To do
this, we define an equivalence relation ~,.,, on IGLT()),,, (Definition 3.9). Let &y, be the
set of equivalence classes of IGLT(A),,, with respect to ~,.,. We prove that the C-span
of each equivalence class E € &,.,, is closed under the H,,(0)-action (Theorem 3.11), and
we thus obtain the direct sum decomposition

G)\;m: @ GE>

EES)\;m

where G is the H,,(0)-submodule of G,,,, whose underlying space is the C-span of FE.
Hereafter, we fix an equivalence class £ € Ey,,.

In Section 4, we prove the existence and uniqueness of the source tableau and those of
the sink tableau in F, which play an important role in verifying that Gg is isomorphic to
a weak Bruhat interval module. For the precise definitions of source and sink tableaux, see
Definition 4.1. Let us briefly describe our strategy to prove the existence and uniqueness
of source tableaux. We first give a characterization for source tableaux (Lemma 4.2).
Considering this characterization, we design an algorithm to construct a tableau source(7),
where T' is an arbitrary tableau in F (Algorithm 4.8). Then, we see that source(7T) is a
source tableau with source(T") ~y., T, which proves the existence of source tableaux in
E. Next, as a key lemma to prove the uniqueness of source tableaux in F, we verify
that source(T") = T for any source tableau 7' € E' (Lemma 4.10). Finally, combining this
lemma with an observation that source(77) = source(T3) for any T1,T» € E, we obtain
our desired result (Theorem 4.11). In a similar manner, we also prove the existence and
uniqueness of sink tableaux in E. For details, see Section 4.2. We denote by T and 77
the unique source and sink tableaux, respectively.

In Section 5, we prove that Gpg is isomorphic to a weak Bruhat interval module of
H,,(0). To begin with, we introduce a relation <g on E defined by

T, g1y if n, -1y =T, for some 0 € G,,.

Then, to each T € E we assign a permutation read(7) € &,,, called the standard-
ized reading word. With these preparations, we prove that Ty <p T =<p T} for all
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T € E and (E,=g) forms a poset which is isomorphic to the left weak Bruhat inter-
val ([read(Tg),read(T})]r, =<r) (Theorem 5.5). Specifically, we prove that the map

f:(E, =) — ([read(Tg),read(T%)|r, =1), T > read(T)

is a poset isomorphism. The structure of the posets (E,=<g) for E € &,,, enables us to
show that
ch([Gam]) = Unin forany AFmand 1 <m < n

in Proposition 5.6. Since E is a basis for Gg and [read(Tg),read(T})], is a basis for
B(read(Tx),read(T})), it is natural to ask if the map f : (E, <g) — [read(Tk), read(T})] L
can be lifted to an H,,(0)-module isomorphism

f: Gp — B(read(T), read(T%)), T + read(T) for T € E.

We give an affirmative answer for this question in Theorem 5.8 by proving that ]7: Gg —
B(read(Tg),read(T})) is an H,,(0)-module isomorphism.

Section 6 is devoted to finding a projective cover of Gg. For a generalized composition
o of m, let Py be the projective module whose underlying space is the C-span of the
set SRT(«) of standard ribbon tableaux of shape «. For the precise definition of P, see
Section 2.4. It is well known that a surjective H,,(0)-module homomorphism ¢ : Py —
Gp is a projective cover of Gg if and only if ker(¢)) C rad(P4) (for instance, see [2,
Proposition 3.6]). We provide a sufficient condition for 7 € SRT(«) to be contained
in rad(P4) (Lemma 6.2). Then, by considering the specific generalized composition &g
defined in (6.4), we construct a surjective H,,(0)-module homomorphism 7 : Py, — Gg
(Lemma 6.4). Finally, we prove that the set SRT(ag) N ker(n) is a basis for ker(n) and
that every element in this basis satisfies the above sufficient condition. Hence, we obtain
ker(n) C rad(Pq,,) as desired (Theorem 6.5).

In the last section, we discuss further avenues to pursue.

2 Preliminaries
Given any integers m and n, define

{keZ|m<Ek<n} ifm<n,
[m,n| = :
0 otherwise.

Throughout this section, we assume that n is a nonnegative integer.

2.1 Compositions

A composition « of n, denoted by o = n, is a finite ordered list of positive integers
(o, g, ..., ) satisfying Zle a; = n. We call k =: {(«) the length of a and n =:
|a| the size of a. For convenience we define the empty composition () to be the unique
composition of size and length 0. A generalized composition « of n is a formal expression
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a®xa® «.. -*a( , where a(? |= n; for positive 1ntegers n;’s with ny +ng+---+n, = n.
If A= (A1, Ao, ..o, Agay) = nosatisfies that Ay > Xy > -+ > Ay(a), then we say that A is a
partition of n and denote it by A Fn.

Given o = (a1, 9, ..., pe)) Enand I = {iy <ip <--- <4} C[1,n—1], let

set(a) = {1, 01 + aa,...,00 + a2 + -+ + aya)-1},
comp([l) := (iy,99 — i1,...,0 — 7).

The set of compositions of n is in bijection with the set of subsets of [1,n — 1] under the
correspondence « — set(a) (or I — comp(I)). Let a° be the unique composition satisfying
that set(a®) = [1,n — 1] \ set(a). For a generalized composition & = a!) % a® % - - - x a®)
let o := (@MW) x (@)% - % (a®))e,

For compositions a = (aq, a, ..., aye)) and B = (81, B2, ..., Bep)), let a - B be the
concatenation and o ® [ the near concatenatwn of  and (. In other words, o - § =

(ala Qg, ..., Oég(a)7617 627 <o 7&[(5)) and o © /8 - (ala Qg, .. Op—1, Qp(a) + ﬁl?ﬁ% o Jﬁﬁ(ﬁ))
For a generalized composition & = a® x a® % --- x a® we define

We also define
o, = o a@ . Oz(k), o = oW o® a® @O a(k)’ (2.1)

and

2.2 Diagrams

For a = (ov, g, . . ., y(a)) = 1, we define the ribbon diagram rd(a) of o by the connected
skew diagram Without 2 x 2 boxes, such that the ith column from the left has «a; boxes.
For a generalized composition o« = a® x a® % -+« a® of n, we define the generalized
ribbon diagram rd(x) of « to be the skew diagram whose connected components are
rd(a®),rd(a®),...,rd(a®) such that rd(a™*Y) is strictly to the northeast of rd(a®)
for i =1,2,...,k — 1. For example, if & = (2,1) x (1,1), then

1]

rd(x) =

A filling of rd(«) is a function .7 : rd(«) — Zs.

For A = (A1, Ag,..., Agy) B n, we define the Young diagram yd(X) of A by a left-
justified array of n boxes where the ith row from the top has A; boxes for 1 < i < £()).
We say that a box in yd(\) is in the ith row if it is in the ith row from the top and in the
jth column if it is in the jth column from the left. We denote by (i, j) the box in the ith
row and jth column. For any box (i, 7), let row((7,5)) = ¢ and col((7,j)) = j. Denoting
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(7,7) € yd(A) means that 1 <i < ¢(A) and 1 < j < A;. We also say that a lattice point on
yd(A) is in the ith row if it is in the (¢ + 1)st horizontal line from the top and in the jth
column if it is in the (j + 1)st vertical line from the left. We denote by (¢, j) the lattice
point in the ith row and jth column. For example, if A = (3,2,2), then

(1,3)

yd(A) = ,

(3,0

the box (1,3) is the box filled with red, and the lattice point (3,0) is the point marked
by the blue dot. A filling of yd(A) is a function T": yd(A\) — Z~¢. Throughout this paper,
we assume that

T((i,)) =00 if (i,7) € (Zso X Z>0) \ yd(A)  and
T((i, 7)) = —o0 if (4,7) € (Z X Z) \ (Z>o X Z0).

For any filling T" of yd(\), let
max(T") := max{T'((i, ) | (z,J) € yd(A)}.

2.3 The 0-Hecke algebra and the quasisymmetric characteristic

To begin with, we recall that the symmetric group &,, is generated by simple transpositions
s;:= (4,14 1) with 1 < ¢ <n — 1. An expression for 0 € &,, of the form s;,s;, - - - 5;, that
uses the minimal number of simple transpositions is called a reduced expression for o.
The number of simple transpositions in any reduced expression for o, denoted by ¢(c), is
called the length of 0. Let wy be the longest element in &,,, and wy(«) the longest element
in the parabolic subgroup of &,, generated by {s; | i € set(a)} for o = n.

The 0-Hecke algebra H,(0) is the C-algebra generated by my, s, ..., m,_1 subject to
the following relations:

ml=m forl1<i<n—1,
TGTG41T = T4 T T4 for 1 é Z n — 2
mmy =mm if [0 —j] > 2.

Foreach1<i<n—1,letw :=m — 1.
Con51der any reduced expression s;, s;, - - - 54, for a permutation o € &,,. We define the
elements 7, and 7, of H,(0) by

and fg = f’il%ig c ﬁl .

Ty = 7TZ‘17T7;2"'7TZ' »

P

It is well known that these elements are independent of the choice of reduced expressions,
and both {7, | 0 € &,} and {7, | 0 € &,,} are bases for H,(0).
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In [22], Norton classified all irreducible modules and projective indecomposable mod-
ules of the 0-Hecke algebras. It was shown that there are 2"~! distinct irreducible H,,(0)-
modules and 2"~! distinct projective indecomposable H,,(0)-modules, which are naturally
parametrized by compositions of n. For each a |= n, the irreducible module F,, correspond-
ing to « is the 1-dimensional H,,(0)-module spanned by a vector v, whose H,(0)-action
is given by

0 i¢€set(a),
i+ Vo = Z set(a) (1<i<n-—1).
Vo 1 ¢ set(a),

Also, the projective indecomposable module corresponding to « is the submodule P, :
H,,(0) g (a)Two (o) Of the regular representation of H,(0). It is known that P,/rad P,
F, for all @ = n, where rad P, is the radical of P,. For instance, see [17, 22].

Let R(H,(0)) denote the Z-span of the isomorphism classes of finite dimensional
representations of H,(0). The isomorphism class corresponding to an H,(0)-module M
will be denoted by [M]. The Grothendieck group Go(H,(0)) is the quotient of R(H,(0))
modulo the relations [M] = [M'] + [M"] whenever there exists a short exact sequence
0— M — M — M"— 0. The set {[F,]| | « | n} is a free Z-basis for Gy(H,(0)). Let

g .= @ gO(Hn(O))

n>0

11

be the ring equipped with the induction product.

Let us review the connection between G and quasisymmetric functions. Quasisymmet-
ric functions are power series of bounded degree in variables x1, x5, 23, ... with coefficients
in Z, which are shift invariant in the following sense: The coefficient of the monomial

r{wy? - ap* is equal to the coefficient of the monomial 7 'azf? - --23* for any strictly
increasing sequence of positive integers i; < iy < --- < 7} indexing the variables and any
positive integer sequence (aq, am, . .., ax) of exponents.

Given a composition «, the fundamental quasisymmetric function F, is defined by

F@ =1 and
Fa = Z LiyLig =+ Ty, -

1<in << <y
1;<ijy1 if jeset(a)

It is well known that {F,, | @ is a composition} is a basis for the ring QSym of quasisym-
metric functions. For instance, see [16] and [30, Proposition 7.19.1]. In [14], Duchamp,
Krob, Leclerc, and Thibon showed that

ch: G — QSym, [F,]— F,,

called quasisymmetric characteristic, is a ring isomorphism.

2.4 Projective modules of the 0-Hecke algebra

In [17], Huang provided a combinatorial description of projective indecomposable modules
and their induction products by using standard ribbon tableaux of generalized composition
shape. Here, we introduce the description briefly.
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Definition 2.1. For a generalized composition « of n, a standard ribbon tableau (SRT)
of shape « is a filling of rd(«) with {1,2,...,n} such that the entries are all distinct, the
entries in each row are increasing from left to right, and the entries in each column are
increasing from top to bottom.

We denote by SRT(«) the set of all SRTs of shape «. Define an H, (0)-action on the
C-span of SRT(«x) by

T if ¢ appears strictly above i 4+ 1 in .7,
T =<X0 if ¢ and ¢ + 1 are in the same row of .7, (2.3)
s; -7 if 1 appears strictly below i + 1 in .7

for 1 <i<n—1and 7 € SRT(x). Here, s; - .7 is obtained from 7 by swapping ¢ and
1+ 1. Let Po‘ be the resulting module.

Theorem 2.2. ([17, Theorem 3.3]) The following hold.
(1) For any o =n, P, = P, as Hy,(0)-modules.

(2) Let x = oM« a® x -« a® be a generalized composition of n such that oV |= n;
for each 1 < i < k. Then

Py= (P, @Puo) @ @Pyw) Hn(((%)wnz( 0)@-++&Hny (0 = D Ps
BE(«]

as H,(0)-modules.

For a generalized composition «, let 7, € SRT(«) be the standard ribbon tableau
obtained by filling rd(«) with entries 1,2,...,n from top to bottom starting from the
left. Then P4 is cyclically generated by 7.

2.5 Weak Bruhat interval modules of the 0-Hecke algebra

Given o € 6, and i € [1,n—1], i is called a left descent of o if {(s;,0) < ¢(c). Let Des (o)
be the set of all left descents of o. The left weak Bruhat order < on &, is the partial
order on &,, whose covering relation <¢ is defined as follows: ¢ <¢ s;0 if and only if
i ¢ Desy(0). Given o,p € &, the closed interval {y € &,, | ¢ <1 v =X, p} is called the
left weak Bruhat interval from o to p and denoted by [0, plr.

Definition 2.3. ([18]) Let o,p € &,. The weak Bruhat interval module associated to
[0, plL, denoted by B(o, p), is the H,(0)-module with the underlying space Clo, p|;, and
with the H,(0)-action defined by

v if i € Des(7),
0 ifi ¢ Des.(7) and siy € [0, ]z,
s;y if i & Desp(vy) and sy € [0, p|L.

Wi"yI:
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In [18], it was shown that the family of weak Bruhat interval modules contains various
H,,(0)-modules up to isomorphism. In particular, the family contains all projective inde-
composable modules and their induction products. Precisely, given o = n and generalized
composition & = o xa® % ... xa® of n,

P, = B(wy(a), wowp(a)) and Py = Blwo(ag), wowo(xe)).

For the definitions of &, and &, see (2.1). For more information on weak Bruhat interval
modules, see [18].

Remark 2.4. Duchamp, Hivert, and Thibon [13] constructed an H,(0)-module arising
from a poset on [n]. One may ask if there is a relationship between the H,,(0)-modules
arising from posets and weak Bruhat interval modules. Very recently, Choi, Kim, and
Oh [11] addressed this question, proving that every weak Bruhat interval module can be
recovered as an H,(0)-module arising from a regular poset.

For later use, we state the following useful property that can be easily proved: For any
o,p €6, and p' € [0, p|, the linear map

v ify € o, 0]L,

. (2.4)
0 otherwise

mﬁ@m%wa,VH{
is a surjective H,,(0)-module homomorphism.

2.6 Genomic Schur functions

In [27], Pechenik and Yong introduced the genomic Schur function as a generating function
for genomic tableaux to develop the combinatorial theory of genomic tableaux. Recently,
Pechenik [24] provided another way to define genomic Schur functions by using increasing
gapless tableaux.

Definition 2.5. Given A\ F n, an increasing gapless tableau of shape A is a filling of yd(\)
such that

(1) the entries in each row strictly increase from left to right,
(2) the entries in each column strictly increase from top to bottom, and
(3) the set T~*(k) is nonempty for all 1 < k < max(T).

Let IGLT(A) be the set of all increasing gapless tableaux of shape A. Given T' €
IGLT(A) and ¢ € [1,max(7T)], let Top,(T) (resp. Bot;(T)) be the unique box B € T~ (i)
such that row(B) is minimal (resp. maximal) among row(B’)’s for B’ € T~'(i). In other
words, Top,(T) (resp. Bot;(T")) is the highest (resp. lowest) box in 7" having entry 4. Also,
let

(r, (7). (T)) := Bot(T) and (" (T).¢{"(T)) := Top,(T). (2:5)
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If T is clear in the context, we simply write rl(f), cff), rt(i), and cgi) instead of rt(f) (T), cl(f) (T),
Tt(i) (T), and cﬁi) (T'), respectively. We call i a descent of T' if Tt(i) < Tt(j—’—l), or equivalently,
there is some instance of i strictly above some instance of i + 1 in 7. Denote by Des(T)
the set of all descents of T" and set comp(T") := comp(Des(T)). Given 1 < m < n, we
define

IGLT(A\)y, == {T € IGLT(\) | max(T") = m}.

Definition 2.6. ([24, 27]) For A - n, the genomic Schur function U, is defined by

Uy := Z Z Fcomp(T)

1<m<n \ TEIGLT(A\)m

For 1 <m < n, let Uy, = ZTGIGLT(A)"L Feomp(r)- From the definition, it immediately
follows that Uy, is the mth degree homogeneous component of U,.

Example 2.7. Note that

IGLT((2,2)) = { ,

One can see that

comp L2 =(1,1,1), comp =(2,2), comp 13 =(1,2,1).
213 314 24

Thus,
U2z = Fuiy, Ug2a = Foz+ Fagn, and Upg) = Fui) + Feg) + Faz-
Hereafter, we assume that n is a positive integer, m is a positive integer less than or

equal to n, and A is a partition of n, unless otherwise stated.

3 0-Hecke modules arising from increasing gapless tableaux

In this section, we introduce an H,,(0)-module G, by defining an H,(0)-action on the
C-span of IGLT(A),,,. Then, we decompose G, into a direct sum of H,,(0)-submodules
which will turn out to be weak Bruhat interval modules in Section 5.

3.1 An H,,(0)-action on CIGLT(}\),,

We start by introducing the necessary definitions.

Definition 3.1. Given 7" € IGLT()\) and 1 < ¢ < max(7T) — 1, we say that ¢ is an
attacking descent if i € Des(T'), and either

(a) there exists (j, k) € yd(A) such that T'((7,k)) =i and T((j + 1,k)) =i+ 1, or
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(b) there exists a box B € T~'(i + 1) placed weakly above Bot;(T).

We notice that if ¢ is a non-attacking descent of T, then all (i + 1)’s lie strictly below
and strictly left of Bot;(T).

Take any 1 < m < n. For each 1 < ¢ < m — 1, define a linear operator m; :
CIGLT(M),, — CIGLT()\),, by letting

T if 7 is not a descent of T',
(T) =<0 if 7 is an attacking descent of T,

s; - T if i is a non-attacking descent of T’

for T € IGLT()\),, and extending it by linearity. Here, s; - T is the tableau obtained from
T by replacing ¢ and 7 + 1 with ¢ + 1 and ¢, respectively.
The following is the main theorem of this subsection.

Theorem 3.2. For any 1 < m < n, the operators Ty, Ty, ..., T, 1 satisfy the same
relations as the generators my, 7o, ..., Tm—1 for H,(0). In other words, T, Ty, ... T, 1

define an H,,(0)-action on CIGLT()\),,.
In order to prove this theorem, let us establish some necessary lemmas.
Lemma 3.3. For1 <i<m—1, @ =m,.

Proof. Let T € IGLT(A),, and 1 < i < m — 1. If ;(T) =T or m;(T) = 0, then it is
obvious that 7?(T") = 7;(T). If 7t;(T) = s; - T, then, every i + 1 is strictly below each 7 in
T. This implies that ¢ ¢ Des(s; - T), thus 7(T) = m7;(T). O

Lemma 3.4. For 1 < Z,j <m— 1 with ‘Z —j’ > 1, T(Z'th = TCJT[Z

Proof. Let T' € IGLT()\),, and 1 < 4,5 < m — 1 with |i — j| > 1. Suppose that 7;(T) =T
or m;(T) = 0. If m;(T") = T or m;(T") = 0, then it is obvious that mm;(T) = 7;m,(T). If
WJ(T) = §;- T, then

T7'6)=(s;-T)'(i) and T '(i+1)=(s;-T)'(i+1).
Combining this with the assumption that m;(T) = T or m;(7) = 0, we have that

(1 (T)) = 70 (i (7).
For the remaining case, suppose that 7;(T") = s;-7 and 7;(1") = s;-T". Since |i—j| > 1,

T@)=(s;-T) i) and T 'i+1)=(s;-T) (i +1)

and
T7j) = (s:-T)7'(j) and T7'(j+1)=(si-T)7'(j +1).

It follows that 7; - (s; - T) = s; - (s;-T) and 7; - (s; - T) = s; - (s; - T). It is obvious that
si+(sj-T)=s;-(s;-T), thus the assertion follows. O

Lemma 3.5. For 1l < 1 <m— 2, TGTC TG = TG TG 4
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Proof. Given T € IGLT(\),,, and 1 < i < m — 2, we have three cases.

Case 1: m(T) =T. If m11(T) = T or ;11 (T) = 0, the proof is straightforward. Let us
assume that 7,1 - T = s;,1 - T'. Note that

T(Z7TZ+17'(1(T) = sz‘(8¢+1 . T) and Tfi+17fi7[i+1(T) = T(i+17'[i(8i+1 : T) (31)

If 7v;(si01 - T) = sip1 - T or ;(s;11 - T) = 0, one can easily see that the right hand sides of
the two equations in (3.1) are the same. For the remaining part of Case 1, suppose that
7'(@'<S7;+1 . T) =S (S/L'Jrl . T) Since

T7'6) = (si- (sip1-T)) i +1) and T i41) = (55 (5541 - 7)) (i +2),

the assumption 7;(T) = T implies that 7t 1(s; - (Siy1+T)) = ;- (8i41 - T). Thus, we have
that
thnz—l—lnz(T) = S; (Si—i—l . T) = 7Ti+17t7;7f2‘+1(T).

Case 2: 7'[@<T) =0.If i1 (T) =T or i1 (T) = O, then TG 1T (T) =0= T 1TGTT (T)
Assume that 7, 1(T) = s;11 - T. Let us consider the three subcases

ni(3i+1 . T) = Sj41 " T, 7'[1‘(82‘4_1 . T) =0, and TCZ‘(SZ‘+1 : T) =S;- (Si—i—l : T)
In case where 7t;(s;11-T) = s;41-T, we have that rt(i)(siﬂ T) > rl(fﬂ)(siﬂ -T'). For the
definitions of 7" (s;41 - T) and 70 (si41 - T), see (2.5). In addition, ' /(T) > +{*V(T)
since 71 (T) = $;41 - T Therefore,

r(T) = 1P (sip1 - T) 2 10 (8041 - T) = rIT2(T) > v2N(T) > 1T,

But, this contradicts the assumption that 7t;(T") = 0, thus 7;(s;41 - T') cannot be s; 1 - T
In case where 7t;(s;41 - T) = 0, we immediately have that 7; 77,1 (1) = 0.
In case where 7t;(s;41 - T) = s; - (8i41 - T'), since

T7'6) = (si- (sip-T)) i +1) and T7Hi41) = (55 (541 -T)) (i 4+ 2),

the assumption 7t;(7") = 0 implies that 7t;1(s; - (si41- 7)) = 0.
Case 3: m;(T) = s, - T'. First, suppose that 7;11(T") = T. Then

T[ZTCz_,_lT[l(T) = 7'(2'(7'(2'4_1 (Si . T)) and T 1TGTC (T) = 7TZ'+1<SZ‘ . T)

If 7 1(s;-T) =s;-T or ;i 1(s; - T) = 0, then one can easily show that 7t;(7;,1(s; - T)) =
1 1(s; - T). In case where 7, 1(s; - T') = s;41 - (s; - T'), we have that

(TG (s - T)) = Ti(Siv1 - (si- 1)) and (s - T) = Siv1 - (s T).

In addition, the assumption 7t;,1(7") = T implies that Tt(iH)(T) > rff”)(T), equivalently,

Tt(i)($i+1 (8- T)) = rt()iﬂ)(swl (s T)).
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Therefore, 7;(s;41 - (8;+T)) = si11- (s - T).

Next, suppose that 7;,1(7) = 0. We claim that 7t (Ti1(s; - T)) =0. If ;1 4(s; - T') =
si - T, Tt(Hl)(si -T) > rt(fﬁ)(si - T'), equivalently, Tt ( ) = Z+2 ( ). Additionally, the
assumption 7;(T) = s; - T implies that r ™ (T) > ( ). Thus

rNTY) > 1 8(T) = 1T = r{TN(T).

It follows that ¢ + 1 ¢ Des(T), which contradicts the assumption 7t;.1(7") = 0. Hence,
7 1(s; - T) cannot be s; - T. If ;44 (s; - T') = 0, then it is clear that 7t;(7t;41(s; - T')) = 0.
If Tti+1(5i . T) = Sj41° (Si . T), then

T +1) = (sip1-(5-T)) 7M@) and T Hi4+2) = (si01 - (si-T)) i+ 1).

Thus, the assumption 7t;,1(7") = 0 implies that 7t;(s;41 - (s; - T)) = 0.
Finally, suppose that m;(1(7) = $;41 - 7. Then we have T(HZ)(T) > rgﬂ)(T). In

addition, the assumption 7;(T") = s; - T implies that rt(Hl)(T) > rt(f) (T"). Thus,

rTY) > eI = (1) > r (T,

Now, one can easily see that ;7 17(T) = ;7 (T). O

Theorem 3.2 now follows immediately from Lemma 3.3, Lemma 3.4, and Lemma 3.5.
Hereafter, for 1 < m < n, we denote by G, the H,,(0)-module whose underlying space
is CIGLT(\),, and whose H,,(0)-action is given by Theorem 3.2.

11213]6
Example 3.6. (1) When "= [2|3|5|7]|, we have
416

m3(T)=s3-T, my(T)=T, and m(T)=0 fori=1,2,56.

Here, the indices in red are used to indicate the descents of the tableau.

(2) Note that

i12] [1[3] [1[4] [1]2] [1]3]
GLr(2,1,1)) =4 3], 2] . [2] . 2] . [2]
4] 4] 3] 3] 3]
The descents of each tableau in IGLT((2,1,1)) are given as follows:
4 4 3 3 3
Des(T) C [1,3] | {2,3} | {1,3} | {1,2} Des(T) C[1,2] | {1,2} | {1,2}
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Therefore, Ui 1,1y = (Fl2a,1) + Fu2,1) + Flu1,2)) + 2F(1,1,1). The following figures illustrate
the Hm(O) actlon on Ga,1,1)m for m = 3,4

1B 2] ]3]
EInoL 2] ®  [2
4 3 3
= - =d 2
i@\‘ 0 | ™, | i,
113 0 0
2] ™
4] G113
= o
m
1]4]
o] )73
3]
lﬂ—h T2
0
G114
In Proposition 5.6, we will prove that
ch([Gym]) = Unn  for any AFnand 1 <m < n, (3.2)

which implies that » 7, ch([Gxm]) = Un.
We close this subsection by providing a remark which tells us that for some A - n and
1 < m < n, there is no indecomposable H,,(0)-module M satisfying ch([M]) = Uy.m.

Remark 3.7. In [13, Theorem 4.7], Duchamp, Hivert, and Thibon described the Ext-
quiver of H,,(0). For the definition of Ext-quivers, see [36, Definition 2.7.5]. According
to their result, for any o = m, we have Ext}{m(o)(Fa,Fa) = 0, equivalently, there is
no indecomposable H,,(0)-module M such that ch([M]) = 2F,. On the other hand,
in Example 3.6, we see that Ug 1.3 = 2F(1,1,1). Thus, we conclude that there is no
indecomposable Hs(0)-module M satisfying ch([M]) = U,1,1);3-

3.2 A direct sum decomposition of G, into H,,(0)-submodules
Let us start with necessary definitions and notation. Given 7' € IGLT()),,, let
Z(T):={iel,m] | [T'(i)| > 1}.

Recall that we let (rbk),cf)k ) = Boty(T) and ( )k ) Top,(T) for 1 < k < max(7T).
Given i € Z(T), let T;(T) be the lattice path from (r”, ¢’ — 1) to (r" — 1, ¢{") satisfying
the following two conditions:
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(i) if the path passes through two boxes horizontally, then the entry at the above box
is strictly smaller than ¢ and the entry at the below box is weakly greater than i,

and

(ii) if the path passes through two boxes vertically, then the entry at the left box is
strictly smaller than ¢ and the entry at the right box is weakly greater than .

Pictorially,

(i):>a<z'<b and (i) [a]b] = a<ixb

Example 3.8. Let

10[14[22[24]26]27]
11]15[23[25/20
12[16[28[29
13[17
17)27
18[20
1921
21

Note that Z(T) = {17,21,27,29}. By following the way of defining lattice paths, we obtain
the lattice paths T'17(T),T91(T), Ta7(T'), and T'ag(T') as follows:

QO o] |

= W N —

ot

16 (10]14(22(24|26 27‘ 16 (10|14(22{24|26 27‘ 116 1(10(14(22(24/|26|27 16 (10|14(22|24|26 27‘
217 111{15]23(25(29 217 1(11|15]23[25(29 217 1(11|15]23(25|29 217 |11{15]23|25(29
3|8 12(16|28|29 3| 812[16|28|29 3| 8112(16]28|29 3| 8 (12(16|28|29
419 (13|17 419 (13|17 419 |13[17 419 (13[17
5117127 511727 5 (17|27 5(17(27
1820 1820 18(20 18(20
19(21 19|21 1921 1921
21 21 21 21
7 (T) Iy (T) L7 (T) Lao(T)

Given a lattice path I', let V(I') be the set of lattice points through which I" passes.
For two lattice paths I' and I, we write I' = IV if V(') = V(I). Now, we define the
following equivalence relation on IGLT(A),,.

Definition 3.9. Let A - n and 73,75 € IGLT()),,. The equivalence relation ~.,, on
IGLT(\)y, is defined by T3 ~y.p, 15 if and only if

{(Ci(T), 7' (0) | i e (1Y)} = {(Ti(T2), T5 ' (4)) | i € Z(Tn) } -

If X and m are clear in the context, we will drop the subscript from ~.,,. Let ., be
the set of equivalence classes of IGLT(\),, with respect to ~.
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Example 3.10. Let

1121315 1121315 1121314 1121415
Tl = |2]141/5]|6 , T2 = |21415|7 , T3 = |2]3|5]|6 , and T4 = |2|3)5]|6
31517 31516 3147 4157

Then, T1 ~(4,3,2);5 TQ, but T1 /71/(473’2);5 Tk for k = 3, 4.

Theorem 3.11. Let m and n be positive integers with m < n and let A = n. For any
I1<i<m—1and E €&y, m - CECCE.

Proof. Let T € IGLT(\),,. If m;-T is T or 0, then ;- T is clearly contained in E. Therefore,
we may assume that 7; - T = s; - T. In this case, all #’s are strictly above all (i +1)’s in 7.
This implies that acting m; on T" does not change any lattice paths. In addition, from the
definition of m;-action on 7', it follows that for any j € Z(7T),

ey - [T TG DG e T (i),
D R AR AP et AN

Thus, we have that

{(Cy(T), T () |5 € (D)} = {(Ts(mi - 1), (ms - T)7H(5)) | 7 € Z(mi - T}
which implies that m; - T € E. O

For each E € &y, let Gg be the H,,(0)-submodule of G, whose underlying space
is the C-span of E. Then, we have the following direct sum decomposition

Gam = P Ge

EES)\;m

4 Source and sink tableaux

The goal of this section is to show that there are two distinguished tableaux, called source
and sink tableauz, in each equivalence class E € E,.,. To achieve our goal, we first give a
characterization for source and sink tableaux. Then, we construct two tableaux source(T")
and sink(T") for each T € E. Finally, we verify that source(T") (resp. sink(7")) is the unique
source tableau (resp. sink tableau) in F, where T is an arbitrary chosen element in F.
Hereafter, E denotes an equivalence class of IGLT()),, with respect to ~ and T' denotes
a tableau contained in IGLT(\),, unless otherwise stated.

To begin with, we give definitions for source tableaux and sink tableaux in IGLT(A),,.

Definition 4.1. Let T € IGLT()\),,.

(1) T is said to be a source tableau if there does not exist 7" € IGLT(A),, and 1 < i <
m — 1 such that m; - 7" =T and T" # T.
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(2) T issaid to be a sink tableau if there does not exist 7" € IGLT(A),, and 1 <7 < m—1
such that m; - T =T" and T" # T.

The following lemma characterizes source and sink tableaux.
Lemma 4.2. The following hold.

(1) T is a source tableau if and only if for all i ¢ Des(T), T((rt(i), D4 1)) =i+1, that
is, the box right adjacent to Top,(T) is filled with i+ 1.

(2) T is a sink tableau if and only if i is an attacking descent for all i € Des(T).

Proof. (1) To prove the “only if” part, suppose that 7' is a source tableau. Assume,
on the contrary, there exists i ¢ Des(T) such that i + 1 does not appear in the box
(rt(k), k) +1). Then one can easily see that s;-T"is contained in IGLT(A),,. This contradicts
the assumption that 7" is a source tableau because 7; - (s; - T) = T.

Next, let us prove the “if” part. Suppose contrary that 7' is not a source tableau.
Then, there exists 77 € IGLT(A),, and 1 < i < n — 1 such that m; - 7" =T and T" # T.
This implies that i ¢ Des(7T'), that is, ) (T) > rl()iH)(T). Thus, the box right adjacent to
Top,;(T") cannot be filled with 7 4 1.

(2) The assertion immediately follows from the definitions of sink tableaux and at-
tacking descents. O

4.1 Existence and uniqueness of source tableaux in FE

In this subsection, we construct the desired tableau source(T) and show that it is the
unique source tableau in E. To do this, we need the following preparation.

Given two lattice points P and P’ in the same row, we denote the horizontal line from
P to P’ by HL(P, P'). For each i € Z(T'), we define a new lattice path I';(T") by extending
I';(T) with the following algorithm.

Algorithm 4.3. Fix i € Z(T).

Step 1. For each j € Z(T)), set I, to be the lattice path obtained by connecting the following
three lattice paths:

HL((ry,0), (r?, ) — 1)), T4(T), and HL((r = 1,¢?), () = 1,1 o) ))).

Here, Ao := 1.
Step 2. Set (1, ) to be the lattice point in V/(I'}) satisfying that
re = min{r | (r,c) € V(I'})} and ¢ =min{c| (ry,c) € V(I))}.
Step 3. If there exists j € Z(T') such that

r'<re<r” and ,d" > ¢ forsome (1, ), (r", ") € V(I)), (4.1)

then go to Step 4. Otherwise, go to Step 5.
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Step 4. Let jo = min{j | I’} satisfies (4.1)} and ¢ = min {c¢ | (r,¢) € V(I} ) }. Then, let T
be the lattice path Satlsfymg that

V() = VI \{(re,0) | ¢ 2 o} U{(r,c) € V(I')) | r <reand ¢ 2 co}.
Set I, :==T". Go to Step 2.
Step 5. Return I;(T) := I} and terminate the algorithm.
If T is clear in the context, we simply write the lattice path fz(T ) by [, forieZ (T).

Example 4.4. Let us revisit Example 3.8. By applying Algorithm 4.3 to each i € Z(T),
we obtain F17, Fgl, F27, and F29 as follows:

116 1(10(14(22(24|26|27 16 (10|14(22(24|26 27‘ 116 1(10(14(22(24/|26|27 116 (10(14|22(24|26 27‘
2| 7111{15(23|25(29 2 7111]15(23]25]|29 2| 7111|15(23|25]|29 21 7111{15|23]25(29
318 1(12[16]28|29 318 1(12]|16|28|29 31 81(12|16]28|29 31 81(12|16|2829
419 |13|17 419|13|17 419|13[17 419 |13[17
5117|127 5117|127 5117127 5117|127
18|20 18]20 18(20 18]20
19(21 19121 19|21 19|21
21 21 21 21
' (T) [y (T) Iy7(T) Tyo(T)

For convenience, we introduce some terminologies related to I;’s. For any (r,c) €
yd(\) and i € Z(T), we say that (r,c) is below T; if there exists 0 < ' < r such that
(r',c—1),(r",¢) € V(I;). Otherwise, we say that (r,¢) is above T';. For each i € Z(T), we
call the path HL((ré), 0), (ré), cé) — 1)) the bottom path of T;. Given i,j € Z(T), if there
exist (1, ), (r", ") € V(fj) such that r" < rl(f) <r"and ¢, < ct(f), then we say that fj
crosses the bottom path of L. B

In order to enumerate the lattice paths I';’s in appropriate order, to each i € Z(T),
we will give a label pr(i) € {1,2,...,]Z(T)|}. To do this, for i € Z(T'), we set p, €
{1,2,...,|Z(T)|} satistying the following: Let i,j € Z(T).

C1. If rt(f) < rt()j), then p; < p.
C2. If rt(f > réj), then pj > p/.

C3. When rt() = rt(f ), consider the lowest lattice point p € V(f~)ﬂV(f /) such that neither
p+ (=1,0) nor p+ (0,1) are contained in V(TN V(F ). I p+(=1,0) € V(I'y),
then p; < p’;. Otherwise, p; > p’.

We notice that {p; | i € Z(T)} = {1,2,...,|Z(T)|}. By rearranging p;’s with the following
algorithm, we define a function pr : Z(T) — {1,2,...,|Z(T)|}.

Algorithm 4.5. For each i € Z(T)), let p; := p}, where p] is the index defined above.
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Step 1. Let k= 1.
Step 2. Take iy and ip4q in Z(T) such that p;, =k and p;, , =k + L.

Step 3. If fik“ crosses the bottom path of T

to Step 1. Otherwise, go to Step 4.

then set p;, := k+ 1 and p;,,, =k and go

X

Step 4. If k < |Z(T)| — 1, then set k = k + 1 and go to Step 2. Otherwise, set pr(i) := p;
for each i € Z(T) and go to Step 5.

Step 5. Return (pr(4))iez¢r) and terminate the algorithm.
By the construction of pp, it is clear that pr is a bijection.

Lemma 4.6. Given a source tableau T, enumerate the elements of Z(T) in increasing
order ji < jo < -+ < Jiz(ry- Then, pr(ju) = u for all 1 < u <|Z(T)|.

Proof. We claim that pT(ju) < pr(Jusr) for all 1 <u < |Z(T)|. Given 1 < u < |Z(T)|, we
have two cases '
rl()J u) < r[()]u+l) and T(ju) > rt()Jqul)

In case where rt()" w) < rt()]““) we have that Bot;, (T') is above T
and p;- , defined in C1-C3, satisfy the inequality pj < p}, ..~ By the construction of I';,

and FJ s F]u ., does not cross the bottom path of F . Thus, when applying Algorithm 4. 5
pj, and pj, ., are never swapped in Step 5. This shows that pr(ju) < pr(Jus1)-

In case where rt(,j“) > rt()j““), we have that pj; > p}wl. It follows from Lemma 4.2(1)

that for each j, < i < ju41, there exists a box in T-!(i) which appears weakly below
Top;, (T'), therefore rt(]“) < rJ*). By the construction of I';

and satisfies r < réj““ is filled with an integer greater than j, 1. This

Combining this with the assumption rﬁj“) > rt()j““),

Let

This implies that p;»

Jut1-

Ju+1 each box (T, C) which

appears below F] o

implies that Top] (T) is above T

]u+l

we have that FJ crosses the bottom path of T

Jut-
Zi:={ieX(T)|i<jyand p},  <p;<pj}

L, :={i € I(T) | i > juyr and pj, , <p; <pj,}, and
Ty :={i € Z(T) | T;,,, crosses the bottom path of I';}.

Ju+1

Note that p’ = p} ., + |Zi[ + |Zo| + 1. One can see that, when applying Algorithm 4.5,
we encounter the situation that

k= p;qul + |Il| + |Ig‘, I = ju—i-la and ik+1 = ]u

in Step 2. In this situation, after applying Step 3, we have p;, =k <k +1=p; .. Since
fju ., cannot cross the bottom path of fju, the relative order p;, < p;,., does not change
until the algorithm terminates. Thus, we have that pr(j.) < pr(Jus1)-

Since we have shown that pr(j.) < pr(jus1) for all 1 < u < |Z(T)|, we immediately
have that pr(j,) = u for all 1 < u < |Z(T)]. O
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Steps H k ‘ ik ‘ Uk+1 ‘ (P17, P21, P27, P29)
Step 1 1 . . (2,4,3,1)
Steps 2, 8 || 1 | 29 17 (1,4,3,2)
Step 1 1 (1,4,3,2)
Steps 2, 3 || 1 | 17 | 29 (1,4,3,2)
Step 4 2 . . (1,4,3,2)
Steps 2, 3 || 2 | 29 | 27 (1,4,2,3)
Step 1 1 . . (1,4,2,3)
Steps 2, 8 || 1 | 17 27 (1,4,2,3)
Step 4 2 . . (1,4,2,3)
Steps 2, 8 || 2 | 27 29 (1,4,2,3)
Step 4 3 (1,4,2,3)
Steps 2, 3 || 3 | 29 | 21 (1,4,2,3)
Steps 4, 5 || 3 (1,4,2,3)

Table 4.1: The process of obtaining pr(i)’s in Example 4.7

For convenience, we simply write the lattice path fp;1(u) by T® for u € [1,|Z(T)|].
Given u € [1,|Z(T)]], let A, be the subdiagram of yd(\) consisting of the boxes located
above '™ Then, define

DO(T) =AN( |J (AUT (') ) and DA(T) =T (' (). (42)

1<v<u
Example 4.7. Let us revisit Example 3.8 and Example 4.4. One can easily see that
/ / / /

By applying Algorithm 4.5, one can compute pr(i)’s as Table 4.1, where -’s in the third
and fourth columns are used to omit unnecessary information. Consequently, we have

pT(]-?) = 17 PT(21) = 47 PT(27) = 27 and PT(29) =3.

We draw DS})(T) and D (T') for u=1,2,3,4 in FIGURE 4.1. Here, asterisks and colored
bullets are used to indicate the boxes in DS)(T) and DY (T'), respectively.

Now, we construct the desired tableau source(T") with the following algorithm.

Algorithm 4.8. Let T' € IGLT()),,. Set e¢g = 0 and My = 0. For 1 < u < |Z(T)|, let
en = |IDY(T)| 41 and M, = 32", e,

Step 1. Set v := 1.
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k| k| k| * °
k| k| k| % °
X[k | k| ok x| e
‘ x|k | x| ®
r | x| e )
@ * | %
x| e
RS °
D{"(T) and D{?(T) D{Y(T) and DY(T) D{(T) and DYY(T) D{Y(T) and D(T)

Figure 4.1: DY(T) and DP(T) for u = 1,2,3,4 in Example 4.7

Step 2. Fill the boxes in Dg,l)(T) by My_1+1, My_1+2,...,M,_1+e,—1 from left to right
starting from the top.

Step 3. Fill the boxes in DI (T) by M,.

Step 4. If v < |Z(T)|, then set v := v + 1 and go to Step 2. Otherwise, fill the remaining
boxes by Mz¢r) + 1, Miz(r) +2,...,m from left to right starting from the top. Set
source(7") to be the resulting filling. Return source(7") and terminate the algorithm.

Example 4.9. Revisit Example 4.7. We see that

176 [10[14[2224[26PT 112137451673
2 17 (111523250 SEINNRIE &
3R 12[16BR ) Algorithn 45 14[T5[16[ 171 )|
IE K 13192022

T = 5t source(T') = 53
TS[20 2007
1921 2829
o1 9

Let us collect some useful facts for source(7") which can be easily seen.
S1. By Lemma 4.2(1), for any 7" € IGLT()),,, source(T) is a source tableau.
S2. For any T' € IGLT()),,, T ~ source(T") by the construction of source(T).

S3. By the construction of source(T), the set {(T;(T),T-'(:)) | i € Z(T)} determines
source(7"). In other words, if T} ~ Ty, then source(T}) = source(T3).

Combining the facts S1 and S2 shows the existence of source tableaux in £. However,
the above facts S1, S2, and S3 do not guarantee the uniqueness of source tableaux in F.
To show the uniqueness, we need the lemma below.

Lemma 4.10. For any source tableau T, source(T) =T.
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Proof. Let jo =0 and Z(T) = {j1 < jo < --- < jjz¢r)}- By Lemma 4.6, pr(j,) = u for all
1 < u < |Z(T)], thus from the definition of DZ(T") we have that
DA(T) =T7%(j,) forall 1< u<|Z(T)| (4.3)

u

We claim that
DINT) = T ([juor + 1,50 — 1)) forall 1 < u < |Z(T)|. (4.4)

First, let us prove the inclusion DS)(T) DT Y [Juor + 1,5, —1]) for all 1 < u < |Z(T)].
Take any 1 < u < |Z(T)| and @ € [ju—1 + 1, ju — 1]. Let B be the box filled with ¢ in T
Recall that for any 1 < v < |Z(T)|, A, is defined to be the subdiagram of yd(\) consisting

of the boxes located above I'™). By the definition of D{”(T), the desired inclusion is
obtained by proving that

BeA, and B¢A, foralll<v<u.

Suppose for the sake of contradiction that B ¢ A,. Combining the fact that 7" is an
increasing tableau with the inequality ¢ < j,, we have that B is strictly left of Bot; (7).
This implies that B is strictly below Bot;, (7). By Lemma 4.2(1), i + 1 appears weakly
below than i. Again, by Lemma 4.2(1), i 4+ 2 appears weakly below than ¢ + 1, so i + 2 is
weakly below than 7. Continuing this process, we see that j, appears weakly below than
i, that is, Bot;, (7") is weakly below B. This contradicts the above observation that B is
strictly below Bot;, (T). Thus, B € A,.

Suppose for the sake of contradiction that B € A, for some 1 < v < u. Since i > j,,
B cannot be placed weakly left of Top, (1) while being above I',. Therefore, B is strictly
right of Top; (7). In addition, by Lemma 4.6, pr(j,) = v < u — 1 = pr(ju-1), so the

boxes strictly right of Top; (7) while being above I, are placed above [, Therefore,
if we prove that B is below ['*=1) then we obtain a contradiction to the assumption that
B € A,. Assume that B is above '~V Since i > j,_1, B is strictly above Top;, (T)

by the construction of I®=1. On the other hand, by using Lemma 4.2(1) repeatedly, one
can see that there exists at least one j,_; which appears weakly above . It follows that
Top;, ,(T) is weakly above B. This gives a contradiction to the previous observation, thus
B ¢ A,.

Next, let us prove the inclusion DS (T) € T ([ju_1 +1, ju —1]) for all 1 < u < |Z(T)|.
Equivalently, we claim that

DIN(T)NT (i) =0 forany i € [1,m]\ [y +1,ju — 1]

To prove this, choose arbitrary 1 < u < |Z(T)| and ¢ € [1,m] \ [ju_1 + 1, j. — 1]. Note
that if i € Z(T), then D (T) N T(i) = O because U, <z DY (T) = T-(Z(T)) and

DS})(T) n DY (T) =0 for all 1 < v < |Z(T)|. Therefore, we may assume that i ¢ Z(T).
Take ug € {1,2,...,|Z(T)|} \ {u} such that i € [j,y—1 + 1, Ju, — 1]. Since the method of
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proof for the case where ug > u is similar with that for the case where ug < u, we only
prove the latter case. ~

Suppose that ug < u. Let B be the box filled with . If ¢ appears below I';, , then B is
strictly below Bot;, (T') since i < ju,. On the other hand, for all i < j < j,,, combining
the fact j ¢ Z(7T") with Lemma 4.2(1) yields that Bot;;(7") is placed weakly below the
unique box filled with j. It follows that Bot;, (T') is weakly below B. This contradicts the
previous observation that B is strictly below Bot;, (7"). This implies that i must appear

Juo
above I';, . If i appears above I';, , then B € A,,. Thus, DS)(T) NT1(i) = 0 by (4.2).
Now, combining Lemma 4.2(1) with the equations (4.3) and (4.4), we have that DY (T)

is filled with j, 1+ 1,741+ 2, ..., j, — 1 from left to right starting from the top for each
1 <u < |Z(T)|. Note that

T(Yd(/\) \ U (DT U DQ(LQ)(T))) = {jzay + L jizy) +2,...,m}.

1<u|Z(T)]

Again, by Lemma 4.2(1), we have that yd(\) \ UKUQI(T)‘(DQ(})(T) U D(uQ)(T)) is filled
with jizer)) + 1, Jizer)) + 2, ..., m from left to right starting from the top. Hence, by the
construction of source(7), we have that 7" = source(T"). O

Now, we prove the main theorem of this subsection.
Theorem 4.11. For each E € &), there exists a unique source tableau in E.

Proof. Recall that the existence is already shown by using S1 and S2. For the unique-
ness, suppose that 77 and 75 are source tableaux contained in E. Combining S3 with
Lemma 4.10 yields that

Ty = source(Ty) = source(Tz) = Ts.

Hence, the source tableau in E' is unique. O

For each E € &y, define

T := the unique source tableau contained in F.

4.2 Existence and uniqueness of sink tableaux in FE

Similar to the previous subsection, we construct a tableau sink(7") and show that it is the
unique sink tableau in E. To do this, we need the following preparation.

Given two lattice points P and P’ in the same column, we denote the vertical line from
P to P' by VL(P, P"). For each i € Z(T'), we define a new lattice path I'; by extending I';
with the following algorithm.

Algorithm 4.12. Fix i € Z(T).
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Step 1. For each j € Z(T), set I'; to be the lattice path obtained by connecting the following
three lattice paths:

VL((rY —1,¢™),(0,¢7)), T,(T), and VL((r{, e — 1), (RY, ) — 1)),

where Rﬁi) := max{r | (r, cff) —1) e yd(\)}.
Step 2. Set (1, cp) to be the lattice point in V(I';) satisfying that
¢y = minf{c | (r,c) € V(T})} and rp, = min{r | (r,cp) € V(T))}.
Step 3. If there exists j € Z(T') such that

r'r" >y and ¢ <o, <" for some (1, ), (", ") € V(T), (4.5)

then go to Step 4. Otherwise, go to Step 5.

Step 4. Let jo = min{j | I} satisfies (4.5)} and ro = min {r | (r,c, —1) € V(I )}. Then,
let I' be the lattice path satisfying that

V(IT) =VI)\{(r,eo = 1) | r =71} U{(r,c) € V(F;-O) |7 >rgand ¢ < ¢y}
Set I, :=T". Go to Step 2.
Step 5. Return fZ(T) = I"/ and terminate the algorithm.

If T is clear in the context, we simply write the lattice path fZ(T ) by [ forieT (T).

Example 4.13. Let us consider

1[2]3]4]5]6]7]23
8[9[10[11]12[13]2

14]15[16[17]24]:
18[19[20[22
21[22[23
26[27
28[29
129)

—
w

Ut

)

(In fact, T is the source tableau in the equivalence class of the tableau given in Exam-
ple 3.8.) By applying Algorithm 4.12 to each i € Z(T') = {22, 23, 25,29}, one can see all
I';’s as below.

123456723‘ 112(3]4|5]6|7)23 123456723‘ 123456723‘
8191(10{11]12|13|25 8191(10]11{12|13}25 8191(10]11{12|13)25 819110]11{12|13|25
14|15|16{17|24|25 14|15|16|17|24|25 14|15|16|17|24]25 14|15]16|17|24|25
18(19/20)22 18]19|20|22 18]19|20|22 18]19]20|22
21§22(23 21(22|23 21(22(23 212223
26|27 2627 2627 26|27
28|29 28|29 28|29 28|29
29 29 29 29

[oo(T) [o3(T) Tos(T) Tag(T)
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For convenience, we introduce some terms related to T;’s. For any (r,c) € yd(\)
and i € Z(T), we say that (r,c) is right of T; if there exists 0 < ¢ < ¢ such that
(r—1,d),(r,c) € V(T;). Otherwise, we say that (r,c) is left of I;. For each i € Z(T),
we call the path VL((0, cgi)), (rt(i) -1, cgi))) the rightmost path of T;. Given i,j € Z(T), if
there exist (', c'), (", ") € V(fj) such that .7 < 7 and ¢ < ) < ¢, then we say
that fj crosses the rightmost path of fz

For each ¢ € Z(T), we will define a label q,(T") € {1,2,...,|Z(T)|} to enumerate the
lattice paths {I'; | i € Z(T)}. To do this, we first set q; € {1,2,...,|Z(T)|} satisfying the
following conditions: Let i,j € Z(T).

cr. If ¥ < ¢, then q; < qj.
C2'. If cti) > cij), then q; > q.

C3’. When ¢l = ¢ consider the highest lattice point ¢ € V(I;) N V(fj) such that

neither ¢+4-(0, —1) nor ¢+(1, 0) are contained in V(fi)ﬂV(fj). If g+(0,-1) € V(fi),
then q; < qj. Otherwise, q; > q.

We notice that {q} | i € Z(T)} = {1,2,...,|Z(T)|}. By rearranging q;’s with the following
algorithm, we define a function q : Z(T') — {1,2,...,|Z(T)|}.

Algorithm 4.14. For i € Z(T)), let ¢; := g}, where q; is the index defined above.
Step 1. Let k = 1.
Step 2. Take iy and ip4q in Z(T) such that ¢;, = k and ¢;,,, =k + 1.

Step 3. If f% ., crosses the rightmost path of r
go to Step 1. Otherwise, go to Step 4.

then set ¢;, == k+ 1 and ¢;,, := k and

[

Step 4. If k < |Z(T')| — 1, then set k = k+ 1 and go to Step 2. Otherwise, set qr (i) := ¢; for
each i € Z(T') and go to Step 5.

Step 5. Return (qr(4))icz¢r) and terminate the algorithm.
By the construction of qr, it is clear that qr is a bijection.

Lemma 4.15. Given a sink tableau T, let us enumerate the elements of Z(T') in increasing
order j1 < jo < -+ < jiz¢ry- Then, we have qr(j.) = u for all 1 < u < |Z(T)|.

Proof. We claim that qr(j.) < qr(jus1) for any 1 < u < |Z(T')]. Given 1 < u < |Z(T))],
we have two cases

cEj“) < cEj““) and cEj“) > cEj“+1).

In case where cﬁj“) < cEj““), Top,, (T) is left of fjuH-

This implies that qj, and ¢,
defined in C1’-C3’, satisfy the inequality q;.u < q;u+1' By the construction of fju and
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fju o fju ., does not cross the rightmost path of fju. Thus, Algorithm 4.14 does not allow
that ) and qj  , are swapped in Step 3. This implies that q7(ju) < q7(jut1)-

In case where cﬁj“) > cEj““), we have that g} > q;uﬂ. It follows from Lemma 4.2(2)

that for each j, < i < j,41, there exists a box in T7!(7) which appears weakly right

of Top,, (T'), therefore I < ) In addition, by the construction of T';

(r,¢) which appears right of FJ ., and satisfies ¢ < CE‘““) is filled with an integer greater

than j,.;. This implies that Bot]u(T) is left of T
(Ju)

+1

jus1s €ach box

Comblmng this with the assumption
Let

]u+1

> CEJ““) we have that F crosses the rightmost path of FJT e

T, ={ieZ(T) | i< j, and q;uﬂ <q; < q;-“}7
Ty :={i € Z(T) | i > jus1 and q;uﬂ <q;<q;}, and
Iy :={i € Z(T) | T;,,, crosses the rightmost path of I';}.

Ju+1

Note that q; =q] ., +|Zi| + |Z2| + 1. One can see that, when applying Algorithm 4.14,

we encounter the situation that
k= q;uH + ‘1-1’ + ’Ig‘, Zk = ju+17 and ik+1 = ]u

in Step 2. In this situation, after applylng Step 3, we have ¢;, = k <k +1=gq;,,. Since

F]u ., cannot cross the rightmost path of F]u, the relative order ¢;, < g;,,, does not change
until the algorithm terminates. Thus, we have that qr(j.) < q7(Jur1)-

Since we have shown that qr(j.) < qr(ju+1) for all 1 < u < |Z(T')|, we immediately
have that qr(j,) = u for all 1 < u < |Z(T)|. O

For convenience, we simply write the lattice path F “1w by '™ for u € [1,|Z(T)|].

Given u € [1,[Z(T)|], let A, be the subdiagram of yd()\) onsmtmg of the boxes located
left of T, Then, we define

BT =AN (U AUT () and BA(T) =T az'(w).  (4.6)

1<v<u
Example 4.16. Let us revisit Example 4.13. One can easily see that
q/22 =2, dy =4, q'25 =3, and q'29 =1.

By applying Algorithm 4.14, one can compute qr(i)’s as Table 4.2, where -’s in the third
and fourth columns are used to omit unnecessary information. Consequently, we have

qr(22) =1, qr(23)=3, qr(25)=4, and qr(29) =2

We draw Bg)(T) and DY (T') for u=1,2,3,4 in FIGURE 4.2. Here, asterisks and colored
bullets are used to indicate the boxes in Dq(})(T) and DY) (T), respectively.

Now, we construct the desired tableau sink(7") with the following algorithm.
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Steps H k ‘ Uk ‘ Uk+1 ‘ (g22, 423, G25, 429)
Step 1 1 (2,4,3,1)
Steps 2, 8 || 1 | 29 22 (1,4,3,2)
Step 1 1 (1,4,3,2)
Steps 2, 3 || 1 | 22 | 29 (1,4,3,2)
Step / 2 (1,4,3,2)
Steps 2,3 || 2 | 29 | 25 (1,4,3,2)
Step 4 3 . . (1,4,3,2)
Steps 2, 3 || 3 | 25 23 (1,3,4,2)
Step 1 1 . . (1,3,4,2)
Steps 2, 8 || 1 | 22 29 (1,3,4,2)
Step 4 2 (1,3,4,2)
Steps 2, 3 || 2 | 29 | 23 (1,3,4,2)
Steps 4 3 (1,3,4,2)
Steps 2, 3 || 3 | 23 | 25 (1,3,4,2)
Steps 4, 5 || 3 (1,3,4,2)

Table 4.2: The process of obtaining qr(i)’s in Example 4.16

Algorithm 4.17. Let T € IGLT(\),,. Set fo = 0 and Ny = 0. Then, for 1 < u < |Z(T)],
let f, := [D(T)| + 1 and N, = 2", f..

Step 1. Set v := 1.

Step 2. Fill the boxes in 6781)(T) by Ny_1+1, Ny_1+2,...,Ny_1+ f, — 1 from top to bottom
starting from the left.

Step 3. Fill the boxes in DI (T) by N,.

Step 4. If v < |Z(T)|, then set v := v + 1 and go to Step 2. Otherwise, fill the remaining
boxes by Niz(r) + 1, Niz¢r) + 2,...,m from top to bottom starting from the left.
Then, define sink(7") to be the resulting filling and terminate the algorithm.

Example 4.18. Revisit Example 4.16. We see that

112[374[516 73 1812162224267
sTolo[tii2[13p> 2 [9l13[172325F0
1415|1612 , 310[14{ 18RO
18192022 ‘ Algorithm 4.17 . 4 [11]15[19

T = ok sink(T) = e
26271 6|2
289 71
29 D1
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k[ k| ok [k X[k |k{je@
ko[ k| ok [k k| ok [ )
EEES EXEY x| e
x| k| x|e®
x| ® L]
* *
* [ ]
°
D(T) and DP(T) D(T) and DS?(T) D{(T) and D?(T) D{)(T) and DP(T)

Figure 4.2: 67(})(T) and D (T) for u=1,2,3,4 in Example 4.16

Let us collect some useful facts for sink(7") which can be easily seen.
S1’. By Lemma 4.2(2), for any 7' € IGLT()),,, sink(7") is a sink tableau.
S2’. For any T' € IGLT()\),,, T' ~ sink(7T") by the construction of sink(T").

S3’. By the construction of sink(T'), the set {(T';(T),T*(7)) |7 € Z(T)} determines sink(T).
In other words, if 77 ~ Ty, then sink(77) = sink(75).

Combining the facts S1’ and S2’ shows the existence of sink tableaux in £. However,
the above facts S1’, S2’, and S3’ do not guarantee the uniqueness of sink tableaux in F.
To show the uniqueness, we need the lemma below.

Lemma 4.19. For any sink tableau T, sink(T) = T.

Proof. Let jo =0and Z(T) = {j1 < ja < -+~ ij‘I(T”}’ By Lemma 4.15, q7(j,) = u for
all 1 < u < |Z(T)], thus from the definition of D&Q)(T) we have that

DA(T) =T7*(j,) forall 1 <u < [Z(T)]. (4.7)
We claim that
DINT) = T ([jus + 1,Ju — 1)) for all 1 < u < |Z(T)]. (4.8)

First, let us prove the inclusion /[51(})(T) O T [jue1 + 1,5, — 1]) for all 1 < u < |Z(T)|.
Take any 1 < u < |Z(T)| and @ € [ju,—1 + 1, ju, — 1]. Let B be the box filled with i in T'.
Recall that for any 1 < v < |Z(T))], A, is defined to be the subdiagram of yd(A) consisting
of the boxes located left of T'®. By the definition of 67(})(T), the desired inclusion is
obtained by proving that

BEE\U and Bgéz\v forall 1 <v<u.
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Suppose for the sake of contradiction that B ¢ A\u Combining the fact that 7" is an
increasing tableau with the inequality i < j,, we have that B is strictly above Top; (T').
This implies that B is strictly right of Top;, (7). By Lemma 4.2(2), i + 1 is weakly right
of i. Again, by Lemma 4.2(2), i + 2 appears weakly right of i + 1, so ¢ + 2 is weakly right
of 4. Continuing this process, we see that j, appears weakly right of 4, that is, Top; (T')
is weakly right of B. This contradicts the above observation that B is strictly right of
Top,, (T'). Thus, B € A,.

Suppose for the sake of contradiction that B € A for some 1 < v < w. Since i > j,, B
cannot be placed weakly above of Bot;, (") while being left of T,. Therefore, B is strictly
below of Bot;, (7'). In addition, by Lemma 4.15, qT(jv) =v < u—1=qr(Ju_1), so the
boxes strictly below of Bot; (T) while being left of T', are placed left of I®~1_ Therefore,
if we prove B is right of N , then we obtain a contradiction to the assumption that
BeA,. Suppose that B is left of T Since i > Ju—1, B is strictly left of Bot;, (7).
On the other hand, by using Lemma 4.2(2) repeatedly, one can see that there exists at
least one j,_; which appears weakly left of i. It follows that Bot;, ,(7") is weakly left of
B. This gives a contradiction to the rev1ous observation, thus B ¢ A,.

Next, let us prove the inclusion Dy () € T~ ([ju—1+1, ju — 1]) for all 1 < u < |Z(T)).
Equivalently, we claim that

621)(T) NTYi)=0 foranyic[l,m]\ [ju_1+ 1,75, — 1].

In order to prove this, we let 1 < u < |Z(T)| and i € [1,m] \ [ju—1 + 1, ju — 1]. Since
Uscociziry DY (1) = T7YZ(T)) and DY(T) N DENT) = 0 for all 1 < v < [Z(T)),
DE})(T) NT7 (i) = 0 if i € Z(T). Therefore, we may assume that i ¢ Z(T). Take ug €
{1,2,...,|Z(T)|} \ {u} such that ¢ € [juy—1+ 1, ju, — 1]. Since the method of proof for the
case where ug > wu is similar with that for the case where ug < u, we only prove the latter
case.

Suppose that uy < u. Let B be the box filled with i. If ¢ appears right of fjuo, then B is
strictly right of Topju0 (T') since i < Jy,. On the other hand, for all i < j < j,,, combining
the fact j ¢ Z(T) with Lemma 4.2(2) yields that Top,,,(7') is placed weakly right of the
unique box filled with j. It follows that Topqu(T) is weakly right of B. This contradicts
the previous observation that B is strictly right of TOpqu (T'). Therefore, ¢ must appear

left of T, . It follows that B € A,,. Thus, D{(T) N T'(i) = 0 by (4.6).

Now, combining Lemma 4.2(2) with the equations (4.7) and (4.8), we have that /[31(})(T)
is filled with j, 1 + 1,5,-1 + 2,...,J, — 1 from top to bottom starting from the left for
each 1 < u < |Z(T)|. Note that

T(yd(A)\ U @ mu 553)(T>)) = {Jzmy + Lz + 2., m}

1<us|Z(T)

and that yd(A) \ U,z (D4 () U D (T)) is filled with jizry + 1, jzry) + 2.
from top to bottom starting from the left. Hence, by the construction of sink(7"), we have
that T = sink(T"). O
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Now, we prove the main theorem of this subsection.
Theorem 4.20. For each E € &,.,, there exists a unique sink tableau in E.

Proof. Recall that the existence is already shown by using S1’ and S2’. For the uniqueness,
suppose that T} and T5 are sink tableaux contained in £. Combining S3’ with Lemma 4.19
yields that

T1 = sink(Tl) = Sink(Tz) = TQ.

Hence, the source tableau in F is unique. O

For each E € &y, define

7> := the unique sink tableau contained in F.

5 A weak Bruhat interval module description of Gg

The purpose of this section is to prove that the H,,(0)-module Gg is equipped with the

structure of weak Bruhat interval module. In Section 5.1, we define a relation <g on F

and assign a permutation read(7) € &,, to each T' € E. Then, we show that (E, <g) is a

poset which is isomorphic to ([read(Tr), read(T%;)] 1, <1). In Section 5.2, by extending this

isomorphism, we prove that Gg is isomorphic to B(read(7x), read(7%)) as H,,(0)-modules.
Hereafter, we let Des(Tg) = {d1 < dy < --- < di}, do := 0, and dy41 :=m.

5.1 A poset structure on E

To begin with, we introduce necessary notation and definitions. Define a relation <z on
E by
Tl jE T2 ifﬂ'g'leTg for SomeUEGm.

Foreach 1 < j < k+1, let
H; =T ([dj1 + 1,dj]).

By considering Lemma 4.2, one can easily show the following properties:

(P1) Foreach 1 < j < k+1, the set H; is a horizontal strip, a set of boxes which contains
at most one box in each column of yd(\).

(P2) For any B € H;, if B’ € H; appears to the right of B, then B’ is placed weakly above
B.

(P3) For any B € H,, if B’ € H; is the leftmost box among the boxes in H; placed strictly

right of B, then Tg(B) = Tr(B’) or B = B+(0, 1), that is, B’ is placed immediately
right of B.
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j 1 2 3 4
wW(Tg) |54321|876|12111110109 |15 14 14 14 13
w(Tg)[54321|876 1211109 15 14 13

Table 5.1: wi)(T) and W) (T}) in Example 5.3

Example 5.1. When

1]2]3]4]5[11]12[14]15]
r _ [6]7[8]10[11]14
E= Tol10 '

13(14
we have that Des(Tx) = {5,8,12}. In this case, H; (1 < j < 4) are given as follows:

H, [Hy |H; |Hq |H; |H
Hy [Hy|Ho |H3|H3|Hy
Hj|H;
Hy[Hy

H [Hy [Hy

w

For each 1 < j < k+ 1, let w(T) be the word obtained by reading the entries of
T contained in H; from right to left. Note that if an integer ¢ appears multiple times
in w)(T), then the integer i’s are placed consecutively. We define W) (T") as the word
obtained from w/)(T') by erasing all i’s except one i for each i that appears in w\)(T).

Definition 5.2. For T' € E, the standardized reading word read(T') of T is defined to be
the word Ww(T)w®(T) - - - w1 (T) obtained by concatenating W\ (7)) for 1 < j < k+1.

Hereafter, we will identify read(7") with the permutation in &,, written in one-line
notation.

Example 5.3. We revisit Example 5.1. For each j = 1,2, 3,4, w0 (T) and W) (T}) are
obtained as in Table 5.1. Therefore,

read(Tg) =543218761211109 15 14 13 € &y5.

Lemma 5.4. Let 17,715 € E.

(1) Suppose that i is a non-attacking descent of Ty. Then,
read(m; - T1) = s; read(T1) and read(T}) <y, read(m; - Ty).
(2) If T1 =g T, then read(Ty) =1, read(T,) and
Tread(To)read(T1)~1 * 11 = Si, =+ + Siy » 8y - 11 = T,
where s;, - - - 5;,5;, is a reduced expression for read(Ty)read(Ty) !,

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(4) (2024), #P4.73 32



Proof. (1) By Definition 5.2, s; read(71) = read(m; - T1) is obvious. We will prove that
read(T}) <, read(m; - T7).

Let j and j(*Y) be the unique indices in {1,2, ...,k + 1} such that i € T (H;«) and
i+ 1€ Ti(Hju+1), respectively. We claim that

7@ < 0D, (5.1)
Since ¢ is a non-attacking descent of 77, we have
r(Ty) < r(T). (5.2)

If j® = jG+D then the properties (P1)-(P3) written in the first paragraph of this
subsection imply that r”(T}) = v (T}). This contradicts (5.2), thus j@ # j(+D,

Suppose that ;@ > j0*+D By (5.2), every box in T (i + 1) is placed strictly below
Bot;(7}). In addition, if there exist B € T, *(i + 1) such that B is placed weakly below
and weakly right of Bot;(7}), then T (Bot;(T})) < Tx(B) which implies j® < j0+V. This
contradicts the assumption j® > 01 so every box in 7} (i 4 1) is placed strictly below
and strictly left of Bot;(7}).

Assume that there exist By, By € Hj+1) such that Ty(B;) = T1(B2) and row(B;) <
row(Bot;(77)) < row(By). Since every box in T, (i+1) is placed strictly below and strictly
left of Bot;(T7), we have T1(B;) > i + 1. It follows that I'zy(p,)(71) passes below Bot;(7}).
However, since j® > j0+1 x>y for all z € Tp(Hw) and y € Tp(Hury ), so Dy, (Ts)
passes above Bot;(77). This implies that 77 o4 T, which gives a contradiction. Thus, we
have

row(Bot;(71)) < row(B) for all B € H;q+).

Let B](-j) be the leftmost box in H;s and Bgﬂ) the rightmost box in H;et1). Suppose
that there exist By, By € H; such that T1(B;) = Ti(B2) and row(B;) < < row(B}(;H)) <
row(Bs). By the above observatlon B, is strictly left of every box in T} (i), so Ty (B;) <
i <i+1< Tl(B(ZJrl ). It follows that I'y,(p,)(T1) passes above B( Y. However, since

79 > 0 we have Tg(By) > Tr(BY™) and so L1 (TE) passes below BV This
implies that T} ¢ Tk, which gives a contradiction. Thus, we have

row(Bg)) < row(BgH)). (5.3)

In addition, if col(BY) < col(BY™), then Ty(BY) < Tp(BY™), which implies that
@ < §0+) Thus, we have

col(BY) < col(BY). (5.4)

By considering the construction of source(7}) in Section 4.1 together with the inequal-
ities j01) < @ (5.3), and (5.4), we deduce that there exists p € Z(Tg) such that T',(T%)

passes right of B G+ and left of B( Since T} € FE, this implies that
: (i+1) (4) :
Z+1<T1(B )<T1(T ( ))<T1<BL)<Z
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which gives a contradiction. Therefore, we obtain (5.1).

Now, combining the definition of read with the claim above yields that ¢ is placed to
left of i + 1 in read(77). Thus, read(T}) <y, s;read(T}) = read(m; - T1).

(2) Let 0 € 6,, satisfying 7, - Ty = T5. Take a reduced expression s;, - --s;,5;, for o.
Note that for all 1 < r < ¢, j, cannot be an attacking descent of 7, --- 7,7, - 11, other-
wise 7, - T = 0. That is, j, is a non-descent or non-attacking descent of m;, | - - m;,m; -1}
for all 1 <7 < ¢. Enumerate the indices r € [1, g] such that j,. is a non-attacking descent
of My "0 Mg Ty Ty by

ap < ag < - < Gy

in increasing order. By (1), for all 1 <7 < p,
read(7a, | -+ TayTay - 11) =L Sa.read(ma, |« TayTa, - 11) = read(my, -+ - TayTay - 11).

This implies that read(7}) =<p read(7:) and s,, - -- 54,5, is a reduced expression of
read(7T)read(T7)~t. By the definition of a,’s, we have that Moy TayTay - 11 = g - T,
and hence

Tread(T»)read(T7)~1 * T = Tap * " " TayTay * T =7, Ty =1Ts. O

Theorem 5.5. Let E € &y,
(1) ForanyT € E, Tg =g T 25 T}.
(2) (E,=Eg) is a poset which is isomorphic to ([read(Tg), read(T%)|r, =<1)-

Proof. (1) Let T' € E. Let us prove Ty <g T. If T is a source tableau, then T' = Tx by
Theorem 4.11, thus T <g T'. Otherwise, by Lemma 4.2(1), we can choose i; ¢ Des(T)
such that Top; (T') is strictly below Bot; ;1(7"). One can easily see that i; is non-attacking
descent of s;, - T and so 7, - (s;; - T) = T. By Theorem 3.11, we have s;, - T € E. In
addition, read(s;, - T') < read(T") by Lemma 5.4(1). If s;, - T is a source tableau, then
si, - T'=Tg by Theorem 4.11, thus Ty <g T'. Otherwise, following a similar procedure as
described above, we can choose iy ¢ Des(s;, - T') such that

Tiy * (Sipsiy - T) =84 - T, s -T €E, and read(s;,s; -T) <y read(s;, - T).

Continuing this process, we have s;, - - - 84,8, - 1" = Tg for some p € Z, since F is a finite
set and the inequalities read(s;, - - - si,5;, - 1) <p -+ <, read(s;, - T)) < read(T) ensure
that the tableaux T', s;, T, ..., s;, - - 8;,8;, -1 are all distinct. By the choice of 7y, iy, . .., ),
we have <7TZ‘17TZ‘2 st 7Tik> . TE = T, thus TE jE T.

Next, let us prove that ' <g Tj. If T is a sink tableau, then 7" = T}, by Theo-
rem 4.20. Otherwise, by Lemma 4.2(2), we can choose a non-attacking descent i; of T
By Lemma 5.4(1), read(T") <, read(m;, - T). If m;, - T is a sink tableau, then T' <p T},.
Otherwise, by Lemma 4.2(2), we can choose a non-attacking descent iy of m;, - T. Again,
by Lemma 5.4(1), read(m;, - T') < read(m;,m;, - T). Continuing this process, we have
iy« iy Ty - T = Typ for some p' € Zso since E is a finite set and the inequali-
ties read(T") < read(m;, - T) <p --- < read(s;,---s;,5; - T') ensure that the tableaux
T, -T,... ,m, - m,m, - T are all distinct. Therefore, T' <p 1.
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(2) Let f : E — [read(Tg),read(T)]. be a map sending T to read(7"). Combining
Lemma 5.4(2) with Theorem 5.5(1) yields that read(T") € [read(Tg),read(1})];, for all
T € E. Thus, f is well defined. The injectivity of f immediately follows from the definition
of read.

Let us prove the surjectivity of f. Take any 7 € [read(Tg), read(T};)]. and let

T = Ty read(Tg)~1 * TE.

We claim that v = read(T). Let us prove our claim by using mathematical induction
on {(yread(Tg)™'). When {(yread(Tg)™') = 0, we have v = read(Tg) and T = Tg.
Thus, v = read(T'). Suppose that ¢(yread(Tx)™') > 0 and the claim holds for all w €
[read(Tg),read(1%)], with f(w) < £(vy). Take any reduced expression s;, ---s;,s; for
yread(Tg)!. Let
vy = s,y and T =my, read(Tp) 1 * 1B

One can easily see that 7/ € [read(Tg),read(T)|. and ¢(7') < {(v). By the induction
hypothesis, we have read(7") = +/. Since read(7") = v/ # v = read(T"), we have T" # T".
In addition, since 7;, - T = T', the integer i, is a non-attacking descent of 7”. Thus,

read(T') = s;, read(T") = 5,7 = 7.

Here, the first equality follows from Lemma 5.4(1).
For the remaining part of the proof, we claim that for any 7T,7T» € E,

Ty <g T» if and only if read(7}) =y read(73).

The “only if” part was proved in Lemma 5.4(2). In order to prove “if” part, suppose that
read(7}) <r read(73). Since Tr =g T, Lemma 5.4(2) implies that read(Tg) < read(7}).
Therefore, there exists a reduced expression s; - - - s;,5;, for read(T»)read(T) " such that
Siy """ SigSiy = read(T7)read(Tg) ! for some 1 < p’ < p. Again, by Lemma 5.4(2),

7Tip/"'7ri27ri1 TE :T1 and 7T7;p"'7TZ‘p,+17T "'7Ti27Ti1 TE :TQ.

(%
This implies that m;, - - Ty oy T, =15, thus 77 <g Ts. O
We conclude this subsection by proving the equality in (3.2).

Proposition 5.6. For any At n and 1 < m < n, ch([Gy.m]) = Usm. Consequently,

> ch([Gagm]) = U

1<m<n

Proof. Enumerate the equivalence classes in &y, by Ei, Fs, ..., E,. For each 1 <1 < p,
let (E;, =%,) be a linear extension of the poset (E;, <pg,). We define a total order < on
IGLT(\),, by

Ty 2Ty ifiy <igor (iy =iy and Ty thil Ty),
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where 1 < 41,79 < p such that 77 € FE;, and 175 € E;,. Enumerate the elements in
IGLT()\)m by T1 j T2 j tee j T‘\IGLT()\)ml' Let

My :={0} and M;:=C{T;|1<i<j} forl<j<|IGLT(\),|

Then
{0}y =My C My C -+ € Mjcrr(ym| = Gam

is a filtration of Gy, and M;/M;_; is one-dimensional for each 1 < j < [IGLT(\),,|.
Therefore, ch([Gam]) = ZL-IS}T(/\)T"I ch([M;/M;-1]) = X racrroy, Feompr) = Uxm. O

5.2 A weak Bruhat interval module structure on Gg

The purpose of this subsection is to prove that Gg = B(read(Tg),read(T})) as H,,(0)-
modules.

Lemma 5.7. (cf. [10, Lemma 5.5]) Let T € E and 1 < i < m—1. Suppose that i € T'(Hj,)
and i +1 € T'(Hj,) for some 1 < j1,jo < k+ 1.

(1) i € Des(T) if and only if j1 < jo.
(2) i € Des(T) if and only if i ¢ Desy(read(T)).

Proof. If jo < 71, then i+ 1 appears to the left of i in read(7"). Otherwise, i + 1 appears to
the right of ¢ in read(7"). It follows that ¢ ¢ Desy (read(7')) if and only if j; < ja. Therefore,
it suffices to show that (1) holds.

To prove the “only if” part of (1), assume that ¢ is a descent of 7. By Theorem 5.5(1),
we can take a permutation o € &,, such that

T:T‘-O"TE:S])Z' 'Sp2'8p1'TE7

where [ := {(0) and s, - - - Sp,Sp, 18 a reduced expression for o.

We use the induction on [ to show the assertion. In case where [ = 0, we have T' = T}.
Since 7 is a descent of T and @ € Tg(H;, ), we have i+1 € Tg(Hj, 1) and so j; < j1+1 = ja.
Suppose that [ = 1. Let 0 = s, for some 1 < p < m — 1. Then, T and Tf are same except
for p and p+ 1. In addition, p cannot be a descent of T'. Therefore, we have only to check
the cases where i = p—1,p+1. Assume that ¢ = p—1. Since T' = s, - T, the assumption
i+ 1 € T(H;,) implies that i + 2 € Tr(H,;,). Moreover, since i 4+ 1 is a descent in T, i + 1
is contained in Tz (H;,—1) by the definition of H;’s. Since ¢ is contained in Tx(H;, ) and ¢ +1
is contained in Tx(H;,—1), we have j; < jo — 1 and thus j; < j. The case ¢ = p+1 can be
proved in the same manner as above.

For the induction step, we assume that [ > 2 and the assertion is true for any U € FE
such that U = 7, - T for some v € &, satisfying ¢(y) < [. Let 7" = 7y - T with
o' = 5,0 = Sp,_, - Sp,Sp,- Note that p; is not a descent of 7" and T is identical to 1"
except for p; and p; + 1. Therefore, it is enough to check the cases where i = p; —1,p; + 1.
Since the case ¢ = p; + 1 can be proved in the same manner as in the case 1 = p; — 1, we
only deal with the case i = p; — 1.
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Suppose that ¢ = p; — 1 is a descent of T. Let ¢ € [1,k + 1] be the index satisfying
p+1eT(H,). Then

m—1le T/(H]d)a JURS T,(Hq)7 and p +1€ T/(sz)'

Since p; is a descent of T”, the induction hypothesis implies that ¢ < jo. If p; — 1 is a
descent of 7", then the induction hypothesis again implies that j; < ¢, thus j; < js. For
the remaining case, assume that p; — 1 is not a descent of T7”. Then, we have

Tl()pl)(T/) < 70'51)171)(17/).

If rP(1") = ¢+ (1), then j; < ¢ by the definition of H’s. Since ¢ < ja, we have
ji < jo. Assume that rP)(T") < 7"~V (T"). Then T" := s,_, - T’ is contained in E and
Tp—1 - T" = T". Note that

pm—1eT'(H,), peT"(H;,), and p +1¢eT"(H).

Combining the assumption that p; — 1 is a descent of T with the equality T' = m,, - T"
yields that r”~(T") < rP*(T"). Since T” = s,,_1 - T’, we have that

r?(T") < rPH(TT).

Therefore, p; is a descent of T7”. Since T” <g T, by Theorem 5.5(2), there exists ¢’ € &,,
such that m,» - Ty = T" and ¢(¢”) < [. Hence, by the induction hypothesis, we have that
1< Ja.

Next, we prove the “if” part of (1). Suppose that j; < jo, but ¢ is not a descent of T'.
If Top,(T) and Bot;1(T) are in the same row in 7', then Bot;1(7") lies to the immediate
right of Top, (7). This, together with the properties (P1)—(P3), implies that Top,;(T) is the
rightmost box of H;, and Bot; 1 (7) is the leftmost box of H;,. Note that for each 1 <t < k,
the rightmost box of H, is located strictly above the leftmost box of H;, ;. Therefore, there
exists ji < to < jo such that the leftmost box in Hy, is located strictly below Top,(7") and
the rightmost box in Hy, is located strictly above Bot;;1(T"). By the definition of Hy,, there
exists p € Tr(Hy,) such that p € Z(Tg) and

rP(Tg) < r(T) = rN(T) < rP(T).

Since Top,(7T") (resp. Bot;1(7)) is contained in Hj, (resp. H;,) and j; < ¢y < ja, we have
Ty (Top,(T)) < p < T(Bot1(T)). It follows that the lattice path I'y(T) passes through
VL((rt(i) -1, cgi)), (rt(i), cEi))). In addition, since 7" and Tp are in the same class F, there
exists p € Z(T) such that Ty (T) = T,(Tg). By the definition of T (T), it follows that
i <p <i+1, which is absurd. Thus, Bot;;(7") is strictly above Top,(7"). Let 7" := s;-T. It
is clear that 7" is an increasing gapless tableau, i € Des(1"), 7 € T'(H,,), and i+1 € T"(Hj,).
Thus, by the “only if” part, we have jo < 77, which contradicts the assumption j; < js.
Hence, we conclude that 7 is a descent of T O
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Now, we are ready to prove the main theorem of this subsection.

Theorem 5.8. For any E € &y, as H,,(0)-modules,
Gp = B(read(Tg), read(Ty)).

Proof. Let [ : G — B(read(T}), read(T;)) be the linear map sending 7" — read(7") for

all T" € E. By Theorem 5.5(2), f is a bijection, so it suffices to show that

f(mi - T)=m-f(T) foranyl<i<m-—1landT € E.

Take any 1 < i < m —1and T € E. By Lemma 5.7(2), if ¢ ¢ Des(T), then i €
Desy (read(T)), thus

flm-T)= f(T) =read(T) = m; - read(T) = m; - f(T).

Suppose that i is a non-attacking descent of 7. Then Lemma 5.4(1) implies that read(7) <,
read(m; - T') = s; read(T’), thus

f(mi-T)=read(m; - T) = s; read(T) = m; - read(T) = m; - f(T).

Suppose that i is an attacking descent of 7. By Lemma 5.7(2), we have i ¢ Desy (read(T"))
and so

mi-read(T) =0 or m-read(T) = s; read(T) € [read(Tg), read(Ty)] 1.

Assume that 7; - read(T") = s; read(7"). Then by Theorem 5.5(2), there exists 7" € E such
that read(7") = s; read(T"). By the definition of read(7"), we have T" = s; - T'. However,
from the assumption that ¢ is an attacking descent of T', one can easily see that s; - T is
not in £, which gives a contradiction. It follows that 7, - read(7") = 0. On the other hand,

since 7 is an attacking descent of T', f(m; - T') = 0, thus f(m; - T) =0=m; - f(T). O

6 The projective cover of Gg

The purpose of this section is to find the projective cover of Gg. To begin with, we
introduce the necessary terminology.

Let A, B be finitely generated H,,(0)-modules. A surjective H,,(0)-module homomor-
phism f: A — B is called an essential epimorphism if an H,,(0)-module homomorphism
g : X — A is surjective whenever fog: X — B is surjective. A projective cover of A is
an essential epimorphism f : P — A with P a projective H,,(0)-module. The following
lemma is useful when determining whether a surjective H,,(0)-module homomorphism is
an essential epimorphism.

Lemma 6.1. (]2, Proposition 3.6]) The following are equivalent for an epimorphism f :
A — B, where A and B are finitely generated modules over a left artin ring.

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(4) (2024), #P4.73 38



(a) f is an essential epimorphism.
(b) ker(f) C rad(A).

According to Lemma 6.1, knowing membership conditions of ker(f) and rad(A) can
help determine whether f is an essential epimorphism or not. To study a membership
condition for rad(A), let us collect some definitions and notation.

Let & be a generalized composition. For any .7 € SRT(«), let read(.7) be the word
obtained from .7 by reading the entries from left to right starting with the bottom row.
Combining [17, Theorem 3.3 and Proposition 5.1] with [18, Theorem 1(3)], one can see
that the C-linear map

¢ : P, — B(wo(axg), wowp(&s)), 7 v+ read(7) for I € SRT(«x) (6.1)

is an H,,(0)-module isomorphism. In addition, if we define a partial order =<ggrr(«) On
SRT(«x) by
N 2srr(w) Jo i T, - T = T for some 0 € G,y

then the map

(I)/ : (SRT(O(), jSRT((x)) — ([wo(af),wowo(a@)]L, jL), T — @(y) for 7 € SRT(O()

is an order isomorphism. For the definitions of &, and ag), see (2.1).
Let 7 and .7 be the unique standard ribbon tableaux of shape « satisfying

read(7¢) = wo(ea) and read(7) = wo(a),
respectively. Considering the isomorphism & defined in (6.1), one can see that
read( 7)) = read(Ts,) and read( 7)) = read(Tyy).

For the definitions of 7, and J_, see the last paragraph in Section 2.4. For instance, if
o =(2,1) % (1,1), then wo(eg) = 21345 and wo () = 21435, therefore

415 315
Te=11|3 and 77 = |1]4 :
2 2

It follows from the definitions of .78, 7% that I3 =<srr(a) Za - Thus, we can define
(7%, 71 ={T € SRI(a) | Ty Zsrrew) 7 Zsrr(e) Ta -

Under a special assumption on «, Choi, Kim, Nam, and Oh [10, Lemma 5.9] provided
a necessary condition for standard ribbon tableaux of shape & to be included in the radical
of P4. It motivates us to state the following lemma which plays a key role in proving the
main theorem of this section. To avoid excessive overlap with their proof, we omit some
part of the proof in the following lemma.
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Lemma 6.2. Let « be a generalized composition of m and 7 be a standard ribbon tableau

of shape . If T Asrr(a) Ty, then T € rad(Py).

Proof. Given .7 € SRT(«), let s;, - - - s;,5;, be a reduced expression for the permutation
read( 7 )read( L)™' in &,,. Considering the equality read(Zy?) = wo(S) together with
the order isomorphism @', we have that .7 = T,ui4(7)reaa(72)1 - - By following the
proof of [10, Lemma 5.9], one can see that

T €rad(Py) if i; € Des(Z?) for some 1 < j < 1, (6.2)

where Des(7) := {i € [1,n — 1] | i appears weakly below i + 1 in 7 }.

On the other hand, the equality read(7’) = wo(eg) implies that read(7) =p
read(7,) if and only if i; € set(a) for all 1 < j < 1. From the definition of .77, it follows
that Des(.7) = set(a). Putting these together, we have that if read (7)) A read(TO),
then i; € Des(.7?) for some 1 < j < I. Combining this observation with (6.2) yields that
if read(7) AL read( 7)), then J € rad(Py). Now, considering the order isomorphism
<I>|§F1{T(“), we see that if T Aspr(a) Z5, then 7 € rad(Py). O

Next, let us introduce the notation needed to describe the projective cover of Gg.
Recall that Des(Tg) = {d; < dy < --- < di}, dy = 0, and dpy; = m. Let a™) := (d;). For
1 <7 <k+1, define

U=V (d; —d;—y)  if Boty, ,41(Tg) is weakly left of Top,, (Tk),

o) = , (6.3)
o=V x (dj — dj_y) if Botg, ,+1(Tg) is strictly right of Topy, (Ts).
For the definition of &U=Y - (d; — d;_;), see (2.2). Let
op = o (6.4)

Given .7 € SRT(ag), we define T to be the filling of yd(\) whose boxes in each
Hy (1 < j < k+1) are filled with the entries of the jth column of .7 in the follow-
ing manner:

(i) Let €; < €3 < -+ < ¢ be the entries of the jth column of .7 and let C1,Cs, ..., Cy
be the connected components of H; such that C; is left of ;4 for 1 <@ < d.

(ii) Let ¢p:=1 and let ¢; := 22:1 |Cp| —i+1for1 <i<d.
(ili) For each 1 <i < d, fill C; with €., ,, €. ,41,.-.,¢€, from left to right.

For later use, we notice that s; - Ty = T§,.# for any i € [1,m — 1] and .7 € SRT(ag).
Now, we define a C-linear map 71 : Py, — Gg by

Ty if T'# is contained in F,
T '
0 otherwise

for 7 € SRT(ag) and extending it by linearity.
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Example 6.3. (1) Let

T

314]

|©|Cﬂ DO —

Note that Des(Tg) = {1,2,4,5}. The following figure illustrates H;:

H;

Hy

Hs [Hs|

Ho

Hj

|
5|

On the other hand, one can see that ag = (1,1,2) % (1,1). Let

HE

Ty =
[1]2

3
4

Then, we have that

2
3

T =

0

|Ob|Ul DO —

34
5 ) %:
112[6
1/2]5]6]
35 , and Ty =
[4]

316}

|r-l>|l\.') | —

For instance, one can obtain 7'z with the datum in Table 6.1. Since T's, = T and T'y, = T'
are contained in E, n(%) = T and n(.7;) = T. On the other hand, since T is not an
increasing tableau, it is not contained in E and thus n(%) = 0.

(2) Letting

Ty =
we have that
g = (1, 1,1, 2)
When & = 3] one sees that
o | 1 | 2 | 4151’

Ty

2[4]5]

3 :

|H>[\D»—

and

==
o

Hy [Hy |

Hy
Hy

Hj

\)

315]

BEEE

The filling T is an increasing gapless tableau, but 7(.7") = 0 since T'» is not contained

in F.
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J 617627---761‘ C1,Cy, ..., Cy ‘C(J,Cla---ycd‘ T'7,(H;)
\

| | (1, 1)} 11 u

2 5 {2, D1 {(1,2)} 1,11 N

31 36 | {(22){(13),(L4} |  1,1,2 o
4 5 (3.1)} 11 -
5 4 {(4,1)} 11 -

[4]
Table 6.1: Datum for constructing 7'z in Example 6.3(1)

As a first step to prove that the map 7 : Py, — Gg is a projective cover of Gg, we
show that 7 : Py, — Gg is a surjective H,,(0)-module homomorphism.

Lemma 6.4. The map n: Py, — Gg is a surjective H,,(0)-module homomorphism.

Proof. For each T' € E| let I be the filling of rd(axg) whose jth column is filled with the
elements of T'(H;) so that they are increasing from top to bottom for all 1 < j < k+1. Then
it follows straightforwardly from the definitions of read, and read that read(T") = read(Ir)
for all T € E. By the definition of ag, we have Iy, = Ir,. For the definition of Z,,,
see Section 2.4. In addition, from Theorem 5.8 and (6.1), we have the H,,(0)-module
isomorphisms

f:Gp — B(read(Ty), read(T%)), T+ read(T) for T € E
and
¢ : Py — B(wo(axg), wowo(&y)), 7 +— read(7) for T € SRT(«x).
Putting these altogether, we see that
wo(ag) = read( Iy, ) = read(Ir,) = read(Tk).
If we prove read(7y) <1 wowo(&s), then the linear map

v if v € [read(Tg), read(T)] L,

pr: B(wp(e), wowo(exe)) — B(read(Tg), read(Ty)), v — _
0 otherwise
is a surjective H,(0)-module homomorphism by (2.4). In addition, we have

n=f"lopro®d,
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which implies that 7 is a surjective H,,(0)-module homomorphism. Thus, it suffices to
show that

read(T) =<1 wowo(&s). (6.5)

In order to prove (6.5), we first show that .77 € SRT(«g) for all T € E. Choose a
T € F and an arbitrary 1 < 7 < k+ 1. Let

x = the entry at the uppermost box in the (j — 1)st column of 7 and
y = the entry at the lowermost box in the jth column of 7.

It suffices to show that x < y only in the case where the (j — 1)st column and the jth
column are connected. Note that the (j — 1)st column and the jth column are connected
if and only if Boty; ,+1(Tk) is weakly left of Topy (Tp). Assume that Botg, ,11(Tp) is
weakly left of Topy, (1g). If Topy, (Tf) is weakly below Boty; ,+1(Tx), then z < y since T
is an increasing tableau. Suppose Top, (Tg) is strictly above Botg, ,11(Tx). For the sake
of contradiction assume that x > y. Take 0 € &,, satisfying that T" = 7, - Tg and a
reduced expression s;, - - - 8;,8;, for o. Since x appears at Botdjfﬁl(TE) and y appears at
Top,,(Tr) in T, there exists 1 < r < p such that

T’(Botd]._2+1(TE)) < T'(Topdj (TE)) and T, * T’(Botdj_2+1(TE)) > T, * T’(Topdj (TE))
Here, T" = m; _, -+ -m,m;, - Tg. Since the m; -action swap ¢, and i, + 1, the following hold:

T'(Boty,_,+1(Tg)) = in, T’(Topdj(TE)) =14, +1, and

6.6
i, is a non-attacking descent in 71", (6.6)

However, since Boty,_,.1(Tx) is below Topy, (Tg) in T", the descent 7, of 7" cannot be
non-attacking. Hence, (6.6) cannot occur, which shows that = < y.
Since 7, € SRT(exg), we have

read(T};) = read( Ty ) =<1 wowo(os)
as desired. O]
We are ready to prove the main theorem of this section.

Theorem 6.5. For any E € Exm, 1 : Poy, = Gg is a projective cover of Gg.

Proof. By Lemma 6.2, we have C(SRT(«xg) \ [Z,

ner Tor]) € rad(Pgy). Therefore, by
Lemma 6.1, it suffices to show that
ker(n) € C(SRT(ap) \ [Zs,, Ts])- (6.7)

First, we claim that T',o is an increasing tableau. Take any boxes By, By € yd(A) with
XE

Bj # Bs and By is positioned weakly southeast of By, that is, By € By +(Z=¢%xZ=0\(0,0)).
We need to show that 7,0 (B1) < T, (Bz). To prove it, we collect necessary notation.
D) xR
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Let jg,,jB, € [1,k + 1] such that By € Hj, and By € Hjp . For 1 < j < k+1, let
C; be the set of the boxes in the jth column of rd(ag) from left to right. Then, we have
T%DE(HJ-Bl) = J,(Cjp, ) and T%@E (Hjp,) = T4 (Cjy, ). Letting (ap)e = (a1,az,...,ap),
set

B
Ap:=0 and A, :=a1+---+a, forl<r<p.

By the definition of .72, for each 1 < r < p, there exist u,,u, € [1,k + 1] such that
U <jcur Zan(Ci) = [Arm1 + 1, A;]. Take rp, and rp, in [1,p] satisfying that C;, C
[Ary, 1+ 1, A, Jand Cj, C[A,, 1 + 1, A, |, respectively.

Considering the assumption that B, is positioned weakly southeast of B; together with
the definitions of H;, and H;, , we see that jp, < jp,, thus rp, <rp,. lf rp, <rp,, then
we have 70 (B1) < 7,2 (B;) by the definition of 7p, and rp,. For the remaining case,
suppose that rp, = 7p,. Note that C; and C;, are disconnected for all j € [u, , Uy, — 1].
This implies that Botg; ,+1(TF) is strictly right of Top, (), equivalently, the leftmost
box in H;_; is strictly right of the rightmost box of H;. Combining this observation with
the definitions of H;_; and H; yields that the leftmost box in H;_; is strictly above the
rightmost box of H;. Therefore, if jp, < jp,, then By ¢ By + (Zso X Zx \ (0,0)). If
JB, = JB,, then combining By € By + (Zs¢ X Zx \ (0,0)) with (P2) written in the first
paragraph of Section 5.1 yields that By and B, are in the same row. It follows that By is
strictly east of By, thus Tge, (By) < Tge, (Bs).

Next, we claim that T__%QE € FE, equivalently, T%EDE ~ Tg. Take any ¢ € Z(Tg). By
the construction of T%?E, ]I(T%EDE)] = |Z(Tg)| and there exists i’ € [1,m] such that

T4 (i) = Ty (i). Let us show that Ty(Tye ) = Ty(Tx). Let
R0

Tty
Rect; == {(r,0) € yaW\ T () [ ! <r <) amd o) <e<d’}
Choose any B € Rect; and let jy,j2 € [1,k + 1] with
BeH; and Tg'(i) CHj,.

) = I'y(Tg), it suffices to
show that = < 7 if and only if 2’ < ¢/. We omit the proof of the “if” part since it can be
proved in the same manner as the “only if” part.

To prove the “only if” part, suppose that z < 4, but 2’ > 4’. Since B ¢ Ty (i) and
¥’ =T,0 (B), we have 2/ > /. Putting Lemma 4.2, the inequality = < ¢, and B € Rect;

©
xp

Set © = Tg(B) and 2/ = T%%(B). In order to prove I';/(T',

©
xE

together, one can derive that j; < j;. By the definition of .70, given Iyl € [1,k 4 1]
with Iy < Iy, if there exists a € J,0(C;,) and b € F,2 (Cy,) such that a > b, then C, is
disconnected to C,4q for all [} < p < ly. Because 2’ € Tg‘% (H;,) and ¢ € Tg‘% (H,,), this
property, together with the inequalities 2’ > ¢’ and j; < jo, implies that C, is disconnected
to Cpi1 for all ji < p < jo. By (6.3), Botg, ,41(Tx) is strictly right of Top,  (Tp) for all
J1 < p < j2. Since Boty, ,11(TE) is the leftmost box of H, and Top, ., () is the rightmost
box of H,,4 for all j; < p < js, every box in H;, is placed strictly right of each box in H;,.
Since B € H;, and T,'(i) C Hj,, this is a contradiction to the choice of B € Rect;. Thus,
if © < i, ' must be less than i’ as desired.
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Now, we have n(.7y)) = T%DE € E. Combining this with Lemma 6.4, we see that

nWT) =Ty € Eforall I € 7,7, ] In addition, the definition of 1 together with
Lemma 6.4 imply that

{7 € SRT(ag) | T7 € E}| = dim(Im(n)) = |SRT(axg)| — dim(ker(n)).

It follows that the set {7 € SRT(«g) | T ¢ E} is a basis for ker(n). Putting these
together yields the inclusion (6.7). O

Remark 6.6. Lemma 6.2 provides a method for finding a projective cover of weak Bruhat
interval modules of the form B(wy(«), p), where o |= n and p € &,, with wo(a) = p.
This approach was recently applied to find a projective cover of poset modules associated
with regular Schur labeled skew shape posets. For further details, refer to [19, Section 5].

Independently, Bardwell and Searles [4] have introduced a type-independent method
for finding projective covers of various modules of the 0-Hecke algebras of finite Coxeter
type. For more information, see [4, Theorem 4.2].

7 Further avenues

(1) Pechenik and Yong [27] studied a theory of genomic tableaux parallel to the theory for
increasing gapless tableaux developed by Thomas and Yong [33]. In order to relate genomic
tableaux with increasing gapless tableaux, Pechenik and Yong [27] introduced a map,
called the K-standardization, sending a genomic tableau to an increasing gapless tableau.
From the viewpoint of this correspondence, increasing gapless tableaux play a similar role
to standard Young tableaux. However, to the best of the authors’ knowledge, while the
relationship between standard Young tableaux and permutations is well understood, the
relationship between increasing gapless tableaux and permutations is not well studied.
Our standardized reading read can be helpful to study the relationship because it maps
increasing gapless tableaux to permutations. For this reason, it would be interesting to
investigate the standardized reading read and the set {read(7") | T' € E} for each E € &y .y,.

(2) For a |= n, Tewari and van Willigenburg [31] introduced H,(0)-modules S, such
that ch([S,]) is equal to the quasisymmetric Schur function S,. As a generalization of S,,,
in [32], they also introduced H,(0)-modules SZ, for all ¢ € Sy(,). Then, they decomposed
S7, into a direct sum of cyclic submodules S7 ;. In the case where o = id, Kénig [21]
proved that all Sich are indecomposable. Later, Choi, Kim, Nam, and Oh [8] showed
Konig’s method still works for all o € &) under suitable adjustments, proving that all
S, i are also indecomposable.

In this paper, we give a direct sum decomposition Gy, = P EcErm Gg. A natural
question that arises is whether or not Gg is indecomposable for all £ € £y,,,. However,
there exists E € &y, such that G is not indecomposable. For example, the set

2[3] 1[2]4]
3] L= [2]4

E=T =

|>J>l\:>>—l

2
3]
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is an equivalence class in &£ 9,1),4 such that Gg = C(1T} —T3) ©CT5. It would be interesting
to characterize for which E € &), the H,,(0)-module Gg is indecomposable.

(3) In [27, Example 6.7], Pechenik and Yong pointed out that Uy is not Schur-positive
for some partition A. Later, Pechenik [24] provided a signed Schur expansion for Ul.

Therein, it was also proved that U, is Schur-positive for all partitions A with ¢(\) = 2.
To be precise, for all A = (A, \g) F n,

= > doos (7.1)

Ix<m<n pePar(A;m)
where [, := max{Ay, A2 + 1}, Par(A\;n) := {(A, \2)}, and

{()\1 — km; /\2 — k‘m, ].km), ()\1 — km; /\2 — km + 17 1Fm 1)} if /\1 > )\2
for all I < m < n. Here, k,, :==n —m and s, := 0 if ;1 is not a partition.

In this paper, we have constructed the H,,(0)-module G, and show that ch([G.]) =
Ujx.m- On the other hand, for each oo = m, Searles [28] introduced the H,,(0)-module X,
such that ch([X,]) = ES,, where ES, is the extended Schur function introduced in [1].
It was shown in [I, Proposition 6.15] that ESy, = s, for all A = m. The study of the
representation theoretic interpretation for (7.1) will be pursued in the near future by
using the 0-Hecke modules Gy, (Ix < m < n) and X, (¢ € Par(A;m)). In this direction,
we leave the following conjecture.

Conjecture 7.1. Let A be a partition with ¢(\) < 2. For each [, < m < n, there exists
a partition {&, | p € Par(A\;m)} of €y, satisfying the following two conditions:

(1) For each u € Par(A\;m), ZEegM ch([Gg]) = s,..

(2) For each p € Par(\;m), there exist a total order <, on £, = {Ey <, Es <, -+ <,
Eje,} and a filtration

My={0} C M S My C---C Mg, =X,
of H,,(0)-modules such that Gg, = M;/M,_; for all 1 < i < |E,].

Let A = (A1, A2) F n. In case where \; = )y, Pechenik defined a descent preserving
bijection from IGLT(A) to U, <ynen Upeparium) SYT (1) in [23, Proof of Proposition 2.1].
Here, SYT(u) is the set of standard Young tableaux of shape p. In order to prove (7.1),
Pechenik used this bijection and a similar bijection for the case where A\; > A,. For details,
see [24, Proof of Proposition 4.3]. Using these bijections, we observe that Conjecture 7.1
is true when |A| < 8. Further, in this case, we also observe that the bijection induces an
H,,(0)-module isomorphism from Gg, to M;/M;_; for all 1 < i < |E,].
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