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Abstract

The Ramsey number r(G) of a graph G is the minimum number N such that any
red-blue colouring of the edges of KN contains a monochromatic copy of G. Pavez-
Signé, Piga and Sanhueza-Matamala proved that for any function n 6 f(n) 6
r(Kn), there is a sequence of connected graphs (Gn)n∈N with |V (Gn)| = n such that
r(Gn) = Θ(f(n)) and conjectured that Gn can additionally have arbitrarily large
connectivity. In this note we prove their conjecture.

Mathematics Subject Classifications: 05C55, 05D10

1 Introduction

The Ramsey number r(G) of a graph G is the smallest natural number N such that every
red-blue colouring of the edges of KN results in a monochromatic copy of G. Since the
early days of Ramsey theory, determining the growth rates of the Ramsey number of
various graph families has been a large focus of the field. Classic results by Erdős [5] and
Erdős and Szekeres [6] imply that

√
2
n
6 r(Kn) 6 4n. Despite considerable attention, no

improvement had been made to the constants
√

2 and 4, until recently Campos, Griffiths,
Morris and Sahasrabudhe [3] showed that there is an ε > 0 such that r(Kn) 6 (4 − ε)n.
Thus, the growth rate of r(Kn) is exponential in n, but its exact behaviour remains unclear
since the gap between the two bounds is large. On the other end of possible growth rates,
there has been much interest in understanding which graphs have Ramsey number linear
in their number of vertices. Burr and Erdős [1] conjectured that this is true for all graphs
of bounded degeneracy, and this was proved by Lee [8].

It is easy to see that the Ramsey number of any graph on n vertices lies between n
and r(Kn). Pavez-Signé, Piga and Sanhueza-Matamala [9] raised the question of what
intermediate growth rates can be achieved. They prove that for every function f such
that n 6 f(n) 6 r(Kn) for all n, there is a sequence of connected graphs such that the
Ramsey number satisfies this growth rate to within a multiplicative factor.
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Theorem 1 ([9], Theorem 1). For every k > 2, there exists a constant C > 0 such that,
for every function f : N → N with n 6 f(n) 6 r(Kn), there is a sequence (Gn)n∈N of
connected graphs such that |V (Gn)| = n and f(n) 6 r(Gn) 6 Cf(n) for all sufficiently
large n.

Note that the problem is much simpler if the graphs are not required to be connected:
taking an Kr and adding n − r isolated vertices gives an n-vertex graph with Ramsey
number max{n, r(Kr)}, which lies within a constant factor of f(n) if r is chosen correctly.
The examples constructed by Pavez-Signé, Piga and Sanhueza-Matamala are connected
but not 2-connected, consisting of a path of suitable length attached at one end to a clique
(or more generally a complete multipartite graph). Pavez-Signé, Piga and Sanhueza-
Matamala conjectured that it should be possible to get a sequence of graphs with any
growth rate and connectivity.

Conjecture 2 ([9], Conjecture 16). For every k > 2 and every function f : N → N such
that n 6 f(n) 6 r(Kn) for all n, there is a sequence (Gn)n∈N of k-connected graphs such
that |V (Gn)| = n and r(Gn) = Θ(fn).

In this paper, we prove their conjecture.

Theorem 3. For every k > 2, there exists Ck > 0 such that the following holds. For
every function f : N → N such that n 6 f(n) 6 r(Kn) for all n, there is a sequence
(Gn)n∈N of k-connected graphs such that |V (Gn)| = n and f(n) 6 r(Gn) 6 Ck(fn) for all
n.

2 Proof of Theorem 3

Throughout this section all logarithms are base 2. We first give some tools required for
the proof.

A graph has density d if it has d
(
n
2

)
edges. A lemma of Conlon, Fox and Sudakov [4]

is helpful for controlling the growth of Ramsey numbers for dense graphs.

Lemma 4 ([4], Lemma 5.5). For every d ∈ (0, 1) there is c > 0 such that for any graph
G of density at least d and any vertex v ∈ V (G),

r(G) 6
c

d
log(1/d) · r(G− v).

As noted in [4], [9], the following is an immediate consequence.

Corollary 5. There exist c1, c2 > 0 so that for any n > 1

1. r(Kt) 6 c1r(Kt−1),

2. r(Kt,t) 6 c2r(Kt−1,t−1).
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We will also need lower bounds on r(Kt) and r(Kt,t). As mentioned before, we have
r(Kt) > 2t/2 [5]. A similar probabilistic approach leads to the following well-known lower
bound on r(Kt,t).

Lemma 6. For t > 1, r(Kt,t) > 2t/2.

The next result we require concerns unbalanced colourings. We say that a colouring
is ε-balanced if both colour classes have edge density at least ε. Erdős and Szemerédi
[7] showed that if we know that a colouring is unbalanced then we can guarantee larger
monochromatic cliques.

Lemma 7 ([7], Theorem 2). There exists an absolute constant a > 0 such that for all
ε ∈ (0, 1

2
] and any positive integer N the following holds. Any two-colouring of KN which

is not ε-balanced contains a monochromatic clique of order a
ε log(1/ε)

logN .

Lastly, we recall the following fact.

Lemma 8. Let D be a digraph with maximum in-degree at most ∆. Then there is a
colouring of the vertices of D using at most 2∆ + 1 colours such that the associated
colouring of the underlying graph of D is a proper vertex colouring.

Proof. We construct an ordering of the vertices of D such that each vertex v ∈ V (D) has
at most 2∆ in-neighbours and out-neighbours preceding it. Indeed, since the maximum
in-degree is at most ∆, there must be a vertex v whose out-degree is at most ∆. We put
this v last in our ordering and continue recursively. A greedy colouring now uses at most
2∆ + 1 colours.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Let f : N → N be a given function such that n 6 f(n) 6 r(Kn) for
all n ∈ N. For a fixed, large n, we wish to construct a suitable graph Gn. We split into
two cases, depending on the size of f(n) (note that the cases cover overlapping ranges).

Case 1: n 6 f(n) 6 2n/8. Take the smallest t such that r(Kt,t) > f(n). We note that
by minimality, we have

r(Kt−1,t−1) 6 f(n) < r(Kt,t) 6 c2r(Kt−1,t−1) 6 c2f(n),

where c2 is the constant from Lemma 5. By Lemma 6 we have f(n) > r(Kt−1,t−1) >
2(t−1)/2, so t 6 2 log f(n) + 1. As f(n) 6 2n/8, this implies 2t 6 n. Let Gn be the graph
constructed as follows. Take a copy of Kt,t and n− 2t isolated vertices. Within one of the
parts of the copy of Kt,t we pick k vertices and add a complete bipartite graph between
these k vertices and the n − 2t isolated vertices (see Figure 1a). It is easy to check that
|V (Gn)| = n, Gn is k-connected and that r(Gn) > r(Kt,t) > f(n).

We now show that r(Gn) 6 2k · 40k · c2f(n). Let N = c2f(n) and consider a red-
blue colouring of the edges of the complete graph on 2k · 40kN vertices. Start with some
vertex v1. Either its red or blue neighbourhood must contain at least half of the vertices
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...

Kt,t

(a) Case 1

...

Kt

(b) Case 2

Figure 1: Constructions of Gn for k = 2

of the graph. Let R = B = ∅. If the red neighbourhood of v1 is larger, we add v1 to
R, otherwise we add it to B. We now consider only the vertices in this more popular
neighbourhood of v1. While R and B each contain less than k vertices, we repeat this
with vertices v2, v3, . . . , each time sorting vi into either R or B and dropping down to the
larger coloured neighbourhood. We stop once one of R and B has size at least k; without
loss of generality assume it is B. Note that this happens after at most 2k − 1 steps. We
now consider the remaining vertices: if there is a vertex whose red neighbourhood is at
least 1

40
of the remaining graph, we add it to R and drop down to its red neighbourhood.

We repeat until either |R| = k or we can no longer find a suitable vertex.
If |R| = k, then there are at least N vertices in the remaining graph with only red

edges to R and only blue edges to B, denote this set by Nr(R) ∩ Nb(B). It follows that
there is a monochromatic copy of Kt,t within Nr(R) ∩ Nb(B), without loss of generality,
suppose it is red. Take k vertices from one part of the copy of Kt,t and replace them with
the vertices in R. Since the copy Kt,t was in the red neighbourhood of R, the new graph
is still a red copy of Kt,t. This together with another n− t vertices from Nr(R) ∩Nb(B)
forms a red copy of Gn. Hence, we may assume that |R| 6 k − 1 and that we end up
with a set U = Nr(R) ∩Nb(B) of size at least 40N in which every vertex has red degree
strictly less than 1

40
|U |. Note that if there is a blue Kt,t in U , then this Kt,t together with

B and any other n − t vertices in U gives a blue Kt,t. Thus, we may also assume that
there is no blue Kt,t.

Let S ⊆ U be an arbitrary subset of size 20
19
t. Let U0 ⊂ U \ S be the set of vertices

in U \ S with at least t blue edges to S. Since there is no blue Kt,t,, the number of blue

stars K1,t with all leaves in S is at most t
(|S|
t

)
; each element of U0 is the centre of at least

one such star, and so

|U0| < t

(
20
19
t

t

)
< 2t/2 < N.

Now let U1 = U \ (U0 ∪ S). Then |U1| > 9
10
|U | and every vertex of U1 has at least |S|/20

red neighbours in S. It follows that some vertex of S has at least |U1|/20 > |U |/40 red
neighbours in U , which contradicts our assumption on red degrees.

Case 2: (log n)k+2n 6 f(n) 6 r(Kn). Take the minimal t such that r(Kt) > f(n).
As before, we note that by the choice of t we have f(n) > r(Kt−1), so r(Kt) 6 c1f(n)
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where c1 is the constant from Lemma 5. Let Gn be the graph constructed as follows.
Take a copy of Kt and an additional n − t isolated vertices. Within Kt choose a subset
of k vertices and add a complete bipartite graph between these k vertices and the n − t
isolated vertices, see Figure 1b. It is easy to check that |V (Gn)| = n, Gn is k-connected
and that r(Gn) > r(Kt) > f(n).

Let N = `kc1f(n) where `k = 2 · 4k+2 · kk+1. We wish to show that r(Gn) 6 2kε−kk N
where εk 6 1/2 is a small constant that we fix later.

Consider a red-blue colouring of the edges of the complete graph on 2kε−kk N vertices.
As before, we repeatedly pick vertices and drop down to the larger of their coloured
neighbourhoods until we have k vertices with edges of the same colour, say blue, to the
remaining vertices. At this point, we again switch strategies and try to find vertices
which have red edges to at least an εk-fraction of the remaining graph. We repeat this
until either we can no longer find such vertices or until we also have k vertices with only
red edges into the remaining set of vertices which we denote by U . In the latter case,
we see that |U | > N , so there is a monochromatic copy of Kt in U . This together with
another n− t vertices of U and either the k vertices that have only blue edges into U or
the k vertices that have only red edges into U gives a monochromatic copy of Gn. Hence,
we may assume that we end up with a set U of size at least 1

εk
N > 2N in which every

vertex has red degree less than εk|U |. Moreover, we can assume that U does not contain
a blue Kt.

Let εk be sufficiently small such that

a

εk log(1/εk)
> 3k

where a is the constant from Lemma 7. By the same lemma, we can find in U a monochro-
matic clique of size at least

a

εk log(1/εk)
log |U | > 3k log(N) > 3k log f(n) > 3k · t− 1

2
> kt.

Call this clique Q1. Since |U\V (Q1)| > N , we can repeat this and find another clique Q2

of size kt. We greedily continue until we have N
kt

vertex-disjoint monochromatic copies
of Kkt, which we label Q1 . . . , QN/kt. Theses cliques cannot be blue, so they are all red.
Consider the auxiliary digraph D whose vertex set is {Q1, . . . , QN/kt} and whose arc set
A is given by the following. We have (Qi, Qj) ∈ A if and only if there is some vertex
v ∈ V (Qi) with at least k red neighbours in V (Qj). Suppose there is some Qi with in-
degree at least kktkn. There are less than kktk subsets of V (Qi) of size k, so by pigeonhole
principle there is some k-vertex subset of Qi that has at at least n common red neighbours,
giving us a red copy of Gn. Thus, we may assume that each Qi has in-degree less than
kktkn. Then we can use Lemma 8 to colour the Qi with at most kktkn colours such that
there are no arcs between cliques in the same colour class.

Now some colour class has size at least N/kt
2kktkn

> t, say it contains {Q1, . . . , Qt}. Since
there are no arcs between these cliques, any vertex in each of the Qi has at most k red
neighbours in any other Qj. We now greedily embed a blue copy of Kt. Start with Q1 and
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pick an arbitrary vertex u1. Suppose i 6 t and we have picked {u1, . . . , ui−1} from cliques
{Q1, . . . , Qi−1} such that the vertices induce a blue Kt−1. We want to pick vi ∈ V (Qi).
Each of the uj has at most k red neighbours in Qi, so there are at least kt− k(i− 1) > k
vertices in Qi with no red neighbours in {u1, . . . , ui−1} and, in particular, there is some
vertex ui with only blue neighbours in {u1, . . . , ui−1}. Reaching i = t, we have found a
blue copy of Kt and we are done.

We remark here that for the range 2n/8 6 f(n) 6 r(Kn), we can infer directly from
Lemma 4 that the graph constructed in Case 2 has Ramsey number in Θ(f(n)). However,
as with the construction in [9], we see that this holds for a much larger range.

3 Concluding remarks

We have seen that for any reasonable function f(n), we can find a sequence of n-vertex
graphs Gn such that r(Gn) = Θ(f(n)) (where the implicit constants do not depend on
f). It would be interesting to find out if we can, in fact, get much closer. Following
Pavez-Signé et al. [9], let us consider the sets

Rn = {r(G) : |V (G)| = n}, and

Rc
n = {r(G) : |V (G)| = n and G is connected}.

Clearly, we have Rn ⊆ [n, r(Kn)] and due to a result of Burr and Erdős [2] we know
that Rc

n ⊆ [d4
3
ne − 1, r(Kn)]. In order to see how close we can get to an arbitrary f(n),

we need to understand the ‘gaps’ in Rn and Rc
n. The following question is posed by

Pavez-Signé et al. [9] and an affirmative answer would imply that it is possible to hit any
growth rate exactly.

Question 9 ([9], Question 13). Is there an n0 ∈ N such that for all n > n0,

Rn = [n, r(Kn)] and Rc
n = [d4

3
ne − 1, r(Kn)]?

This is a very strong property, and the answer may well turn out to be negative.
Pavez-Signé et al. [9] also raise the question of whether the multiplicative gaps in Rc

n are
of size 1 + o(1) as n gets large. It is natural to ask this even without the connectivity
constraint, and we make the following conjecture.

Conjecture 10. For all functions f(n) : N→ N with n 6 f(n) 6 r(Kn) and for all ε > 0,
there is a sequence of graphs (Gn)n∈N satisfying |V (G)| = n and

(1− ε)f(n) 6 r(Gn) 6 (1 + ε)f(n)

for all sufficiently large n.

One way to approach this might be through edge deletion. Wigderson [10] has conjec-
tured that deleting an edge can change the Ramsey number by at most a constant factor.
It seems possible that, at least for dense graphs G, there might always some edge e such
that deleting e changes the Ramsey number by at most a 1 + o(1) factor (as |G| gets
large).
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