The Lexicographically Least Binary Rich Word
Achieving the Repetition Threshold

James D. Currie Narad Rampersad

Submitted: Oct 10, 2023; Accepted: Oct 2, 2024; Published: Dec 27, 2024
(©) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A word is rich if each of its length n factors contains n distinct non-empty
palindromes. For a language L, the repetition threshold of L is defined by

RT(L) = sup{k : every infinite word of £ contains a k-power}.

Currie et al. (2020) proved that the repetition threshold for binary rich words is
2 ++/2/2. We exhibit the lexicographically least infinite binary rich word attaining
this threshold.

Mathematics Subject Classifications: 68R15

1 Introduction

A major branch of combinatorics on words studies words avoiding various powers or
patterns. A typical question is whether there exists an infinite word over a certain alphabet
avoiding a certain pattern. The earliest known result of this type is by Thue [17], who
proved that there is an infinite word over a three-letter alphabet containing no factor of
the form h(xz) with h a non-erasing morphism.

We use 3, to denote the n-letter alphabet ¥, = {0,1,2,...,n — 1}. Let p be an
arbitrary finite string. Several generalizations of Thue’s result have been explored:

1. Does there exist some n such that there is an infinite word over ¥, containing no
factor of the form h(p) with h a non-erasing morphism?

2. For a fixed n, is there an infinite word over ¥, containing no factor of the form h(p)
with A a non-erasing morphism?
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The first of these problems was shown to be decidable by Bean et al. [3] and independently
by Zimin [18]. It is unknown whether the second problem is decidable.

A word of length ¢ and period p is called a k-power, where k = ¢/p. A reformulation
of Thue’s result is that there is an infinite word over 3 not containing a 2-power. For
integer n > 2, the repetition threshold function is defined by

RT(n) = sup{k : every infinite word over ¥, contains a k-power}.

Thus Thue showed that RT(3) = 2. Dejean [9] showed that in fact RT(3) = 7/4, and
conjectured that
7/4, if n=3;
RT(n) = { 7/5, if n = 4;
n/(n—1), ifn#3,4.

Dejean’s conjecture was finally proved by Rao, and independently by Currie and Ramper-
sad [15, 8]. Words over an alphabet which realize the repetition threshold of the alphabet
are called threshold words and are extremal objects. In the case n = 2, the threshold
words are the binary overlap-free words, which have a large literature. (A good reference
is the thesis of Rampersad [14].) With the solution of Dejean’s conjecture, an indexed
family of similar languages present themselves for study. As an example of such study,
for threshold words on ¥, with n > 27, Currie et al. [6] have shown that the number of
words grows exponentially with length.

Also branching off from the solution of Dejean’s conjecture is the study of repetition
thresholds for various classes of words. For example, various authors have found the
repetition thresholds for binary rich words, for balanced sequences, and for circular words
[7, 10, 11, 13]. Other types of repetition thresholds have also been studied, such as
undirected repetition thresholds and Abelian repetition thresholds [5, 16].

When investigating the existence of an infinite word over ¥, with some property, a
natural approach is to generate and study long finite words with the property. Such
words are typically generated by backtracking, and are therefore the lexicographically
least words of a given length. Practically speaking then, solving avoidance problems
often involves generating and parsing prefixes of the lexicographically least infinite word
with a given property. Allouche et al. [2] characterized the lexicographically least infinite
overlap-free binary word starting with any specified prefix. Currie [4] characterized the
lexicographically least infinite good word, where the good words are closely related to the
period-doubling morphism. However, the general study of lexicographically least infinite
words with avoidance properties is in its infancy, and more examples are needed.

The current note combines the theme of repetition threshold with that of lexicograph-
ically least words. The 2020 paper of Currie et al. [7] established the repetition threshold
for binary rich words. Studying such words by backtracking leads naturally to the ques-
tion: What is the lexicographically least infinite binary rich word attaining the threshold?
We answer this question in this note.
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2 Preliminaries

A word over alphabet ¥, is a finite or infinite sequence over ¥,,. We use lower case letters
for finite words, and write, e. g., word w = wywsy - - - w,,, where each w; € 3,,. The length
of w is denoted by |w| = m. The word of length 0 is called the empty word, and is
denoted by €. The concatenation of two words u = uqus - - - us and v = Vv - - - vy is given
by uv = uqusg - - - usv1vg - - - vy If w, v, w, 2z are words and w = uzv, we call word z a factor
of w, word u a prefiz of w, and word v a suffiz of w. If w = uv, we define v tw = v.

A morphism from X to ¥¥ is a function f respecting concatenation; i.e., f(zy) =
f(x)f(y) for all z,y € X5, If f~'(e) = {e}, we call f non-erasing.

We use bold-face letters for infinite words, writing w = wywsws - - -, where each w; €
Y. The set of finite words over X, is denoted by X7, and the set of infinite words is
denoted by ¥.

Iteration of a morphism f is written as exponentiation:

N if i = 0;
i) = {f(fi—l(:c)), if i > 0.

If f:3% — ¥ is a non-erasing morphism such that for some a € %,, f(a) = au,
u # €, then f"!(a) is a proper prefix of f"(a) for every positive integer n. We can then
define w = lim,,_,», f"(a) to be the infinite word such that, for each n, word f"(a) is a
prefix of w.

Let w be a finite word over ¥,. Write w = wjwy - - - w,, where each w; € ¥,. The
reversal of w is the word wf* = w,,wy,_1 -~ wy. We call word w a palindrome if w = w’.
Any word w contains at most |w| distinct non-empty palindromic factors. If w in fact
contains |w| distinct non-empty palindromic factors, we say that w is rich. A good
reference on rich words is the paper of Glen et al. [12]. One of their results which we will

use 1s

Theorem 1. [12, Theorem 2.14] For any finite or infinite word w, the following properties
are equivalent:

(i) w is rich;

(ii) for any factor u of w, if u contains exactly two occurrences of a palindrome p as a
prefiz and as a suffiz only, then u is itself a palindrome.

A factor u of w containing exactly two occurrences of a factor p as a prefix and as a
suffix is called a return word of p. An infinite word is defined to be rich if each of its finite
factors is rich.

Let w be an infinite word. The critical exponent of w is defined to be

ce(w) = sup{k : w contains a k-power}.
(We allow ce(w) = oo. This happens, for example, in the case where w is periodic.)
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Let L be a set of infinite words. The repetition threshold of L is defined to be
RT(L) = sup{k : every word of L contains a k-power} = inf{ce(w) : w € L}.

Thus RT(n) = RT(X%).

Baranwal and Shallit [1] showed that there is an infinite binary rich word with critical
exponent 2 + v/2 /2, and Currie et al. [7] proved that this word achieves the repetition
threshold for infinite binary rich words. Let L be the set of infinite binary rich words. The
set T of threshold words is the set of infinite binary rich words whose critical exponent is
the repetition threshold. Thus

T ={weL:celw)=2+V2/2}.

Define morphisms f : X5 — X3 and g, h : X5 — X3 by
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Word f(h“(0)) is the word constructed by Baranwal and Shallit [1]. The word
f(g(h*(0))) was shown to be a binary rich word with the same critical exponent by
Currie et al. [7].

Remark 2. Tt is shown by Currie et al. [7] that f, g and h preserve non-richness of words.

The lexicographic order on Y7 and ¥ is defined as follows:

e We order letters in the natural way: 0 <1 <2 < --- <n — 1. We also insist that
e < 0.

e Let the longest common prefix of u and v be p. We say that v < v if and only if
the first letter of p~tu is less than the first letter of p~lv, where the first letter of ¢
is taken to be e.

One checks that morphisms f, g, and h are order-preserving: Let ¢ € {f,g,h}. If
u < v then ¢(u) < ¢(v).

Theorem 3 (Main Theorem). Word £ = f(01g(h“(0))) is the lexicographically least word
1
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3 Proof of Main Theorem

We say that a word w € ¥} is eligible if it is both rich and 14/5-free. We say that an
infinite word over ¥, is eligible if its factors are eligible. Since 2 4+ v/2/2 < 14/5, each
word of T is eligible.

Observation 4. Since an infinite eligible word w must be 3-free, it can be written as
pf(u), where p € {€,1,11}, and u € 3.

We use slight amplifications of the results of Currie et al. [7]:
Lemma 5. Suppose f(u) is eligible, where uw € 011%4. Then

1. Word uw = g(W) for some word W € ¥.

2. Word W has the form h(U) for some word U € Y.

Proof. To show that 1 holds, replacing u by a suffix if necessary, write u = ujususuy - - -
where each wu; starts with 0 and contains no other 0. It suffices to show that each w; is
among 011, 0121, and 012121. If not, w contains a factor u from among 00, 010, 0111,
0112, 0120, 01211, 012120, 0121211, 0121212, 012122, 0122, and 02. A backtracking
search shows that for each such u, f(u) cannot be extended to an eligible word of length
50.

To show that 2 holds, we show that W cannot contain a factor v from among 00,
11, 12, or 21. However if W contains such a factor, then g(W') contains a factor u from
among 11011, 0121012, and 2101210. A backtracking search shows that for each such u,
f(u) cannot be extended to an eligible word of length 50. O

Lemma 6. Let u € 03¢. Suppose that for some positive integer n, one of f(g(h"(u)))
and f(h"(u)) is eligible. Then w = h(W) for some word W € 3.

Proof. Since f, g, and h preserve non-richness, u must be rich. Since 3 > 14/5, one of
f(g(h™(u))) and f(h"(w)) (and hence u also) must be cube-free.

Let F = {00,01210,10101,11,1221,212}. We claim that there is a suffix of w that
does not contain any factor u from F.

In the case u € {00,10101, 11,1221}, for any a,b € X3, one checks that f(h(aub)),
g(h(aub)), and h*(aub) all contain cubes, so that f(g(h™(aub))) and f(h™(aub)) also con-
tain cubes. Thus there is a suffix of w containing none of 00, 10101, 11, and 1221.

One shows by induction on n that 2"(212) and g(h™(212)) contain a cube or a factor of
one of the forms v0v0v2 or vlvlv2. This forces f(g(h™(212))) and f(h"(212)) to contain
cubes. Thus 212 is not a factor of u.

Finally, there is no word v01210 where |v| = 8, such that v01210 is rich and cube-free,
and contains none of 00,10101,11,1221,212. Thus there is a suffix of w not containing
01210. This establishes the claim.

Replacing u by a suffix if necessary, write u = ujusuguy - - - where each wu; starts with
0 and contains no other 0. To show that w has the form u = h(W), it suffices to show
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that each wu; is among 01, 02, and 022. If not, u contains a factor from among 00, 011,
0120, 01210, 01211, 01212, 01220, 01221, 01222, 0210, 0211, 0212, 02210, 02211, 02212,
and 0222. Each of these is either in F', is not rich, or contains a cube. O

Theorem 7. The infinite binary word v = f(g(h*(0))) is eligible.
Theorem 7 was proved by Currie et al. [7].

Lemma 8. The lexicographically least infinite eligible word with prefiz 001010 s

v = f(g(h*(0))).

Proof. Suppose that V is an infinite eligible word with prefix 001010, and V' < v. By
Observation 4, write V' = f(u), where u € ¥%. Since V has prefix 001010, word w has
prefix 011. It follows from Lemma 5 that w = g(U) for some word U € ¥¢, where U has
the form h(W) for some word W € ¥.

Since f is order-preserving, u < g(h“(0)). Since g is order-preserving, U < h*(0).
Since h is order-preserving, W < h¥(0). In particular, since the first letter of h“(0) is 0,
the first letter of W is 0. Using Lemma 6, write W = h(W3) for some word W, € 3.
Again, since h is order-preserving, the first letter of W, is 0. By induction, we find that
for each positive integer n we have W, = h"~1(W,), for some word W, € 03%. It follows
that h™(0) is a prefix of W for each n, so that W = h¥(0).

We conclude that the lexicographically least infinite eligible word with prefix 001010
is

v = f(g(h*(0))). O
The Main Theorem follows from the following three lemmas.
Lemma 9. Let m be an infinite eligible word. Let
£ = f(01g(h*(0))).

Then
L <m.

Proof. The least binary 3-free word of length 8 is 00100100. However, 00100100 cannot be
extended on the right to a binary 3-free word. It follows that 001001010 < m. If m < £,
then

f(01g(0))0 = 001001010 < m < £ = f(01g(h~(0))),

forcing m to have prefix 001001010. Then (001) 'm is an infinite eligible word with
prefix 001010. By Lemma 8, this forces

fg(h(0))) < (001)"'m
forcing

£ =001f(g(h*(0))) < m. 0
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Lemma 10. Word 01f(g(h“(0))) is recurrent.

Proof. Word g(h“(0)) is recurrent. However, the only letter preceding a 0 in g(h*(0)) is
1, so that if p is a prefix of g(h“(0)), word 1p must be a (necessarily recurrent) factor of
g(h*(0)). Any u factor of 01f(g(h“(0))) is a factor of 01 f(p) = f(1p) for some prefix p of
g(h“(0)). Since 1p is recurrent in g(h“(0)), f(1p) is recurrent in f(g(h*(0))), and so is .
Then w is recurrent in 01f(g(h“(0))). We conclude that 01f(g(h“(0))) is recurrent. [

Lemma 11. The word
£ = f(01g(h*(0)))
contains no factor with exponent greater than 2 4+ v/2/2.

Proof. Currie et al. [7] proved that f(g(h“(0))) contains no factor with exponent greater
than 2 + v/2/2. By Lemma 10, word 01f(g(h*(0))) has the same factors as f(g(h“(0)))
and therefore also contains no factor with exponent greater than 2 4 v/2/2. Therefore,
any (2 +1/2/2)" power in f(01g(h“(0))) = 001f(g(h“(0))) must be a prefix. The word
00100 is a prefix of f(01g(h¥(0))), but does not occur in f(g(h“(0))). It follows that any
(2 +/2/2)* power which is a prefix of f(01g(h#(0))) has period 4 or less. A very short
finite check shows no such (2 + v/2/2)" power is a prefix of f(01g(h*(0))). O

Lemma 12. The word
£ = f(01g(h*(0)))
1s Tich. Thus £ € T.

Proof. Currie et al. [7] proved that f(g(h“(0))) is rich. By Lemma 10, 01f(g(h“(0))) has
the same factors as f(g(h“(0))) and is also rich.

Suppose that 001f(g(h“(0))) is not rich. It will therefore have a complete return
to a palindrome which is not a palindrome. Since 01f(g(h“(0))) is rich, some prefix of
001f(g(h“(0))) must be a complete return to a palindrome which is not a palindrome.
Let this prefix be pgp where p is a palindrome and ¢ is not. The palindrome 00100 is a
prefix of f(01g(h“(0))), but does not occur in f(g(h*(0))). It follows that |p| < 4. The
only possibility is seen to be p = 00. However the complete return to 00 is 00100, which
is a palindrome. This is a contradiction. O
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