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Abstract

In 1985, Brualdi and Hoffman posed the following conjecture: Let G be an n-
vertex graph of size m, where 0 6 m 6

(
n
2

)
. If m =

(
a
2

)
+ b with 0 6 b < a, then

G ∼= (Kb∨(Ka−b∪K1))∪(n−a−1)K1 is the unique graph having the largest spectral
radius. This conjecture was completely resolved by Rowlinson (1988). In 2008,
Bhattacharya, Friedland and Peled posed the bipartite version of Brualdi-Hoffman
conjecture. Here, we consider an Aα-spectral extremal question, which may be seen
as an Aα-spectral version of the Bhattacharya-Friedland-Peled conjecture: For fixed
α ∈ [0, 1), which graph attains the maximum Aα-index over all bipartite graphs with
n vertices and m edges? When 1

2 6 α < 1, we prove that for every pair of positive
integers n, m, if m = k(n− k), where k is a positive integer with k 6= 1, n− 1, then
the complete bipartite graph Kk,n−k is the unique graph that maximizes the Aα-
index over all bipartite graphs with n vertices and m edges; if n 6 m 6 2n−5, then
Km

2,n−2, the graph obtained from the complete bipartite graph K2,n−2 by deleting
2n − 4 − m edges which are incident on a common vertex of degree n − 2, is the
unique graph that maximizes the Aα-index over all bipartite graphs with n vertices
and m edges; if 2n−3 6 m 6 2

√
2(n−4), then Km

3,n−3, the graph obtained from the
complete bipartite graph K3,n−3 by deleting 3n−9−m edges which are incident on
a common vertex of degree n− 3, is the unique graph that maximizes the Aα-index
over all bipartite graphs with n vertices and m edges. It improves some known ones
of Zhang and Li (2017) and partially answers some questions posed by Zhai, Lin
and Zhao (2022).
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1 Introduction

In this paper, we consider only simple and finite graphs. Unless otherwise stated, we
follow the traditional notation and terminology (see, for instance, West [28], Godsil and
Royle [14]).

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). We use
n := |V (G)| and m := |E(G)| to denote the order and the size of G, respectively. We
say that two vertices u and v are adjacent (or neighbours) if they are joined by an edge
and we write it as u ∼ v. If u ∼ v, then let G− uv denote the graph obtained from G by
deleting edge uv (this notation is naturally extended if more than one edge is deleted).
Similarly, if u � v, then let G+ uv denote the graph obtained from G by adding an edge
joining u and v.

As usual, let Ka,b be the complete bipartite graph with partite sets of sizes a and b.
The set of neighbours of a vertex v (in a graph G) is denoted by NG(v). The degree dG(v)
of v in a graph G is the number of edges incident with v, and it is equal to the size of
NG(v) if G is simple. The maximum degree of G is denoted by ∆(G). A vertex v ∈ V (G)
is said to be a leaf of G if dG(v) = 1.

Let G be a graph of order n, the adjacency matrix of G is defined as the n× n (0, 1)-
matrix A(G) = (aij) with aij = 1 if and only if vi ∼ vj. The degree diagonal matrix of
G is defined as the n× n diagonal matrix D(G) = diag(dG(v1), . . . , dG(vn)). The signless
Laplacian matrix of G is defined as Q(G) = D(G)+A(G), whereas the Laplacian matrix of
G is defined as L(G) = D(G)−A(G). The largest eigenvalue of A(G) (resp. Q(G), L(G))
is called the index (resp. Q-index, L-index ) of G, denoted by ρ(G) (resp. q(G), µ(G)) as
usual. It is known that µ(G) = q(G) if G is a bipartite graph.

In 2017, Nikiforov [22] proposed the Aα-matrix of G, which is a convex linear combi-
nation of D(G) and A(G), i.e.,

Aα(G) = αD(G) + (1− α)A(G), α ∈ [0, 1].

Note that Aα(G) is real symmetric, its eigenvalues are real. The largest eigenvalue of
Aα(G) is called the Aα-index of G, denoted by λα(G) as usual. It is obvious that A0(G) =
A(G), A 1

2
(G) = 1

2
Q(G) and A1(G) = D(G). Therefore, λ0(G) = ρ(G), λ 1

2
(G) = 1

2
q(G).

If G is connected and α 6= 1, then Aα(G) is non-negative and irreducible; by the Perron-
Frobenius theory, there exists a unique positive unit eigenvector of Aα(G) corresponding
to λα(G), we call this vector the Perron vector of Aα(G).

Let G and H be two graphs, define G∪H to be their disjoint union, and G∨H to be
their join. Denote by Cm

n = (Kb ∨ (Ka−b ∪K1)) ∪ (n− a− 1)K1, where m =
(
a
2

)
+ b and

0 6 b < a. Let G(n,m) be the set of all n-vertex graphs of size m. In 1985, Brualdi and
Hoffman posed the following conjecture.

Conjecture 1 ([3]). Let G ∈ G(n,m), where 0 6 m 6
(
n
2

)
. If m =

(
a
2

)
+b with 0 6 b < a,

then ρ(G) 6 ρ(Cm
n ). Equality holds if and only if G ∼= Cm

n .

Conjecture 1, confirmed for some special cases by Brualdi and Hoffman [3], Friedland
[13] and Stanley [27], was completely resolved by Rowlinson [26].
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Let G(n,m) be the subset of G(n,m) consisting of all connected graphs. In mathe-
matical literature many works focused on identifying the graphs among G(n,m) with the
maximum index. These nice results can be found in [1, 4, 10, 21, 24].

In 2010, Chang and Tam [7] determined the graphs with maximum Q-index over
G(n,m) for m 6 n+3; and then Chang and Tam [5] determined the graphs with maximum
Q-index over G(n,m) for n − 1 6 m 6 2n − 3. Based on the results in [7, 5], Zhai, Lin
and Zhao [29] determined the graphs with maximum Q-index over G(n,m) for n + 4 6
m 6 2n− 3.

Recently, Li et al. [18] determined the graphs with maximum Aα-index over G(n,m)
for n− 1 6 m 6 2n− 3 and 1

2
6 α < 1, extending and also providing an alternative proof

for the results of Chang and Tam [5]. And then, based on the results in [18], Chang and
Tam [6] determined the graphs with maximum Aα-index over G(n,m) for m 6 2n − 3
and 1

2
6 α < 1, extending the results of Chang and Tam [7] and Zhai, Lin and Zhao [29].

Let B(p, q,m) be the set of all bipartite graphs with size m and the sizes of partite
sets being p and q, respectively. As an analogue of Conjecture 1, Bhattacharya, Friedland
and Peled [2] posed the following conjecture.

Conjecture 2 ([2]). For 2 6 p 6 q and 1 < m < pq, a graph that solves
maxG∈B(p,q,m) ρ(G) is the union of G? with possible some isolated vertices, where G? is ob-
tained from a complete bipartite graph by adding one vertex and a corresponding number
of edges.

Conjecture 2 was confirmed for some special cases by Bhattacharya, Friedland and
Peled [2], Chen et al. [8], Das et al. [11] and Liu and Weng [20]. Recently, Cheng, Liu
and Weng [9] provided some counterexamples of Conjecture 2.

For 2 6 p 6 q and pq − p < m < pq, let mKp,q denote the bipartite graph obtained
from Kp,q by deleting pq−m edges which are incident on a common vertex in the partite
set of size q. Chen et al. [8] refined Conjecture 2 under the assumption that m > pq − p
as follows, which was confirmed by Liu and Weng [20].

Conjecture 3 ([8]). Let G ∈ B(p, q,m), where 2 6 p 6 q, pq − p < m < pq. Then
ρ(G) 6 ρ(mKp,q).

Motivated by Conjecture 2, Zhai, Lin and Zhao [29] asked the following question.

Question 4 ([29]). For 2 6 p 6 q and 0 6 m 6 pq, what is the maximum Q-index and
the corresponding extremal graphs over all graphs in B(p, q,m)?

Zhai, Lin and Zhao [29, Theorem 1.2] answered Question 4 for 0 6 m 6 2q; they
found the extremal graphs in [29, Theorem 1.2] are connected only when m = p + q − 1
or p = 2. Let B(p, q,m) be the subset of B(p, q,m) consisting of all connected bipartite
graphs.

Question 5 ([29]). For 2 6 p 6 q and p+q−1 6 m 6 pq, what is the maximum Q-index
and the corresponding extremal graphs over all graphs in B(p, q,m)?
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Zhai, Lin and Zhao showed the extremal graphs in Question 5 are double nested graphs
(see Section 2); they [29, Theorem 4.1] answered Question 5 for p+q−1 6 m 6 2q+p−2.

Let B(n,m) be the set of all n-vertex bipartite graphs with size m, and let B(n,m) be
the subset of B(n,m) consisting of all connected bipartite graphs. For n 6 m 6 2n − 5,
Petrović and Simić [25] determined the maximum index and the corresponding extremal
graphs over all graphs in B(n,m). For n 6 m 6 2n− 5 and m = k(n− k), where k is an
integer with 2 6 k 6 bn

2
c, Zhang and Li [30] determined the maximum L-index (and so

the maximum Q-index) and the corresponding extremal graphs over all graphs in B(n,m).
In this paper, we mainly consider a question of maximizing Aα-index over B(n,m).

Question 6. For 1 6 m 6 bn
2
cdn

2
e and 0 6 α < 1, what is the maximum Aα-index and

the corresponding extremal graphs over all graphs in B(n,m)?

For 1 6 p 6 q and pq − q < m 6 pq, let Km
p,q denote the bipartite graph obtained

from Kp,q by deleting pq−m edges which are incident on a common vertex in the partite
set of size p. For 1

2
6 α < 1, Feng and Wei [12], Li and Qin [16], Chang and Tam [6]

determined all the graphs with maximum Aα-index over all the graphs with size m. As a
product, we can obtain the following result quickly, which gives an answer to Question 6
for 1 6 m 6 n− 1 and 1

2
6 α < 1.

Corollary 7. Let 1
2
6 α < 1 and 1 6 m 6 n − 1 be given. If G ∈ B(n,m), then

λα(G) 6 λα(Km
1,n−1), with equality if and only if G ∼= Km

1,n−1.

Our first main result gives an answer to Question 6 for m = k(n− k) and 1
2
6 α < 1,

where k is an integer with 2 6 k 6 bn
2
c.

Theorem 8. Let 1
2
6 α < 1 and m = k(n − k) be given, where k is an integer with

2 6 k 6 bn
2
c. If G ∈ B(n,m), then λα(G) 6 λα(Kk,n−k), with equality if and only if

G ∼= Kk,n−k.

Our second main result gives an answer to Question 6 for n 6 m 6 2n − 5 and
1
2
6 α < 1.

Theorem 9. Let 1
2
6 α < 1 and n 6 m 6 2n − 5 be given. If G ∈ B(n,m), then

λα(G) 6 λα(Km
2,n−2), with equality if and only if G ∼= Km

2,n−2.

Our last main result gives an answer to Question 6 for 2n− 3 6 m 6 2
√

2(n− 4) and
1
2
6 α < 1.

Theorem 10. Let 1
2
6 α < 1 and 2n − 3 6 m 6 2

√
2(n − 4) be given. If G ∈ B(n,m),

then λα(G) 6 λα(Km
3,n−3), with equality if and only if G ∼= Km

3,n−3.

The remainder of this paper is organized as follows. In Section 2, we give some
necessary preliminaries. In Section 3, we give the proofs of Theorems 8 and 9. The proof
of Theorem 10 is presented in Section 4. Some concluding remarks are given in the last
section.
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Figure 1: The structure of a double nested graph.

2 Preliminaries

Let G be a connected bipartite graph with partite sets U and V. The graph G is said to be
a double nested graph (also known as a chain graph or a difference graph, see [2, Section
2]) if there exist partitions

U = U1 ∪ U2 ∪ · · · ∪ Uh and V = V1 ∪ V2 ∪ · · · ∪ Vh,

such that all vertices in Ui are adjacent to all vertices in
⋃h+1−i
j=1 Vj for 1 6 i 6 h (see

Figure 1).

Lemma 11 ([17]). Let G be a graph in B(n,m) with maximum Aα-index for some α ∈
[0, 1). Then G is a double nested graph with all leaves being adjacent to a common vertex.

By Lemma 11, the following corollary is clear.

Corollary 12. Let G be a graph in B(p, q,m) with maximum Aα-index for some α ∈ [0, 1).
Then G is a double nested graph, possibly with some isolated vertices.

Let M be an n×n real symmetric matrix and let π : W = W1∪· · ·∪W` be a partition
of W = {1, . . . , n}. Then corresponding to the partition π, M can be partitioned into the
following block matrix:

M =

 M11 · · · M1`
...

. . .
...

M`1 · · · M``

 .

The quotient matrix of M with respect to π is the matrix B = (bij)`×`, where bij is the
average row sum of the block Mij. The partition π is said to be equitable if each block
Mij has constant row sums for i, j ∈ {1, . . . , `}.

Lemma 13 ([15]). Let M be a real symmetric matrix and let B be a quotient matrix of M
with respect to an equitable partition. Then the eigenvalues of B are also the eigenvalues
of M. Furthermore, if M is nonnegative and irreducible, then λ(M) = λ(B), where λ(M)
and λ(B) are the largest eigenvalues of M and B, respectively.
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Lemma 14 ([19]). Let G be a connected graph and let x be a Perron vector of Aα(G).
Then, for each v ∈ V (G), one has

λα(G)xv = αdG(v)xv + (1− α)
∑
u∼v

xu, (1)

λ2α(G)xv = αdG(v)λα(G)xv + α(1− α)
∑
u∼v

dG(u)xu + (1− α)2
∑
w∼v

∑
u∼w

xu. (2)

Lemma 15 ([16]). Let G and H be two connected graphs of order n, and let x and y be
the Perron vectors of G and H, respectively. Then

xTAα(G)y = α
∑

uv∈E(G)

(xuyu + xvyv) + (1− α)
∑

uv∈E(G)

(xuyv + xvyu)

and
xTy(λα(G)− λα(H)) = xT (Aα(G)− Aα(H))y.

Lemma 16 ([23]). Let 0 6 α < 1, and let G be a connected graph with u, v ∈ V (G).
Assume that x is the Perron vector of Aα(G), and S ⊆ NG(v)\(NG(u) ∪ {u}). Let
G′ = G− {vw : w ∈ S}+ {uw : w ∈ S}. If S 6= ∅ and xu > xv, then λα(G′) > λα(G).

Lemma 17 ([22, 17]). Let G be a double nested graph of order n. For some α ∈ [0, 1),
let x be the Perron vector of Aα(G). Assume that u and v are two vertices in the same
partite set of G.

(i) If dG(u) = dG(v), then xu = xv.

(ii) If dG(u) < dG(v), then xu < xv.

Lemma 18 ([22]). Let G be a graph with no isolated vertices, then

λα(G) 6 max
v∈V (G)

{
αdG(v) +

1− α
dG(v)

∑
u∼v

dG(u)

}
.

Lemma 19. For 1
2
6 α < 1 and 1 6 k 6 bn

2
c, the Aα-index of Kk,n−k satisfies

α(n− k) +
k(1− α)2

α
6 λα(Kk,n−k) 6 αn.

Both the right and left equalities hold if and only if α = 1
2
.

Proof. According to [22, Proposition 38], one has

λα(Kk,n−k) =
1

2

(
αn+

√
α2n2 + 4k(n− k)(1− 2α)

)
(3)

=
1

2

αn+

√(
α(n− 2k) +

2k(1− α)2

α

)2

+ 4k2(1− α)2
(

1− (1− α)2

α2

) .
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Note that for 1
2
6 α < 1, one has 4k2(1− α)2

(
1− (1−α)2

α2

)
> 0, with equality if and only

if α = 1
2
. Then

λα(Kk,n−k) > α(n− k) +
k(1− α)2

α

with equality if and only if α = 1
2
.

On the other hand, as α > 1
2
, one has 4k(n−k)(1− 2α) 6 0, with equality if and only

if α = 1
2
. Then (3) gives

λα(Kk,n−k) =
1

2

(
αn+

√
α2n2 + 4k(n− k)(1− 2α)

)
6 αn

with equality if and only if α = 1
2
.

This completes the proof.

3 Proofs of Theorems 8 and 9

In this section, we aim to give the proofs of Theorems 8 and 9.

Proof of Theorem 8. Choose G in B(n,m), and let U, V be two partite sets of G with
|U | 6 |V |. Note that for any positive integers p, q, n with p < q 6 bn

2
c, we have p(n−p) <

q(n − q). If |U | 6 k − 1, then |E(G)| 6 |E(K|U |,|V |)| = |U ||V | < k(n − k) = m, a
contradiction to G ∈ B(n,m).

If |U | > k + 1, then |E(G)| = k(n − k) < |U ||V |, and so G is a proper subgraph of
K|U |,|V |. By the Perron-Frobenius theory and (3), one has

λα(G) < λα(K|U |,|V |) =
1

2

(
αn+

√
α2n2 + 4|U ||V |(1− 2α)

)
6

1

2

(
αn+

√
α2n2 + 4k(n− k)(1− 2α)

)
= λα(Kk,n−k).

If |U | = k, then G is a subgraph of Kk,n−k, and so |E(G)| 6 |E(Kk,n−k)| (= k(n−k) =
m), with equality if and only if G = Kk,n−k.

In the remainder of this section, we are going to give the proof of Theorem 9.
Let 1

2
6 α < 1, and let n, m be positive integers with n 6 m 6 2n − 5. Then

n > 5. In the remainder of this section, we assume that G∗ is a graph with maximum
Aα-index among all graphs in B(n,m). Then by the Perron-Frobenius theory (see the first
paragraph of the proof of [29, Lemma 2.5]), G∗ has at most one non-trivial component. For
convenience, we denote by λα = λα(G∗), ∆ = ∆(G∗) and d(v) = dG∗(v) for v ∈ V (G∗).
As Km

2,n−2 ∈ B(n,m), and Km
2,n−2 contains K1,n−2 as a proper subgraph. By the choice of

G∗, the Perron-Frobenius theory and Lemma 19, one has

λα > λα(Km
2,n−2) > λα(K1,n−2) > α(n− 2) +

(1− α)2

α
. (4)
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Fact 20. G∗ = Km
2,n−2 for n 6 m 6 2n− 6.

Proof. Note that G∗ is a bipartite graph. Hence, in order to show G∗ = Km
2,n−2, it suffices

to prove ∆ = n−2. Note that ∆ = n−1 gives G∗ = K1,n−1, and so |E(G∗)| = n−1 < m,
a contradiction to G∗ ∈ B(n,m).

Now suppose ∆ 6 n − 3. Note that given real numbers a, b > 0, the function f(x) =
ax + b

x
with x > 0 is convex. Let G1 be the non-trivial component of G∗. Let v be in

V (G1).
If d(v) = 1, then one has

αd(v) +
1− α
d(v)

∑
u∼v

d(u) = α + (1− α)
∑
u∼v

d(u)

6 α + (1− α)∆ 6 α + (n− 3)(1− α). (5)

If d(v) > 2, then 2 6 d(v) 6 ∆ 6 n− 3. And so

αd(v) +
1− α
d(v)

∑
u∼v

d(u) 6 αd(v) +
(1− α)m

d(v)

6 max

{
2α +

(1− α)m

2
, α(n− 3) +

(1− α)m

n− 3

}
6 α(n− 3) + 2(1− α). (6)

Together with (5), (6) and Lemma 18, one has

λα = λα(G1) 6 max
v∈V (G1)

{
αd(v) +

1− α
d(v)

∑
u∼v

d(u)

}
6 max{α + (n− 3)(1− α), α(n− 3) + 2(1− α)}
= α(n− 3) + 2(1− α). (7)

Combining (4) with (7) gives us

α(n− 2) +
(1− α)2

α
< α(n− 3) + 2(1− α), i.e.,

(2α− 1)2

α
< 0,

a contradiction.
Therefore, ∆ = n− 2, and so G∗ = Km

2,n−2.

Fact 21. For n 6 m = 2n − 5, we have n − 3 6 ∆ 6 n − 2, and ∆ = n − 2 only if
G∗ = Km

2,n−2.

Proof. If ∆ = n− 1, then since G∗ is bipartite, G∗ must be K1,n−1. So |E(G∗)| = n− 1 <
n 6 m, which is a contradiction. If ∆ = n− 2, it is clear that G∗ = Km

2,n−2. To complete
the proof, it remains to rule out the possibility ∆ 6 n− 4.
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Suppose ∆ 6 n− 4. Then for n = 5, one has ∆ 6 1, and so by Lemma 18, λα 6 ∆ =

1 < 3α + (1−α)2
α

, a contradiction to (4); for n = 6, one has ∆ 6 2, and so by Lemma 18,

λα 6 ∆ 6 2 < 4α + (1−α)2
α

, a contradiction to (4).
Now we consider n > 7. In this case, let G1 be the non-trivial component of G∗. Let

v be in V (G1). If d(v) = 1, then one has

αd(v) +
1− α
d(v)

∑
u∼v

d(u) = α + (1− α)
∑
u∼v

d(u)

6 α + (1− α)∆ 6 α + (n− 4)(1− α). (8)

If d(v) = 2, then one has

αd(v) +
1− α
d(v)

∑
u∼v

d(u) = 2α +
1− α

2

∑
u∼v

d(u)

6 2α + (1− α)∆ 6 2α + (n− 4)(1− α). (9)

If d(v) > 3, then 3 6 d(v) 6 ∆ 6 n− 4. And so

αd(v) +
1− α
d(v)

∑
u∼v

d(u) 6 αd(v) +
(1− α)m

d(v)

6 max

{
3α +

(1− α)m

3
, α(n− 4) +

(1− α)m

n− 4

}
= α(n− 4) + (1− α)(2 +

3

n− 4
). (10)

Together with (8)-(10) and Lemma 18, one has

λα = λα(G1)

6 max
v∈V (G1)

{
αd(v) +

1− α
d(v)

∑
u∼v

d(u)

}
6 max{α + (n− 4)(1− α), 2α + (n− 4)(1− α), α(n− 4) + (1− α)(2 +

3

n− 4
)}

= α(n− 4) + (1− α)(2 +
3

n− 4
). (11)

Together with (4) and (11), one has

α(n− 2) +
(1− α)2

α
< α(n− 4) + (1− α)(2 +

3

n− 4
) 6 α(n− 4) + 3(1− α),

i.e., (2α−1)(3α−1)
α

< 0, a contradiction to α > 1
2
.

Therefore, ∆ > n− 3, as desired.

Fact 22. G∗ is connected for n 6 m = 2n− 5.
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Proof. Suppose G∗ is not connected. Let G1 be the non-trivial component of G∗, then
|V (G1)| 6 n−1. On the other hand, by Fact 21, one has n−3 6 ∆(G1) 6 n−2. Then G1

is a subgraph of K1,n−2 or K2,n−3, and so |E(G∗)| = |E(G1)| 6 max{n− 2, 2n− 6} < m,
a contradiction.

Fact 23. λα 6 α(n− 3) + (1− α)(2 + 1
n−3) for 6 6 n 6 m = 2n− 5 and ∆ = n− 3.

Proof. Let v be in V (G∗). If d(v) = 1, then one has

αd(v) +
1− α
d(v)

∑
u∼v

d(u) = α + (1− α)
∑
u∼v

d(u) 6 α + (n− 3)(1− α). (12)

If d(v) = 2, then one has

αd(v) +
1− α
d(v)

∑
u∼v

d(u) = 2α +
1− α

2

∑
u∼v

d(u) 6 2α + (n− 3)(1− α). (13)

If d(v) > 3, then 3 6 d(v) 6 ∆ = n− 3. And so

αd(v) +
1− α
d(v)

∑
u∼v

d(u) 6 αd(v) +
(1− α)m

d(v)

= max

{
3α +

(1− α)(2n− 5)

3
, α(n− 3) +

(1− α)(2n− 5)

n− 3

}
= α(n− 3) + (1− α)(2 +

1

n− 3
). (14)

Together with (12)-(14) and Lemma 18, one has

λα 6 max
v∈V (G∗)

{
αd(v) +

1− α
d(v)

∑
u∼v

d(u)

}
6 max{α + (n− 3)(1− α), 2α + (n− 3)(1− α), α(n− 3) + (1− α)(2 +

1

n− 3
)}

= α(n− 3) + (1− α)(2 +
1

n− 3
),

as desired.
This completes the proof.

Fact 24. G∗ = Km
2,n−2 for n 6 9 and n 6 m = 2n− 5.

Proof. By Fact 21, it suffices to show ∆ 6= n− 3. Suppose ∆ = n− 3, recall that n > 5.
If n = 5, then m = 5 and there exists a partite set of G∗ with at most 2 vertices. And so
|E(G∗)| 6 2∆ = 2(n− 3) = 4 < m, a contradiction to G∗ ∈ B(n,m). In the following, we
only need to consider 6 6 n 6 9.
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Case 1. n = 6. In this case, m = 7. By Fact 23, one has

λα 6 α(n− 3) + (1− α)(2 +
1

n− 3
) =

2α + 7

3
. (15)

On the other hand, consider the partition π1 : V (K7
2,4) = {u1} ∪ {u2} ∪ {v1, v2, v3} ∪

{v4}, where u1 (resp. u2, v4) is the vertex of degree 4 (resp. 3, 1), vi (1 6 i 6 3) are the
vertices of degree 2. With respect to the partition π1, the quotient matrix of Aα(K7

2,4) is
given as

B1 =


4α 0 3(1− α) 1− α
0 3α 3(1− α) 0

1− α 1− α 2α 0
1− α 0 0 α

 .

By a direct calculation, the characteristic polynomial of B1 is

f1(x) = x4−10αx3 + (28α2 + 14α−7)x2 + (−18α3−64α2 + 32α)x+ 42α3−9α2−12α+ 3.

Note that the partition π1 is equatable. By Lemma 13, λα(K7
2,4) is equal to the largest

eigenvalue of B1, i.e., the largest zero of f1(x).
Furthermore, by a direct calculation, one has

f1

(
2α + 7

3

)
=

(1− α)(188α3 − 1620α2 + 1497α− 443

81
. (16)

Consider the function g1(α) = 188α3 − 1620α2 + 1497α − 443. By a direct calcula-
tion, the first derivative of g1(α) is g′1(α) = 564α2 − 3240α + 1497, which is positive

in
[
1
2
, 270−

√
49447

94

)
, and negative in

(
270−

√
49447

94
, 1
)
. Therefore, g1(α) 6 g1

(
270−

√
49447

94

)
=

−75.94 < 0. Combining with (16) gives f1
(
2α+7

3

)
< 0, and so 2α+7

3
< λα(K7

2,4). Together
with (15), one has λα < λα(K7

2,4), a contradiction to the choice of G∗.
Case 2. n = 7. In this case, m = 9. By Fact 23, one has

λα 6 α(n− 3) + (1− α)(2 +
1

n− 3
) =

7α + 9

4
. (17)

On the other hand, consider the partition π2 : V (K9
2,5) = {u1}∪{u2}∪{v1, v2, v3, v4}∪

{v5}, where u1 (resp. u2, v5) is the vertex of degree 5 (resp. 4, 1), vi (1 6 i 6 4) are the
vertices of degree 2. With respect to the partition π2, the quotient matrix of Aα(K9

2,5) is
given as

B2 =


5α 0 4(1− α) 1− α
0 4α 4(1− α) 0

1− α 1− α 2α 0
1− α 0 0 α

 .

By a direct calculation, the characteristic polynomial of B2 is

f2(x) = x4−12αx3+(40α2+18α−9)x2+(−28α3−100α2+50α)x+72α3−20α2−16α+4.
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Note that the partition π2 is equatable. By Lemma 13, λα(K9
2,5) is equal to the largest

eigenvalue of B2, i.e., the largest zero of f2(x).
Furthermore, by a direct calculation, one has

f2

(
7α + 9

4

)
= −(1− α)(4753α3 + 5853α2 − 11229α + 4079)

256
. (18)

Consider the function g2(α) = 4753α3 + 5853α2 − 11229α + 4079. By a direct calcu-
lation, the first derivative of g2(α) is g′2(α) = 14259α2 + 11706α − 11229, which is

negative in
[
1
2
, −1951+116

√
1605

4753

)
, and positive in

(
−1951+116

√
1605

4753
, 1
)
. Therefore, g2(α) >

g2

(
−1951+116

√
1605

4753

)
= 460.23 > 0. Combining with (18) gives f2

(
7α+9

4

)
< 0, and so

7α+9
4

< λα(K9
2,5). Together with (17), one has λα < λα(K9

2,5), a contradiction to the choice
of G∗.

Case 3. n = 8. In this case, m = 11. By Fact 23, one has

λα 6 α(n− 3) + (1− α)(2 +
1

n− 3
) =

14α + 11

5
. (19)

On the other hand, consider the partition π3 : V (K11
2,6) = {u1} ∪ {u2} ∪ {v1, v2, v3, v4,

v5}∪ {v6}, where u1 (resp. u2, v6) is the vertex of degree 6 (resp. 5, 1), vi (1 6 i 6 5) are
the vertices of degree 2. With respect to the partition π3, the quotient matrix of Aα(K11

2,6)
is given as

B3 =


6α 0 5(1− α) 1− α
0 5α 5(1− α) 0

1− α 1− α 2α 0
1− α 0 0 α

 .

By a direct calculation, the characteristic polynomial of B3 is

f3(x) = x4−14αx3+(54α2+22α−11)x2+(−40α3−144α2+72α)x+110α3−35α2−20α+5.

Note that the partition π3 is equatable. By Lemma 13, λα(K11
2,6) is equal to the largest

eigenvalue of B3, i.e., the largest zero of f3(x).
Furthermore, by a direct calculation, one has

f3

(
14α + 11

5

)
= −(1− α)(40936α3 − 5738α2 − 34207α + 15509)

625
. (20)

Consider the function g3(α) = 40936α3 − 5738α2 − 34207α + 15509. By a direct cal-
culation, the first derivative of g3(α) is g′3(α) = 122808α2 − 11476α − 34207, which is

negative in
[
1
2
, 2869+5

√
42338179

61404

)
, and positive in

(
2869+5

√
42338179

61404
, 1
)
. Therefore, g3(α) >

g3

(
2869+5

√
42338179

61404

)
= 1725.01 > 0. Combining with (20) gives f3

(
14α+11

5

)
< 0, and so

14α+11
5

< λα(K11
2,6). Together with (19), one has λα < λα(K11

2,6), a contradiction to the
choice of G∗.
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Case 4. n = 9. In this case, m = 13. By Fact 23, one has

λα 6 α(n− 3) + (1− α)(2 +
1

n− 3
) =

23α + 13

6
. (21)

On the other hand, consider the partition π4 : V (K13
2,7) = {u1}∪{u2}∪{v1, v2, v3, v4, v5,

v6}∪ {v7}, where u1 (resp. u2, v7) is the vertex of degree 7 (resp. 6, 1), vi (1 6 i 6 6) are
the vertices of degree 2. With respect to the partition π4, the quotient matrix of Aα(K13

2,7)
is given by

B4 =


7α 0 6(1− α) 1− α
0 6α 6(1− α) 0

1− α 1− α 2α 0
1− α 0 0 α

 .

By a direct calculation, the characteristic polynomial of B4 is

f4(x) = x4−16αx3+(70α2+26α−13)x2+(−54α3−196α2+98α)x+156α3−54α2−24α+6.

Note that the partition π4 is equatable. By Lemma 13, λα(K13
2,7) is equal to the largest

eigenvalue of B4, i.e., the largest zero of f4(x).
Furthermore, by a direct calculation, one has

f4

(
23α + 13

6

)
= −(1− α)(176617α3 − 92355α2 − 70857α + 42755)

1296
. (22)

Consider the function g4(α) = 176617α3 − 92355α2 − 70857α + 42755. By a direct cal-
culation, the first derivative of g4(α) is g′4(α) = 529851α2 − 184710α − 70857, which

is negative in
[
1
2
, 30785+2

√
1279808287

176617

)
, and positive in

(
30785+2

√
1279808287

176617
, 1
)
. Therefore,

g4(α) > g4

(
30785+2

√
1279808287

176617

)
= 5049.74 > 0. Combining with (22) gives f4

(
23α+13

6

)
< 0,

and so 23α+13
6

< λα(K13
2,7). Together with (21), one has λα < λα(K13

2,7), a contradiction to
the choice of G∗.

This completes the proof.

Now, we are ready to give the proof of Theorem 9.

Proof of Theorem 9. For n 6 m 6 2n − 6 and n 6 9, n 6 m = 2n − 5, our result
follows by Facts 20 and 24, respectively. In the following, we only need consider n > 10
and m = 2n− 5. By Fact 21, it suffices to show ∆ 6= n− 3.

Suppose ∆ = n − 3. By Fact 22, G∗ is connected, and so Lemma 11 implies G∗ is a
double nested graph with all leaves being adjacent to a common vertex.

Let u1 be the vertex of G∗ with d(u1) = n − 3, and let u2, u3 be two vertices of G∗

not adjacent to u1. If the sizes of the partite sets of G∗ are 2 and n − 2, say, one of
the partite sets is {u1, u2}, then we have d(u2) = m − d(u1) = (2n − 5) − (n − 3) =
n − 2 > ∆, which is a contradiction. Hence, {u1, u2, u3} and NG∗(u1) are two partite
sets of G∗, and so d(u1) + d(u2) + d(u3) = m. Without loss of generality, we assume
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d(u3) 6 d(u2) 6 d(u1). Then according to the structure of a double nested graph, one has
NG∗(u3) ⊆ NG∗(u2) ⊆ NG∗(u1). For convenience, we denote by s := d(u3), t := d(u2) and
V1 := NG∗(u3), V2 := NG∗(u2)\NG∗(u3), V3 := NG∗(u1)\NG∗(u2) (it may hold one of V2
and V3 is empty). Then

s 6 t and s+ t = m− d(u1) = n− 2. (23)

Let x be the Perron vector of Aα(G∗). For 1 6 i 6 3, let xui = ai. As all vertices in V1
(resp. V2, V3) have the same degree 3 (resp. 2, 1). According to Lemma 17, for 1 6 i 6 3,
we can assume xv = bi if v ∈ Vi. Then Lemma 17 implies

a3 6 a2 6 a1 and b3 < b2 < b1. (24)

In order to complete the proof of Theorem 9, we need the following three claims.

Claim 25. V3 6= ∅, and b3 = (1−α)a1
λα−α .

Proof of Claim 25. Suppose V3 = ∅. Then NG∗(u2) = NG∗(u1), and so t = d(u1) = n− 3.
By (23), s = 1, i.e., |V1| = 1. Let V1 = {v1}, applying (1) to v1 gives

λαb1 = 3αb1 + (1− α)(a1 + a2 + a3) 6 3αb1 + 3(1− α)a1. (25)

As n > 10, by (4), we have λα > 8α. Together with (25),

b1 6
3(1− α)a1
λα − 3α

<
3(1− α)a1

5α
< a1.

Construct G = G∗ − u3v1 + u3u1. Clearly, G ∈ B(n,m), and by Lemma 16, λα(G) >
λα(G∗), a contradiction to the choice of G∗. Therefore, V3 6= ∅.

Now, applying (1) to a vertex v ∈ V3 gives λαb3 = αb3+(1−α)a1. And so b3 = (1−α)a1
λα−α ,

as desired.

Claim 26. It holds that b1 < max
{

2(1−α)a1
(n−5)α ,

7
2
b3

}
.

Proof of Claim 26. Applying (2) to a vertex v ∈ V1 gives

λ2αb1 = 3αλαb1 + α(1− α)[(n− 3)a1 + ta2 + sa3]

+ (1− α)2[3sb1 + 2(t− s)b2 + (n− 3− t)b3]
< 3αλαb1 + α(1− α)(2n− 5)a1 + (1− α)2(2n− 5)b1,

where the inequality follows by (23) and (24). Then

b1 <
α(1− α)(2n− 5)a1

(λα − 3α)λα − (1− α)2(2n− 5)
=

2α(1− α)a1

(λα − 3α) λα
n− 5

2

− 2(1− α)2
.

the electronic journal of combinatorics 31(4) (2024), #P4.78 14



Together with (4), one has

b1 <
2α(1− α)a1

(λα − 3α)α +
(λα−3α)

(
α
2
+

(1−α)2
α

)
n− 5

2

− 2(1− α)2
. (26)

Note that n > 10 and α > 1− α. By (4),

(λα − 3α)

(
α

2
+

(1− α)2

α

)
>

(
(n− 5)α +

(1− α)2

α

)(
α

2
+

(1− α)2

α

)
>

(
n− 5

2

)
(1− α)2.

Together with (4) and (26), one has

b1 <
2α(1− α)a1

(λα − 3α)α− (1− α)2
<

2α(1− α)a1(
(n− 5)α + (1−α)2

α

)
α− (1− α)2

=
2(1− α)a1
(n− 5)α

. (27)

On the other hand, according to the first inequality of (27), one has

b1 <
2α(1− α)a1

(λα − 3α)α− α2
=

2(1− α)a1
λα − 4α

. (28)

As n > 10, by (4), λα > (n− 2)α > 8α. Together with (28) and Claim 25, one has

b1
b3
<

2(1− α)a1
λα − 4α

· λα − α
(1− α)a1

=
2(λα − α)

λα − 4α
= 2 +

6α

λα − 4α
<

7

2
.

And so b1 <
7
2
b3. This completes the proof of Claim 26.

Claim 27. If s > 2n−7
5
, then ta2 + sa3 <

21
5
a1.

Proof of Claim 27. Applying (1) to u1 gives

λαa1 = α(n− 3)a1 + (1− α)(sb1 + (t− s)b2 + (n− 3− t)b3). (29)

Applying (1) to u2 gives us

λαa2 = αta2 + (1− α)(sb1 + (t− s)b2). (30)

And applying (1) to u3 yields

λαa3 = αsa3 + (1− α)sb1 < αsa3 +
2(1− α)2sa1

(n− 5)α
, (31)

where the inequality follows by Claim 26. Together with (29)-(31), one has

a2 <
(λα − α(n− 3))a1

λα − αt
and a3 <

2(1− α)2sa1
(λα − αs)(n− 5)α

. (32)
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Note that s > 2n−7
5
. Hence, by (23), one has 2n−7

5
6 s 6 n−2

2
6 t 6 3n−3

5
. Together

with (24) and (32), one has

ta2 + sa3 6
3n− 3

5
a2 +

2n− 7

5
a3

<
3n− 3

5
· (λα − α(n− 3))a1

λα − αt
+

2n− 7

5
· 2(1− α)2sa1

(λα − αs)(n− 5)α

6

[
3n− 3

5
· 5λα − 5(n− 3)α

5λα − (3n− 3)α
+

2(2n− 7)(1− α)2

5(n− 5)α
· n− 2

2λα − α(n− 2)

]
a1

<

[
3n− 3

5
·
(

1− 2(n− 6)α

5λα − (3n− 3)α

)
+

2(2n− 7)

5(n− 5)

]
a1 (by (4))

<

[
3n− 3

5
·
(

1− 2(n− 6)

2n− 1

)
+

2(2n− 7)

5(n− 5)

]
a1 (by Fact 23)

=
41n2 − 230n+ 179

10n2 − 55n+ 25
a1

<
21

5
a1, (by n > 10)

as desired.

Recall that s 6 t and s + t = n − 2 (see (23)). Consequently, s 6 n−2
2
. According to

the values of s and t, we consider the following two cases.
Case 1. s 6 2(n−4)

5
, and so t > 3n−2

5
. In this case, Km

2,n−2 = G∗ − {u3v|v ∈ V1} +
{u2v|v ∈ V3}+ u1u3. By the Courant-Fischer theorem (see [15, Section 2.6]), one has

λα(Km
2,n−2)− λα > xT (Aα(Km

2,n−2)− Aα(G∗))x

= αa21 + 2(1− α)a1a3 + αa23 + (s− 1)(αa22 + 2(1− α)a2b3 + αb23)

− s(αa23 + 2(1− α)a3b1 + αb21). (33)

Note that a3 6 a2 and b1 <
7
2
b3 (see Claim 26), one has

λα(Km
2,n−2)− λα > αa21 + 2(1− α)a1a3 + (s− 1)(2(1− α)a2b3 + αb23)

− s

4
(28(1− α)a3b3 + 49αb23)

=
α

4
(4a21 − (45s+ 4)b23) + (1− α)((2(s− 1)a2 − 7sa3)b3 + 2a1a3). (34)

As b3 = (1−α)a1
λα−α (see Claim 25), λα > α(n− 2) (see (4)) and s 6 2

5
(n− 4), we obtain

4a21 − (45s+ 4)b23 = 4a21 −
(45s+ 4)(1− α)2a21

(λα − α)2
> 4a21 −

(45s+ 4)(1− α)2a21
(5
2
s+ 1)2α2

> 0 (35)

and

(2(s− 1)a2 − 7sa3)b3 + 2a1a3 >

(
2(λα − α)

1− α
− 5s− 2

)
a3b3 > 0. (36)

the electronic journal of combinatorics 31(4) (2024), #P4.78 16



Combining with (34)-(36) gives λα(Km
2,n−2) > λα, a contradiction to the choice of G∗.

Case 2. s > 2(n−4)
5

. Then s > 2n−7
5
, and so t 6 3n−3

5
. Applying (2) to u1 gives

λ2αa1 = (n−3)αλαa1+α(1−α)[3sb1+2(t−s)b2+(n−3−t)b3]+(1−α)2[(n−3)a1+ta2+sa3].

Together with (23), (24) and Claim 27, one has

λα[λα − (n− 3)α]a1 < α(1− α)(2n− 5)b1 + (1− α)2(n+ 6/5)a1.

Combining with (4) and Claim 26 gives us[
α(n− 2) +

(1− α)2

α

] [
α +

(1− α)2

α

]
<

2(1− α)2(2n− 5)

n− 5
+ (1− α)2(n+ 6/5).

By a direct calculation,

α2(n− 2) +
(1− α)4

α2
< (1− α)2

(
31

5
+

10

n− 5

)
6

41

5
(1− α)2. (37)

Note that 1− α 6 α. If 1− α 6 α
2
, then (37) gives

α2(n− 2) +
(1− α)4

α2
<

41

20
α2,

a contradiction to n > 10. If 1− α > α
2
, then (37) gives

α2(n− 2) +
(1− α)2

4
< α2(n− 2) +

(1− α)4

α2
<

41

5
(1− α)2,

and so n− 2 < 159
20
, a contradiction to n > 10.

This completes the proof.

4 Proof of Theorem 10

In this section, we aim to give the proof of our last main result, i.e., Theorem 10.
Let 1

2
6 α < 1, and let n, m be positive integers with 2n − 3 6 m 6 2

√
2(n − 4).

Then n > 11. In the remainder of this section, we assume that G∗ is a graph with
maximum Aα-index among all graphs in B(n,m). Then by the Perron-Frobenius theory
(see the first paragraph of the proof of [29, Lemma 2.5]), G∗ has at most one non-trivial
component. Denote by λα = λα(G∗), ∆ = ∆(G∗) and d(v) = dG∗(v) for v ∈ V (G∗). As
Km

3,n−3 ∈ B(n,m), and Km
3,n−3 contains K2,n−3 as a proper subgraph. By the choice of G∗,

the Perron-Frobenius theory and Lemma 19, one has

λα > λα(Km
3,n−3) > λα(K2,n−3) > α(n− 3) +

2(1− α)2

α
. (38)

Further on we have the following facts.
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Fact 28. ∆ = n− 3.

Proof. Since G∗ is bipartite, if ∆ = n − 1, then G∗ must be K1,n−1, and so |E(G∗)| =
n− 1 < m, a contradiction; if ∆ = n− 2, then G∗ must be a subgraph of K2,n−2, and so
|E(G∗)| 6 2(n − 2) < m, a contradiction. To complete the proof, it remains to rule out
the possibility ∆ 6 n− 4.

Suppose ∆ 6 n − 4. Let G1 be the non-trivial component of G∗. Let v be in V (G1).
If d(v) = 1, then one has

αd(v) +
1− α
d(v)

∑
u∼v

d(u) = α + (1− α)
∑
u∼v

d(u)

6 α + (1− α)∆ 6 α + (n− 4)(1− α). (39)

If d(v) = 2, then one has

αd(v) +
1− α
d(v)

∑
u∼v

d(u) = 2α +
1− α

2

∑
u∼v

d(u)

6 2α + (1− α)∆ 6 2α + (n− 4)(1− α). (40)

If d(v) > 3, then 3 6 d(v) 6 ∆ 6 n− 4. And so

αd(v) +
1− α
d(v)

∑
u∼v

d(u) 6 αd(v) +
(1− α)m

d(v)

6 max

{
3α +

2
√

2(n− 4)(1− α)

3
, α(n− 4) + 2

√
2(1− α)

}
= α(n− 4) + 2

√
2(1− α). (41)

Together with (39)-(41) and Lemma 18, one has

λα = λα(G1) 6 max
v∈V (G1)

{
αd(v) +

1− α
d(v)

∑
u∼v

d(u)

}
6 max{α + (n− 4)(1− α), 2α + (n− 4)(1− α), α(n− 4) + 2

√
2(1− α)}

= α(n− 4) + 2
√

2(1− α). (42)

Together with (38) and (42), one has

α(n− 3) +
2(1− α)2

α
< α(n− 4) + 2

√
2(1− α),

i.e., 3+2
√
2

α

(
α− 2+

√
2

3+2
√
2

)2
< 0, a contradiction.

Therefore, ∆ = n− 3, as desired.

Fact 29. G∗ is connected.
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Proof. Suppose G∗ is not connected. Let G1 be the non-trivial component of G∗, then
|V (G1)| 6 n − 1. On the other hand, by Fact 28, one has ∆(G1) = n − 3. Then G1

is a subgraph of K2,n−3, and so |E(G∗)| = |E(G1)| 6 2n − 6 < m, a contradiction to
G∗ ∈ B(n,m).

Now, we are ready to give the proof of Theorem 10.

Proof of Theorem 10. By Fact 29, G∗ is connected, and so Lemma 11 implies G∗ is a
double nested graph with all leaves being adjacent to a common vertex.

Fact 28 shows ∆ = n − 3. Let u1 be the vertex of G∗ with d(u1) = n − 3, and let
u2, u3 be two vertices of G∗ not adjacent to u1. Then {u1, u2, u3} and NG∗(u1) are two
partite sets of G∗, and so d(u1)+d(u2)+d(u3) = m. Without loss of generality, we assume
d(u3) 6 d(u2) 6 d(u1). Then according to the structure of a double nested graph, one has
NG∗(u3) ⊆ NG∗(u2) ⊆ NG∗(u1). For convenience, we denote by s := d(u3), t := d(u2) and
V1 := NG∗(u3), V2 := NG∗(u2)\NG∗(u3), V3 := NG∗(u1)\NG∗(u2) (it may hold one of V2
and V3 is empty). Then

s 6 t and s+ t = m− d(u1) = m− n+ 3. (43)

In order to show G∗ = Km
3,n−3, it suffices to prove t = n− 3. Suppose t 6 n− 4. Then

V3 6= ∅. Let x be the Perron vector of Aα(G∗). For 1 6 i 6 3, let xui = ai. As all vertices
in V1 (resp. V2, V3) have the same degree 3 (resp. 2, 1). According to Lemma 17, for
1 6 i 6 3, we can assume xv = bi if v ∈ Vi. Then Lemma 17 implies

a3 6 a2 < a1 and b3 < b2 < b1. (44)

Let V1 = {v1, . . . , vs}, V2 = {vs+1, . . . , vt} and V3 = {vt+1, . . . , vn−3}. Then

Km
3,n−3 = G∗ − {u3vi|m− 2n+ 7 6 i 6 s}+ {u2vi|t+ 1 6 i 6 n− 3}.

Let y be the Perron vector of Aα(Km
3,n−3). According to Lemma 17, we can assume yu1 =

yu2 = a′1, yu3 = a′2, yvi = b′1 for 1 6 i 6 m−2n+6, and yvi = b′2 for m−2n+7 6 i 6 n−3.
Then Lemma 17 implies

a′2 < a′1 and b′2 < b′1. (45)

In order to complete the proof of Theorem 10, we need the following three claims.

Claim 30. It holds that b1 < 4b3. Furthermore, if a2 6
a1
2
, then b1 < 3b3.

Proof of Claim 30. Consider the graph G∗ and the Perron vector x. Applying (1) to a
vertex v ∈ V3 gives λαb3 = αb3 + (1− α)a1. And so

b3 =
(1− α)a1
λα − α

. (46)
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Applying (2) to a vertex v ∈ V1 gives

λ2αb1 = 3αλαb1 + α(1− α)[(n− 3)a1 + ta2 + sa3]

+ (1− α)2[3sb1 + 2(t− s)b2 + (n− 3− t)b3] (47)

< 3αλαb1 + α(1− α)ma1 + (1− α)2mb1, (48)

where the inequality in (48) follows by (43) and (44). As m 6 2
√

2(n− 4), together with
(38) and (48), one has

b1 <
α(1− α)ma1

(λα − 3α)λα − (1− α)2m
<

2
√

2(n− 4)α(1− α)a1

(λα − 3α)
(
α(n− 3) + 2(1−α)2

α

)
− 2
√

2(n− 4)(1− α)2

=
2
√

2α(1− α)a1

(λα − 3α)α +
(λα−3α)

(
α+

2(1−α)2
α

)
n−4 − 2

√
2(1− α)2

. (49)

Note that n > 11 and α > 1− α. By (38),

(λα − 3α)

(
α +

2(1− α)2

α

)
>

(
(n− 6)α +

2(1− α)2

α

)(
α +

2(1− α)2

α

)
= (n− 10)α2 + 2(n− 5)(1− α)2 + 4

(
α2 +

(1− α)4

α2

)
> (n− 10)α2 + 2(n− 5)(1− α)2 + 8(1− α)2

> 3(n− 4)(1− α)2. (50)

Together with (49), one has

b1 <
2
√

2(1− α)a1
λα − 3α

. (51)

As n > 11, by (38), we obtain λα > (n− 3)α > 8α. Together with (46) and (51), one
has

b1
b3
<

2
√

2(1− α)a1
λα − 3α

· λα − α
(1− α)a1

=
2
√

2(λα − α)

λα − 3α
= 2
√

2 +
4
√

2α

λα − 3α
<

14
√

2

5
< 4.

Consequently, b1 < 4b3.
Furthermore, if a2 6

a1
2
, then a3 6 a2 6

a1
2
. And so by (43), (44) and (47), one has

λ2αb1 < 3αλαb1 +
α(1− α)(m+ n− 3)a1

2
+ (1− α)2mb1. (52)

Note that n > 11, m 6 2
√

2(n− 4), we have

m+ n− 3 6 (2
√

2 + 1)n− 8
√

2− 3 < 4(n− 4).
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Together with (38), (50) and (52), one has

b1 <
2α(1− α)a1

(λα − 3α)α +
(λα−3α)

(
α+

2(1−α)2
α

)
n−4 − 2

√
2(1− α)2

<
2(1− α)a1
λα − 3α

. (53)

As n > 11, by (38), one obtains λα > (n − 3)α > 8α. Together with (46) and (53), one
has

b1
b3
<

2(1− α)a1
λα − 3α

· λα − α
(1− α)a1

=
2(λα − α)

λα − 3α
= 2 +

4α

λα − 3α
<

14

5
< 3.

Therefore, b1 < 3b3.

Claim 31. If m > 3(n− 6), then b3 <
13αa2

24(1−α) .

Proof of Claim 31. Consider the graph G∗ and the Perron vector x. Applying (1) to u1
and u2, respectively, gives us

λαa1 = α(n− 3)a1 + (1− α)(sb1 + (t− s)b2 + (n− 3− t)b3)

= α(n− 3)a1 + (1− α)(sb1 + (t− s)b2) +
(1− α)2(n− 3− t)a1

λα − α
, (by (46))

λαa2 = αta2 + (1− α)(sb1 + (t− s)b2).

Then

a1 =
(λα − αt)a2

λα − α(n− 3)− (1−α)2(n−3−t)
λα−α

. (54)

Recall that m > 3(n − 6). Together with (43), one has t > m−n+3
2

> n − 15
2
. On the

other hand, m > 2n− 3, and so t > m−n+3
2

> n
2
. Together with (38) and (54), we have

a1 <
(λα − α(n− 15

2
))a2

λα − α(n− 3)− (1−α)2(n
2
−3)

α(n−4)

<
(λα − α(n− 15

2
))a2

λα − α(n− 3)− (1−α)2
2α

. (55)

Now together with (46) and (55), one has

b3 =
(1− α)a1
λα − α

<
1− α
λα − α

·
(λα − α(n− 15

2
))a2

λα − α(n− 3)− (1−α)2
2α

=
1− α
λα − α

·

(
1 +

9α
2

+ (1−α)2
2α

λα − α(n− 3)− (1−α)2
2α

)
a2

<
1− α

(n− 4)α + 2(1−α)2
α

·
(

1 +
9α2 + (1− α)2

3(1− α)2

)
a2 (by (38))

=
1

(n− 4)α + 2(1−α)2
α

· 9α2 + 4(1− α)2

3(1− α)
a2. (56)
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Note that n > 11 and 1− α 6 α. If 1− α 6
√
2α
2
, then (56) gives

b3 <
1

(n− 4)α
· 9α2 + 2α2

3(1− α)
a2 =

11αa2
3(n− 4)(1− α)

6
11αa2

21(1− α)
. (57)

If
√
2α
2
< 1− α 6 α, then (56) gives

b3 <
1

(n− 3)α
· 13α2

3(1− α)
a2 =

13αa2
3(n− 3)(1− α)

6
13αa2

24(1− α)
. (58)

Together with (57) and (58), one has b3 <
13αa2

24(1−α) , as desired.

Claim 32. It holds that

a′2 <
(λα(Km

3,n−3)− α(n− 3))a′1
λα(Km

3,n−3)− α(m− 2n+ 6)
, b′2 =

2(1− α)a′1
λα(Km

3,n−3)− 2α
.

Proof of Claim 32. Consider the graph Km
3,n−3 and the Perron vector y. Applying (1) to

u1, u3 and vn−3, respectively, gives us

λα(Km
3,n−3)a

′
1 = α(n− 3)a′1 + (1− α)((m− 2n+ 6)b′1 + (3n− 9−m)b′2), (59)

λα(Km
3,n−3)a

′
2 = α(m− 2n+ 6)a′2 + (1− α)(m− 2n+ 6)b′1, (60)

λα(Km
3,n−3)b

′
2 = 2αb′2 + 2(1− α)a′1. (61)

Then (59) and (60) give

a′2 =
(1− α)(m− 2n+ 6)b′1

λα(Km
3,n−3)− α(m− 2n+ 6)

<
(λα(Km

3,n−3)− α(n− 3))a′1
λα(Km

3,n−3)− α(m− 2n+ 6)
.

And (61) gives

b′2 =
2(1− α)a′1

λα(Km
3,n−3)− 2α

,

as desired.

Recall that

Km
3,n−3 = G∗ − {u3vi|m− 2n+ 7 6 i 6 s}+ {u2vi|t+ 1 6 i 6 n− 3}.

According to Lemma 15, one has

xTy(λα(Km
3,n−3)− λα) = xT (Aα(Km

3,n−3)− Aα(G∗))y

= α

[
n−3∑
i=t+1

(xu2yu2 + xviyvi)−
s∑

i=m−2n+7

(xu3yu3 + xviyvi)

]

+ (1− α)

[
n−3∑
i=t+1

(xu2yvi + xviyu2)−
s∑

i=m−2n+7

(xu3yvi + xviyu3)

]
= (n− 3− t)[α(a2a

′
1 + b3b

′
2 − a3a′2 − b1b′2)

+ (1− α)(a2b
′
2 + b3a

′
1 − a3b′2 − b1a′2)].
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Note that t 6 n− 4, a3 6 a2. Then

xTy(λα(Km
3,n−3)− λα)

n− 3− t
> α[a2(a

′
1 − a′2) + b′2(b3 − b1)] + (1− α)(a′1b3 − a′2b1). (62)

Note that a2 6 a1, according to the relationship between a1 and a2, we consider the
following two cases.

Case 1. a1
2
< a2 6 a1. In this case, together with Claims 30, 32 and (62), one has

xTy(λα(Km
3,n−3)− λα)

n− 3− t

> α

[
a2

(
a′1 −

(λα(Km
3,n−3)− α(n− 3))a′1

λα(Km
3,n−3)− α(m− 2n+ 6)

)
− 6(1− α)a′1b3
λα(Km

3,n−3)− 2α

]
+ (1− α)

[
a′1b3 −

4(λα(Km
3,n−3)− α(n− 3))a′1b3

λα(Km
3,n−3)− α(m− 2n+ 6)

]
.

Then

xTy(λα(Km
3,n−3)− λα)

(n− 3− t)a′1

> α

[
1−

λα(Km
3,n−3)− α(n− 3)

λα(Km
3,n−3)− α(m− 2n+ 6)

]
a2

+ (1− α)

[
1− 6α

λα(Km
3,n−3)− 2α

−
4(λα(Km

3,n−3)− α(n− 3))

λα(Km
3,n−3)− α(m− 2n+ 6)

]
b3

>
(3n− 9−m)α2a2 + (1− α)[−3λα(Km

3,n−3) + α(6n− 24−m)]b3

λα(Km
3,n−3)− α(m− 2n+ 6)

, (63)

where the inequality in (63) follows by m > 2n− 3.
Note that m 6 2

√
2(n − 4) < 3n − 9, λα(Km

3,n−3) > λα(K2,n−3) > α(n − 3). We have
λα(Km

3,n−3)− α(m− 2n+ 6) > 0 and 3n− 9−m > 0.
If −3λα(Km

3,n−3) + α(6n − 24 − m) > 0, then by (63), one has λα(Km
3,n−3) > λα, a

contradiction to the choice of G∗.
If −3λα(Km

3,n−3) +α(6n− 24−m) < 0. Note that a2 >
a1
2

, b3 = (1−α)a1
λα−α < (1−α)a1

α(n−4) <
a1
6

.
Then

(3n− 9−m)α2a2 + (1− α)[−3λα(Km
3,n−3) + α(6n− 24−m)]b3

>
(3n− 9−m)α2a1

2
+
α[−3λα(Km

3,n−3) + α(6n− 24−m)]a1

6
. (64)

AsKm
3,n−3 is a proper subgraph ofK3,n−3, by the Perron-Frobenius theory, λα(Km

3,n−3) <
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λα(K3,n−3). And so by Lemma 19, λα(Km
3,n−3) < αn. Together with (64),

(3n− 9−m)α2a2 + (1− α)[−3λα(Km
3,n−3) + α(6n− 24−m)]b3

>
αa1
6

[(9n− 27− 3m)α− 3αn+ α(6n− 24−m)]

>
α2a1

6
((12− 8

√
2)n+ 32

√
2− 51) (by m 6 2

√
2(n− 4))

>
α2a1

6
(81− 56

√
2) (by n > 11)

> 0.

Together with (63) and λα(Km
3,n−3) − α(m − 2n + 6) > 0, we have λα(Km

3,n−3) > λα, a
contradiction to the choice of G∗.

Case 2. a2 6 a1
2
. In this case, by Claim 30, b1 < 3b3. Together with (62) and Claim

32, one has

xTy(λα(Km
3,n−3)− λα)

n− 3− t

> α

[
a2

(
a′1 −

(λα(Km
3,n−3)− α(n− 3))a′1

λα(Km
3,n−3)− α(m− 2n+ 6)

)
− 4(1− α)a′1b3
λα(Km

3,n−3)− 2α

]
+ (1− α)

[
a′1b3 −

3(λα(Km
3,n−3)− α(n− 3))a′1b3

λα(Km
3,n−3)− α(m− 2n+ 6)

]
.

Then

xTy(λα(Km
3,n−3)− λα)

(n− 3− t)a′1

> α

[
1−

λα(Km
3,n−3)− α(n− 3)

λα(Km
3,n−3)− α(m− 2n+ 6)

]
a2

+ (1− α)

[
1− 4α

λα(Km
3,n−3)− 2α

−
3(λα(Km

3,n−3)− α(n− 3))

λα(Km
3,n−3)− α(m− 2n+ 6)

]
b3

>
(3n− 9−m)α2a2 + (1− α)[−2λα(Km

3,n−3) + α(5n− 19−m)]b3

λα(Km
3,n−3)− α(m− 2n+ 6)

, (65)

where the inequality in (65) follows by m > 2n − 3. Note that 3n − 9 − m > 0 and
λα(Km

3,n−3)− α(m− 2n+ 6) > 0.
If −2λα(Km

3,n−3) + α(5n − 19 − m) > 0, then by (65), one has λα(Km
3,n−3) > λα, a

contradiction to the choice of G∗.
If −2λα(Km

3,n−3) + α(5n − 19 −m) < 0, then we proceed by the following discussion.
As λα(Km

3,n−3) < αn, one has α(−2n + 5n − 19 −m) < 0. And so m > 3n − 19, that is

the electronic journal of combinatorics 31(4) (2024), #P4.78 24



m > 3n− 18. By Claim 31, b3 <
13αa2

24(1−α) . Note that m 6 2
√

2(n− 4), then

(3n− 9−m)α2a2 + (1− α)[−2λα(Km
3,n−3) + α(5n− 19−m)]b3

> (3n− 9−m)α2a2 +
13αa2

24
[−2λα(Km

3,n−3) + α(5n− 19−m)]

> (3n− 9− 2
√

2n+ 8
√

2)α2a2 +
13αa2

24
[−2αn+ α(5n− 19− 2

√
2n+ 8

√
2)]

=
(111− 74

√
2)n− 463 + 296

√
2

24
α2a2

>
758− 518

√
2

24
α2a2 (by n > 11)

> 0.

Together with (65) and λα(Km
3,n−3) − α(m − 2n + 6) > 0, one has λα(Km

3,n−3) > λα, a
contradiction to the choice of G∗.

Therefore, t = n− 3, and so G∗ = Km
3,n−3.

5 Further discussions

In this paper, we give answers to Question 6 for 1 6 m 6 2
√

2(n − 4), 1
2
6 α < 1 and

m = k(n − k), 1
2
6 α < 1, where k is an integer with 2 6 k 6 bn

2
c. Take α = 1

2
in

Theorems 8-10, we may obtain the corresponding results for Q-index.

Corollary 33. Let m = k(n − k) be given, where k is an integer with 2 6 k 6 bn
2
c. If

G ∈ B(n,m), then q(G) 6 q(Kk,n−k), with equality if and only if G ∼= Kk,n−k.

Corollary 34. Let n 6 m 6 2n − 5 be given. If G ∈ B(n,m), then q(G) 6 q(Km
2,n−2),

with equality if and only if G ∼= Km
2,n−2.

Corollary 35. Let 2n − 3 6 m 6 2
√

2(n − 4) be given. If G ∈ B(n,m), then q(G) 6
q(Km

3,n−3), with equality if and only if G ∼= Km
3,n−3.

Note that if G is a bipartite graph, then µ(G) = q(G), i.e., the L- and Q-indices of
G are coincide. As Kk,n−k and Km

2,n−2 are connected for all positive integers k, n,m with
n 6 m 6 2n− 5, the main results in [30] can be deduced (see [30, Theorems 2.3, 2.4]).

On the other hand, it is clear that Corollary 33 gives an answer to Questions 4 and
5 for 2 6 p 6 q and m = pq; Corollary 34 gives an answer to Questions 4 and 5 for
p = 2 6 q and q+ 2 6 m 6 2q− 1; Corollary 35 gives an answer to Questions 4 and 5 for
p = 3 6 q and 2q + 3 6 m 6 2

√
2(q − 1).

Furthermore, by observing the extremal graphs in Theorems 8-10, we believe the
following conjecture is true.

Conjecture 36. For 1 6 k 6 bn
2
c and 1

2
6 α < 1. If (k−1)(n−k+1)+1 6 m 6 k(n−k)

and G ∈ B(n,m), then λα(G) 6 λα(Km
k,n−k). Equality holds if and only if G ∼= Km

k,n−k.
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