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Abstract

A matroid M of rank r is cyclically orderable if there is a cyclic permutation
of the elements of M such that any r consecutive elements form a basis in M. An
old conjecture of Kajitani, Miyano, and Ueno states that a matroid M is cyclically
orderable if and only if for all ) # X C E(M), rl())((|) < |f((]]\\44))|. In this paper, we
verify this conjecture for all paving matroids.

Mathematics Subject Classifications: 05D99,05B35

1 Introduction

A matroid M of rank r is cyclically orderable if there is a a cyclic permutation of the
elements of M such that any r consecutive elements is a base.

For a matroid M and a subset ) # X C E(M), we define 8(X) := J(LX‘), if (X)) # 0;
otherwise, 3(X) := oo. Let v(M) = maxp,xcrm) B(X).

It turns out that the condition v(M) = S(F(M)) is a necessary condition for a matroid
M to be cyclically orderable. To see this, suppose ejes - - - e, is a cyclic ordering of a rank-
r matroid M. Then for any nonempty subset A C E(M), we have r[A] = > |AN
{ei, €1, -, eir}| < nr(A). The first equality follows from the fact that each element
of A appears in exactly r sets {e;, e;11,..., €} and the second inequality follows from
the fact that |[AN{e;, €11, .., €1} <7(A). Consequently, B(A) < S(E(M)) and hence
v(M) = B(E(M)). In light of this, the following conjecture of Kajitani, Miyano, and Ueno
[7] seems natural:

Conjecture 1. A matroid M is cyclically orderable if and only if y(M) = S(E(M)).

Despite having been around for decades, the above conjecture is only known to be
true for a few special classes of matroids. In [2], the conjecture was shown to be true for
sparse paving matroids. Perhaps the strongest result thus far can be found in [9] where
it was shown that Conjecture 1 is true when (M) and |E(M)]| are relatively prime.
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2 Theorem ( Van Den Heuvel and Thomasse )
Let M be a matroid for which v(M) = B(E(M)). If |E(M)| and r(M) are relatively
prime, then M has a cyclic ordering.

It follows from recent results in [1] on split matroids, a class which includes paving
matroids, that the conjecture is true for paving matroids M where |E(M)| < 2r(M). Cou-
pled with Theorem 2, we can replace 2r(M) by 2r(M)+1 in this bound since |E(M)| and
r(M) are relatively prime when |E(M)| = 2r(M) + 1. In this paper, we verify Conjecture
1 for all paving matroids.

Theorem 3. Let M be a paving matroid where v(M) = S(E(M)). Then M is cyclically
orderable.

For concepts, terminology, and notation pertaining to matroids, we shall follow Oxley
[8] when possible. For a matroid M, C(M) will denote the set of all circuits of M.

For a finite set A and integer k < |A|, we let (7:) denote the set of all k-subsets of
A. For a collection of subsets A and integer k we let (ﬁ) denote the set of all sets in A
having cardinality k.

For a set A and elements z1, ..., x; we will often write, for convenience, A+ x1 + x5+
o4 xy (resp. A—xy —x9— -+ —xy) in place of AU{xy, ...,z } (resp, A\{z1,...,2x}).
For a positive integer n, we let [n] denote the set {1,...,n}.

1.1 Idea behind the proof

To prove the main theorem, we shall use induction on |E(M)|. To do this, we shall first
remove a basis S from M so that the resulting matroid M’ satisfies v(M') = S(E(M)—.S).
While generally such a basis S may not exist, we will show that such bases exist when
|E(M)| > 2r(M)+2. Applying the inductive assumption, M’ is cyclically orderable, with
a cyclic ordering say ejey - - - e,,. We will show that for some i € [m] and some ordering
of S, say s189- -+, (where r = r(M)), the ordering e; - - - €;5182 -+ Sp€;41 - -+ €, 1S a cyclic
ordering of M. To give a rough idea of how to prove this, we will illustrate the proof in
the case where (M) = 3.

Suppose S = {s1, S2, 53} is a basis of M where v(M\S) = S(E(M)—S) and r(M\S5) =
3. Assume that M’ = M\S has a cyclic ordering ejes---e,. Suppose we try to in-
sert the elements of S, in some order, between e,, and e;, so as to achieve a cyclic
ordering for M. Assume this is not possible. Then for every permutation 7 of {1,2,3},
€162+ €mSr(1)Sx(2)Sx(3) 18 not a cyclic ordering of M. Thus for all permutations 7 of
{1,2,3}, at least one of {€,—1, €m, Sx(1) }5 {€m> Sx(1), Sx(2) }> 157(2)s S7(3), €1}, OF {5x(3), €1, €2}
is a circuit. As an exercise for the reader, one can now show that there exist distinct 7, j €
{1,2,3} such {s;, em—1,€m},{sj,€1,€2}, S — s; + €n, and S — s; + e; are circuits. We may
assume that 7 = 1 and j = 2. If instead, one were to assume that one could not insert the
elements of S in some order between e; and e; so as to achieve a cyclic ordering of M, then
as above, there exist distinct ¢/, j' € {1, 2,3}, such that {s;/, e,,, e1},{s;, e2,e3}, S —si+eq,
and S — s +eq are circuits. If i = 1, then {s1, e;,_1, €, } and {s1, e,,, €1} are circuits. The
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circuit elimination axiom (together with the fact that M is a paving matroid) would then
imply that ({s1,em—1,€m} U{s1,€m,€1}) —s1 = {€m_1,em,e1} is a circuit, contradicting
our assumption that ejes - - - €, is a cyclic ordering of M’. Also, if ' = 2, then {sy, €, €1}
and {sq, e, ey} are circuits and hence by the circuit elimination axiom, {e,,e1,e2} is a
circuit, a contradiction. Thus ¢ ¢ {1,2} and hence i’ = 3 and {e,,, €1, s3} and {s1, s2, €2}
are circuits. Given that {sq, ey, es} is also a circuit, it follows that {e;, eo} C cl({s1,s2}).
Now j" € {1,2}, and {sy,es, €3} is a circuit, implying that e3 € cl({si, s2}). However,
this is impossible since (by assumption) {s1, s, s3} is a basis. Thus there must be some
ordering of S so that when the elements of S are inserted (in this order) between e, and
e1 or between e; and es, the resulting ordering is a cyclic ordering for M.

2 Removing a basis from a matroid

Let M be a paving matroid where v(M) = S(E(M)). As a first step in the proof of
Theorem 3, we wish to find a basis B of M where v(M\B) = S(E(M)— B). Unfortunately,
there are matroids where there is no such basis, as for example, the Fano plane. In this
section, we will show that, despite this, such bases exist when |E(M)| > 2r(M) + 2.
The following is an elementary observation which we will refer to in a number of places.

Observation 4. For a basis B in a matroid M and an element x € E(M) — B, the set
B + x has a unique circuit which contains x.

We will need the following strengthening of Edmonds’ matroid partition theorem [3]
given in [4]:

Theorem 5. Let M be a matroid where y(M) = k+¢, where k € N and 0 < e < 1. Then
E(M) can be partitioned into k + 1 independent sets with one set of size at most er(M).

We are now in a position to prove the main result of this section.

Proposition 6. Let M be a paving matroid where v(M) = B(E(M)), |E(M)| = 2r(M)+
2, and r(M) > 3. Then there is a basis B of M where y(M\B) = S(E(M) — B) and
r(M\B) = r(M).

Proof. Let y(M) = k+ 57y where 0 < £ < r(M) and k > 2. Then |E(M)| = kr(M)+( and
it follows by Theorem 5 that one can partition F(M) into k independent sets Fi, ..., Fj
and one independent set F},; having at most ¢ elements. Since for all i € [k], |F;| < r(M)
and | Fi11| < (it follows that kr(M)+{ = |E(M)| = Zle ||+ | Frt1] < kr(M)+¢. Thus
equality must hold in the inequality and as such, for all ¢ € [k], |F;| = (M) and |Fj44| = ¢.
Thus Fi, ..., Fy are bases in M. Let r = r(M). If £ =0, then |E(M)| = kr > 3r. In this
case, we can take B = Fj, since for M' = M\ F}, it is seen that v(M') = k—1 = S(E(M")).
Thus we may assume that ¢ > 0.

Let F, = {x1, 29, ..., 2, }. Suppose there exist distinct 4, j € [r] for which r((F} —x;)U
Fii1) =r((Fy —xj) U Fjpq) =r — 1. Let © € Fyyq. Then x + (Fy, — 2;) and x + (F), — ;)
are (distinct) circuits, contradicting Observation 14. Thus there is at most one i € [r]
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for which r((Fj, — ;) U Fi41) = r — 1. As such, we may assume that fori =1,...,r —1,
r((Fr —x;) U Fgyq) =7 Thus for i = 1,...,r —1, there is a subset A; C F), — z; such that
B, = A; U Fy1 is a basis for M.

We shall show that the bases B;, ¢ = 1,...,r — 1 can be chosen so that for some
i € [r—1], B = B, is a basis satisfying the proposition. Suppose that none of the bases
B; satisfy the proposition. Then for all i € [r — 1], there is a subset X; C E(M) — B;
for which 5(X;) > B(E(M) — B;). Since k > 1, we have that F} C E(M\B;) and hence
r(M\B;) = r. Thus we have B(E(M) — B;) = k — 1+ £. If r(X;) < r — 1, then X; is
independent and hence B(X;) = 1 < B(E(M) — B;). Thus r(X;) > r — 1 and seeing
as B(X;) > B(E(M) — B;), we have r(X;) < r — 1. Consequently, r(X;) = r — 1 and
B(X;) = % > k—1+ f. Since r(X;) = r — 1, it follows that for j = 1,...,k — 1,
| X; N F;| <r—1. Consequently, | X;| < (k—1)(r—1)+¢. If | X;| < (k—1)(r—1)+¢, then
B(X;) <k—1+4 %, implying that 5(X;) < k — 1+ f, contradicting our assumptions.
Thus it follows that | X;| = (k—1)(r — 1) + ¢ and for all 7 € [r — 1] and for all j € [k — 1],
| X;NF;| =r—1, and F}, — A; C X;. Thus for all i € [r — 1] and for all j € [k — 1],
Xi; = X; N F}; spans X;. Since all circuits in M have size at least r, it follows that for all
j €k —1],and for all x € X; — X;;, X;; + z is a circuit.

Suppose k > 3. Let i, j € [r — 1] where ¢ and j are distinct (noting that such i, j exists
since r > 3). Since r > 3, there exists © € X;» N Xjo. We have that  + X;; and z + Xj;
are circuits. It follows by Observation 14 that X;; = X;; and thus cl(X;) = cl(Xj). Let
X = Cl(Xz) Since F, — A; C X;, F), — Aj - Xj, x; € Fj, — A; and T € F, — Aj, we have
{z;,z;} € X. Since this applies to all j € [r — 1] — 4, it follows that F}, —z, C X. If
r((Fy — x,) U Fy1) = r, then one could let =, play the role of z,_;, and it would follow
that 2, € X. This would imply that F}, C X, an impossibility (since 7(X) =r —1). Thus
r((Fx — z,) U Fxr1) = 7 — 1. Given that Fy — x, C X, we have Fjy C cl(F}, — z,) C X.
Now it is seen that 5(X) = T@) = k(r;ll)ﬂ =k + -5 > (M), a contradiction.

From the above, we have k = 2. Since |E(M)| > 2r(M) + 2, we have ¢ > 2. Let
i€ r—1].

Claim 7. For all j € [r — 1] — i, one can choose B; so that X;1 = X;3.

Proof. Let j € [r—1]—i. Suppose there exists x € (Fo—A;)N(Fr—A;). Then z € X;NX;
(since Fp, — A; C X; and Fy — A; C X;) and, given that r(X;) =7(X;) =r—1=|X;| =
| X1/, it follows that z + X;; and x + Xj; are circuits. It now follows by Observation 14
that X;; = Xj;. Suppose instead that (Fy — A;) N (Fy — A;) = 0. That is, [, — A; C A;
(and Fy — A; C A;). Since £ > 2, there exists x5 € Fy — A; — ;. Now x, + B, contains a
(unique) circuit C' where x; € C. We claim that CN(Fy — A;) # (). To see this, we observe
that ’AJ — (FQ — Az)| =r — 2(. Thus

N (Fy— A =|C — x| = [CN((A; — (F2 — A)) U F3))]
SO =1 = (r =204+ 0) = |C| — 1=+ 0> 01> 1.

Let z; € CN(Fy— A;). Observing that B; —x, +x, is also a basis, let A’ = A; — x4+,
and B} = B; — x; + .. Then B; = A’ + F3 and moreover, z; € (Fy — Aj) N (Fy — A;)
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Now defining X as before, using B’ in place of B;, one obtains that X;; = Xj;, as in the

previous case. 0

By the above claim, we may assume that for all j € [r — 1] — 4, the base B; can be
chosen so that X;; = Xj;. Letting X = cl(X;) and following similar reasoning as before,

we have that (Fy —z,) U F3 C X. Thus g(X) = r‘())((') = Q(T:l)M =2+-5£>7(M), a

contradiction. It follows that for some i € [r — 1|, the proposition holds for B = B;. [

3 S-Pairs

In the second part of the proof of Theorem 3, we will need to establish the existence
of certain circuits. More specifically, suppose S is a basis as described in Proposition
15 where we assume that S = {si,...,s.}. Suppose ejes...e, is cyclic ordering for
M’ = M\S and our aim is to extend this ordering to a cyclic ordering for M by inserting
the elements of S, in some order, between e, and e;. Assuming this is not possible, it turns
out (as in the case where r(M) = 3) that there must be certain circuits. For example,
there are subsets { By, By} € (22) such that for all s; € By, {si,em—ri2,...,em} € C(M)
and for all s; € By, {s;,e1,...,e,_1} € C(M). The results in this section and its successor,
lay the ground work to prove the existence of such circuits.

Let S be a finite, nonempty set. For i = 1,2, let S; C 2. We call the pair (S;,S,) an
S-pair if it has the following properties.

(S1) Fori=1,2,if A, B € S; where |A| = |B| + 1 and B C A, then (|g|) CcS,.

(S2) Fori=1,2,if A, B € §; where |A| = |B|] and |ANB| =|A| — 1, then AUB € S,.
(S3) Fori=1,2, () £ Siand S ¢ S,.
(S4) For k=1,...,|S| = 1,if (°,%) C & for some z € S, then (5 ) Z S».

In the next section, we shall need the following observations for an S-pair (S, Ss)
where S| =r.

Observation 8. Let A C S where a = |A|. Suppose that for some i € {1,2} and some
j€lal, (§) CSi. Then fork=3j,...,a, () C S

Proof. We may assume that j < a. Suppose that for some k € {j,...,a — 1}, (2) CS,.

Let B € (,ﬁl). Let {b1,b2} C B and for s = 1,2, let B, = B — bs. By assumption, for

s =1,2, B; € S;. It now follows by (S2) that B = B; U By € S;. Consequently, we have
that (kﬁl) C §;. Arguing inductively, we see that for k = j,... «, (‘2) cs;. O]

Observation 9. Let A € S; where o = |A|. Suppose that for some j € [a —1] and x € A,
we have (A;x) C S;. Then (‘;‘) CcS,.
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Proof. Suppose first that j = o« — 1. Then A’ = A —x € §;. It follows by (S1) that
( A ) C §;. Assume that j < a— 1 and the assertion holds for j + 1; that is, if (;‘;f) C S,

a—1

then (jfl) C §;. Suppose (A]_.x) C §;. Then by Observation 8§, (‘;‘J:f) C §;. Thus by

assumption, (jfl) CS;. Let B e (?), where x € B. Let y € A— B and let B’ = B—x+.
Since B’ € (A;x), it follows that B’ € S;. However, we also have that B + y € S;. Thus

it follows by (S1) that B € S;. We now see that (?) C S;. The assertion now follows by
induction. O

Observation 10. Let A C S. Suppose for some x € A, i € {1,2}, and j > 2, we have
that {B € (f) ‘ x € B} CS;. Then (‘;‘) CS, and AcS,.

Proof. We may assume that |A| > j + 1. Let B’ € (A;x). Let {y1,y2} € B’ and for
s = 1,2, let By = B' — y, + x. By assumption, {By, Bo} C S;. It follows by (S2) that
B =B +x = ByUB;y € S;. Thus by (S1) we have that (];) C S, and hence B’ € S;. It
now follows that (?) C S;, and moreover, A € S; (by Observation 8). O

4 Order-consistent pairs

Let S = {s1,52,...,5,} be a set of n elements and let S; C 2% and S, C 2°. We say
that the pair (S;,Ss) is order-consistent with respect to S if for any permutation 7 of
[n], there exists ¢ € [n] for which either {szq1), - ,8z@)} € S1 or {523),---,5zm)} € Sa.
Note that if (Si,Ss) is order-consistent, then (S2,S;) is also order consistent. To see
this, let m be a permutation of [n] and let 7’ be the permutation which is the reverse of
m; that is, for all ¢ € [n], 7'(1) = m(n — i+ 1). Since (S, Ss) is order-consistent, there
exists i € [n] such that either {sy),..., 5@} € Si or {sp@), ..., 8vm} € So. Thus
either {Sx(n—it1),---»Sx(m)} € S1 or {57(1),-- ., Sx(n—i+1)} € S2. Given that this holds for
all permutations 7, it follows that (S, S;) is an order-consistent pair.

Let IT denote the set of all permutations of [n] and let = € TI. We say that a subset
A€ S (resp. B € S,) is m-relevant if there exists ¢ € [n] such that A = {srq),..., 54}
(resp. B = {sz(:),---+5zm)}). Let II" C II be a subset of permutations. We say that a
subset A C S; (resp. B C S,) is IT'-relevant if for all A € A (resp. B € B), there exists
7 € II' such that A (resp. B) is m-relevant. We say that (A, B) is order-consistent relative
to II" if for all m € IT', either there exists A € A for which A is w-relevant, or there exists
B € B for which B is w-relevant. For i € [n], we let II; denote the set of permutations
7 € II where m(1) = i. The following theorem will be instrumental in the proof of main
theorem.

Theorem 11. Let S = {s1,...,8,} be a set where n > 3 and let (S1,S2) be an S-pair.
Then (S1,82) is order-consistent if and only if there exists (A1, As) € (”gll) X ("‘;21),
Ay # Ay, and {By, By} C (752) where fori = 1,2, B;NA; = BN By € (A;QQQ) and

() cs.
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Proof. To prove sufficiency, suppose A;, B;, ¢ = 1,2 are as described in the theorem.
Note that since A; # Ay, we have A; U Ay = S. Also, since B; N By C A; N A,, we have
|ByN Byl =n—3=1]A;NAy| — 1. Now By ¢ A, for otherwise |B; N By| = |A; N By| =
|B1| = n — 2. Thus By C Ay, and likewise, By C A;. For i = 1,2, let 7; = {A;} U (Elgl)
We need only show that (77,73) is order-consistent. Suppose it is not. Clearly it is
order-consistent relative to the set of permutations 7 for which sy € By or sy(,) € Bo.
Let m € II where s;q) € B1 and sy, € Bo. If 51y € Az, then Ay = {Sz2), ..., 5xm) }
and A, is m-relevant. Thus Ay — By = {s:q)} = (A1 N Ay) — B;. By similar reasoning,
we also have Ay — By = {s;u} = (A1 N Az) — By. However, our assumptions imply
that (A; N Ay) — By = (A1 N Az) — B, and consequently, Sx(1y = Sx(). This yields a
contradiction. It follows that (771, 73) is order-consistent.

To prove necessity, we shall use induction on n. It is a straightforward exercise to
verify the assertion for n = 3. We shall assume that n > 4 and the assertion is valid to all
values less than n. That is, if |S| < n, and (S, Ss) is an S-pair which is order-consistent,
then there exist sets A;, B;, ¢ = 1,2 as described in the theorem. Assume now that
S ={s1,...,8,} and (S1,8>) is an S-pair which is order-consistent.

For all k € [n], let S* = S — s, and let Sf = {4 — s, | A € S; and s, € A} and
Sy ={A€ S8, | sy ¢ A}. We observe that properties (S1) and (S2) still hold for the pair
(Sk, S%) whereas (S3) and (S4) may not.

(A) For all k € [n], one of the following holds:
(al) {Sk} €.
(8.2) Sk S 82.
k
(a3) () € 8.

ad) For some D € 5"\ and positive integers i, j where i +i=n-1, (P) C S and
( ) p g »J J » \ g 1

n—2
(7) st
(a5) There exist (AY, A%) € ("8%2) X ("Szf), AY £ AL and {BY, B} C (ns_ks) where for
i=1,2, BN A¥ = Bfn B € (“174) and (5) C SF.

Proof. Let k € [n]. Assume that none of (al) - (a4) hold for k. We will show that (a5)
must hold for k. Clearly S* ¢ SF, for otherwise this would mean that S € S; which is
not allowed by (S3). We also have that (Slk) ¢ SF. For if this was the case, then it
would follow that for all i € [n] — k, {s;, s} € S1. It would then follow by Observation
10 that S € S; violating (S3). Given that (a2) -(a4) do not hold, (S¥,S¥) is seen to be
an S*-pair. Let m € II), and let 7’ = 7(2)7(3) - - - w(n). Since (S, S,) is order-consistent,
there exists A € S; or B € S, and ¢ € [n] such that either A = {s;1),..., 8} or
B = {5:3:), -+ 5zn)}- Given that (al) and (a2) do not hold, it follows that in the former
case,i > 2, A" = {sx(2), ..., 5x()} € SF and hence A’ is 7'-relevant. In the latter case, i > 3
and B’ = {s73:),-- -, Sx(n)} € S¥ and B’ is 7'-relevant. Given that 7 was arbitrarily chosen
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from I, we see that (SF,SY) is order-consistent with respect to S*. By the inductive
assumption, there exist (A%, A§) € ("5’) x ("_2) A¥ # Ak and {BY, B} C (Sk) where
1

fori = 1,2, B¥ N A% = B¥ 0 BE € ("174) and (%) C SF. Thus (a5) holds for k. [

4

(B) There is at most one integer k for which (a2) or (a3) holds.

Proof. Tt suffices to prove that (a2) can hold for at most one integer k; if (a3) holds for
some integer k, then it follows by Observation 8 that S* € S, and hence (a2) holds for
k. Suppose to the contrary that (a2) holds for distinct integers k and ¢. Then S* € S,
and S* € S,. It then follows by (S2) that S = S* U S* € Sy. However, this violates (S3).
Thus no two such integers can exist. O]

(C) Property (a4) holds for at most one integer k.

Proof. Suppose (a4) holds for distinct integers k& and ¢. Then for some i, 5,4, j" where
i+j=n—1,7"4+7 =n—1, and subsets D € (Sk) and D' € (n 2) we have (?) C Sk,
(jD) C S¥, (z ) € St and ( ) C S!. By Observation 10, we have that Fy = D + s, € S)
and [y = D' +5s, € S If F1 # Fy, then by property (S2), F} U F, = S € &, violating
(S3). Thus F; = F, =85 —s=.5 for some s € S — s — sy and S e S;.

Let i* = max{i, 7} and j* = min{j, j'}. We claim that ( ) € & and ( ) CS,. To
prove the first assertion, we first note that it is true when ¢* = n — 2 since S’ € S;. We
may assume that i* < n—2. Theni* <n—-3=|DND/| = |S/—Sk—8g|. Suppose first that
1* = i. Then by assumption, (DOD) C SF. Thus for all X € (S ) X +s;, € Sy It now
follows by Observation 10 that (S . J:f) C &;. Now Observation 9 implies that ( o +1) CS;.
Suppose now that ¢* > i. Then i < n—3 and it follows by assumption that (DmD ) CSk It
now follows by Observation 10 that ( ) C ;. Also, since (Z) C Sf, we have ( ) C S;.

Let X € (il) If X CDor X C D, then X € S§;. Suppose neither occurs. Then

{sk,z;} € X and hence X — s; € (?) C Sk Tt follows that X € S;. Consequently,
(H—l) C &;. Since 1 + 1 < ¢* + 1, it follows by Observation 8 that ( *+1) C S;.

To prove that ( ) C Sy, first suppose that j* =n —2. Then j* =j =75 =n—2. In
this case, D, D' € 82 and hence S’ = DU D" € S, by (S2). It would then follow by (S1)
that ( ) C &,. Thus we may assume that j* < n —2. We have that (DmD) C 8,. Given
that DN D" = S" — s, — sy, it follows by Observation 9 that (S s’f) C S, and this in turn
implies that ( ) CS,.

Given that i+j =1i+j5 = n—1, it follows that i* < n—1—7*, and hence i*+14j* <
By application of Observation 8, we have that (n_f*_l) C S,. However, we now have both

(l‘il) C S; and (nj*lfl) C S, violating (S4). We conclude that (a4) can hold for at

most one integer k. O]

(D) There exists T € (n‘ES) such that either ({) C S, or (:D C S,.
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Proof. Assume that there is no subset T' € (n§3) such that (T) C &;. Then there are
at least three integers k for which (al) does not hold. By (B) and (C), (a2) or (a3)
holds for at most one integer k and (a4) holds for at most one integer k. Thus there
exists k € [n] such that none of (al) - (a4) hold. By (A), (a5) holds for k. Thus there

exists (A}, A%) € (”S_{f) X ("8_2) AY #£ A5 and {B}, B} C (ns_k) where for i = 1,2,

BFNAFY = BN Bb € (Aiiig) and ( ) C SF. Thus we see that ( éC) C 8§ C S,. This
completes the proof. O

(E) There exists T € (ni) such that either (?) C S or (T) CSs.

Proof. By (D), there exists T' € (nf3) such that either (T) C S or (?) C S,. We claim

that it suffices to prove the assertion when ( ) C &;. For if instead ( ) C &, then redefine
SFso that for all k € [n], SF = {A € 8y | s, € A} and S§ = {A_SkaGSQ and s, € A}.
Now it is seen that (A) - (C) still hold when in (al) - (a5), we switch S; with Sy and
switch S¥ with S§. Now one can use the same proof as in the case when (T) cS.

By the above, we may assume that (T) C &;. Furthermore, we may assume that
T ={s1,...,8,-3}. Next, we will show that either {s;} € S; for somei € {n—2,n—1,n},
or (il) C S, for some S’ € (n ,). We may assume that (al) and (a3) do not hold for all
k € {n —2,n — 1,n}. Furthermore, by (B) and (C), (a2) holds for at most one integer
k€ {n—2,n—1,n} as does (a4). As such, we may assume that (a2) and (a4) do
not hold for k& = n — 2. Thus by By (A), (a5) holds for k = n — 2. Thus there exist

(A77%,A57%) € (‘%;22) X (Sn 2) AT™% £ A2 and {B} 2 By %} C (in_g) where for

i=1,2, BN AT = BByt e (M) and (B1) c Sp2

Suppose s; € B} 2N {s1,...,8,_3}. By assumption, {s;} € S;. However, given that
s; € B'% we also have that {s;} € S}""? and hence {s;, s, 2} € Si. By (S1), {s,_2} €
S1, a contradiction. Thus B} 2 N {sy,...,8,.3} = 0 and hence B2 C {s,_1,s.}.
Consequently, n — 3 < 2 and hence n < 5. To complete the proof, we need only consider
two cases:

Case 1: n=25.

We have B2 = B} = {54, s5}. We may assume that A3 = {s;, s4, 55}, where B}NBj =
{s4}. Thus A? = {51,32,34} and Bj = {s9,54}. Then A3 + s3 = {s1,52,83,8,} € S; and
A3 € S,. Given that ( ) C S,, we may assume that for all i € {1,3,4}, {s;} € Sa. Since
by assumption (al) and (a3) do not hold for k € {3,4,5}, it follows by (A) that for all
k € {4,5}, one of (a2), (a4), or (a5) must hold.

Suppose (a5) holds for & = 5. Then arguing as above, we have that B} = {s3,s4}
and hence A2 = {sy,89,83} or A5 = {s1,59,54}. Thus either {sy,ss,s3,55} € S; or
{s1, $2, 84, S5} € S1. Given that {s1, s2, 83,54} € Sy, it would follow by (S2) that S € &,
contradicting (S3). Thus (a5) does not hold for k£ = 5.

Suppose (a4) holds for & = 5. Then there exists a subset D' € (‘5:) and integers i, j

where 7 4+ 7 = 4 such that (]3,) C &} and (]?,) C S5 Let D = D’ + s5. By Observation
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10, it follows that (ifl) C Sy and D € 8. Clearly D # {s1, 9, $3, 84} and hence it follows
by property (S2) that D U {s1, s2, 53,54} = S € &y, yielding a contradiction. Thus (a2)
holds for k£ = 5 and hence {sy, s2, 53,54} € So. By (A) and (B) it follows that either (a4)
or (a5) holds for k = 4.

Suppose (ab) holds for k = 4. Arguing as before, we see that B} = {s3, s5} and either
Al = {51, 89,83} or AT = {s1, 89, 55}. In the latter case, we have that {si, s, 4,55} € Si.
It would then follow by (S2) that {si, se, 53,54} U {s1, 82, 84,85} = S € Sy, contradicting
(S3). Thus we have that A} = {sy, s, s3}. It now follows that {s3} = ATN B} = B{NB;.
Thus s3 € By, implying that {s3} € S,, contradicting our assumptions.

By the above, (a4) must hold for £ = 4. Thus there exists a subset D’ € (%4) and

integers i, j where i + j = 4 such that (ZZ/) C St and (l;/) C 83 Tt follows by Observation
10 that for D = D’ + sy, (ifl) C S and D € §;. If D # {s1, s9, 83, S4}, then we would
have D U {s1, $2,83,84} = S € 81, contradicting (S3). Thus D = {s1, $2, 3,84} and
consequently, D' = {s1, 2, s3}. Given that (l;l) C S, and {s3} € S, it follows that j > 2.

Suppose i = 1. Then (%) C S;. Given that (Blil)’) C 83, it follows that {s5} € S} and
hence {s3, s5} € S;. Thus we have {B € (g) ‘ s3 € B} C &;. It now follows by Observation
10 that S € Sy, contradicting (S3). Thusi > 2 and i = j = 2. We now have that (}) C Si.
Given that B = {s2, 54} € Sy and (7)) C Sy, it follows {B € (7) | s € B} C S,. Thus by
Observation 10, we have (D) C S,. However, we now have both (?) C Sy and (?) cS,,

2
contradicting (S4). This completes the case n = 5.

Case 2: n=4.

We may assume that B % = B? = {s,}, A? = {s1,s3}. There are two possible cases
to consider for A% and B3: either A3 = {s1,s4} and B2 = {s3} or A2 = {s3,s4} and
B3 = {s1}. We shall assume the former — the latter case can be handled similarly. We
have that A? = {s1, s3} and hence A? + sy = {s1, S0, 53} € S and B? + sy = {s9,54} € Si.
We also have that A2 = {s;,s4} € Sy and {s3} € S;. We may assume that (al) and (a3)
do not hold for k =3 or k = 4.

Suppose (a5) holds for £ = 3. Then B} = {sy} or B} = {s4}. In the former case, we
have A3 = {s;,s4}, and hence A3 +s3 = {s1, s3, 84} € Si. However, since {s1, s2, s3} € S,
it would follow that {sy, s3,54}U{s1, 2,83} = S € S, contradicting (S3). Thus B? = {s,}
and A3 = {s1, s2}. We have that B} +s3 = {s3, 54} € S;. However, given that {ss, s4} € Sy,
it follows by (S2) that {s3,s4} U {s2, sa} = {52, 3,54} € Si. Again, since {s1, s, 53} € S,
it follows that {ss,s3, 84} U {s1, 82,83} = S € &y, yielding a contradiction. We conclude
that (ab) does not hold for £ = 3. By similar arguments, one can also show that (a5)
does not hold for k£ = 4 either.

Suppose (a4) holds for & = 4. Then there exists a subset D' € (S;) and integers 1, j
where i+j = 3 such that (3/) C S} and (2/) C S}. We have that D = D'+s4 € S;. Given
that {s1,s9,s3} € S, it follows by (S2) that S = D U {sy1, 59,53} € S1, a contradiction.
Thus (a4) does not hold for £ = 4 and hence (a2) holds for k£ = 4. Furthermore, since by
(B), (a2) holds for at most one of k = 3 or k = 4, it must be the case that (a4) holds for
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k = 3. As such, there exists a subset D’ € ( 3) and integers 7, j where ¢ + j = 3 such that
(Z) C & and (J) C S3. We have that D = D’ + s3 € S;. Given that {sy, s, 53} € S,
if D # {s1, 82,53}, then by (S2), S = D U {s1, $2,s3} € S, a contradiction. Thus we
must have that D = {s1, s9, $3}, and thus D’ = {s1,s2}. If j = 1, then ([1)/) CS;CSs.
Given |D'| = 2 = n — 2, the assertion holds in this case. Thus we may assume that j = 2
and ¢ = 1. However, this means that {s;} € S, implying that {s;, s3} € S;. This in turn
implies that {s3} € &1 (since {s1} € &) yielding a contradiction. This completes the case
for n = 4. ]

By (E), there exists i € {1,2} and T' € (n§2) for which (1) C S;. Using similar
reasoning as before, it suffices to prove the case where (T) C S (see the first paragraph
of the proof of (E)). Thus we may assume (7) C S; and moreover, T' = {s1,..., 8, 2}.

Suppose first that (al) holds for k = n — 1; that is, {s,—1} € Si. Then (%) C &
and (by Observation 8), S™ € §;. We shall show that (al) - (a5) do not hold for k£ = n,
violating (A). Clearly (al) does not hold for & = n, for otherwise (S3) is violated. If (a2)
or (a3) holds for k = n, then S™ € S,. In this case, (S4) is violated. Suppose (a4) holds
for k =n.

Then there exists D’ € (n ) and 1 < i < n—2 where ( ) CSt,and D = D'+s, € 8.
However, since S™ € S, it follows by (S2) that DU S™ = S € &, violating (S3). Thus
(a4) does not hold for k = n. If (a5) holds for k = n, then there is a set A} € ("57),
implying that D = A} + s, € §1. Again, we have DU S™ = S € Sy, a contradiction. This
shows that (al) - (a5) do not hold for £ = n (a contradiction) and hence (al) can not
hold for k = n — 1. By similar arguments, one can also show that (al) does not hold for
k=n.

Suppose (a2) holds for k =n — 1. Then S" ! = {s1,..., 8, 9,5,} € So. We will show
that (a4) holds for k = n. By (B), neither (a2) nor (a3) holds for k& = n. Suppose (a5)
holds for k& = n. Following a previous argument, we have that {s;,...,n — 2} N B} = 0.
Thus B C {s,_1} and n < 4. Given n > 4, it follows that n = 4 and B} = {s3} and

{31,52} Thus 53 = {s1, 82,84} € Si. Slnce for i = 1,2, {s;} € &y, it follows by
Observatlon 9 that ( ) C &;. However, this implies that {s,} € S;, a contradiction.

It follows from the above that, assuming (a2) holds for £ = n — 1, (a4) holds for
k = n. Thus there exists D’ € (n_ ) and integers 7,7, 1+ 7 =n — 1, such that ( ) c St
and (L;/) C S8y Then D = D' +s, € §;. If D' = {s1,...,8,2}, then D" € &, (since
([1)/) C &y). It now follows by Observation 9 that (D ) C &S;. However, this implies that
{sn} € &1, a contradiction. Thus s, € D’. We have (D Ton— 1) CS and D' —s,,_1 €8

Note that D’ ¢ Sy; for otherwise, Observation 9 would imply that ( 1 ) C &y, contradicting
the fact that {s,—1} € Si.

Suppose ¢ < n—3. Then (D/_f"*l) C 87 Thus for all S’ € (D Ton= 1) S"e S and S+
sp € Si. It follows by (S1) that (S/”:S") C &;. This in turn implies that (D o 1+S") C S;.
By Observation 8, D' —s,_1+s, € S;. However, we also have that {s,...,s, 2} € S and
thus {s1,..., 8, 2U(D' —s,_1+5,) =S"1 €8,. Given that S ! D’—sn 1+ 8p+ i,
for some i € [n — 2], it follows by Observation 9 that ( ; ) C S;. By Observation 8, we
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have (Szi_ll) C §;. Since ([;./) C 8P C 8y and S"! €8, (since (a2) holds for k =n — 1)
and S"' —s; = D', for some i € [n — 2], it follows by Observation 9 that (Sjl) C Ss.
However, we have (S;:ll) C S; and (Snj_l) C S, and i+ 1 + 7 = n, in violation of (S4).

From the above, we have i = n —2 and j = 1. Then D’ € S} and (Dll) C S,. Let
Ay =D + s, Ay =S B =8 —5,1— 5, and By = D’. Then by the above,
(A1, Ay) € (ngll) X ("S;l) and A; # A,. Furthermore, we have that for i = 1, 2, (1‘?) CS,.
We also see that By N By = D' N {sy,...,8,-2} = A1 N By = Ay N By. Thus in this case,
the theorem is satisfied.

To finish the proof, we will show that no other options are possible. Suppose now that
(a2) does not hold for £ = n — 1, and we may assume the same is true for & = n. Thus
(a3) does not hold for k =n — 1 or k = n.

Suppose (a4) holds for & = n—1. Then there exists D’ € (in:;) and integers i, j, i+j =
n—1, such that ([;/) - Sf_l and (?/) - Sg_l CSy. Then D = D' +s,_1 € S;. As before,
D" # {s1,...,8,—2}. Thus s, € D" and we may assume without loss of generality that
D' = {s1,...,8,-3,5,}. By (C), (a4) does not hold for k& = n. Thus (a5) holds for
k = n and there exist (A}, A}) € (7;?2) X (7;;), Ay # A3, and {B}, By} C (nsjg) where
for v = 1,2, B} N A} = By N B} € (Agiig) and (Bf) C S. Arguing as before, we
have B N {s1,...,Sp—2} = 0. This in turn implies that B} = {s,_1} and hence n = 4.
Furthermore, we have that A7 = A} = {sy, so}, implying that {s, 2,84} € Si. However,
we also have that D = {s1, s3,54} € S1. It follows by (S2) that S = DU {sy, s9, 84} € Sy,
violating (S3). Thus (a4) does not hold for k = n — 1 and the same holds for k = n.

From the above, (a5) must hold for both ¥ = n — 1 and & = n. Using similar
arguments as above, one can show that n = 4, B? = {s;}, A3 = {s1,s2}, B} = {s3},
and A] = {s1,52}. We have A3 + s3 = {51, 89,583} € S; and A + s4 = {s1,52,54} € S1.
It now follows by (S2) that {s1,s2,s3} U {s1,52,84} = S € Sy, contradicting (S3). This
completes the proof of the theorem. O

5 Proof of Theorem 3

Let M be a paving matroid where v(M) = (E(M)) and |E(M)| = n.

5.1 The case r(M) =2

Suppose (M) = 2. We shall prove by induction on n that M is cyclically orderable.
Theorem 3 is seen to be true when n = 2. Assume that it is true when n =m —1 > 2.
We shall prove that it is also true for n = m. Assume that M is a paving matroid where
r(M) = 2, |[E(M)| = m and y(M) = B(E(M)) = . For all elements e € E(M), let
X, denote the parallel class containing e and let m(e) = |X.|. Then for all e € E(M),
B(Xe) = m(e) < y(M) = %. If there are elements e € E(M) for which m(e) = %, then
choose f to be one such element. If no such elements exist, then let f be any element in

M. Let M' = M\ f. Suppose there exists X C E(M’) for which (X) > 2 = g(E(M").

Then clearly r(X) = 1. Thus X C X, for some g € E(M’). Given that m(g) < %, it
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follows that X = X, and m(g) = %. By the choice of f, we also have m(f) = . Then
E(M) = X;U X, and E(M) = m = 2/, for some integer /. Now let ejes--- e, be an
ordering of E(M) where for all i, e; € Xy, if 7 is odd, and e; € X, if i is even. This
gives a cyclic ordering for M. Thus we may assume that y(M') = B(E(M’)) = 25+, By
assumption, there is a cyclic ordering for M’, say ejes - - en,—1. Since m(f) < 3, there
exists i € [m — 1] such that {e;,e;11} N Xy = (. Consequently, e;---e;fe;p1- -+ €m_1 I8
seen to be a cyclic ordering for M. The proof now follows by induction.

5.2 The case where |[E(M)| < 2r(M) +1

Suppose |E(M)| < 2r(M)+1. As mentioned earlier, if |E(M)| = 2r(M)+1, then |E(M)]
and r(M) are relatively prime and hence it follows by Theorem 2 that M has a cyclic
ordering. Thus we may assume that |E(M)| < 2r(M). It now follows by Theorem 5 that
there are bases A and B for which AU B = E(M).

The following is a well-known conjecture of Gabow [5].

12 Conjecture ( Gabow)

Suppose that A and B are bases of a matroid N of rank r. Then there are orderings
aias---a, and biby---b, of the elements of A and B, respectively, such that for i =
L...,r—1,{ay,...,a;,bi11,...,b.} and {a;y1,...,a,,b1...,b;} are bases.

We observe that in the special case of Conjecture 12 where E(N) is the union of two
bases, the conjecture implies that N has a cyclic ordering. In [1], the authors verify,
among other things, the above conjecture for split matroids, a class of matroids which
includes all paving matroids. Given that the above conjecture is true for split matroids
(and hence also paving matroids) and E(M) = AU B, it follows that M has a cyclic
ordering.

5.3 The case where |[E(M)| > 2r(M) + 2 and r(M) > 3.

In this section, we shall assume that |E(M)| > 2r(M)+2 and (M) > 3. By Proposition
15, there exists a basis S of M for which y(M\S) = B(E(M) — S) and r(M\S) = r(M).
Let r = r(M) and let S = {s1,...,s,}. Let M’ = M\S and let m = |E(M')| =n —r.
By assumption, M’ is cyclically orderable and we will assume that ejes - - - ¢, is a cyclic
ordering. Our goal is to show that the cyclic ordering for M’ can be extended to a cyclic
ordering of M. To complete the proof of Theorem 3, we need only prove the following:

Proposition 13. There exists i € [m] and a permutation m of [r] such that
€162+ €iSr(1)Sn(2) " * " Su(r)Cit1 " €m 15 a cyclic ordering of M.

Proof. Assume to the contrary that for all i € [m] and for all permutations 7 of [r],
€162+ €iSx(1)Sx(2) * * * Sx(r)€i+1 " - €m 18 DOt & cyclic ordering of M. For all j € [m], we shall

define a pair (H],H3), where for i = 1,2, H] C 2% Let ) = ¢;_1, 2} =¢j_o,..., 2 | =
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ej—rt1, and let yi = e;, y3 = eji1,...,Y,_1 = €j1r—2 where for all integers k, we define
ey := e, where

m otherwise.

g‘_{ k mod m if k mod m # 0

Let X7 ={ad,...,2/_Yand Y7 = {4, ...,y _,}.

Let 7 be a permutation of [r]. By assumption,
€1+ €j_18x(1)Sr(2) ** * Sn(r)€j - - €m 18 MOt a cyclic ordering for M. Then there exists i €
[r — 1] such that either {x],..., 2]} U {szq), .., Srp—s)} is dependent or {yi,...,y/} U
{Sx(i+1),-- -+ 5=} is dependent. Since the smallest circuit has size r, this means that
either {27,..., 27} U {Sz1)s-- s Snr—i)} OF {0ty o ¥l U {Snisr)s-- s Sn(my} 18 a circuit.
Let C] be the set of all r-circuits which occur in the former case, and let CJ be the set of
all r-circuits occurring in the latter case. That is, C] is the set of all 7-circuits C' where
for some i € [r— 1], {z},...,2)} ¢ C c {z],...,2)} U S, and C} is set of all r-circuits
C where for some i € [r — 1], {y7,...,)} € C C {yl,...,y/}US. For i = 1,2, let
H ={CnS|Cec!}

(A) For all j, the pair (H],H}) is an S-pair which is order-consistent.

Proof. Tt suffices to prove the assertion for j = 1. For convenience, we let z; = x} y; =
yt, i=1,...,7 — 1. Furthermore, we let X = X', Y =Y H, = Hl H, = Hi, C, = C},
and Cy = Cj. Tt follows from the definition of (#;,H2) that it is order-consistent. We
need only show that it is an S-pair. Suppose A, B € H; where |A| = |B|+ 1 and B C A.
Then for some ¢ € [r — 1], Cy = AU{xy,...,2;} € Cy and Cy = BU{xy,...,2,41} € Cy.
Let x € B. Then xz € C; N5 and hence by the circuit elimination axiom there is a circuit
CC(CiUly) —x=A—-z)U{xy,...,xi01}. Thus C = (A —x) U {zy,..., 2541} and
hence A — x € H;. Since this applies to any element x € B, it follows that (|g|) C Hi.
The same arguments can be applied to Hs. Thus (S1) holds.

To show that (S2) holds, suppose A, B € H; where |A| = |B| and |[AN B| = |A| — 1.
There exists ¢ € [r] such that Cy = {zy,...,2;} UA € C; and Cy = {z1,...,2;} UB € (.
By the circuit elimination axiom, there exists a circuit C C (C;UCy) —a; = (AU B) U
{z1,...,2;1}. Thus C = (AU B)U{xy,...,2,1} is a circuit and hence AU B € H;.
The same reasoning applies if A, B € H,. Thus (S2) holds.

To show that (S3) holds, suppose (*lq) CHy. Thenfori=1,...,r—1, C; = X U{s;}
is a circuit, and consequently, S C cl(X). However, this is impossible since | X|=r—1 <
r(S) = r. Thus (f) Z H; and likewise, (f) Z Hs. Also, we clearly have that for i = 1,2,
S & H, since S is a base of M. Thus (S3) holds.

Lastly, to show that (S4) holds, let S’ = S — s,. Suppose first that (T‘ill) C H, and
(Sl/) C Hs. Then S’ € Hy and hence S+ 21 € Cy. Also, for all i € [r — 1], Y +s5; € Ca.
Thus z; € cl(S") and S” C cl(Y). Given that S’ is independent and |S'| = |Y| =1 — 1,
it follows that cl(S") = cl(Y'). However, this implies that Y 4+ 21 = {z1,91,..., Y1} =
{em,e1,...,e._1} C cl(S’), which contradicts the assumption that {e,,e1,...,e._1} is a
basis of M.
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Suppose now that for some k € [r — 2], (‘?:) C H; and (r‘i/k) C Hy. We claim that
{z1,.. . 2} U{y1,. .., yx} C cl(S). Following the proof of Observation 8, we have that

forj=k, ...,r—1, (i) C H;. In particular, S” € H;, and hence C, = S" + x; € C;. This
implies that x; € cl(S”). However, seeing as (ﬁ;) C Hy, we have that Cy = (S — s,1) U
{z1, 22} € Cy. Given that z; € cl(5’), it follows that zo € cl(S”). Continuing, we see that
{z1,...,2,—} C cl(S’). By similar arguments, it can be shown that {y1,...,yx} C cl(5).

Thus proves our claim. It follows that r({x1,...,z,—x} U{v1,...,y}) <7 — 1. However,
this is impossible since by assumption {z1,...,2,_x} U {y1,..., 9} is a basis. Thus no
such k exists. More generally, the same arguments can be applied to any j € [r] and
S" =S — s;. Thus (S4) holds. O

By (A), for all j € [m], (}],H}) is an S-pair which is order-consistent. Thus it follows
by Theorem 11, that for all j € [m], there exists (A}, A}) € (7;{1) X (Zgl), Al # A} and
{BI, B} C (752) where for i = 1,2, B'N Al = B/ N Bj € (A:{Q?J?) and (Blf) C Hl.

Suppose r > 4. Given that |B}| = |B?| = r — 2, it follows that there exists s; €
Bi{ N B%. Then {s;} € H} N H? and consequently, C; = {s;,€m_ri2,---,6m} and Cy =
{Si,em—ri3,-..,em,e1} are distinct circuits in M. By the circuit elimination axiom, there
exists a circuit C' C (Cy U Cy) — s; = {€m_ri2,---,€m,e1}. However, this is impossible
since by assumption, {€,_,12,...,€m, €1} is a basis. Therefore, r < 4.

Suppose r = 3. Without loss of generality, we may assume that A} = {s1,s5},
Bi = {s3}, A} = {s9, 83}, and By = {s;}. Then {s3, €, em_1} and {s1, €1, e} are circuits.
We have that B # {s3} and B3 # {s\}; for if B? = {s3}, then B} = B? = {s3} and it
follows that {s3,em,_1, e} and {ss,e1,e,} are circuits, implying that {e,,_1,em, €1} is a
circuit — a contradiction. Similar reasoning applies if B3 = {s;}. Suppose that Bf = {s;}.
Then {s1, e1, e, } is a circuit. However, seeing as {sy, €1, €2}, is a circuit (since Bs = {s1}),
it follows that {s1,e1,e2} U{s1,e1,em} —s1 = {em, €1, e} is a circuit, which is false since
by assumption {e,,, e, es} is a basis. Thus B? # {s;}. Given that B? # {s3}, it follows
that B} = {sy} and A? = {s1,s3}. Since B3 # {s;}, it follows that B = {s3} and
A% = {s1,52}. Since A} = A2 = {sy, 52}, it follows that {s1, s2,e,} and {sy, 2,9} are
circuits. Furthermore, since B? = {s,}, it follows that {ss,e1,€,,} is a circuit. It is now
seen that {e,,, e, ea} C cl({s1,$2}), which contradicts the assumption that {e,,, e1, e} is
a basis.

Lastly, suppose r = 4. Suppose s; € Bl N Bi. Then {s;,én_2,€m_1,en} and
{Si,€m_1,€m, €1} are circuits and hence {e,, 2, €1, €m, €1} is also a circuit, contradicting
our assumptions. Thus B} N B = ) and similarly, By N B3 = (. More generally, for all
i€ {1,2} and j € [m], B/ N B! = (. Since for all i € {1,2}, |B!| = |B?| = 2 it follows
that for all i € {1,2}, j € [m], B/UB/*" = S. Without loss of generality, we may assume
Bl = {s1,s2} and B? = {s3,54}. Note that B} = {s;,ss} means that {s;,s,} C A} and
so AY = {s1, 59,83} or {s1,89,54}. Given that B] ¢ Aj N Al irregardless of whether
Al is the former or latter we have that A} = {sy, s3,s4} or {s9,s3,54}. However, since
the indexing of the elements of S is essentially arbitrary, one can assume that Al is any
one of the first two choices and Al is any one of the latter two choices. Thus we may
assume without loss of generality that A] = {ss,s3,5,} and A} = {sy, s9,54}. Since for
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all i € {1,2}, j € [m], Bl UB/™ = S, it follows that Bl = B? = ... = {5, 5,} and
B? = B} = --- = {s3, 54}. In particular, m must be even. Corresponding, fori =1,3,...,
Al = {51, 83,84} or {s9,53,54} and for i = 2.4,... Al = {sy, 89,83} or {s1, 52,54}

Given that B{ = {s1,s} and (Bl%) C Hi, it follows that {s1, €, 2,€m_1,6n} and
{s2,€m_2,€m_1,€m} are circuits.
Thus {s1, s2} C cl({€m—2,€m—1,€m}). By the above, we have that B = {s3, s4} and either
AT = {51, S2, 83} or A" = {s1, 2, s4}. Suppose the former holds. Then {s1, s9, S3, €51} s
a circuit. Consequently, s3 € cl({€m_2, €m_1,€m}). However, since B? = {s3,s,} € H?, it
follows that {s3, €1, €m, €1} and {s4, €n_1, €m, €1} are circuits. By the circuit elimination
axiom, {3, S4, €m_1, €m} is a circuit and hence s, € cl({€,,_2, €m_1, em}). However, it now
follows that {si,s2,s3,54} C cl({€m—2,€m—1,€m}), yielding a contradiction. If instead,
AT = {5y, S2, 54}, then similar arguments yield a contradiction. This concludes the case
for r = 4. O
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Corrigendum — submitted May 17, 2025

In Section 5.2 of [6], the author mistakenly assumed that the proof of the case |E(M)| <
2r(M) followed from a theorem in [1] on split matroids. Here we shall rectify this problem
by providing a proof for this missing case. We shall assume all definitions and notation
as found in [6]. We note first that the class of paving matroids is closed under taking
minors. Throughout, we may assume that (M) > 3.

Observation 14. Let M be a paving matroid where |E(M)| < 2r(M) and v(M) =
B(E(M)). Then for any element x € E(M), M' = M/x is a paving matroid where

V(M) = B(E(M")).

Proof. Let M be a paving matroid where |E(M)| < 2r(M) and v(M) = B(E(M)). Let
n =r(M) and k = |[E(M)| —n. Then £k < n. Let z € E(M) and let M’ = M/x.
Then M’ is a paving matroid where r(M') = n — 1 and |[E(M')] = n+ k — 1. Let
X CEM). If r(X) <n—2, then X is independent in M’ and thus 5(X) = 1. Suppose
r(X) = n — 2. Then in M’, B(X) < 22 If equality holds, then for Y = X + z we
have in M that B(Y) = nE=l > ”nﬂ = ~(M), contradicting our assumptions. Thus

n—1

in M, B(X) < £33 Since k < n, it follows that =3 < 2kl — g(EF(M’)). Thus

V(M) = BE(M)). =

Proposition 15. Let M be a paving matroid where |E(M)| < 2r(M) and v(M) =
B(E(M)). Then M is cyclically orderable.

Proof. By induction on r(M). Let M be a paving matroid where |E(M)| < 2r(M) and
v(M) = B(E(M)). Let n = r(M) and let k = E(M) — n. We shall assume that the
proposition is true for any matroid M’ where r(M') < n and |E(M')| < 2r(M’). Let
x € E(M) and let M’ = M /x. By Observation 14, M’ is a paving matroid where v(M') =
B(E(M')). We have r(M') = n—1 and |[E(M')] = n+k— 1. If k < n—1, then
|E(M")| < 2r(M’), and it follows by our assumption that M’ is cyclically orderable. On
the other hand, if £ = n — 1, then |E(M’)| = 2r(M’), and as before, it follows by the
results in [1] on split matroids that M’ is cyclically orderable. In either case, we see that
M’ is cyclically orderable. Let €188 -« - spea - -+ e,_1 be a cyclic ordering of the elements
of M'. Now let e18189- - SpSpr1€2-+-€,_1 be an ordering of the elements of M where
sg+1 = x. We observe that any n consecutive elements containing si, Sa, - - - , Sga1 in this
ordering is a basis of M. To finish the proof, we need only prove the following claim.

Claim 16. There exists a permutation 7 of [k + 1] such that
€157(1)Sn(2) * * * Sr(k+1)€2 * " * €n—1 18 @ cyclic ordering for M.

Assume to the contrary that for all permutations 7 of [k + 1],

€15x(1)Sm(2) " ** Sr(k4+1)€2 -~ €n—1 15 NOt a cyclic ordering of M. Let S = {si,...,Sp41}.
We shall define a pair (Hi,Hs), where for ¢ = 1,2, H; C 25 Let 21 = ey, Ty =
€n_1y---yTp_1 = €, and let y; = eg, Yo = €3,...,y,_1 = €1. For e = 1,... n—1, let

Xi:{xl,...,xz-} and let )/z: {yl,,yz} Let X(]:}/O:(Z)
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Let 7 be a permutation of [k+1]. By assumption, €157(1)Sn(2) * * * Sr(k+1)€2 * * * €p—1 1S NOL
a cyclic ordering for M. Thus there exists ¢ > n—k such that either X;U{sr1),..., Sx(n—)}
or Y; U {Sr(kt2+4i-n)s - - - » Sr(k+1)} 18 an n-circuit. Let C; be the set of all n-circuits C' where
for some i € [n — 1], X; C C C X; U S, and let Cy be the set of all n-circuits C' where for
somei€n—1],; CCCY,US. Fori=1,2,let H;={CNS ‘ CecC}.

(A) (Hi,H2) is an S-pair which is order-consistent.

Proof. Tt is clear that (H1, Hz) is order-consistent and as in the proof of Proposition 13 in
6], conditions (S1) and (S2) for an S-pair are seen to hold. If for some i, (f) C H,;, then
for all j € [k+ 1], s; € cl({e1,...,en—1}), implying that (M) < n — 1, a contradiction.
Thus foralli =1, 2, (f) C H,;. Since any n consecutive elements containing sy, So, - -+ , Sga1
is a basis, it follows that for i = 1,2, S & H;. Thus (H,, H») satisfies condition (S3) for
an S-pair. It remains to show that (H;, ) satisfies (S4). Suppose that it does not.
Then there exists S’ € (i) and positive integers a,b where a +b =k + 1 and (i/) CH,y
and (i/) C Hs,. For convenience, we may assume that S’ = S — s,,1, as the ensuing
argument is seen to apply to all such subsets S’. If a = 1, then S’ C cl(X,,_1), in which
case B(cl(X,_1)) = 2=l > 2k — 4 (M), a contradiction. Thus a > 1, and similarly,
b>1. Let A= X,_oU{s1,...,5.,_1} and let A = cl(A). Since (S;) C H,, it follows that
forall T € (i/), X,_o UT is a circuit. Thus S’ C A. We shall prove that X,,_; C A. For
aln—-b>21>37520letY;; =Y, —Y;. For j=0,...,a—2,let Z; =Y, ;.

(A1) For j=0,...,a—2and for all T € (bi/j), Zj+ T is an n-circuit.

Proof. 1t is true for j = 0. Suppose that j > 0 and for all T € (bJj/_l), Zi—1 + T is an

n-circuit. Let T € (bi/j). Let Ty and T3 be (b + j — 1)-subsets where T' = T} U T5. By
assumption C; = Z;_1 UT;, i = 1,2 are n-circuits. Observing that |C; U Cy| =n + 1 and
y; € C1 N Cy, it follows by the circuit elimination axiom, that (Cy U Cy) —y; = Z; UT is

an n-circuit. The assertion now follows by induction. O

We observe that Y,,_,—1 € X,,_, and z,,_q11 = yo—1 and we see that Z, o — X,,_, =
Yn—b,a—Q - Xn—a - {ya—1}~

(A2) Y, C A

Proof. We shall argue inductively to show that for all j € [a — 1], y; € A. By (A.1), for
all T € (b+(‘z/_2)), Zqa_o + T is an n-circuit. Furthermore, since S’ U X,,_, C fl, it follows
that y,_1 € A. Assume that for some 1 < j < a — 1, {Y;j,- - Yar} C A. We have that
Zj—o— Xp—a ={Yj-1,---,Ya—1}. By (A.1), we have that for all T" € (b+‘§/_2), Zi_o+ T is
an n-circuit. Since {y;,...,ys—1} C A, it now follows that Yj_1 € A, The assertion now
follows by induction. O]
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By (A.2), we have that Y, 1 = X,, , — X,, 4, C A. Thus X,,_, C A. However, we
now see that (A) = =L >tk — ()] yielding a contradiction. It follows that (S4)

holds for (Hi, Hs). O

By Theorem 11 in [6], there exists (A, Ay) € (351) X (;2), A # A, and {By, By} C

(kfl) where for i = 1,2, BbNA; = B NBy € (A,i;b) and (?’) C H;. Since for i = 1,2,
(?) C H,, it follows that for all s; € By U By, X,,_; + s; is an n-circuit. Thus B; U By C

cl(X,_1). However, since |B; U By| = k, it follows that 8(cl(X,_ 1)) = ==L > ~(M),

n—1

yielding a contradiction. This completes the proof of the claim. O
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