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Abstract

A matroid M of rank r is cyclically orderable if there is a cyclic permutation
of the elements of M such that any r consecutive elements form a basis in M . An
old conjecture of Kajitani, Miyano, and Ueno states that a matroid M is cyclically
orderable if and only if for all ∅ 6= X ⊆ E(M), |X|r(X) 6 |E(M)|

r(M) . In this paper, we
verify this conjecture for all paving matroids.

Mathematics Subject Classifications: 05D99,05B35

1 Introduction

A matroid M of rank r is cyclically orderable if there is a a cyclic permutation of the
elements of M such that any r consecutive elements is a base.

For a matroid M and a subset ∅ 6= X ⊆ E(M), we define β(X) := |X|
r(X)

, if r(X) 6= 0;

otherwise, β(X) :=∞. Let γ(M) = max∅6=X⊆E(M) β(X).
It turns out that the condition γ(M) = β(E(M)) is a necessary condition for a matroid

M to be cyclically orderable. To see this, suppose e1e2 · · · en is a cyclic ordering of a rank-
r matroid M. Then for any nonempty subset A ⊆ E(M), we have r|A| =

∑n
i=1 |A ∩

{ei, ei+1, . . . , ei+r}| 6 nr(A). The first equality follows from the fact that each element
of A appears in exactly r sets {ei, ei+1, . . . , ei+r} and the second inequality follows from
the fact that |A ∩ {ei, ei+1, . . . , ei+r}| 6 r(A). Consequently, β(A) 6 β(E(M)) and hence
γ(M) = β(E(M)). In light of this, the following conjecture of Kajitani, Miyano, and Ueno
[7] seems natural:

Conjecture 1. A matroid M is cyclically orderable if and only if γ(M) = β(E(M)).

Despite having been around for decades, the above conjecture is only known to be
true for a few special classes of matroids. In [2], the conjecture was shown to be true for
sparse paving matroids. Perhaps the strongest result thus far can be found in [9] where
it was shown that Conjecture 1 is true when r(M) and |E(M)| are relatively prime.
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2 Theorem ( Van Den Heuvel and Thomasse )
Let M be a matroid for which γ(M) = β(E(M)). If |E(M)| and r(M) are relatively
prime, then M has a cyclic ordering.

It follows from recent results in [1] on split matroids, a class which includes paving
matroids, that the conjecture is true for paving matroids M where |E(M)| 6 2r(M). Cou-
pled with Theorem 2, we can replace 2r(M) by 2r(M)+1 in this bound since |E(M)| and
r(M) are relatively prime when |E(M)| = 2r(M) + 1. In this paper, we verify Conjecture
1 for all paving matroids.

Theorem 3. Let M be a paving matroid where γ(M) = β(E(M)). Then M is cyclically
orderable.

For concepts, terminology, and notation pertaining to matroids, we shall follow Oxley
[8] when possible. For a matroid M , C(M) will denote the set of all circuits of M.

For a finite set A and integer k 6 |A|, we let
(
A
k

)
denote the set of all k-subsets of

A. For a collection of subsets A and integer k we let
(
k
A

)
denote the set of all sets in A

having cardinality k.
For a set A and elements x1, . . . , xk we will often write, for convenience, A+x1 +x2 +

· · ·+ xk (resp. A− x1− x2− · · · − xk) in place of A∪{x1, . . . , xk} (resp, A\{x1, . . . , xk}).
For a positive integer n, we let [n] denote the set {1, . . . , n}.

1.1 Idea behind the proof

To prove the main theorem, we shall use induction on |E(M)|. To do this, we shall first
remove a basis S from M so that the resulting matroid M ′ satisfies γ(M ′) = β(E(M)−S).
While generally such a basis S may not exist, we will show that such bases exist when
|E(M)| > 2r(M)+2. Applying the inductive assumption, M ′ is cyclically orderable, with
a cyclic ordering say e1e2 · · · em. We will show that for some i ∈ [m] and some ordering
of S, say s1s2 · · · sr (where r = r(M)), the ordering e1 · · · eis1s2 · · · srei+1 · · · em is a cyclic
ordering of M . To give a rough idea of how to prove this, we will illustrate the proof in
the case where r(M) = 3.

Suppose S = {s1, s2, s3} is a basis of M where γ(M\S) = β(E(M)−S) and r(M\S) =
3. Assume that M ′ = M\S has a cyclic ordering e1e2 · · · em. Suppose we try to in-
sert the elements of S, in some order, between em and e1, so as to achieve a cyclic
ordering for M. Assume this is not possible. Then for every permutation π of {1, 2, 3},
e1e2 · · · emsπ(1)sπ(2)sπ(3) is not a cyclic ordering of M. Thus for all permutations π of
{1, 2, 3}, at least one of {em−1, em, sπ(1)}, {em, sπ(1), sπ(2)}, {sπ(2), sπ(3), e1}, or {sπ(3), e1, e2}
is a circuit. As an exercise for the reader, one can now show that there exist distinct i, j ∈
{1, 2, 3} such {si, em−1, em}, {sj, e1, e2}, S − si + em, and S − sj + e1 are circuits. We may
assume that i = 1 and j = 2. If instead, one were to assume that one could not insert the
elements of S in some order between e1 and e2 so as to achieve a cyclic ordering of M , then
as above, there exist distinct i′, j′ ∈ {1, 2, 3}, such that {si′ , em, e1}, {sj′ , e2, e3}, S−si′+e1,
and S−sj′+e2 are circuits. If i′ = 1, then {s1, em−1, em} and {s1, em, e1} are circuits. The
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circuit elimination axiom (together with the fact that M is a paving matroid) would then
imply that ({s1, em−1, em} ∪ {s1, em, e1}) − s1 = {em−1, em, e1} is a circuit, contradicting
our assumption that e1e2 · · · em is a cyclic ordering of M ′. Also, if i′ = 2, then {s2, em, e1}
and {s2, e1, e2} are circuits and hence by the circuit elimination axiom, {em, e1, e2} is a
circuit, a contradiction. Thus i′ 6∈ {1, 2} and hence i′ = 3 and {em, e1, s3} and {s1, s2, e2}
are circuits. Given that {s2, e1, e2} is also a circuit, it follows that {e1, e2} ⊂ cl({s1, s2}).
Now j′ ∈ {1, 2}, and {si′ , e2, e3} is a circuit, implying that e3 ∈ cl({s1, s2}). However,
this is impossible since (by assumption) {s1, s2, s3} is a basis. Thus there must be some
ordering of S so that when the elements of S are inserted (in this order) between em and
e1 or between e1 and e2, the resulting ordering is a cyclic ordering for M.

2 Removing a basis from a matroid

Let M be a paving matroid where γ(M) = β(E(M)). As a first step in the proof of
Theorem 3, we wish to find a basis B of M where γ(M\B) = β(E(M)−B). Unfortunately,
there are matroids where there is no such basis, as for example, the Fano plane. In this
section, we will show that, despite this, such bases exist when |E(M)| > 2r(M) + 2.

The following is an elementary observation which we will refer to in a number of places.

Observation 4. For a basis B in a matroid M and an element x ∈ E(M) − B, the set
B + x has a unique circuit which contains x.

We will need the following strengthening of Edmonds’ matroid partition theorem [3]
given in [4]:

Theorem 5. Let M be a matroid where γ(M) = k+ ε, where k ∈ N and 0 6 ε < 1. Then
E(M) can be partitioned into k+ 1 independent sets with one set of size at most εr(M).

We are now in a position to prove the main result of this section.

Proposition 6. Let M be a paving matroid where γ(M) = β(E(M)), |E(M)| > 2r(M)+
2, and r(M) > 3. Then there is a basis B of M where γ(M\B) = β(E(M) − B) and
r(M\B) = r(M).

Proof. Let γ(M) = k+ `
r(M)

where 0 6 ` < r(M) and k > 2. Then |E(M)| = kr(M)+` and

it follows by Theorem 5 that one can partition E(M) into k independent sets F1, . . . , Fk
and one independent set Fk+1 having at most ` elements. Since for all i ∈ [k], |Fi| 6 r(M)
and |Fk+1| 6 ` it follows that kr(M)+` = |E(M)| =

∑k
i=1 |Fi|+|Fk+1| 6 kr(M)+`. Thus

equality must hold in the inequality and as such, for all i ∈ [k], |Fi| = r(M) and |Fk+1| = `.
Thus F1, . . . , Fk are bases in M . Let r = r(M). If ` = 0, then |E(M)| = kr > 3r. In this
case, we can take B = Fk since for M ′ = M\Fk, it is seen that γ(M ′) = k−1 = β(E(M ′)).
Thus we may assume that ` > 0.

Let Fk = {x1, x2, . . . , xr}. Suppose there exist distinct i, j ∈ [r] for which r((Fk−xi)∪
Fk+1) = r((Fk − xj) ∪ Fk+1) = r− 1. Let x ∈ Fk+1. Then x+ (Fk − xi) and x+ (Fk − xj)
are (distinct) circuits, contradicting Observation 14. Thus there is at most one i ∈ [r]
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for which r((Fk − xi) ∪ Fk+1) = r − 1. As such, we may assume that for i = 1, . . . , r − 1,
r((Fk−xi)∪Fk+1) = r. Thus for i = 1, . . . , r− 1, there is a subset Ai ⊆ Fk−xi such that
Bi = Ai ∪ Fk+1 is a basis for M.

We shall show that the bases Bi, i = 1, . . . , r − 1 can be chosen so that for some
i ∈ [r − 1], B = Bi is a basis satisfying the proposition. Suppose that none of the bases
Bi satisfy the proposition. Then for all i ∈ [r − 1], there is a subset Xi ⊆ E(M) − Bi

for which β(Xi) > β(E(M) − Bi). Since k > 1, we have that F1 ⊆ E(M\Bi) and hence
r(M\Bi) = r. Thus we have β(E(M) − Bi) = k − 1 + `

r
. If r(Xi) < r − 1, then Xi is

independent and hence β(Xi) = 1 6 β(E(M) − Bi). Thus r(Xi) > r − 1 and seeing
as β(Xi) > β(E(M) − Bi), we have r(Xi) 6 r − 1. Consequently, r(Xi) = r − 1 and

β(Xi) = |Xi|
r−1 > k − 1 + `

r
. Since r(Xi) = r − 1, it follows that for j = 1, . . . , k − 1,

|Xi∩Fj| 6 r−1. Consequently, |Xi| 6 (k−1)(r−1) + `. If |Xi| < (k−1)(r−1) + `, then
β(Xi) 6 k − 1 + `−1

r−1 , implying that β(Xi) 6 k − 1 + `
r
, contradicting our assumptions.

Thus it follows that |Xi| = (k− 1)(r− 1) + ` and for all i ∈ [r− 1] and for all j ∈ [k− 1],
|Xi ∩ Fj| = r − 1, and Fk − Ai ⊂ Xi. Thus for all i ∈ [r − 1] and for all j ∈ [k − 1],
Xij = Xi ∩ Fj spans Xi. Since all circuits in M have size at least r, it follows that for all
j ∈ [k − 1], and for all x ∈ Xi −Xij, Xij + x is a circuit.

Suppose k > 3. Let i, j ∈ [r− 1] where i and j are distinct (noting that such i, j exists
since r > 3). Since r > 3, there exists x ∈ Xi2 ∩Xj2. We have that x + Xi1 and x + Xj1

are circuits. It follows by Observation 14 that Xi1 = Xj1 and thus cl(Xi) = cl(Xj). Let
X = cl(Xi). Since Fk − Ai ⊂ Xi, Fk − Aj ⊂ Xj, xi ∈ Fk − Ai and xj ∈ Fk − Aj, we have
{xi, xj} ⊂ X. Since this applies to all j ∈ [r − 1] − i, it follows that Fk − xr ⊂ X. If
r((Fk − xr) ∪ Fk+1) = r, then one could let xr play the role of xr−1, and it would follow
that xr ∈ X. This would imply that Fk ⊂ X, an impossibility (since r(X) = r− 1). Thus
r((Fk − xr) ∪ Fk+1) = r − 1. Given that Fk − xr ⊂ X, we have Fk+1 ⊆ cl(Fk − xr) ⊂ X.

Now it is seen that β(X) = |X|
r(X)

= k(r−1)+`
r−1 = k + `

r−1 > γ(M), a contradiction.

From the above, we have k = 2. Since |E(M)| > 2r(M) + 2, we have ` > 2. Let
i ∈ [r − 1].

Claim 7. For all j ∈ [r − 1]− i, one can choose Bj so that Xj1 = Xi1.

Proof. Let j ∈ [r−1]−i. Suppose there exists x ∈ (F2−Ai)∩(F2−Aj). Then x ∈ Xi∩Xj

(since F2 −Ai ⊂ Xi and F2 −Aj ⊂ Xj) and, given that r(Xi) = r(Xj) = r − 1 = |Xi1| =
|Xj1|, it follows that x + Xi1 and x + Xj1 are circuits. It now follows by Observation 14
that Xi1 = Xj1. Suppose instead that (F2 − Ai) ∩ (F2 − Aj) = ∅. That is, F2 − Ai ⊆ Aj
(and F2 −Aj ⊆ Ai). Since ` > 2, there exists xs ∈ F2 −Aj − xj. Now xs +Bj contains a
(unique) circuit C where xs ∈ C. We claim that C∩ (F2−Ai) 6= ∅. To see this, we observe
that |Aj − (F2 − Ai)| = r − 2`. Thus

|C ∩ (F2 − Ai)| = |C − xs| − |C ∩ ((Aj − (F2 − Ai)) ∪ F3))|
> |C| − 1− ((r − 2`) + `) = |C| − 1− r + ` > `− 1 > 1.

Let xt ∈ C∩(F2−Ai). Observing that Bj−xt+xs is also a basis, let A′j = Aj−xt+xs
and B′j = Bj − xt + xs. Then B′j = A′j + F3 and moreover, xt ∈ (F2 − Ai) ∩ (F2 − A′j).
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Now defining Xj as before, using B′j in place of Bj, one obtains that Xi1 = Xj1, as in the
previous case.

By the above claim, we may assume that for all j ∈ [r − 1] − i, the base Bj can be
chosen so that Xi1 = Xj1. Letting X = cl(Xi) and following similar reasoning as before,

we have that (F2 − xr) ∪ F3 ⊂ X. Thus β(X) = |X|
r(X)

= 2(r−1)+`
r−1 = 2 + `

r−1 > γ(M), a

contradiction. It follows that for some i ∈ [r − 1], the proposition holds for B = Bi.

3 S-Pairs

In the second part of the proof of Theorem 3, we will need to establish the existence
of certain circuits. More specifically, suppose S is a basis as described in Proposition
15 where we assume that S = {s1, . . . , sr}. Suppose e1e2 . . . em is cyclic ordering for
M ′ = M\S and our aim is to extend this ordering to a cyclic ordering for M by inserting
the elements of S, in some order, between em and e1. Assuming this is not possible, it turns
out (as in the case where r(M) = 3) that there must be certain circuits. For example,
there are subsets {B1, B2} ∈

(
S
r−2

)
such that for all si ∈ B1, {si, em−r+2, . . . , em} ∈ C(M)

and for all si ∈ B2, {si, e1, . . . , er−1} ∈ C(M). The results in this section and its successor,
lay the ground work to prove the existence of such circuits.

Let S be a finite, nonempty set. For i = 1, 2, let Si ⊆ 2S. We call the pair (S1,S2) an
S-pair if it has the following properties.

(S1) For i = 1, 2, if A,B ∈ Si where |A| = |B|+ 1 and B ⊂ A, then
(
A
|B|

)
⊆ Si.

(S2) For i = 1, 2, if A,B ∈ Si where |A| = |B| and |A ∩B| = |A| − 1, then A ∪B ∈ Si.

(S3) For i = 1, 2,
(
S
1

)
6⊆ Si and S 6∈ Si.

(S4) For k = 1, . . . , |S| − 1, if
(
S−x
k

)
⊆ S1 for some x ∈ S, then

(
S−x
|S|−k

)
6⊆ S2.

In the next section, we shall need the following observations for an S-pair (S1,S2)
where |S| = r.

Observation 8. Let A ⊆ S where α = |A|. Suppose that for some i ∈ {1, 2} and some
j ∈ [α],

(
A
j

)
⊆ Si. Then for k = j, . . . , α,

(
A
k

)
⊆ Si.

Proof. We may assume that j < α. Suppose that for some k ∈ {j, . . . , α − 1},
(
A
k

)
⊆ Si.

Let B ∈
(
A
k+1

)
. Let {b1, b2} ⊆ B and for s = 1, 2, let Bs = B − bs. By assumption, for

s = 1, 2, Bs ∈ Si. It now follows by (S2) that B = B1 ∪ B2 ∈ Si. Consequently, we have
that

(
A
k+1

)
⊆ Si. Arguing inductively, we see that for k = j, . . . , α,

(
A
k

)
⊆ Si.

Observation 9. Let A ∈ Si where α = |A|. Suppose that for some j ∈ [α− 1] and x ∈ A,
we have

(
A−x
j

)
⊆ Si. Then

(
A
j

)
⊆ Si.
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Proof. Suppose first that j = α − 1. Then A′ = A − x ∈ Si. It follows by (S1) that(
A
α−1

)
⊆ Si. Assume that j < α−1 and the assertion holds for j+1; that is, if

(
A−x
j+1

)
⊆ Si,

then
(
A
j+1

)
⊆ Si. Suppose

(
A−x
j

)
⊆ Si. Then by Observation 8,

(
A−x
j+1

)
⊆ Si. Thus by

assumption,
(
A
j+1

)
⊆ Si. Let B ∈

(
A
j

)
, where x ∈ B. Let y ∈ A−B and let B′ = B−x+y.

Since B′ ∈
(
A−x
j

)
, it follows that B′ ∈ S1. However, we also have that B + y ∈ Si. Thus

it follows by (S1) that B ∈ Si. We now see that
(
A
j

)
⊆ Si. The assertion now follows by

induction.

Observation 10. Let A ⊆ S. Suppose for some x ∈ A, i ∈ {1, 2}, and j > 2, we have
that {B ∈

(
A
j

) ∣∣ x ∈ B} ⊆ Si. Then (Aj ) ⊆ Si and A ∈ Si.
Proof. We may assume that |A| > j + 1. Let B′ ∈

(
A−x
j

)
. Let {y1, y2} ⊆ B′ and for

s = 1, 2, let Bs = B′ − ys + x. By assumption, {B1, B2} ⊂ Si. It follows by (S2) that
B = B′ + x = B1 ∪ B2 ∈ Si. Thus by (S1) we have that

(
B
j

)
⊆ Si and hence B′ ∈ Si. It

now follows that
(
A
j

)
⊆ Si, and moreover, A ∈ Si (by Observation 8).

4 Order-consistent pairs

Let S = {s1, s2, . . . , sn} be a set of n elements and let S1 ⊆ 2S and S2 ⊆ 2S. We say
that the pair (S1,S2) is order-consistent with respect to S if for any permutation π of
[n], there exists i ∈ [n] for which either {sπ(1), · · · , sπ(i)} ∈ S1 or {sπ(i), . . . , sπ(n)} ∈ S2.
Note that if (S1,S2) is order-consistent, then (S2,S1) is also order consistent. To see
this, let π be a permutation of [n] and let π′ be the permutation which is the reverse of
π; that is, for all i ∈ [n], π′(i) = π(n − i + 1). Since (S1,S2) is order-consistent, there
exists i ∈ [n] such that either {sπ′(1), . . . , sπ′(i)} ∈ S1 or {sπ′(i), . . . , sπ′(n)} ∈ S2. Thus
either {sπ(n−i+1), . . . , sπ(n)} ∈ S1 or {sπ(1), . . . , sπ(n−i+1)} ∈ S2. Given that this holds for
all permutations π, it follows that (S2,S1) is an order-consistent pair.

Let Π denote the set of all permutations of [n] and let π ∈ Π. We say that a subset
A ∈ S1 (resp. B ∈ S2) is π-relevant if there exists i ∈ [n] such that A = {sπ(1), . . . , sπ(i)}
(resp. B = {sπ(i), . . . , sπ(n)}). Let Π′ ⊆ Π be a subset of permutations. We say that a
subset A ⊆ S1 (resp. B ⊆ S2) is Π′-relevant if for all A ∈ A (resp. B ∈ B), there exists
π ∈ Π′ such that A (resp. B) is π-relevant. We say that (A,B) is order-consistent relative
to Π′ if for all π ∈ Π′, either there exists A ∈ A for which A is π-relevant, or there exists
B ∈ B for which B is π-relevant. For i ∈ [n], we let Πi denote the set of permutations
π ∈ Π where π(1) = i. The following theorem will be instrumental in the proof of main
theorem.

Theorem 11. Let S = {s1, . . . , sn} be a set where n > 3 and let (S1,S2) be an S-pair.
Then (S1,S2) is order-consistent if and only if there exists (A1, A2) ∈

(
n−1
S1

)
×
(
n−1
S2

)
,

A1 6= A2, and {B1, B2} ⊂
(
S
n−2

)
where for i = 1, 2, Bi ∩ Ai = B1 ∩ B2 ∈

(
A1∩A2

n−3

)
and(

Bi

1

)
⊂ Si.
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Proof. To prove sufficiency, suppose Ai, Bi, i = 1, 2 are as described in the theorem.
Note that since A1 6= A2, we have A1 ∪ A2 = S. Also, since B1 ∩ B2 ⊆ A1 ∩ A2, we have
|B1 ∩ B2| = n− 3 = |A1 ∩ A2| − 1. Now B1 6⊂ A1, for otherwise |B1 ∩ B2| = |A1 ∩ B1| =
|B1| = n − 2. Thus B1 ⊆ A2, and likewise, B2 ⊆ A1. For i = 1, 2, let Ti = {Ai} ∪

(
Bi

1

)
.

We need only show that (T1, T2) is order-consistent. Suppose it is not. Clearly it is
order-consistent relative to the set of permutations π for which sπ(1) ∈ B1 or sπ(n) ∈ B2.
Let π ∈ Π where sπ(1) 6∈ B1 and sπ(n) 6∈ B2. If sπ(1) 6∈ A2, then A2 = {sπ(2), . . . , sπ(n)}
and A2 is π-relevant. Thus A2 − B1 = {sπ(1)} = (A1 ∩ A2) − B1. By similar reasoning,
we also have A1 − B2 = {sπ(n)} = (A1 ∩ A2) − B1. However, our assumptions imply
that (A1 ∩ A2) − B1 = (A1 ∩ A2) − B2, and consequently, sπ(1) = sπ(r). This yields a
contradiction. It follows that (T1, T2) is order-consistent.

To prove necessity, we shall use induction on n. It is a straightforward exercise to
verify the assertion for n = 3. We shall assume that n > 4 and the assertion is valid to all
values less than n. That is, if |S| < n, and (S1,S2) is an S-pair which is order-consistent,
then there exist sets Ai, Bi, i = 1, 2 as described in the theorem. Assume now that
S = {s1, . . . , sn} and (S1,S2) is an S-pair which is order-consistent.

For all k ∈ [n], let Sk = S − sk and let Sk1 = {A − sk
∣∣ A ∈ S1 and sk ∈ A} and

Sk2 = {A ∈ S2
∣∣ sk /∈ A}. We observe that properties (S1) and (S2) still hold for the pair

(Sk1 ,Sk2 ) whereas (S3) and (S4) may not.

(A) For all k ∈ [n], one of the following holds:

(a1) {sk} ∈ S1.

(a2) Sk ∈ S2.

(a3)
(
Sk

1

)
⊆ S2.

(a4) For some D ∈
(
Sk

n−2

)
, and positive integers i, j where i + j = n − 1,

(
D
i

)
⊆ Sk1 and(

D
j

)
⊆ Sk2 .

(a5) There exist (Ak1, A
k
2) ∈

(
n−2
Sk1

)
×
(
n−2
Sk2

)
, Ak1 6= Ak2, and {Bk

1 , B
k
2} ⊆

(
Sk

n−3

)
where for

i = 1, 2, Bk
i ∩ Aki = Bk

1 ∩Bk
2 ∈

(
Ak

1∩Ak
2

n−4

)
and

(
Bk

i
1

)
⊆ Ski .

Proof. Let k ∈ [n]. Assume that none of (a1) - (a4) hold for k. We will show that (a5)
must hold for k. Clearly Sk 6∈ Sk1 , for otherwise this would mean that S ∈ S1 which is

not allowed by (S3). We also have that
(
Sk

1

)
6⊆ Sk1 . For if this was the case, then it

would follow that for all i ∈ [n] − k, {si, sk} ∈ S1. It would then follow by Observation
10 that S ∈ S1 violating (S3). Given that (a2) -(a4) do not hold, (Sk1 ,Sk2 ) is seen to be
an Sk-pair. Let π ∈ Πk and let π′ = π(2)π(3) · · · π(n). Since (S1,S2) is order-consistent,
there exists A ∈ S1 or B ∈ S2 and i ∈ [n] such that either A = {sπ(1), . . . , sπ(i)} or
B = {sπ(i), . . . , sπ(n)}. Given that (a1) and (a2) do not hold, it follows that in the former
case, i > 2, A′ = {sπ(2), . . . , sπ(i)} ∈ Sk1 and hence A′ is π′-relevant. In the latter case, i > 3
and B′ = {sπ(i), . . . , sπ(n)} ∈ Sk2 and B′ is π′-relevant. Given that π was arbitrarily chosen
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from Πk, we see that (Sk1 ,Sk2 ) is order-consistent with respect to Sk. By the inductive

assumption, there exist (Ak1, A
k
2) ∈

(
n−2
Sk1

)
×
(
n−2
Sk2

)
, Ak1 6= Ak2, and {Bk

1 , B
k
2} ⊂

(
Sk

n−3

)
where

for i = 1, 2, Bk
i ∩ Aki = Bk

1 ∩Bk
2 ∈

(
Ak

1∩Ak
2

n−4

)
and

(
Bk

i
1

)
⊂ Ski . Thus (a5) holds for k.

(B) There is at most one integer k for which (a2) or (a3) holds.

Proof. It suffices to prove that (a2) can hold for at most one integer k; if (a3) holds for
some integer k, then it follows by Observation 8 that Sk ∈ S2, and hence (a2) holds for
k. Suppose to the contrary that (a2) holds for distinct integers k and `. Then Sk ∈ S2
and S` ∈ S2. It then follows by (S2) that S = Sk ∪ S` ∈ S2. However, this violates (S3).
Thus no two such integers can exist.

(C) Property (a4) holds for at most one integer k.

Proof. Suppose (a4) holds for distinct integers k and `. Then for some i, j, i′, j′ where

i+ j = n− 1, i′ + j′ = n− 1, and subsets D ∈
(
Sk

n−2

)
and D′ ∈

(
S`

n−2

)
, we have

(
D
i

)
⊆ Sk1 ,(

D
j

)
⊆ Sk2 ,

(
D′

i′

)
⊆ S`1, and

(
D′

j′

)
⊆ S`2. By Observation 10, we have that F1 = D + sk ∈ S1

and F2 = D′ + s` ∈ S1. If F1 6= F2, then by property (S2), F1 ∪ F2 = S ∈ S1, violating
(S3). Thus F1 = F2 = S − s = S ′ for some s ∈ S − sk − s` and S ′ ∈ S1.

Let i∗ = max{i, i′} and j∗ = min{j, j′}. We claim that
(
S′

i∗+1

)
⊆ S1 and

(
S′

j∗

)
⊆ S2. To

prove the first assertion, we first note that it is true when i∗ = n − 2 since S ′ ∈ S1. We
may assume that i∗ < n−2. Then i∗ 6 n−3 = |D∩D′| = |S ′−sk−s`|. Suppose first that
i∗ = i. Then by assumption,

(
D∩D′
i∗

)
⊂ Sk1 . Thus for all X ∈

(
S′−sk−s`

i∗

)
, X+sk ∈ S1. It now

follows by Observation 10 that
(
S′−s`
i∗+1

)
⊆ S1. Now Observation 9 implies that

(
S′

i∗+1

)
⊆ S1.

Suppose now that i∗ > i. Then i < n−3 and it follows by assumption that
(
D∩D′
i

)
⊆ Sk1 . It

now follows by Observation 10 that
(
D′

i+1

)
⊆ S1. Also, since

(
D
i

)
⊆ Sk1 , we have

(
D
i+1

)
⊆ S1.

Let X ∈
(
S′

i+1

)
. If X ⊆ D or X ⊆ D′, then X ∈ S1. Suppose neither occurs. Then

{sk, xl} ⊆ X and hence X − sk ∈
(
D
i

)
⊆ Sk1 . It follows that X ∈ S1. Consequently,(

S′

i+1

)
⊆ S1. Since i+ 1 6 i∗ + 1, it follows by Observation 8 that

(
S′

i∗+1

)
⊆ S1.

To prove that
(
S′

j∗

)
⊆ S2, first suppose that j∗ = n− 2. Then j∗ = j = j′ = n− 2. In

this case, D,D′ ∈ S2 and hence S ′ = D ∪D′ ∈ S2 by (S2). It would then follow by (S1)
that

(
S′

n−2

)
⊆ S2. Thus we may assume that j∗ < n− 2. We have that

(
D∩D′
j∗

)
⊆ S2. Given

that D ∩D′ = S ′− sk − s`, it follows by Observation 9 that
(
S′−s`
j∗

)
⊆ S2 and this in turn

implies that
(
S′

j∗

)
⊆ S2.

Given that i+j = i′+j′ = n−1, it follows that i∗ 6 n−1−j∗, and hence i∗+1+j∗ 6 n.
By application of Observation 8, we have that

(
S′

n−i∗−1

)
⊆ S2. However, we now have both(

S′

i∗+1

)
⊆ S1 and

(
S′

n−i∗−1

)
⊆ S2, violating (S4). We conclude that (a4) can hold for at

most one integer k.

(D) There exists T ∈
(
S
n−3

)
such that either

(
T
1

)
⊆ S1 or

(
T
1

)
⊆ S2.
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Proof. Assume that there is no subset T ∈
(
S
n−3

)
such that

(
T
1

)
⊆ S1. Then there are

at least three integers k for which (a1) does not hold. By (B) and (C), (a2) or (a3)
holds for at most one integer k and (a4) holds for at most one integer k. Thus there
exists k ∈ [n] such that none of (a1) - (a4) hold. By (A), (a5) holds for k. Thus there

exists (Ak1, A
k
2) ∈

(
n−2
Sk1

)
×
(
n−2
Sk2

)
, Ak1 6= Ak2, and {Bk

1 , B
k
2} ⊂

(
Sk

n−3

)
where for i = 1, 2,

Bk
i ∩ Aki = Bk

1 ∩ Bk
2 ∈

(
Ak

1∩Ak
2

n−4

)
and

(
Bk

i
1

)
⊂ Ski . Thus we see that

(
Bk

2
1

)
⊆ Sk2 ⊆ S2. This

completes the proof.

(E) There exists T ∈
(
S
n−2

)
such that either

(
T
1

)
⊆ S1 or

(
T
1

)
⊆ S2.

Proof. By (D), there exists T ∈
(
S
n−3

)
such that either

(
T
1

)
⊆ S1 or

(
T
1

)
⊆ S2. We claim

that it suffices to prove the assertion when
(
T
1

)
⊆ S1. For if instead

(
T
1

)
⊆ S2, then redefine

Ski so that for all k ∈ [n], Sk1 = {A ∈ S1
∣∣ sk 6∈ A} and Sk2 = {A−sk

∣∣ A ∈ S2 and sk ∈ A}.
Now it is seen that (A) - (C) still hold when in (a1) - (a5), we switch S1 with S2 and
switch Sk1 with Sk2 . Now one can use the same proof as in the case when

(
T
1

)
⊆ S1.

By the above, we may assume that
(
T
1

)
⊆ S1. Furthermore, we may assume that

T = {s1, . . . , sn−3}. Next, we will show that either {si} ∈ S1 for some i ∈ {n−2, n−1, n},
or
(
S′

1

)
⊆ S2 for some S ′ ∈

(
S
n−2

)
. We may assume that (a1) and (a3) do not hold for all

k ∈ {n − 2, n − 1, n}. Furthermore, by (B) and (C), (a2) holds for at most one integer
k ∈ {n − 2, n − 1, n} as does (a4). As such, we may assume that (a2) and (a4) do
not hold for k = n − 2. Thus by By (A), (a5) holds for k = n − 2. Thus there exist

(An−21 , An−22 ) ∈
(
n−2
Sn−2
1

)
×
(
n−2
Sn−2
2

)
, An−21 6= An−22 , and {Bn−2

1 , Bn−2
2 } ⊂

(
Sn−2

n−3

)
where for

i = 1, 2, Bn−2
i ∩ An−2i = Bn−2

1 ∩Bn−2
2 ∈

(
An−2

1 ∩An−2
2

n−4

)
and

(
Bn−2

i
1

)
⊂ Sn−2i .

Suppose si ∈ Bn−2
1 ∩ {s1, . . . , sn−3}. By assumption, {si} ∈ S1. However, given that

si ∈ Bn−2
1 , we also have that {si} ∈ Sn−21 and hence {si, sn−2} ∈ S1. By (S1), {sn−2} ∈

S1, a contradiction. Thus Bn−2
1 ∩ {s1, . . . , sn−3} = ∅ and hence Bn−2

1 ⊆ {sn−1, sn}.
Consequently, n− 3 6 2 and hence n 6 5. To complete the proof, we need only consider
two cases:

Case 1: n = 5.

We haveBn−2
1 = B3

1 = {s4, s5}.We may assume that A3
2 = {s1, s4, s5}, whereB3

1∩B3
2 =

{s4}. Thus A3
1 = {s1, s2, s4} and B3

2 = {s2, s4}. Then A3
1 + s3 = {s1, s2, s3, s4} ∈ S1 and

A3
2 ∈ S2. Given that

(
B3

2
1

)
⊆ S2, we may assume that for all i ∈ {1, 3, 4}, {si} 6∈ S2. Since

by assumption (a1) and (a3) do not hold for k ∈ {3, 4, 5}, it follows by (A) that for all
k ∈ {4, 5}, one of (a2), (a4), or (a5) must hold.

Suppose (a5) holds for k = 5. Then arguing as above, we have that B5
1 = {s3, s4}

and hence A5
1 = {s1, s2, s3} or A5

2 = {s1, s2, s4}. Thus either {s1, s2, s3, s5} ∈ S1 or
{s1, s2, s4, s5} ∈ S1. Given that {s1, s2, s3, s4} ∈ S1, it would follow by (S2) that S ∈ S1,
contradicting (S3). Thus (a5) does not hold for k = 5.

Suppose (a4) holds for k = 5. Then there exists a subset D′ ∈
(
S5

3

)
and integers i, j

where i + j = 4 such that
(
D′

i

)
⊆ S5

1 and
(
D′

j

)
⊆ S5

2 . Let D = D′ + s5. By Observation
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10, it follows that
(
D
i+1

)
⊆ S1 and D ∈ S1. Clearly D 6= {s1, s2, s3, s4} and hence it follows

by property (S2) that D ∪ {s1, s2, s3, s4} = S ∈ S1, yielding a contradiction. Thus (a2)
holds for k = 5 and hence {s1, s2, s3, s4} ∈ S2. By (A) and (B) it follows that either (a4)
or (a5) holds for k = 4.

Suppose (a5) holds for k = 4. Arguing as before, we see that B4
1 = {s3, s5} and either

A4
1 = {s1, s2, s3} or A4

1 = {s1, s2, s5}. In the latter case, we have that {s1, s2, s4, s5} ∈ S1.
It would then follow by (S2) that {s1, s2, s3, s4} ∪ {s1, s2, s4, s5} = S ∈ S1, contradicting
(S3). Thus we have that A4

1 = {s1, s2, s3}. It now follows that {s3} = A4
1∩B4

1 = B4
1 ∩B4

2 .
Thus s3 ∈ B4

2 , implying that {s3} ∈ S2, contradicting our assumptions.

By the above, (a4) must hold for k = 4. Thus there exists a subset D′ ∈
(
S4

3

)
and

integers i, j where i+ j = 4 such that
(
D′

i

)
⊆ S4

1 and
(
D′

j

)
⊆ S4

2 . It follows by Observation

10 that for D = D′ + s4,
(
D
i+1

)
⊆ S1 and D ∈ S1. If D 6= {s1, s2, s3, s4}, then we would

have D ∪ {s1, s2, s3, s4} = S ∈ S1, contradicting (S3). Thus D = {s1, s2, s3, s4} and
consequently, D′ = {s1, s2, s3}. Given that

(
D′

j

)
⊆ S2 and {s3} 6∈ S2, it follows that j > 2.

Suppose i = 1. Then
(
D
2

)
⊆ S1. Given that

(
B3

1
1

)
⊆ S3

1 , it follows that {s5} ∈ S3
1 and

hence {s3, s5} ∈ S1. Thus we have {B ∈
(
S
2

) ∣∣ s3 ∈ B} ⊆ S1. It now follows by Observation

10 that S ∈ S1, contradicting (S3). Thus i > 2 and i = j = 2. We now have that
(
D
3

)
⊆ S1.

Given that B3
2 = {s2, s4} ∈ S2 and

(
D′

2

)
⊆ S2, it follows {B ∈

(
D
2

) ∣∣ s2 ∈ B} ⊆ S2. Thus by

Observation 10, we have
(
D
2

)
⊆ S2. However, we now have both

(
D
3

)
⊆ S1 and

(
D
2

)
⊆ S2,

contradicting (S4). This completes the case n = 5.

Case 2: n = 4.

We may assume that Bn−2
1 = B2

1 = {s4}, A2
1 = {s1, s3}. There are two possible cases

to consider for A2
2 and B2

2 : either A2
2 = {s1, s4} and B2

2 = {s3} or A2
2 = {s3, s4} and

B2
2 = {s1}. We shall assume the former – the latter case can be handled similarly. We

have that A2
1 = {s1, s3} and hence A2

1 +s2 = {s1, s2, s3} ∈ S1 and B2
1 +s2 = {s2, s4} ∈ S1.

We also have that A2
2 = {s1, s4} ∈ S2 and {s3} ∈ S2. We may assume that (a1) and (a3)

do not hold for k = 3 or k = 4.
Suppose (a5) holds for k = 3. Then B3

1 = {s2} or B3
1 = {s4}. In the former case, we

have A3
1 = {s1, s4}, and hence A3

1 +s3 = {s1, s3, s4} ∈ S1. However, since {s1, s2, s3} ∈ S1,
it would follow that {s1, s3, s4}∪{s1, s2, s3} = S ∈ S, contradicting (S3). Thus B3

1 = {s4}
and A3

1 = {s1, s2}.We have that B3
1+s3 = {s3, s4} ∈ S1. However, given that {s2, s4} ∈ S1,

it follows by (S2) that {s3, s4}∪{s2, s4} = {s2, s3, s4} ∈ S1. Again, since {s1, s2, s3} ∈ S1,
it follows that {s2, s3, s4} ∪ {s1, s2, s3} = S ∈ S1, yielding a contradiction. We conclude
that (a5) does not hold for k = 3. By similar arguments, one can also show that (a5)
does not hold for k = 4 either.

Suppose (a4) holds for k = 4. Then there exists a subset D′ ∈
(
S4

2

)
and integers i, j

where i+j = 3 such that
(
D′

i

)
⊆ S4

1 and
(
D′

j

)
⊆ S4

2 . We have that D = D′+s4 ∈ S1. Given

that {s1, s2, s3} ∈ S1, it follows by (S2) that S = D ∪ {s1, s2, s3} ∈ S1, a contradiction.
Thus (a4) does not hold for k = 4 and hence (a2) holds for k = 4. Furthermore, since by
(B), (a2) holds for at most one of k = 3 or k = 4, it must be the case that (a4) holds for
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k = 3. As such, there exists a subset D′ ∈
(
S3

2

)
and integers i, j where i+ j = 3 such that(

D′

i

)
⊆ S3

1 and
(
D′

j

)
⊆ S3

2 . We have that D = D′ + s3 ∈ S1. Given that {s1, s2, s3} ∈ S1,
if D 6= {s1, s2, s3}, then by (S2), S = D ∪ {s1, s2, s3} ∈ S1, a contradiction. Thus we
must have that D = {s1, s2, s3}, and thus D′ = {s1, s2}. If j = 1, then

(
D′

1

)
⊆ S3

2 ⊆ S2.
Given |D′| = 2 = n− 2, the assertion holds in this case. Thus we may assume that j = 2
and i = 1. However, this means that {s1} ∈ S3

1 , implying that {s1, s3} ∈ S1. This in turn
implies that {s3} ∈ S1 (since {s1} ∈ S1) yielding a contradiction. This completes the case
for n = 4.

By (E), there exists i ∈ {1, 2} and T ∈
(
S
n−2

)
for which

(
T
1

)
⊆ Si. Using similar

reasoning as before, it suffices to prove the case where
(
T
1

)
⊆ S1 (see the first paragraph

of the proof of (E)). Thus we may assume
(
T
1

)
⊆ S1 and moreover, T = {s1, . . . , sn−2}.

Suppose first that (a1) holds for k = n − 1; that is, {sn−1} ∈ S1. Then
(
Sn

1

)
⊆ S1

and (by Observation 8), Sn ∈ S1. We shall show that (a1) - (a5) do not hold for k = n,
violating (A). Clearly (a1) does not hold for k = n, for otherwise (S3) is violated. If (a2)
or (a3) holds for k = n, then Sn ∈ S2. In this case, (S4) is violated. Suppose (a4) holds
for k = n.

Then there exists D′ ∈
(
Sn

n−2

)
and 1 6 i 6 n−2 where

(
D′

i

)
⊆ Sn1 , and D = D′+sn ∈ S1.

However, since Sn ∈ S1, it follows by (S2) that D ∪ Sn = S ∈ S1, violating (S3). Thus
(a4) does not hold for k = n. If (a5) holds for k = n, then there is a set An1 ∈

(
n−2
Sn1

)
,

implying that D = An1 + sn ∈ S1. Again, we have D ∪Sn = S ∈ S1, a contradiction. This
shows that (a1) - (a5) do not hold for k = n (a contradiction) and hence (a1) can not
hold for k = n− 1. By similar arguments, one can also show that (a1) does not hold for
k = n.

Suppose (a2) holds for k = n− 1. Then Sn−1 = {s1, . . . , sn−2, sn} ∈ S2. We will show
that (a4) holds for k = n. By (B), neither (a2) nor (a3) holds for k = n. Suppose (a5)
holds for k = n. Following a previous argument, we have that {s1, . . . , n − 2} ∩ Bn

1 = ∅.
Thus Bn

1 ⊆ {sn−1} and n 6 4. Given n > 4, it follows that n = 4 and B4
1 = {s3} and

A4
1 = {s1, s2}. Thus S3 = {s1, s2, s4} ∈ S1. Since for i = 1, 2, {si} ∈ S1, it follows by

Observation 9 that
(
S3

1

)
⊆ S1. However, this implies that {s4} ∈ S1, a contradiction.

It follows from the above that, assuming (a2) holds for k = n − 1, (a4) holds for
k = n. Thus there exists D′ ∈

(
Sn

n−2

)
and integers i, j, i+ j = n− 1, such that

(
D′

i

)
⊆ Sn1

and
(
D′

j

)
⊆ Sn2 . Then D = D′ + sn ∈ S1. If D′ = {s1, . . . , sn−2}, then D′ ∈ S1, (since(

D′

1

)
⊆ S1). It now follows by Observation 9 that

(
D
1

)
⊆ S1. However, this implies that

{sn} ∈ S1, a contradiction. Thus sn−1 ∈ D′. We have
(
D′−sn−1

1

)
⊆ S1 and D′ − sn−1 ∈ S1.

Note that D′ 6∈ S1; for otherwise, Observation 9 would imply that
(
D′

1

)
⊆ S1, contradicting

the fact that {sn−1} 6∈ S1.
Suppose i 6 n−3. Then

(
D′−sn−1

i

)
⊆ Sn1 . Thus for all S ′ ∈

(
D′−sn−1

i

)
, S ′ ∈ S1 and S ′+

sn ∈ S1. It follows by (S1) that
(
S′+sn
i

)
⊆ S1. This in turn implies that

(
D′−sn−1+sn

i

)
⊆ S1.

By Observation 8, D′−sn−1+sn ∈ S1. However, we also have that {s1, . . . , sn−2} ∈ S1 and
thus {s1, . . . , sn−2}∪ (D′−sn−1 +sn) = Sn−1 ∈ S1. Given that Sn−1 = D′−sn−1 +sn+si,

for some i ∈ [n− 2], it follows by Observation 9 that
(
Sn−1

i

)
⊆ S1. By Observation 8, we
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have
(
Sn−1

i+1

)
⊆ S1. Since

(
D′

j

)
⊆ Sn2 ⊆ S2 and Sn−1 ∈ S2 (since (a2) holds for k = n − 1)

and Sn−1 − si = D′, for some i ∈ [n − 2], it follows by Observation 9 that
(
Sn−1

j

)
⊆ S2.

However, we have
(
Sn−1

i+1

)
⊆ S1 and

(
Sn−1

j

)
⊆ S2 and i+ 1 + j = n, in violation of (S4).

From the above, we have i = n − 2 and j = 1. Then D′ ∈ Sn1 and
(
D′

1

)
⊆ S2. Let

A1 = D′ + sn, A2 = Sn−1, B1 = S − sn−1 − sn, and B2 = D′. Then by the above,
(A1, A2) ∈

(
n−1
S1

)
×
(
n−1
S2

)
and A1 6= A2. Furthermore, we have that for i = 1, 2,

(
Bi

1

)
⊆ Si.

We also see that B1 ∩ B2 = D′ ∩ {s1, . . . , sn−2} = A1 ∩ B1 = A2 ∩ B2. Thus in this case,
the theorem is satisfied.

To finish the proof, we will show that no other options are possible. Suppose now that
(a2) does not hold for k = n − 1, and we may assume the same is true for k = n. Thus
(a3) does not hold for k = n− 1 or k = n.

Suppose (a4) holds for k = n−1. Then there exists D′ ∈
(
Sn−1

n−2

)
and integers i, j, i+j =

n−1, such that
(
D′

i

)
⊆ Sn−11 and

(
D′

j

)
⊆ Sn−12 ⊆ S2. Then D = D′+ sn−1 ∈ S1. As before,

D′ 6= {s1, . . . , sn−2}. Thus sn ∈ D′ and we may assume without loss of generality that
D′ = {s1, . . . , sn−3, sn}. By (C), (a4) does not hold for k = n. Thus (a5) holds for
k = n and there exist (An1 , A

n
2 ) ∈

(
n−2
Sn1

)
×
(
n−2
Sn2

)
, An1 6= An2 , and {Bn

1 , B
n
2 } ⊆

(
Sn

n−3

)
where

for i = 1, 2, Bn
i ∩ Ani = Bn

1 ∩ Bn
2 ∈

(
An

1∩An
2

n−4

)
and

(
Bn

i
1

)
⊆ Sni . Arguing as before, we

have Bn
1 ∩ {s1, . . . , sn−2} = ∅. This in turn implies that Bn

1 = {sn−1} and hence n = 4.
Furthermore, we have that An1 = A4

1 = {s1, s2}, implying that {s1, s2, s4} ∈ S1. However,
we also have that D = {s1, s3, s4} ∈ S1. It follows by (S2) that S = D ∪ {s1, s2, s4} ∈ S1,
violating (S3). Thus (a4) does not hold for k = n− 1 and the same holds for k = n.

From the above, (a5) must hold for both k = n − 1 and k = n. Using similar
arguments as above, one can show that n = 4, B3

1 = {s4}, A3
1 = {s1, s2}, B4

1 = {s3},
and A4

1 = {s1, s2}. We have A3
1 + s3 = {s1, s2, s3} ∈ S1 and A4

1 + s4 = {s1, s2, s4} ∈ S1.
It now follows by (S2) that {s1, s2, s3} ∪ {s1, s2, s4} = S ∈ S1, contradicting (S3). This
completes the proof of the theorem.

5 Proof of Theorem 3

Let M be a paving matroid where γ(M) = β(E(M)) and |E(M)| = n.

5.1 The case r(M) = 2

Suppose r(M) = 2. We shall prove by induction on n that M is cyclically orderable.
Theorem 3 is seen to be true when n = 2. Assume that it is true when n = m − 1 > 2.
We shall prove that it is also true for n = m. Assume that M is a paving matroid where
r(M) = 2, |E(M)| = m and γ(M) = β(E(M)) = m

2
. For all elements e ∈ E(M), let

Xe denote the parallel class containing e and let m(e) = |Xe|. Then for all e ∈ E(M),
β(Xe) = m(e) 6 γ(M) = m

2
. If there are elements e ∈ E(M) for which m(e) = m

2
, then

choose f to be one such element. If no such elements exist, then let f be any element in
M. Let M ′ = M\f. Suppose there exists X ⊆ E(M ′) for which β(X) > m−1

2
= β(E(M ′).

Then clearly r(X) = 1. Thus X ⊆ Xg for some g ∈ E(M ′). Given that m(g) 6 m
2
, it
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follows that X = Xg and m(g) = m
2
. By the choice of f , we also have m(f) = m

2
. Then

E(M) = Xf ∪ Xg and E(M) = m = 2`, for some integer `. Now let e1e2 · · · em be an
ordering of E(M) where for all i, ei ∈ Xf , if i is odd, and ei ∈ Xg, if i is even. This
gives a cyclic ordering for M . Thus we may assume that γ(M ′) = β(E(M ′)) = m−1

2
. By

assumption, there is a cyclic ordering for M ′, say e1e2 · · · em−1. Since m(f) 6 m
2
, there

exists i ∈ [m − 1] such that {ei, ei+1} ∩ Xf = ∅. Consequently, e1 · · · eifei+1 · · · em−1 is
seen to be a cyclic ordering for M . The proof now follows by induction.

5.2 The case where |E(M)| 6 2r(M) + 1

Suppose |E(M)| 6 2r(M)+1. As mentioned earlier, if |E(M)| = 2r(M)+1, then |E(M)|
and r(M) are relatively prime and hence it follows by Theorem 2 that M has a cyclic
ordering. Thus we may assume that |E(M)| 6 2r(M). It now follows by Theorem 5 that
there are bases A and B for which A ∪B = E(M).

The following is a well-known conjecture of Gabow [5].

12 Conjecture ( Gabow )
Suppose that A and B are bases of a matroid N of rank r. Then there are orderings
a1a2 · · · ar and b1b2 · · · br of the elements of A and B, respectively, such that for i =
1, . . . , r − 1, {a1, . . . , ai, bi+1, . . . , br} and {ai+1, . . . , ar, b1 . . . , bi} are bases.

We observe that in the special case of Conjecture 12 where E(N) is the union of two
bases, the conjecture implies that N has a cyclic ordering. In [1], the authors verify,
among other things, the above conjecture for split matroids, a class of matroids which
includes all paving matroids. Given that the above conjecture is true for split matroids
(and hence also paving matroids) and E(M) = A ∪ B, it follows that M has a cyclic
ordering.

5.3 The case where |E(M)| > 2r(M) + 2 and r(M) > 3.

In this section, we shall assume that |E(M)| > 2r(M) + 2 and r(M) > 3. By Proposition
15, there exists a basis S of M for which γ(M\S) = β(E(M)− S) and r(M\S) = r(M).
Let r = r(M) and let S = {s1, . . . , sr}. Let M ′ = M\S and let m = |E(M ′)| = n − r.
By assumption, M ′ is cyclically orderable and we will assume that e1e2 · · · em is a cyclic
ordering. Our goal is to show that the cyclic ordering for M ′ can be extended to a cyclic
ordering of M . To complete the proof of Theorem 3, we need only prove the following:

Proposition 13. There exists i ∈ [m] and a permutation π of [r] such that
e1e2 · · · eisπ(1)sπ(2) · · · sπ(r)ei+1 · · · em is a cyclic ordering of M.

Proof. Assume to the contrary that for all i ∈ [m] and for all permutations π of [r],
e1e2 · · · eisπ(1)sπ(2) · · · sπ(r)ei+1 · · · em is not a cyclic ordering of M. For all j ∈ [m], we shall

define a pair (Hj
1,H

j
2), where for i = 1, 2, Hj

i ⊆ 2S. Let xj1 = ej−1, x
j
2 = ej−2, . . . , x

j
r−1 =
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ej−r+1, and let yj1 = ej, y
j
2 = ej+1, . . . , y

j
r−1 = ej+r−2 where for all integers k, we define

ek := e` where

` :=

{
k mod m if k mod m 6= 0
m otherwise.

Let Xj = {xj1, . . . , x
j
r−1} and Y j = {yj1, . . . , y

j
r−1}.

Let π be a permutation of [r]. By assumption,
e1 · · · ej−1sπ(1)sπ(2) · · · sπ(r)ej · · · em is not a cyclic ordering for M. Then there exists i ∈
[r − 1] such that either {xj1, . . . , x

j
i} ∪ {sπ(1), . . . , sπ(r−i)} is dependent or {yj1, . . . , y

j
i } ∪

{sπ(i+1), . . . , sπ(r)} is dependent. Since the smallest circuit has size r, this means that

either {xj1, . . . , x
j
i} ∪ {sπ(1), . . . , sπ(r−i)} or {yj1, . . . , y

j
i } ∪ {sπ(i+1), . . . , sπ(r)} is a circuit.

Let Cj1 be the set of all r-circuits which occur in the former case, and let Cj2 be the set of
all r-circuits occurring in the latter case. That is, Cj1 is the set of all r-circuits C where
for some i ∈ [r − 1], {xj1, . . . , x

j
i} ⊂ C ⊂ {xj1, . . . , x

j
i} ∪ S, and Cj2 is set of all r-circuits

C where for some i ∈ [r − 1], {yj1, . . . , y
j
i } ⊂ C ⊆ {yj1, . . . , y

j
i } ∪ S. For i = 1, 2, let

Hj
i = {C ∩ S

∣∣ C ∈ Cji }.
(A) For all j, the pair (Hj

1,H
j
2) is an S-pair which is order-consistent.

Proof. It suffices to prove the assertion for j = 1. For convenience, we let xi = x1i yi =
y1i , i = 1, . . . , r − 1. Furthermore, we let X = X1, Y = Y 1, H1 = H1

1, H2 = H1
2, C1 = C11 ,

and C2 = C12 . It follows from the definition of (H1,H2) that it is order-consistent. We
need only show that it is an S-pair. Suppose A,B ∈ H1 where |A| = |B|+ 1 and B ⊂ A.
Then for some i ∈ [r − 1], C1 = A ∪ {x1, . . . , xi} ∈ C1 and C2 = B ∪ {x1, . . . , xi+1} ∈ C1.
Let x ∈ B. Then x ∈ C1∩C2 and hence by the circuit elimination axiom there is a circuit
C ⊆ (C1 ∪ C2) − x = (A − x) ∪ {x1, . . . , xi+1}. Thus C = (A − x) ∪ {x1, . . . , xi+1} and
hence A − x ∈ H1. Since this applies to any element x ∈ B, it follows that

(
A
|B|

)
⊆ H1.

The same arguments can be applied to H2. Thus (S1) holds.
To show that (S2) holds, suppose A,B ∈ H1 where |A| = |B| and |A ∩ B| = |A| − 1.

There exists i ∈ [r] such that C1 = {x1, . . . , xi} ∪A ∈ C1 and C2 = {x1, . . . , xi} ∪B ∈ C1.
By the circuit elimination axiom, there exists a circuit C ⊆ (C1 ∪ C2) − xi = (A ∪ B) ∪
{x1, . . . , xi−1}. Thus C = (A ∪ B) ∪ {x1, . . . , xi−1} is a circuit and hence A ∪ B ∈ H1.
The same reasoning applies if A,B ∈ H2. Thus (S2) holds.

To show that (S3) holds, suppose
(
S
1

)
⊆ H1. Then for i = 1, . . . , r− 1, Ci = X ∪ {si}

is a circuit, and consequently, S ⊆ cl(X). However, this is impossible since |X| = r− 1 <
r(S) = r. Thus

(
S
1

)
6⊆ H1 and likewise,

(
S
1

)
6⊆ H2. Also, we clearly have that for i = 1, 2,

S 6∈ Hi since S is a base of M. Thus (S3) holds.
Lastly, to show that (S4) holds, let S ′ = S − sr. Suppose first that

(
S′

r−1

)
⊆ H1 and(

S′

1

)
⊆ H2. Then S ′ ∈ H1 and hence S ′ + x1 ∈ C1. Also, for all i ∈ [r − 1], Y + si ∈ C2.

Thus x1 ∈ cl(S ′) and S ′ ⊆ cl(Y ). Given that S ′ is independent and |S ′| = |Y | = r − 1,
it follows that cl(S ′) = cl(Y ). However, this implies that Y + x1 = {x1, y1, . . . , yr−1} =
{em, e1, . . . , er−1} ⊆ cl(S ′), which contradicts the assumption that {em, e1, . . . , er−1} is a
basis of M.
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Suppose now that for some k ∈ [r − 2],
(
S′

k

)
⊆ H1 and

(
S′

r−k

)
⊆ H2. We claim that

{x1, . . . , xr−k}∪{y1, . . . , yk} ⊆ cl(S ′). Following the proof of Observation 8, we have that
for j = k, . . . , r− 1,

(
S′

j

)
⊆ H1. In particular, S ′ ∈ H1, and hence C1 = S ′+ x1 ∈ C1. This

implies that x1 ∈ cl(S ′). However, seeing as
(
S′

r−2

)
⊆ H1, we have that C2 = (S ′ − sr−1) ∪

{x1, x2} ∈ C1. Given that x1 ∈ cl(S ′), it follows that x2 ∈ cl(S ′). Continuing, we see that
{x1, . . . , xr−k} ⊆ cl(S ′). By similar arguments, it can be shown that {y1, . . . , yk} ⊆ cl(S ′).
Thus proves our claim. It follows that r({x1, . . . , xr−k} ∪ {y1, . . . , yk}) 6 r − 1. However,
this is impossible since by assumption {x1, . . . , xr−k} ∪ {y1, . . . , yk} is a basis. Thus no
such k exists. More generally, the same arguments can be applied to any j ∈ [r] and
S ′ = S − sj. Thus (S4) holds.

By (A), for all j ∈ [m], (Hj
1,H

j
2) is an S-pair which is order-consistent. Thus it follows

by Theorem 11, that for all j ∈ [m], there exists (Aj1, A
j
2) ∈

(
r−1
Hj

1

)
×
(
r−1
Hj

2

)
, Aj1 6= Aj2, and

{Bj
1, B

j
2} ⊆

(
S
r−2

)
where for i = 1, 2, Bj

i ∩ A
j
i = Bj

1 ∩B
j
2 ∈

(
Aj

1∩A
j
2

r−3

)
and

(
Bj

i
1

)
⊆ Hj

i .
Suppose r > 4. Given that |B1

1 | = |B2
1 | = r − 2, it follows that there exists si ∈

B1
1 ∩ B2

1 . Then {si} ∈ H1
1 ∩ H2

1 and consequently, C1 = {si, em−r+2, . . . , em} and C2 =
{si, em−r+3, . . . , em, e1} are distinct circuits in M. By the circuit elimination axiom, there
exists a circuit C ⊆ (C1 ∪ C2) − si = {em−r+2, . . . , em, e1}. However, this is impossible
since by assumption, {em−r+2, . . . , em, e1} is a basis. Therefore, r 6 4.

Suppose r = 3. Without loss of generality, we may assume that A1
1 = {s1, s2},

B1
1 = {s3}, A1

2 = {s2, s3}, and B1
2 = {s1}. Then {s3, em, em−1} and {s1, e1, e2} are circuits.

We have that B2
1 6= {s3} and B2

2 6= {s1}; for if B2
1 = {s3}, then B1

1 = B2
2 = {s3} and it

follows that {s3, em−1, em} and {s3, e1, em} are circuits, implying that {em−1, em, e1} is a
circuit – a contradiction. Similar reasoning applies if B2

2 = {s1}. Suppose that B2
1 = {s1}.

Then {s1, e1, em} is a circuit. However, seeing as {s1, e1, e2}, is a circuit (since B1
2 = {s1}),

it follows that {s1, e1, e2} ∪ {s1, e1, em} − s1 = {em, e1, e2} is a circuit, which is false since
by assumption {em, e1, e2} is a basis. Thus B2

1 6= {s1}. Given that B2
1 6= {s3}, it follows

that B2
1 = {s2} and A2

1 = {s1, s3}. Since B2
2 6= {s1}, it follows that B2

2 = {s3} and
A2

2 = {s1, s2}. Since A1
1 = A2

2 = {s1, s2}, it follows that {s1, s2, em} and {s1, s2, e2} are
circuits. Furthermore, since B2

1 = {s2}, it follows that {s2, e1, em} is a circuit. It is now
seen that {em, e1, e2} ⊆ cl({s1, s2}), which contradicts the assumption that {em, e1, e2} is
a basis.

Lastly, suppose r = 4. Suppose si ∈ B1
1 ∩ B2

1 . Then {si, em−2, em−1, em} and
{si, em−1, em, e1} are circuits and hence {em−2, em−1, em, e1} is also a circuit, contradicting
our assumptions. Thus B1

1 ∩ B2
1 = ∅ and similarly, B1

2 ∩ B2
2 = ∅. More generally, for all

i ∈ {1, 2} and j ∈ [m], Bj
i ∩ B

j+1
i = ∅. Since for all i ∈ {1, 2}, |B1

i | = |B2
i | = 2 it follows

that for all i ∈ {1, 2}, j ∈ [m], Bj
i ∪B

j+1
i = S. Without loss of generality, we may assume

B1
1 = {s1, s2} and B2

1 = {s3, s4}. Note that B1
1 = {s1, s2} means that {s1, s2} ⊂ A1

2 and
so A1

2 = {s1, s2, s3} or {s1, s2, s4}. Given that B1
1 6⊆ A1

1 ∩ A1
2, irregardless of whether

A1
2 is the former or latter we have that A1

1 = {s1, s3, s4} or {s2, s3, s4}. However, since
the indexing of the elements of S is essentially arbitrary, one can assume that A1

2 is any
one of the first two choices and A1

1 is any one of the latter two choices. Thus we may
assume without loss of generality that A1

1 = {s2, s3, s4} and A1
2 = {s1, s2, s4}. Since for
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all i ∈ {1, 2}, j ∈ [m], Bj
i ∪ B

j+1
i = S, it follows that B1

1 = B3
1 = · · · = {s1, s2} and

B2
1 = B4

1 = · · · = {s3, s4}. In particular, m must be even. Corresponding, for i = 1, 3, . . . ,
Ai1 = {s1, s3, s4} or {s2, s3, s4} and for i = 2, 4, . . . Ai2 = {s1, s2, s3} or {s1, s2, s4}.

Given that B1
1 = {s1, s2} and

(
B1

1
1

)
⊆ H1

1, it follows that {s1, em−2, em−1, em} and
{s2, em−2, em−1, em} are circuits.
Thus {s1, s2} ⊂ cl({em−2, em−1, em}). By the above, we have that Bm

1 = {s3, s4} and either
Am1 = {s1, s2, s3} or Am1 = {s1, s2, s4}. Suppose the former holds. Then {s1, s2, s3, em−1} is
a circuit. Consequently, s3 ∈ cl({em−2, em−1, em}). However, since B2

1 = {s3, s4} ∈ H2
1, it

follows that {s3, em−1, em, e1} and {s4, em−1, em, e1} are circuits. By the circuit elimination
axiom, {s3, s4, em−1, em} is a circuit and hence s4 ∈ cl({em−2, em−1, em}). However, it now
follows that {s1, s2, s3, s4} ⊂ cl({em−2, em−1, em}), yielding a contradiction. If instead,
Am1 = {s1, s2, s4}, then similar arguments yield a contradiction. This concludes the case
for r = 4.
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Corrigendum – submitted May 17, 2025

In Section 5.2 of [6], the author mistakenly assumed that the proof of the case |E(M)| <
2r(M) followed from a theorem in [1] on split matroids. Here we shall rectify this problem
by providing a proof for this missing case. We shall assume all definitions and notation
as found in [6]. We note first that the class of paving matroids is closed under taking
minors. Throughout, we may assume that r(M) > 3.

Observation 14. Let M be a paving matroid where |E(M)| < 2r(M) and γ(M) =
β(E(M)). Then for any element x ∈ E(M), M ′ = M/x is a paving matroid where
γ(M ′) = β(E(M ′)).

Proof. Let M be a paving matroid where |E(M)| < 2r(M) and γ(M) = β(E(M)). Let
n = r(M) and k = |E(M)| − n. Then k < n. Let x ∈ E(M) and let M ′ = M/x.
Then M ′ is a paving matroid where r(M ′) = n − 1 and |E(M ′)| = n + k − 1. Let
X ⊆ E(M ′). If r(X) < n− 2, then X is independent in M ′ and thus β(X) = 1. Suppose
r(X) = n − 2. Then in M ′, β(X) 6 n+k−2

n−2 . If equality holds, then for Y = X + x we

have in M that β(Y ) = n+k−1
n−1 > n+k

n
= γ(M), contradicting our assumptions. Thus

in M ′, β(X) 6 n+k−3
n−2 . Since k < n, it follows that n+k−3

n−2 6 n+k−1
n−1 = β(E(M ′)). Thus

γ(M ′) = β(E(M ′)).

Proposition 15. Let M be a paving matroid where |E(M)| < 2r(M) and γ(M) =
β(E(M)). Then M is cyclically orderable.

Proof. By induction on r(M). Let M be a paving matroid where |E(M)| < 2r(M) and
γ(M) = β(E(M)). Let n = r(M) and let k = E(M) − n. We shall assume that the
proposition is true for any matroid M ′ where r(M ′) < n and |E(M ′)| < 2r(M ′). Let
x ∈ E(M) and let M ′ = M/x. By Observation 14, M ′ is a paving matroid where γ(M ′) =
β(E(M ′)). We have r(M ′) = n − 1 and |E(M ′)| = n + k − 1. If k < n − 1, then
|E(M ′)| < 2r(M ′), and it follows by our assumption that M ′ is cyclically orderable. On
the other hand, if k = n − 1, then |E(M ′)| = 2r(M ′), and as before, it follows by the
results in [1] on split matroids that M ′ is cyclically orderable. In either case, we see that
M ′ is cyclically orderable. Let e1s1s2 · · · ske2 · · · en−1 be a cyclic ordering of the elements
of M ′. Now let e1s1s2 · · · sksk+1e2 · · · en−1 be an ordering of the elements of M where
sk+1 = x. We observe that any n consecutive elements containing s1, s2, · · · , sk+1 in this
ordering is a basis of M . To finish the proof, we need only prove the following claim.

Claim 16. There exists a permutation π of [k + 1] such that
e1sπ(1)sπ(2) · · · sπ(k+1)e2 · · · en−1 is a cyclic ordering for M .

Assume to the contrary that for all permutations π of [k + 1],
e1sπ(1)sπ(2) · · · sπ(k+1)e2 · · · en−1 is not a cyclic ordering of M. Let S = {s1, . . . , sk+1}.
We shall define a pair (H1,H2), where for i = 1, 2, Hi ⊆ 2S. Let x1 = e1, x2 =
en−1, . . . , xn−1 = e2, and let y1 = e2, y2 = e3, . . . , yn−1 = e1. For i = 1, . . . , n − 1, let
Xi = {x1, . . . , xi} and let Yi = {y1, . . . , yi}. Let X0 = Y0 = ∅.
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Let π be a permutation of [k+1]. By assumption, e1sπ(1)sπ(2) · · · sπ(k+1)e2 · · · en−1 is not
a cyclic ordering for M. Thus there exists i > n−k such that either Xi∪{sπ(1), . . . , sπ(n−i)}
or Yi∪{sπ(k+2+i−n), . . . , sπ(k+1)} is an n-circuit. Let C1 be the set of all n-circuits C where
for some i ∈ [n− 1], Xi ⊂ C ⊂ Xi ∪ S, and let C2 be the set of all n-circuits C where for
some i ∈ [n− 1], Yi ⊂ C ⊆ Yi ∪ S. For i = 1, 2, let Hi = {C ∩ S

∣∣ C ∈ Ci}.
(A) (H1,H2) is an S-pair which is order-consistent.

Proof. It is clear that (H1,H2) is order-consistent and as in the proof of Proposition 13 in
[6], conditions (S1) and (S2) for an S-pair are seen to hold. If for some i,

(
S
1

)
⊆ Hi, then

for all j ∈ [k + 1], sj ∈ cl({e1, . . . , en−1}), implying that r(M) 6 n − 1, a contradiction.
Thus for all i = 1, 2,

(
S
1

)
⊆ Hi. Since any n consecutive elements containing s1, s2, · · · , sk+1

is a basis, it follows that for i = 1, 2, S 6∈ Hi. Thus (H1,H2) satisfies condition (S3) for
an S-pair. It remains to show that (H1,H2) satisfies (S4). Suppose that it does not.
Then there exists S ′ ∈

(
S
k

)
and positive integers a, b where a + b = k + 1 and

(
S′

a

)
⊆ H1

and
(
S′

b

)
⊆ H2. For convenience, we may assume that S ′ = S − sk+1, as the ensuing

argument is seen to apply to all such subsets S ′. If a = 1, then S ′ ⊆ cl(Xn−1), in which
case β(cl(Xn−1)) = n+k−1

n−1 > n+k
n

= γ(M), a contradiction. Thus a > 1, and similarly,

b > 1. Let A = Xn−a ∪ {s1, . . . , sa−1} and let Ã = cl(A). Since
(
S′

a

)
⊆ H1, it follows that

for all T ∈
(
S′

a

)
, Xn−a ∪ T is a circuit. Thus S ′ ⊆ Ã. We shall prove that Xn−1 ⊆ Ã. For

all n− b > i > j > 0, let Yi,j = Yi − Yj. For j = 0, . . . , a− 2, let Zj = Yn−b,j.

(A.1) For j = 0, . . . , a− 2 and for all T ∈
(
S′

b+j

)
, Zj + T is an n-circuit.

Proof. It is true for j = 0. Suppose that j > 0 and for all T ∈
(

S′

b+j−1

)
, Zj−1 + T is an

n-circuit. Let T ∈
(
S′

b+j

)
. Let T1 and T2 be (b + j − 1)-subsets where T = T1 ∪ T2. By

assumption Ci = Zj−1 ∪ Ti, i = 1, 2 are n-circuits. Observing that |C1 ∪ C2| = n+ 1 and
yj ∈ C1 ∩ C2, it follows by the circuit elimination axiom, that (C1 ∪ C2)− yj = Zj ∪ T is
an n-circuit. The assertion now follows by induction.

We observe that Yn−b,a−1 ⊆ Xn−a and xn−a+1 = ya−1 and we see that Za−2 −Xn−a =
Yn−b,a−2 −Xn−a = {ya−1}.

(A.2) Ya−1 ⊆ Ã.

Proof. We shall argue inductively to show that for all j ∈ [a − 1], yj ∈ Ã. By (A.1), for

all T ∈
(

S′

b+(a−2)

)
, Za−2 + T is an n-circuit. Furthermore, since S ′ ∪Xn−a ⊂ Ã, it follows

that ya−1 ∈ Ã. Assume that for some 1 < j 6 a − 1, {yj, . . . , ya−1} ⊆ Ã. We have that

Zj−2 −Xn−a = {yj−1, . . . , ya−1}. By (A.1), we have that for all T ∈
(

S′

b+j−2

)
, Zj−2 + T is

an n-circuit. Since {yj, . . . , ya−1} ⊆ Ã, it now follows that yj−1 ∈ Ã, The assertion now
follows by induction.
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By (A.2), we have that Ya−1 = Xn−1 − Xn−a ⊆ Ã. Thus Xn−1 ⊂ Ã. However, we
now see that β(Ã) = n+k−1

n−1 > n+k
n

= γ(M), yielding a contradiction. It follows that (S4)
holds for (H1,H2).

By Theorem 11 in [6], there exists (A1, A2) ∈
(
k
H1

)
×
(
k
H2

)
, A1 6= A2, and {B1, B2} ⊂(

S
k−1

)
where for i = 1, 2, Bi ∩ Ai = B1 ∩ B2 ∈

(
A1∩A2

k−2

)
and

(
Bi

1

)
⊂ Hi. Since for i = 1, 2,(

Bi

1

)
⊂ Hi, it follows that for all sj ∈ B1 ∪B2, Xn−1 + sj is an n-circuit. Thus B1 ∪B2 ⊂

cl(Xn−1). However, since |B1 ∪ B2| = k, it follows that β(cl(Xn−1)) = n+k−1
n−1 > γ(M),

yielding a contradiction. This completes the proof of the claim.
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