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Abstract

We provide a construction for the kromatic symmetric function XG of a graph
introduced by Crew, Pechenik, and Spirkl using combinatorial (linearly compact)
Hopf algebras. As an application, we show that XG has a positive expansion into
multifundamental quasisymmetric functions. We also study two related quasisym-
metric q-analogues of XG, which are K-theoretic generalizations of the quasisym-
metric chromatic function of Shareshian and Wachs. We classify exactly when one
of these analogues is symmetric. For the other, we derive a positive expansion into
symmetric Grothendieck functions when G is the incomparability graph of a natural
unit interval order.

Mathematics Subject Classifications: 05C15, 05E05, 16T30

1 Introduction

The purpose of this note is to re-examine the algebraic origins of the kromatic symmetric
function of a graph that was recently introduced by Crew, Pechenik, and Spirkl [4], and
to study two quasisymmetric analogues of this power series.

Let N = {0, 1, 2, . . . }, P = {1, 2, 3, . . . }, and [n] = {i ∈ P : i 6 n} for n ∈ N, so that
[0] = ∅. All graphs are undirected by default, and are assumed to be simple with a finite
set of vertices. We do not distinguish between isomorphic graphs.

If G is any graph then we write V (G) for its set of vertices and E(G) for its set of edges.
A proper coloring of G is a map κ : V (G) → P with κ(u) 6= κ(v) for all {u, v} ∈ E(G).
For maps κ : V → P let xκ =

∏
i∈V xκ(i) where x1, x2, . . . are commuting variables.

Definition 1 (Stanley [20]). The chromatic symmetric function of G is the power series
XG :=

∑
κ x

κ where the sum is over all proper colorings κ of G.

Example 2. If G = Kn is the complete graph with V (G) = [n] then XG is n! times the
elementary symmetric function en :=

∑
16i1<i2<···<in xi1xi2 · · · xin .
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A poset is (3+1)-free if it does not contain a 3-element chain a < b < c whose elements
are all incomparable to some fourth element d. The incomparability graph of a poset is
the graph whose vertices are the set of elements in the poset and whose edges are the
unordered pairs {x, y} with x 66 y and y 66 x. The Stanley–Stembridge conjecture [21]
asserts that if G is the incomparability graph of a (3+1)-free poset then XG has a positive
expansion into elementary symmetric functions. This conjecture has several refinements
and generalizations [9, 18], and has been resolved in a number of interesting special cases
[5, 10, 11]. Hikita [12] has recently announced a general proof of the conjecture.

Let G be an ordered graph, that is, a graph with a total order < on its vertex set
V (G). An ascent (respectively, descent) of a map κ : V (G)→ P is an edge {u, v} ∈ E(G)
with u < v and κ(u) < κ(v) (respectively, κ(u) > κ(v)). Let ascG(κ) and desG(κ) be the
number of ascents and descents of κ. Shareshian and Wachs [18] introduced the following
q-analogue of XG:

Definition 3 ([18]). The chromatic quasisymmetric function of an ordered graph G is
XG(q) =

∑
κ q

ascG(κ)xκ where the sum is over all proper colorings κ of G.

Example 4. One hasXKn(q) = [n]q!en for the q-numbers [i]q := 1−qi
1−q and [n]q! :=

∏n
i=1[i]q.

Let Set(P) be the set of finite nonempty subsets of positive integers. For a map
κ : V → Set(P) define xκ =

∏
i∈V
∏

j∈κ(i) xj. A proper set-valued coloring is a map

κ : V (G)→ Set(P) with κ(u)∩κ(v) = ∅ for all {u, v} ∈ E(G). Using set-valued colorings
in Definition 1 leads to a “K-theoretic” analogue of XG:

Definition 5 (Crew, Pechenik, and Spirkl [4]). The kromatic symmetric function of a
graph G is the power series XG =

∑
κ x

κ ∈ ZJx1, x2, . . .K where the sum is over all proper
set-valued colorings of G.

Example 6. If G = Kn then XG = n!
∑∞

r=n

{
r
n

}
er where

{
r
n

}
is the Stirling number of

the second kind.

Remark 7. Given α : V → P, let Clanα(V ) be the set of pairs (v, i) with v ∈ V and
i ∈ [α(v)]. If G is a graph and α : V (G) → P is any map, then the α-clan graph
Clanα(G) has vertex set Clanα(V (G)) and edges {(v, i), (w, j)} whenever {v, w} ∈ E(G)
or both v = w and i 6= j. As observed in [4], one has XG =

∑
α:V (G)→P

1
α!
XClanα(G)

where α! :=
∏

v α(v)!. Many properties of XG extend to XG via this identity, but some
interesting features of XG cannot be explained by this formula alone.

Our main results in Section 3 provide a natural construction for XG using the theory
of combinatorial Hopf algebras . This approach requires some care, as XG does not have
bounded degree. We explain things precisely in terms of linearly compact Hopf algebras
after reviewing a similar, simpler construction of XG in Section 2, following [1].

As an application of our approach, we show that XG has a positive expansion into
multifundamental quasisymmetric functions . We also study two related q-analogues of
XG, which give K-theoretic generalizations of XG(q). We classify exactly when one of
these analogues is symmetric. For the other, we extend a theorem of Crew, Pechenik,
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and Spirkl [4] (which also generalizes a theorem of Shareshian and Wachs [18]) to derive a
positive expansion into symmetric Grothendieck functions when G is the incomparability
graph of a natural unit interval order. These results are contained in Section 4.
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2 Background

Let K be an integral domain; in most results, one can assume this is Z.

2.1 Hopf algebras

Write ⊗ = ⊗K for the tensor product over K. A K-algebra is a K-module A with K-linear
product ∇ : A⊗ A→ A and unit ι : K→ A maps. Dually, a K-coalgebra is a K-module
A with K-linear coproduct ∆ : A→ A⊗A and counit ε : A→ K maps. The (co)product
and (co)unit maps must satisfy several associativity axioms; see [8, §1].

A K-module A that is both a K-algebra and a K-coalgebra is a K-bialgebra if the
coproduct and counit maps are algebra morphisms. A bialgebra with a direct sum de-
composition A =

⊕
n∈NAn is graded if its (co)product and (co)unit are graded maps. A

bialgebra A =
⊕

n∈NA0 is connected if there is an isomorphism A0
∼= K and the unit

and counit are obtained by composing this isomorphism with the usual inclusion and
projection maps A0 ↪→ A and A� A0.

Let End(A) denote the set of K-linear maps A → A. This set is a K-algebra for the
product f ∗ g := ∇ ◦ (f ⊗ g) ◦∆. The unit of this convolution algebra is the composition
ι ◦ ε of the unit and counit of A. A bialgebra A is a Hopf algebra if the identity map
id : A → A has a two-sided inverse S : A → A in End(A). When it exists, we call S the
antipode of A.

We mention a few common examples of Hopf algebras.

Example 8. Let Graphsn be the free K-module spanned by all isomorphism classes of
undirected graphs with n vertices, and set Graphs =

⊕
n∈N Graphsn. One views Graphs

as a connected, graded Hopf algebra with product ∇(G ⊗ H) = G t H and coproduct
∆(G) =

∑
StT=V (G) G|S ⊗ G|T for graphs G and H, where t means disjoint union and

G|S is the induced subgraph of G on S.

A lower set in a directed acyclic graph D = (V,E) is a set S ⊆ V such that if a
directed path connects v ∈ V to s ∈ S then v ∈ S. An upper set in D is a set S ⊆ V
such that if a directed path connects s ∈ S to v ∈ V then v ∈ S. Finally, an antichain in
D is a set of vertices S such that no directed path connects any s ∈ S to any other t ∈ S.
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Example 9. Let DAGsn for n ∈ N be the free K-module spanned by all isomorphism
classes of directed acyclic graphs with n vertices, and set DAGs =

⊕
n∈N DAGsn. One

views DAGs as a connected, graded Hopf algebra with product ∇(C ⊗D) = C tD and
coproduct ∆(D) =

∑
D|S ⊗D|T for directed acyclic graphs graphs C and D, where the

sum is over all disjoint unions S t T = V (D) with S a lower set and T an upper set.

A labeled poset is a pair (D, γ) consisting of a directed acyclic graph D and an injective
map γ : V (D) → Z. We consider (D, γ) = (D′, γ′) if there is an isomorphism D

∼−→ D′,
written v 7→ v′, such that γ(u)− γ(v) and γ′(u′)− γ′(v′) have the same sign for all edges
u→ v ∈ E(D).

If (D1, γ1) and (D2, γ2) are labeled posets then let γ1 t γ2 : V (D1 tD2) → Z be any
injective map such that (γ1 t γ2)(u)− (γ1 t γ2)(v) has the same sign as γi(u)− γi(v) for
all i ∈ {1, 2} and u, v ∈ V (Di).

Example 10. Let LPosetsn be the free K-module spanned by all labeled poset with n
vertices, and set LPosets =

⊕
n∈N LPosetsn. This is a connected, graded Hopf algebra

with product ∇((D1, γ1) ⊗ (D2, γ2)) = (D1 t D2, γ1 t γ2) and coproduct ∆((D, γ)) =∑
(D|S, γ|S)⊗ (D|T , γ|T ) where the sum is over all disjoint decompositions S tT = V (D)

with S a lower set and T an upper set.

A (strict) composition α = (α1, α2, . . . , αl) is a finite sequence of positive integers,
called its parts . We say that α is a composition of |α| :=

∑
i αi ∈ N.

Example 11. Fix a composition α and let x1, x2, . . . be a countable sequence of com-
muting variables. The monomial quasisymmetric function of α is the power series Mα =∑

16i1<i2<···<il x
α1
i1
xα2
i2
· · ·xαlil . Let QSym = K-span{Mα : α any composition} be the ring of

quasisymmetric functions of bounded degree. This ring is a graded connected Hopf alge-
bras for the coproduct ∆(Mα) =

∑
α=α′α′′Mα′ ⊗Mα′′ where α′α′′ denotes concatenation

of compositions, and the counit that acts on power series by setting x1 = x2 = · · · = 0.

A partition is a composition sorted into decreasing order. We sometimes write λ =
1m12m2 · · · to denote the partition with exactly mi parts equal to i. We also let `(λ) =
m1 +m2 + . . . denote the number of parts of λ.

Example 12. The elementary symmetric function of a partition λ is the product eλ :=
eλ1eλ2 · · · where en := M1n . These power series are a basis for the Hopf subalgebra
Sym ⊂ QSym of symmetric functions of bounded degree.

2.2 Combinatorial Hopf algebras

Following [1], a combinatorial Hopf algebra (H, ζ) is a graded, connected Hopf algebra H
of finite graded dimension with an algebra homomorphism ζ : H → K.

Example 13. The pair (QSym, ζQ) is an example of a combinatorial Hopf algebra, where
ζQ : QSym→ K is the map ζQ(f) = f(1, 0, 0, . . . ), which sends M(n) 7→ 1 and Mα 7→ 0 for
all compositions α with at least two parts.
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For a graph G define ζGraphs(G) = 0|E(G)| where 00 := 1. For a directed acyclic graph D
likewise set ζDAGs(D) = 0|E(D)| for each directed acyclic graph D. These formulas extend
to linear maps Graphs → K and DAGs → K. Finally let ζLPosets : LPosets → K be the
linear map with ζLPosets((D, γ)) = 1 if γ(u) < γ(v) for all edges u → v ∈ E(D) and with
ζLPosets((D, γ)) = 0 otherwise.

Example 14. The pairs (Graphs, ζGraphs), (DAGs, ζDAGs), and (LPosets, ζLPosets) are all com-
binatorial Hopf algebras.

A morphism of combinatorial Hopf algebras Ψ : (H, ζ) → (H ′, ζ ′) is a graded Hopf
algebra morphism Ψ : H → H ′ with ζ = ζ ′ ◦ Ψ. Results in [1] show that there exists
a unique morphism (with an explicit formula) from any combinatorial Hopf algebra to
(QSym, ζQ). Moreover, the image of this morphism is contained in the Hopf subalgebra
Sym ⊂ QSym if H is cocommutative. Of greatest relevance here [1, Ex. 4.5], the unique
morphism (Graphs, ζGraphs)→ (QSym, ζQ) assigns each graph G to its chromatic symmetric
function XG.

We might as well also describe the unique morphisms of combinatorial Hopf alge-
bras from (DAGs, ζDAGs) and (LPosets, ζLPosets) to (QSym, ζQ). This requires a little more
notation. A P -partition [19] of a labeled poset P = (D, γ) is a map κ : V (D)→ P with

(a) κ(u) 6 κ(v) whenever u→ v ∈ E(D) and γ(u) < γ(v), and

(b) κ(u) < κ(v) whenever u→ v ∈ E(D) and γ(u) > γ(v).

Define Γ(D, γ) =
∑

κ x
κ where the sum is over all P -partitions for P = (D, γ).

Given directed acyclic graph D, let γdecr denote an arbitrary decreasing labeling of D,
meaning a injective map γdecr : V (D)→ Z with

γdecr(x) > γdecr(y) whenever x→ y ∈ E(D). (2.1)

Then define Γ(D) := Γ(D, γdecr) ∈ NJx1, x2, . . .K.
Finally, for any graph G, let AO(G) be its set of acyclic orientations , that is, the

directed acyclic graphs that recover G when we ignore edge orientations. The following
is well-known [1] and can be seen as a special case of Theorem 37.

Proposition 15. There is a commutative diagram of morphisms

(Graphs, ζGraphs) (DAGs, ζDAGs) (LPosets, ζLPosets)

(QSym, ζQ)

in which the horizontal maps send G 7→
∑

D∈AO(G) D and D 7→ (D, γdecr), and the QSym-

valued maps send G 7→ XG and D 7→ Γ(D) and (D, γ) 7→ Γ(D, γ).

This proposition recovers the well-known identity XG =
∑

D∈AO(G) Γ(D).

the electronic journal of combinatorics 32(1) (2025), #P1.11 5



3 K-theoretic generalizations

We now explain how the results in the previous can be extended “K-theoretically” to
construct interesting quasisymmetric functions of unbounded degree, including XG. This
requires a brief discussion of linearly compact modules .

3.1 Linearly compact modules

Let A and B be K-modules with a K-bilinear form 〈·, ·〉 : A× B → K. Assume A is free
and 〈·, ·〉 is nondegenerate in the sense that b 7→ 〈·, b〉 is a bijection B → HomK(A,K).

Fix a basis {ai}i∈I for A. For each i ∈ I, there exists a unique bi ∈ B with 〈ai, bj〉 = δij
for all i, j ∈ I, and we identify b ∈ B with the formal linear combination

∑
i∈I〈ai, b〉bi.

We call {bi}i∈I a pseudobasis for B.
We give K the discrete topology. Then the linearly compact topology [6, §I.2] on B is

the coarsest topology in which the maps 〈ai, ·〉 : B → K are all continuous. This topology
depends on 〈·, ·〉 but not on the choice of basis for A. For a basis of open sets in the
linearly compact topology, see [17, Eq. (3.1)].

Definition 16. A linearly compact (or LC for short) K-module is a K-module B with
a nondegenerate bilinear form A× B → K for some free K-module A, given the linearly
compact topology; in this case we say that B is the dual of A. Morphisms between such
modules are continuous K-linear maps.

Let B and B′ be linearly compact K-modules dual to the free K-modules A and A′.
Let 〈·, ·〉 denote both of the associated forms. Every linear map φ : A′ → A has a unique
adjoint ψ : B → B′ such that 〈φ(a), b〉 = 〈a, ψ(b)〉. A linear map B → B′ is continuous
when it is the adjoint of a linear map A′ → A.

Definition 17. Define B ⊗ B′ := HomK(A⊗ A′,K) and give this the LC-topology from
the pairing (A⊗ A′)× HomK(A⊗ A′,K)→ K.

If {bi}i∈I and {b′j}j∈J are pseudobases for B and B′, then we can realize the completed
tensor product B⊗B′ concretely as the linearly compact K-module with the set of tensors
{bi ⊗ b′j}(i,j)∈I×J as a pseudobasis.

Example 18. Let A = K[x] and B = KJxK. Define 〈·, ·〉 : A× B → K to be the nonde-
generate K-bilinear form

〈∑
n>0 anx

n,
∑

n>0 bnx
n
〉

:=
∑

n>0 anbn. Then the set {xn}n>0 is
a basis for A and a pseudobasis for B, and we have

KJxK⊗KJyK 6= KJxK⊗KJyK ∼= KJx, yK.

Suppose ∇ : B ⊗ B → B and ι : B → K are continuous linear maps which are the
adjoints of linear maps ε : K → A and ∆ : A → A ⊗ A. We say that (B,∇, ι) is an LC-
algebra if (A,∆, ε) is a K-coalgebra. Similarly, we say that ∆ : B → B⊗B and ε : B → K
make B into an LC-coalgebra if ∆ and ε are the adjoints of the product and unit maps of
a K-algebra on A. We define LC-bialgebras and LC-Hopf algebras analogously; see [17].
If B is an LC-Hopf algebra then its antipode is the adjoint of the antipode of A.
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3.2 Combinatorial LC-Hopf algebras

Following [17], define a combinatorial LC-Hopf algebra to be a pair (H, ζ) where

(a) H is an LC-Hopf algebra;

(b) ζ : H → KJtK is a homomorphism of linearly compact algebras;

(c) the counit of H coincides with ζ(·)|t7→0.

A morphism of combinatorial LC-Hopf algebras Ψ : (H, ζ)→ (H ′, ζ ′) is a LC-Hopf algebra
morphism Ψ : H → H ′ with ζ = ζ ′ ◦Ψ.

Example 19. Let mQSym be the set of all quasisymmetric power series in KJx1, x2, . . . , K
of unbounded degree. The (co)product, (co)unit, and antipode QSym all extend to con-
tinuous K-linear maps that make mQSym into an LC-Hopf algebra, with {Mα} as a
pseudobasis. Then (mQSym, ζQ) is a combinatorial LC-Hopf algebra when ζQ is the map

ζQ : f 7→ f(t, 0, 0, . . . ), which sends

ζQ : Mα 7→

{
t|α| if α ∈ {∅, (1), (2), (3), . . . }
0 otherwise.

The preceding example is an instance of a general construction. If A is a free K-
module with basis S, then its completion A is the set of arbitrary K-linear combinations
of S. We view A as a linearly compact K-module with S as a pseudobasis, relative to the
nondegenerate bilinear form A× A→ K making S orthonormal.

Suppose H =
⊕

n∈NHn is a connected Hopf algebra that is graded as an algebra with
finite graded dimension, and filtered as a coalgebra in the sense that if h ∈ Hn then
∆(h) ∈

⊕
i+j>nHi⊗Hj. If ζ : H → K is any linear map, then we write ζ : H → KJtK for

the unique continuous linear map satisfying

ζ(h) := ζ(h)tn for n ∈ N and h ∈ Hn. (3.1)

There is a unique way of extending the (co)unit and (co)product of H to continuous linear
maps on its completion H, for which the following holds.

Lemma 20. The structures just given make H into an LC-Hopf algebra. If (H, ζ) is
a combinatorial Hopf algebra (so the coproduct is graded rather than just filtered), then
(H, ζ) is a combinatorial LC-Hopf algebra, and the unique morphism (H, ζ)→ (QSym, ζQ)
extends to a morphism (H, ζ)→ (mQSym, ζQ).

Proof. In this setup, the graded dual H∗ =
⊕

n∈N HomK(Hn,K) is a well-defined Hopf
algebra, which is graded as a coalgebra with finite graded dimension, and filtered as an
algebra in the sense that the product sends

HomK(Hi,K)⊗ HomK(Hj,K)→
⊕

n6i+j HomK(Hn,K).
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Our definition of H is an LC-Hopf algebra because it is the (ungraded) dual of H∗ in the
sense of Definition 16, via the natural bilinear form H∗ ×H → K.

Now suppose (H, ζ) is a combinatorial Hopf algebra. Since ζ is an algebra homomor-
phism, the map ζ is also an algebra homomorphism. As H is connected, we may assume
that H0 = K and that the counit map H → H0 = K is the natural projection. Then
the algebra homomorphism ζ : H → K must restrict to the identity map on H0 = K, so
the counit ε of H evaluated at a generic element h =

∑
n∈N hn ∈ H with hn ∈ Hn has

the formula ε(h) = h0 = ζ(h0) = ζ(h)|t=0. We conclude that (H, ζ) is a combinatorial
LC-Hopf algebra.

The morphism (H, ζ) → (QSym, ζQ) is a graded linear map, so it extends to a mor-
phism of LC-Hopf algebras Ψ : H → mQSym. This map satisfies

ζQ(Ψ(h)) =
∑

n∈N ζQ(Ψ(hn)) =
∑

n∈N ζQ(Ψ(hn))tn =
∑

n∈N ζ(hn)tn = ζ(h)

for any h =
∑

n∈N hn ∈ H with hn ∈ Hn, so we have ζQ ◦Ψ = ζ.

The pair (mQSym, ζQ) is a final object in the category of combinatorial LC-Hopf alge-

bras, meaning there is a unique morphism (H, ζ) → (mQSym, ζQ) for any combinatorial
LC-Hopf algebra. Specifically, if H has coproduct ∆, then define ∆(0) = idH and

∆(k) = (∆(k−1) ⊗ id) ◦∆ = (id⊗∆(k−1)) ◦∆ : H → H⊗(k+1) for k ∈ P.

For each nonempty composition α = (α1, α2, . . . , αk), let ζα : H → K be the map sending
h ∈ H to the coefficient of tα1 ⊗ tα2 ⊗ · · · ⊗ tαk in ζ⊗k ◦∆(k−1)(h) ∈ KJtK. When α = ∅ is
empty let ζ∅ := ζ(·)|t7→0 be the counit of H.

Theorem 21 ([16, Thm. 2.8]). If (H, ζ) is a combinatorial LC-Hopf algebra then the map
ΨH,ζ : h 7→

∑
α ζα(h)Mα is the unique morphism (H, ζ)→ (mQSym, ζQ).

Remark 22. Let mSym be the LC-Hopf subalgebra of symmetric functions in mQSym.
When H cocommutative, it is apparent from the formula given above that the morphism
ΨH,ζ has its image in mSym.

3.3 Graphs and weighted graphs

For each graph G define

N(G) :=
∑

S∪T=V (G) G|S ⊗G|T . (3.2)

This differs from our other coproduct in allowing vertex decompositions that are not
disjoint. Use the continuous linear extension of (3.2) to replace the natural coproduct
in Graphs and denote the resulting modified structure as mGraphs. Also let ζGraphs :
mGraphs→ KJtK be the continuous linear map with

ζGraphs(G) := 0|E(G)|t|G|

so that ζGraphs extends ζGraphs via the formula (3.1).

The kromatic symmetric function XG emerges from these constructions via the theory
in the previous section, in the following sense:
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Proposition 23. The pair (mGraphs, ζGraphs) is a combinatorial LC-Hopf algebra, and the

unique morphism (mGraphs, ζGraphs)→ (mQSym, ζQ) assigns each graph G to its kromatic

symmetric function XG.

We skip the proof of this result and instead derive a slight generalization. A weighted
graph is a pair (G,ω) consisting of a (finite, undirected) graph G and a map ω : V (G)→ P
assigned positive integer weights to all vertices. We do not distinguish between two
weighted graphs (G1, ω1) and (G2, ω2) if there is a graph isomorphism φ : G1 → G2 with
ω1 = ω2 ◦ φ.

Definition 24 ([4]). The kromatic symmetric function of a weighted graph (G,ω) is

X(G,ω) =
∑

κ

∏
v∈V (G)

(∏
i∈κ(v) xi

)ω(v)

∈ mSym where the sum is over all proper set-valued

colorings κ : V (G)→ Set(P).

Recall from Example 6 that
{
r
n

}
is the Stirling number of the second kind. For a

partition ν, write mν =
∑

sort(α)=ν x
α ∈ Sym for the usual monomial symmetric function.

Example 25. Crew, Pechenik, and Spirkl [4, §3.2] define the K-theoretic augmented
monomial symmetric function of a partition λ to be m̃λ := X(G,ω) for the complete graph
G = K`(λ) with weight map ω : i 7→ λi. Let ri(λ) be the number of parts of λ equal to i.

One has m̃∅ = 1, and if λ is nonempty then

m̃λ =
∑

ν

(∏
i∈P
{
ri(ν)
ri(λ)

}
· ri(λ)!

)
mν

where the sum is over all integer partitions ν that have the same set of parts {ν1, ν2, . . . } =
{λ1, λ2, . . . } as λ and that satisfy ri(ν) > ri(λ) for all i ∈ P.

It is natural to consider this generalization of the kromatic symmetric function since
one can expand XG into a sum of m̃λ’s via a deletion-contraction relation [4, §3.3]. This
is perhaps the most efficient method available to actually compute XG.

We can again interpret X(G,ω) via combinatorial LC-Hopf algebras. Let mWGraphs be
the linearly compact K-module with a pseudobasis provided by all weighted graphs. The
LC-Hopf algebra structure on mGraphs extends to mWGraphs in the following way. The
product is again given by disjoint union, the unit element is the unique weighted graph
with no vertices, and the counit sends (G,ω) 7→ 0|G|. Extend the coproduct N of mGraphs
by setting

N((G,ω)) :=
∑

S∪T=V (G)(G|S, ω|S)⊗ (G|T , ω|T ) (3.3)

for each weighted graph (G,ω), and let

ζWGraphs((G,ω)) := 0|E(G)|∏
v∈V (G) t

ω(v). (3.4)

This extends to a continuous algebra homomorphism mWGraphs→ KJtK. It is important
to require our vertex weightings ω : V (G)→ P to take positive values since if we allowed
ω : V (G) → N then ζWGraphs would not be well-defined when applied to infinite linear
combinations of weighted graphs.
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Proposition 26. The pair (mWGraphs, ζWGraphs) is a combinatorial LC-Hopf algebra, and

the unique morphism (mWGraphs, ζWGraphs) → (mQSym, ζQ) assigns each weighted graph

(G,ω) to its kromatic symmetric function X(G,ω).

We recover Proposition 23 by identifying mGraphs with the LC-Hopf subalgebra with
a pseudobasis given by the weighted graphs (G,ω) with ω : G→ {1}.

Proof. Restricting the (co)unit and (co)product of mWGraphs to the K-span of all weighted
graphs gives a Hopf algebra satisfying the conditions in Lemma 20: the relevant axioms
are straightforward to check.

For example, the product is clearly associative and gives a graded algebra structure
of finite graded dimension when we set the degree of (G,ω) to be

∑
v∈V (G) ω(v). For this

grading, the coproduct similarly defines a filtered coalgebra.
The compatibility axiom for the product and coproduct holds since if τ : M ⊗ N →

N ⊗M is the usual twist morphism for K-modules, then both

N ◦ ∇ and (∇⊗∇) ◦ (1⊗ τ ⊗ 1) ◦ (N⊗ N)

applied to the tensor (G1, ω1)⊗ (G2, ω2) of two weighted graphs expand as∑
S1∪T1=V (G1)
S2∪T2=V (G2)

((G1|S1 , ω1|S1) t (G2|S2 , ω2|S2))⊗ ((G1|T1 , ω1|T1) t (G2|T2 , ω2|T2)) .

We conclude from Lemma 20 that mGraphs is an LC-Hopf algebra. The map ζWGraphs is a

continuous algebra homomorphism with ζWGraphs(·)|t7→0 equal to the counit of mWGraphs,

so (mWGraphs, ζWGraphs) is a combinatorial LC-Hopf algebra.

Let ζ = ζWGraphs and Ψ := ΨmWGraphs,ζWGraphs
as in Theorem 21. For a weighted graph

(G,ω) and a subset S ⊆ V (G), let |S|ω :=
∑

i∈S ω(i). Then

ζ⊗k ◦ N(k−1)((G,ω)) =
∑

t|S1|ω ⊗ t|S2|ω ⊗ · · · ⊗ t|Sk|ω

for each k ∈ K, where the sum is over all (not necessarily disjoint) decompositions S1 ∪
S2∪· · ·∪Sk = V (G) such that G|Si is a discrete graph for all i ∈ [k], so that E(G|Si) = ∅.
Therefore

Ψ((G,ω)) =
∑
k∈N

∑
S1∪S2∪···∪Sk=V (G)
E(G|Si )=∅ ∀i∈[k]

∑
16i1<i2<···<ik

x
|S1|ω
i1

x
|S2|ω
i2
· · ·x|Sk|ωik

.

The monomial in the innermost sum is exactly
∏

v∈V (G)

(∏
i∈κ(v) xi

)ω(v)

for the proper

set-valued coloring of G with κ(v) = {ij : j ∈ [k] with v ∈ Sj} for v ∈ V (G), and as the
parameters indexing the sums vary, the corresponding κ ranges over all proper set-valued
colorings of G. Thus Ψ((G,ω)) = X(G,ω).
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Recall that ri(λ) is the number of parts equal to i in a partition λ. If λ and ν are
partitions with ri(λ) 6 ri(ν) for all i then let ν 	 λ be the partition with ri(ν 	 λ) =
ri(ν)− ri(λ) for all i. Let ν ⊕ λ be the partition with ri(ν ⊕ λ) = ri(ν) + ri(λ) for all i.

Corollary 27. If ν is a partition then

∆(m̃ν) =
∑

λ,µ

(∏
i∈P
(

ri(ν)
ri(ν	λ), ri(ν	µ), ri((λ⊕µ)	ν)

))
m̃λ ⊗ m̃µ

where the sum is over all partitions λ and µ with

0 6 ri(λ) 6 ri(ν) and 0 6 ri(µ) 6 ri(ν) 6 ri(λ) + ri(µ) for all i ∈ P.

Proof. Proposition 26 implies that

∆(X(G,ω)) =
∑

S∪T=V (G) X(G|S ,ω|S) ⊗X(G|S ,ω|S) (3.5)

for all weighted graphs (G,ω). Applying this to Example 25 gives

∆(m̃ν) =
∑

S∪T=[`(ν)] m̃νS ⊗ m̃νT (3.6)

where if S = {i1 < i2 < . . . } then νS means the partition (νi1 > νi2 > . . . ). It is
a straightforward exercise to check that the number of not necessarily disjoint unions
S ∪ T = [`(ν)] that give νS = λ and νT = µ is the product of multinomial coefficients∏

i∈P
(

ri(ν)
ri(ν	λ), ri(ν	µ), ri((λ⊕µ)	ν)

)
.

3.4 Set-valued P -partitions

If S, T ∈ Set(P) then write S ≺ T if max(S) < min(T ) and S � T if max(S) 6 min(T ).
For a labeled poset (D, γ) define

Γ(D, γ) =
∑
κ

xκ ∈ KJx1, x2, . . .K

where the sum is over all maps κ : V (D) → Set(P) that are set-valued P -partitions for
P = (D, γ) in the sense of [15, 16], meaning

(a) κ(u) � κ(v) whenever u→ v ∈ E(D) and γ(u) < γ(v), and

(b) κ(u) ≺ κ(v) whenever u→ v ∈ E(D) and γ(u) > γ(v).

Example 28. If D = (1 → 2 → 3 → · · · → n) is an n-element chain and S is the set
of i ∈ [n − 1] with γ(i) > γ(i + 1) then we define Ln,S := Γ(D, γ). Following [15], we
construct the multifundamental quasisymmetric function of a composition α as the power
series Lα := Ln,S where n = |α| and S = I(α) for

I(α) := {α1, α1 + α2, α1 + α2 + α3, . . . } \ {n}.

These elements form another pseudobasis for mQSym [15]. We say that a power series in
mQSym is multifundamental positive if it can be expressed as a possibly infinite sum of
(not necessarily distinct) Lα’s.
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For a directed acyclic graph D, let Γ(D) = Γ(D, γdecr) =
∑

κ x
κ where the sum is over

all maps κ : V (D)→ Set(P) with κ(u) ≺ κ(v) if u→ v ∈ E(D).

Example 29. If D = (1 → 2 → 3 → · · · → n) is an n-element path then define
en := Γ(D) =

∑∞
k=n

(
k−1
n−1

)
ek. For each partition λ let eλ := eλ1eλ2 · · · . These functions

are a pseudobasis for mSym.

Recall from Example 6 that XKn = n!
∑∞

r=n

{
r
n

}
er

Proposition 30. If n ∈ P then XKn = n!
∑∞

r=n

{
r−1
n−1

}
er.

Proof. Substituting the e-expansion of en from Example 29 gives

∞∑
s=n

{
s−1
n−1

}
es =

∞∑
s=n

∞∑
r=s

{
s−1
n−1

}(
r−1
s−1

)
er =

∞∑
r=n

(
r−1∑

s=n−1

{
s

n−1

}(
r−1
s

))
er.

One has
∑r−1

s=n−1

{
s

n−1

}(
r−1
s

)
=
∑

S⊆[r−1]

{ |S|
n−1

}
=
{
r
n

}
since to form an n-block set par-

tition of [r], one can first choose any subset of [r − 1] to form the complement of
the block containing r, and then divide this set into n − 1 blocks. Thus, we have
n!
∑∞

s=n

{
s−1
n−1

}
es = n!

∑∞
r=n

{
r
n

}
er = XKn .

A multilinear extension of a directed acyclic graph D with n vertices is a sequence
w = (w1, w2, . . . , wN) with V (D) = {w1, w2, . . . , wN} such that i < j whenever wi → wj ∈
E(D), and wi 6= wi+1 for all i ∈ [N − 1]. If M(D) is the set of all multilinear extensions
of D and γ : V (D)→ Z is injective, then

Γ(D, γ) =
∑

w∈M(D)

L`(w),Des(w,γ) (3.7)

where Des(w, γ) := {i ∈ [`(w)− 1] : γ(wi) > γ(wi+1)} for w ∈M(D) [15].

3.5 Acyclic multi-orientations

Let G be a graph. An acyclic multi-orientation of G is an acyclic orientation of the
α-clan graph Clanα(G) from Remark 7 for some α : V (G) → P, such that for each
v ∈ V (G) and each i ∈ [α(v) − 1] there are at least two directed paths from the vertex
(v, i+ 1) ∈ V (Clanα(G)) to the vertex (v, i) ∈ V (Clanα(G)).

Departing from our usual convention, we consider two acyclic multi-orientations to be
the same if and only if they have the same vertices and the same directed edges, rather
than if they are merely isomorphic. Let mAO(G) be the set of all acyclic multi-orientations
of G. We say that D ∈ mAO(G) has type α if D is an acyclic orientation of Clanα(G).

Proposition 31. Let D be an acyclic orientation of Clanα(G). Then D ∈ mAO(G) if
and only if for each v ∈ V (G) both of the following properties hold:

(a) If i, j ∈ [α(v)] have i > j then (v, i)→ (v, j) is a directed edge in D.
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(b) If i ∈ [α(v)−1] then there exists a directed path in D involving no edges of the form
(v, j)→ (v, k) from (v, i+ 1) to (v, i).

Proof. If D has property (a) then (v, i + 1) → (v, i) is a directed path in D, and if D
also has property (b) then there is a second directed path from (v, i + 1) to (v, i), so
D ∈ mAO(G).

Conversely, assume D ∈ mAO(G). Suppose i, j ∈ [α(v)] and i > j. Then D contains a
directed path from (v, i) to (v, j), so (v, j)→ (v, i) cannot be an edge in D as this would
create a cycle. As {(v, i), (v, j)} is an edge in Clanα(G), the edges of D must contain
(v, i)→ (v, j) instead.

Since D is acyclic, no directed path in D passing through the vertex (v, j) can ever
reach (v, k) for k > j. Thus, a directed path in D from (v, i+ 1) to (v, i) can only involve
an edge of the form (v, j)→ (v, k) if the path has length one and j = i+ 1 and k = i. As
D contains a second directed path from (v, i+1) to (v, i) in addition to this one, property
(b) must hold.

Example 32. If |E(G)| = 0 then mAO(G) = {G} and otherwise mAO(G) is infinite. If
G = K2 then mAO(G) has two (isomorphic but considered to be distinct) elements with
k vertices for each k > 2; see Figure 1.

v1

v2

v3

w1

w2

w3

v1

v2

v3

w1

w2

w3

v1

v2

v3

v4

w1

w2

w3

v1

v2

v3

w1

w2

w3

w4

Figure 1: The distinct acyclic multi-orientations with 6 and 7 vertices for the complete
graph with vertex set {v, w}. Here, we have written the vertices of these directed graphs
as vi and wi instead of (v, i) and (w, i) to save space.

A source in a directed graph is a vertex with no incoming edges. One can relate the
coefficients in the e-expansion of XG to the source counts of its acyclic multi-orientations,
generalizing a result of Stanley [20, Thm. 3.3].

Remark 33. For this type of statement to make sense, the relevant coefficients must be
uniquely defined integers, so we should assume that the integral domain K contains Z.
Since we need to divide by 2 in the next lemma, for the rest of this subsection we make
the slightly strongly assumption that K ⊇ Q.
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Define ϕ : mQSym→ KJtK to be the continuous linear map with

ϕ(Ln,S) =

{
t( t−1

2
)i if S = [n− 1] \ [i] for some 0 6 i < n

0 otherwise

for n ∈ P and S ⊆ [n− 1]. We also set ϕ(L0,∅) = 1. The next result generalizes the key
Claim in the proof of [20, Thm. 3.3], and follows by a similar argument.

Lemma 34. If D is a directed acyclic graph then ϕ(Γ(D)) = tm where m is the number
of source vertices in D.

Proof. Choose a decreasing labeling γdecr : V (D) → Z for D. Then by (3.7) we have
Γ(D) =

∑
w∈M(D) L`(w),Des(w,γdecr).

The only way to obtain a multilinear extension w = (w1, w2, . . . , wn) of D with
Des(w, γdecr) = [n − 1] \ [i] is as follows. Let wi+1 ∈ V (D) be the vertex maximizing
γdecr(wi+1); this element must be a source vertex. Then define w1, w2, . . . , wi to be any
i distinct sources vertices other than wi+1 listed in increasing order of their labels under
γdecr. Finally, choose a subset of {w1, w2, . . . , wi} and define wi+2, wi+3, . . . , wn to consist
of these vertices plus all elements of V (D) \ {w1, w2, . . . , wi+1} arranged in decreasing
order of their γdecr labels.

If D has m source vertices then there are
(
m−1
i

)
choices for (w1, w2, . . . , wi) and 2i

choices for the subset of these vertices repeated in (wi+2, wi+3, . . . , wn), so using the bi-
nomial formula we get ϕ(Γ(D)) = t

∑m−1
i=0

(
m−1
i

)
2i( t−1

2
)i = tm.

Proposition 35. Let G be a graph and suppose XG =
∑

λ cλeλ for some coefficients
cλ ∈ Z. Then the number of acyclic multi-orientations of G with exactly j sources and k
vertices is

∑
`(λ)=j,|λ|=k cλ ∈ N.

Proof. Let source(G, j, k) be the number of acyclic multi-orientations of G with exactly
j sources and k vertices. Applying ϕ to XG =

∑
D∈mAO(G) Γ(D) using Lemma 34 gives

ϕ(XG) =
∑

D∈mAO(G) source(G, j, k)tj. On the other hand, eλ = Γ(D) where D is the

disjoint union of directed chains of sizes λ1, λ2, . . . , so ϕ(eλ) = t`(λ). Therefore we also
have ϕ(XG) =

∑
λ cλt

`(λ). The result follows by taking the coefficients of tj in both
formulas.

As noted in [4], the coefficients cλ appearing in XG =
∑

λ cλeλ can be negative, even
when G in the incomparability graph of a (3 + 1)-free poset.

Example 36. Fix n > 0. Then every D ∈ mAO(Kn) is an acyclic orientation of a
nonempty complete graph, so has a single source vertex. Consulting Proposition 30, we
see that the number of k-vertex acyclic multi-orientations of the complete graph Kn is
zero if k < n and n!

{
k−1
n−1

}
if k > n. For n = 2 this number is always 2, which matches

the description of mAO(K2) in Example 32.
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3.6 Diagrams and isomorphisms

For each directed acyclic graph D and labeled poset P = (D, γ), define

N(D) =
∑
D|S ⊗D|T and N(P ) =

∑
(D|S, γ|S)⊗ (D|T , γ|T ), (3.8)

where both sums are over all (not necessarily disjoint) vertex decompositions S∪T = V (D)
in which S is a lower set, T is an upper set, and S ∩ T is an antichain.

Use the continuous linear extensions of the operations (3.8) to replace the coproducts
in the completions of DAGs and LPosets, and denote the resulting structures as mDAGs
and mLPosets. Also let ζDAGs and ζLPosets be the continuous linear maps to KJtK extending
ζDAGs and ζLPosets as in (3.1).

Theorem 37. Each of the pairs

(mGraphs, ζGraphs), (mDAGs, ζDAGs), and (mLPosets, ζLPosets)

is a combinatorial LC-Hopf algebra, and there is a commutative diagram of morphisms of
combinatorial LC-Hopf algebras

(mGraphs, ζGraphs) (mDAGs, ζDAGs) (mLPosets, ζLPosets)

(mQSym, ζQ)

in which the horizontal maps send graphs and DAGs to

G 7→
∑

D∈mAO(G) D and D 7→ (D, γdecr),

and the mQSym-valued maps send G 7→ XG, D 7→ Γ(D), and (D, γ) 7→ Γ(D, γ).

Proof. We observed in Proposition 23 that (mGraphs, ζGraphs) is a combinatorial LC-Hopf

algebra and that the bottom left map sends G 7→ XG.
For a proof that (mLPosets, ζLPosets) is a combinatorial LC-Hopf algebra, see [16, §3.1].

In [16], the scalar ring for mLPosets is Z[β] rather than a generic integral domain K,
and the definition of a labeled poset (P, γ) assumes that P is (the Hasse diagram of)
a finite poset rather than any finite DAG, but all arguments carry over unchanged to
our slightly more general setting. With the same caveats, the claim that the given map
mLPosets → mQSym is the unique morphism (mLPosets, ζLPosets) → (mQSym, ζQ) is [16,
Thm. 3.8].

The pair (mDAGs, ζDAGs) is a combinatorial LC-Hopf algebra as its structure maps
are the unique ones compatible with the inclusion mDAGs ↪→ mLPosets sending D 7→
(D, γdecr). The two right-most arrows in the diagram are morphisms of combinatorial
LC-Hopf algebras, and their composition gives the vertical arrow by definition.

It remains to show that linear map acting on graphs as G 7→
∑

D∈mAO(G) D is a

morphism (mGraphs, ζGraphs) → (mDAGs, ζDAGs). Denote this map by ψ. If a graph G
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has at least one edge then so does every D ∈ mAO(G) and if G has no edges then
mAO(G) = {G}. In either case we have ζDAGs ◦ ψ = ζGraphs. Likewise, ψ commutes
with the (co)unit maps of mGraphs and mDAGs since G = ∅ is empty if and only if
mAO(G) = {G} = {∅}.

Since mAO(G tH) = {D1 tD2 : (D1, D2) ∈ mAO(G) × mAO(H)} for two graphs G
and H, we also have ψ ◦∇mGraphs = ∇mDAGs ◦ (ψ⊗ψ). To check that (ψ⊗ψ) ◦∆mGraphs =
∆mDAGs ◦ ψ, we must show for any graph G that

(ψ ⊗ ψ) ◦∆mGraphs(G) =
∑

S∪T=V (G)

∑
DS∈mAO(G|S)

∑
DT∈mAO(G|T )

DS ⊗DT (3.9)

is equal to

∆mDAGs ◦ ψ(G) =
∑

D̃∈mAO(G)

∑
S̃∪T̃=V (D̃)

D̃|S̃ ⊗ D̃|T̃ (3.10)

where in the last sum S̃ must be a lower set of D̃, T̃ must be an upper set, and S̃ ∩ T̃
must be an antichain. For this, it suffices to construct a bijection from the set of tuples
(S, T,DS, DT ) indexing the summands in the first expression to the set of triples (D̃, S̃, T̃ )
indexing the summands in the second expression such that DS

∼= D̃|S̃ and DT
∼= D̃|T̃ .

Such a bijection is constructed as follows.
Fix a graph G. Suppose S and T are (not necessarily disjoint) sets such that S ∪ T =

V (G). Choose DS ∈ mAO(G|S) and DT ∈ mAO(G|T ).
Suppose DT has type α : T → P. Define α(v) = 0 for v ∈ S \ T . For each v ∈ S,

let dv ∈ N be either α(v)− 1 if v ∈ T and (v, 1) is a sink vertex in DS and (v, α(v)) is a
source vertex in DT , or else α(v). Then set

S̃ = {(v, i+ dv) : (v, i) ∈ V (DS)} and T̃ = V (DT ).

Notice that S̃ ∩ T̃ is the set of pairs (v, α(v)) for v ∈ S ∩ T with dv = α(v) − 1, so in
S̃ ∪ T̃ the sink vertices in DS of the form (v, 1) are merged with the source vertices in DT

of the form (v, α(v)).
Finally define D̃ to be the directed graph with vertex set S̃ ∪ T̃ and edges

(u, i+ du)→ (v, j + dv) if (u, i)→ (v, j) ∈ E(DS),

(u, i)→ (v, j) if (u, i)→ (v, j) ∈ E(DT ),

(u, i)→ (v, j) if (u, i) ∈ S̃ \ T̃ , (v, j) ∈ T̃ ,

and u = v or {u, v} ∈ E(G).

(3.11)

Example 38. Let G be the complete graph on two elements v and w. Suppose S = T =
V (G) = {v, w}. Let DS ∈ mAO(G|S) be the leftmost directed graph in Figure 1 and let
DT ∈ mAO(G|T ) be the rightmost directed graph in the same figure. Writing vi and wi
instead of (v, i) and (w, i) as in Figure 1, we have

S̃ = {v5, v4, v3, w6, w5, w4} and T̃ = {v3, v2, v1, w4, w3, w3, w1}

so S̃ ∩ T̃ = {v3, w4}. The directed graph D̃ on S̃ ∪ T̃ is shown in Figure 2.
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Figure 2: The directed graph D̃ corresponding to Example 38, with some edges omitted
and with vertices (v, i) and (w, j) written as vi and wj. The boxed vertices are the
elements of S̃ \ T̃ while the unboxed vertices are the elements of T̃ , and S̃ ∩ T̃ = {v3, w4}.
This picture does not show all of D̃, which has additional directed edges from each boxed
vertex to each unboxed vertex.

One can check as follows that S̃ is a lower set in D̃ while T̃ is an upper set. First,
notice that an edge of the first type in (3.11) can only go from T̃ to S̃ in the event that
(u, i)→ (v, j) is an edge in DS and (u, j + du) ∈ S̃ ∩ T̃ . However, this never occurs since
we can only have (u, j + du) ∈ S̃ ∩ T̃ when j = 1 and (u, 1) is a sink vertex in DS.

Similarly, an edge of the second type in (3.11) can only go from T̃ to S̃ in the event
that (u, i)→ (v, j) is an edge in DT and (v, j) ∈ S̃ ∩ T̃ . However, this never occurs since
we can only have (v, j) ∈ S̃ ∩ T̃ when j = α(v) and (v, α(v)) is a source vertex in DT .

As edges of the third type in (3.11) all start from S̃ \ T̃ , we conclude that S̃ is a lower
set in D̃ and T̃ is an upper set.

To finish our proof of Theorem 37, it suffices to derive the following lemma.

Lemma 39. The map (S, T,DS, DT ) 7→ (D̃, S̃, T̃ ) is a bijection from the set of tuples

(S, T,DS, DT ),

in which S and T are sets with S∪T = V (G) and DS ∈ mAO(G|S) and DT ∈ mAO(G|T ),
to the set of triples

(D̃, S̃, T̃ ),

where D̃ ∈ mAO(G) and where S̃ and T̃ are respectively a lower set and an upper set in
D̃ such that S̃ ∪ T̃ = V (D̃) and S̃ ∩ T̃ is an antichain. This bijection satisfies DS

∼= D̃|S̃
and DT

∼= D̃|T̃ .

Proof. We first check that D̃ ∈ mAO(G). The directed graph D̃ is acyclic since DS and
DT are acyclic. Fix v ∈ V (G) and i ∈ P such that (v, i + 1) and (v, i) are both vertices
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in D̃. If these vertices are both in S̃ (respectively, T̃ ), then any two directed paths in DS

(respectively, DT ) from (v, i+ 1) and (v, i) lift to paths in D̃.
Suppose (v, i + 1) ∈ S̃ and (v, i) ∈ T̃ . Then i = α(v) and either (v, i + 1) is not a

sink in D̃|S̃ ∼= DS or (v, i) is not a source in D̃|T̃ = DT . In the first case D̃ must have an
edge of the form (v, i+ 1)→ (w, j) ∈ T̃ where v 6= w, and in the second D̃ must have an
edge of the form (v, i)← (w, j) ∈ S̃ where v 6= w. Either way, we have {v, w} ∈ E(G), so
(v, i + 1)→ (w, j)→ (v, i) is a second directed path in D̃ besides (v, i + 1)→ (v, i). We
conclude that D̃ ∈ mAO(G).

We have already seen that S̃ is a lower set in D̃ and T̃ is an upper set with S̃ ∪ T̃ =
V (D̃). No single edge of D̃ may connect two vertices in S̃ ∩ T̃ , since then the vertices
could not both be sources in DT . This implies that no directed path in D̃ may connect
two vertices in S̃ ∩ T̃ , since every vertex in this path would have to be in S̃ ∩ T̃ since S̃
is a lower set in D̃ and T̃ is an upper set. Thus S̃ ∩ T̃ is an antichain in D̃.

We conclude that every image of the given operation is in the described codomain.
This operation is a bijection as it is straightforward to construct its inverse. Namely,
given (D̃, S̃, T̃ ) we first recover DT and α as

DT = D̃|T̃ and α : v 7→ max{i : (v, i) ∈ T̃}.

Then we recover DS from the (isomorphic) induced subgraph D̃|S̃ by replacing each vertex
(v, i) by (v, i+ 1− α(v)), and finally we obtain S and T as

S = {v : (v, i) ∈ V (DS)} and T = {v : (v, i) ∈ V (DT )}.

We have S ∪ T = {v : (v, i) ∈ V (D̃)} = V (G). Since DS and DT are formed by
restricting D̃ ∈ mAO(G) to a lower set or an upper set, it holds that DS ∈ mAO(G|S) and
DT ∈ mAO(G|T ) as needed.

The proof of Lemma 39 completes the proof of Theorem 37.

Outside the special case when ω : V (G) → {1}, the kromatic symmetric function
X(G,ω) of a weighted graph is not always multifundamental positive, nor is its expansion
into Lα’s finite. However, since the diagram in Theorem 37 commutes, (3.7) implies that:

Corollary 40. If G is a graph then XG =
∑

D∈mAO(G) Γ(D) and consequently this sym-
metric power series is multifundamental positive.

Theorem 37 also leads to a coproduct formula for en from Example 29.

Corollary 41. If n is a positive integer then

∆(en) =
∑
i,j∈N
i+j=n

ei ⊗ ej +
∑
i,j∈P

i+j=n+1

ei ⊗ ej.
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Proof. Let D = (1→ 2→ 3→ · · · → n) be an n-element path. By Theorem 37 we have
∆(en) = ∆(Γ(D)) =

∑
S∪T=V (D) Γ(D|S)⊗ Γ(D|T ) where the sum is over all lower sets S

and upper sets T with S∩T an antichain in D. To be an antichain, the intersection S∩T
must either be empty or the singleton set {i} for some i ∈ [n].

Either way, the choices for S and T are limited. If S ∩ T is empty then we must have
S = [i] and T = [n] \ [i] for some 0 6 i 6 n, and then Γ(D|S) ⊗ Γ(D|T ) = ei ⊗ en−i. If
S ∩T = {i} then we must have S = [i] and T = [n] \ [i− 1], and then Γ(D|S)⊗Γ(D|T ) =
ei ⊗ en+1−i. Adding up these terms gives the result.

Fix a directed acyclic graph D. When α : V (D) → P is any map, define Clandagα (D)
to be the directed acyclic graph with vertices Clanα(V (D)) and edges

(v, i)→ (w, j) whenever v → w ∈ E(D) or both v = w and i > j.

When γ : V (D)→ Z is injective, let γ̃ be any labeling of Clandagα (D) with

γ̃(v, i) < γ̃(w, j) if and only if γ(v) < γ(w) or both v = w and i < j,

and then define Clandagα (D, γ) = (Clandagα (D), γ̃).
Recall that for each H ∈ {Graphs,DAGs, LPosets} we use the symbols mH and H to

denote the same sets with different LC-Hopf algebra structures. Let

ΨGraphs : mGraphs→ Graphs,

ΨDAGs : mDAGs→ DAGs, and

ΨLPosets : mLPosets→ LPosets

be the continuous linear maps sending

G 7→
∑
α

1
α!
Clanα(G), D 7→

∑
α

Clandagα (D), (D, γ) 7→
∑
α

Clandagα (D, γ) (3.12)

for each graph G, directed acyclic graph D, and labeled poset (D, γ), where the sums are
over all maps α : V → P for V = V (G) or V (D) as appropriate. The map ΨGraphs is only
defined if Q ⊆ K, which we assume in the following theorem.

Theorem 42. When defined, the maps ΨGraphs, ΨDAGs, and ΨLPosets are isomorphisms of
LC-Hopf algebras, and there is a commutative diagram

(mGraphs, ζGraphs) (mDAGs, ζDAGs) (mLPosets, ζLPosets)

(Graphs, ζGraphs) (DAGs, ζDAGs) (LPosets, ζLPosets)

ΨGraphs ΨDAGs ΨLPosets

of combinatorial LC-Hopf algebra morphisms, in which the horizontal arrows extend the
maps in the diagrams in Proposition 15 and Theorem 37.
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Proof. The vertical maps are invertible since each has a unitriangular matrix in the
standard pseudobases of the source and target ordered by number of vertices. It is
straightforward to see that ζGraphs = ΨGraphs ◦ ζGraphs and ζDAGs = ΨDAGs ◦ ζDAGs and

ζLPosets = ΨLPosets ◦ ζLPosets, and that each of the vertical maps is compatible with the
relevant product, unit, and counit. It is also easy to see that the right square in the given
diagram commutes.

The nontrivial things to check are that ΨGraphs and ΨLPosets are coalgebra morphisms,
and that the left square in the given diagram commutes. This amounts to verifying three
identities:

(a) If G is a graph then the sum∑
S∪T=V (G)

∑
α′:S→P
α′′:T→P

1
α′!α′′!

Clanα′(G|S)⊗ Clanα′(G|T )

is equal to ∑
α:V (G)→P

∑
StT=V (Clanα(G))

1
α!
Clanα(G)|S ⊗ Clanα(G)|T .

(b) If (D, γ) is a labeled poset then the sum∑
S∪T=V (D)
S lower set
T upper set
S∩T antichain

∑
α′:S→P
α′′:T→P

Clandagα′ (D|S, γ|S)⊗ Clandagα′′ (D|T , γ|T )

is equal to ∑
α:V (D)→P

∑
StT=V (Clandagα (D))

S lower set
T upper set

(Clandagα (D)|S, γ̃|S)⊗ (Clandagα (D)|T , γ̃|T ).

(c) If G is a graph then∑
D∈mAO(G)

∑
α:V (D)→P

Clandagα (D) =
∑

α:V (G)→P

∑
D∈mAO(Clanα(G))

1
α!
Clanα(D).

Each of these identities follows as a straightforward, if slightly cumbersome, exercises in
algebra. We omit the details.

The preceding result reduces the natural question of finding antipode formulas for
mGraphs, mDAGs, and mLPosets (see, e.g., [16, Problem 3.5]) to the more familiar graded
Hopf algebras Graphs, DAGs, and LPosets, where some formulas are already known [13].
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4 Kromatic quasisymmetric functions

In this section we study two quasisymmetric refinements of XG. Our goal in these con-
structions to find interesting common generalizations of [4] and [18].

4.1 Hopf algebras for chromatic quasisymmetric functions

Let G be an ordered graph, that is, a graph with a total order < on its vertex set V (G).
One can think of the ordering on V (G) as defining an acyclic orientation on the edges of G,
and we do not distinguish between G and another ordered graph H if the corresponding
directed acyclic graphs are isomorphic.

Fix an invertible element q ∈ K. If OGraphsn is the free K-module spanned by all
(isomorphism classes of) ordered graphs with n vertices, then OGraphs :=

⊕
n∈N OGraphsn

has a graded connected Hopf algebra structure in which the product is disjoint union and
the coproduct is the K-linear map ∆q satisfying

∆q(G) =
∑

StT=V (G) q
ascG(S,T )G|S ⊗G|T ∈ OGraphs⊗ OGraphs (4.1)

for each ordered graph G, where

ascG(S, T ) := |{(s, t) ∈ S × T : {s, t} ∈ E(G) and s < t}|.

This structure becomes a combinatorial Hopf algebra when paired with the algebra mor-
phism ζOGraphs : OGraphs → K sending G 7→ 0|E(G)|. It follows from [1] that the unique
morphism (OGraphs, ζOGraphs) → (QSym, ζQ) sends an ordered graph G to the chromatic
quasisymmetric function XG(q) of Shareshian and Wachs from Definition 3.

We have not been able to find a natural K-theoretic generalization of the coproduct
∆q that leads to a q-analogue of the LC-Hopf algebra mGraphs. The simplest idea would
be to replace the disjoint union t in (4.1) by arbitrary union ∪, but this does not lead to
a co-associative map on the completion of OGraphs. This problem remains if we change
the q-power exponent ascG(S, T ) to other forms that are equivalent in the homogeneous
case, like ascG(S − T, T ), ascG(S, T − S), or ascG(S − T, T − S).

4.2 A quasisymmetric kromatic function

Nevertheless, there do appear to be interesting ways of defining a simultaneousK-theoretic
generalization of XG(q) and q-analogue of XG. We examine two such constructions, the
first of which is given as follows.

Remark 43. For the rest of this section we assume K ⊇ Z and let q be a formal parameter.
We will consider the polynomial and power series rings

Sym[q] ⊂ mQSym[q] ⊂ mQSymJqK.

Recall for κ : V (G) → P that ascG(κ) and desG(κ) respectively count the edges
{u, v} ∈ E(G) with u < v and κ(u) < κ(v) or κ(u) > κ(v).
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Definition 44. For an ordered graph G define

LG(q) =
∑
κ

qascG(max ◦κ)xκ ∈ mQSym[q]

where the sum is over all proper set-valued colorings κ : V (G)→ Set(P).

One recovers XG(q) from LG(q) as its homogeneous component of lowest degree in the
xi variables, setting deg xi = 1 and deg q = 0. Despite the discussion in Section 4.1, it
is clear that if G = G1 t G2 is the disjoint union of two ordered graphs then LG(q) =
LG1(q)LG2(q). In addition to the following example, see Table 1 for some computations
of LG(q).

Example 45. Suppose G = Kn is the complete graph on the vertex set [n]. There are{
r
n

}
ways of partitioning r colors into n nonempty subsets. For each way of assigning these

subsets to the vertices of G to form a proper set-valued coloring, there is a unique permu-
tation σ ∈ Sn whose letters appear in the same relative order as max(κ(n)), max(κ(n−1)),
. . . , max(κ(1)). The inversion set of σ coincides with asc(max ◦κ), and it is well-known
(see [18, (A.2)]) that

∑
σ∈Sn q

inv(σ) = [n]q! as defined Example 4. We conclude that

LKn(q) = [n]q!
∑∞

r=n

{
r
n

}
er = [n]q !

n!
XKn = [n]q!

∑∞
r=n

{
r−1
n−1

}
er

using Proposition 30 for the last equality.

Let us clarify the seeming asymmetry in Definition 44. Form L
des,min

G (q) by replacing
“asc” by “des” and “max” by “min” in Definition 44. Construct

L
asc,min

G (q), L
asc,max

G (q), and L
des,max

G (q)

likewise, so that we have LG(q) = L
asc,max

G (q). Now let ρ be the continuous linear map
mQSym→ mQSym sending

ρ : M(α1,α2,...,αk) 7→M(αk,...,α2,α1). (4.2)

This map extends to a ring involution of mQSym[q] fixing q. Finally let τ be the mQSym-
linear map mQSym[q]→ mQSym[q] acting on nonzero elements as

τ : f(q) 7→ qdegq(f)f(q−1). (4.3)

In other words, τ reverses the order of the coefficients of f 6= 0, viewed as a polynomial
in q with coefficients in mQSym.

Proposition 46. If G is an ordered graph then

LG(q) = ρ
(
L

des,min

G (q)
)

= τ
(
L

des,max

G (q)
)

= ρ ◦ τ
(
L

asc,min

G (q)
)
.
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Proof. Fix an ordered graph G. Given any map κ : V (G)→ Set(P), let

S :=
⋃
v∈V (G) κ(v) = {i0 < i1 < · · · < im}

and let σ : S → S be the permutation sending ij 7→ im−j and then define κ∗ : V (G) →
Set(P) by κ∗(v) = {σ(i) : i ∈ κ(v)}. The operation κ 7→ κ∗ is an involution of the set of
proper set-valued colorings of G with

ascG(max ◦κ) = desG(min ◦κ∗),

and if xκ = xa0i0 x
a1
i1
· · ·xamim then xκ

∗
= ρ(xκ) := xami0 x

am−1

i1
· · ·xa0im . Thus

LG(q) =
∑
κ

qascG(max ◦κ)xκ =
∑
κ

qdesG(min ◦κ∗)ρ(xκ
∗
) = ρ

(
L

des,min

G (q)
)
.

Since max(κ(u)) 6= max(κ(v)) if κ is proper and {u, v} ∈ E(G), it is clear that

LG(q) = q|E(G)| · Ldes,max

G (q−1). The latter expression is the same as what we get by
applying τ since |E(G)| is the degree of LG(q) as a polynomial in q: this number is an
upper bounded for the degree by definition, and if we write V (G) = {v1 < v2 < · · · < vn}
then ascG(κ) = |E(G)| for the proper set-valued coloring with κ(vi) = {i}.

It follows by a similar argument that L
des,max

G (q) = τ
(
L

asc,min

G (q)
)

, which gives the

third desired equality.

Fix D ∈ mAO(G). Each vertex in D has the form (v, i) for some v ∈ V (G) and i ∈ P.
Define align(D) := |{(u, i)→ (v, j) ∈ E(D) : u < v and i = j = 1}|.

Proposition 47. If G is an ordered graph then

LG(q) =
∑

D∈mAO(G) q
align(D)Γ(D).

This power series is multifundamental positive in the sense of being a possibly infinite
N[q]-linear combination of multifundamental quasisymmetric functions.

Proof. Fix D ∈ mAO(G) and consider the maps κ : V (D)→ Set(P) that have κ(u) ≺ κ(v)
whenever u → v is an edge in D, so that Γ(D) =

∑
κ x

κ. If v ∈ V (G) and i > j are
positive integers with (v, i), (v, j) ∈ V (D) then κ((v, i)) ≺ κ((v, j)) by Proposition 31.
Define a map η : V (G)→ Set(P) by setting η(v) =

⊔
i κ((v, i)) where the union is over all

i ∈ P with (v, i) ∈ D.
This is a proper set-valued coloring of G since if {u, v} ∈ E(G) then every vertex of

the form (u, i) ∈ V (D) is connected by an edge to every vertex of the form (v, j) ∈ V (D).
Observe that qascG(max ◦η) = qalign(D) and xη = xκ.

We claim that every proper set-valued coloring of G arises as η for some D ∈ mAO(G)
and κ : V (D)→ Set(P) as above. For such a coloring η, let

η(v) = η(v)1 t η(v)2 t · · · t η(v)k
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be the smallest disjoint decomposition into nonempty subsets such that for each i ∈ [k−1]
an edge {v, w} ∈ E(G) exists with a color c ∈ η(w) that has η(v)i � {c} � η(v)i+1; then
let α(v) = k. Form an acyclic multi-orientation D ∈ mAO(G) of type α that has the edge
(v, i)→ (w, j) if and only if v = w and i > j, or {v, w} ∈ E(G) and η(v)i ≺ η(w)j. Then
the coloring η arises from the map κ : V (D)→ Set(P) given by κ((v, i)) = η(v)i.

As we already know that XG =
∑

D∈mAO(G) Γ(D) from Corollary 40, we conclude

that the operator (D, κ) 7→ η is a bijection to proper set-valued colorings of G. Thus
LG(q) =

∑
η q

ascG(η)xκ =
∑

D∈mAO(G) q
align(D)Γ(D).

We can make this expansion more explicit, generalizing a result in [18]. Suppose D
is a directed acyclic graph. Write <D for the transitive closure of the relation on V (D)
with x <D y if x→ y ∈ E(D).

Lemma 48. Suppose G = inc(P ) for a finite poset P and D ∈ AO(G). Then there
exists a decreasing labeling γ of D such that γ(x) < γ(y) for all vertices x and y that are
incomparable under <D but have x <P y.

Proof. If we change the condition “x <P y” to “x >P y” then the lemma becomes the
Claim established in the proof of [18, Thm. 3.1]. This alternate version of the lemma is
equivalent to the one stated since we can replace P by its dual P ∗ without changing G,
and x >P ∗ y holds if and only if x <P y.

More directly, following the argument in the proof of [18, Thm. 3.1], the way to
construct γ is as follows. All vertices that are maximal under <D are comparable in P ,
and we let x1 be the P -smallest such vertex. Likewise, assuming x1, x2, . . . , xk have been
defined, all vertices in V (D)\{x1, x2, . . . , xk} that are maximal under <D are comparable
in P , and we let xk+1 be the P -smallest such vertex. After letting k range from 1 to
|D| − 1, we set γ(xi) = i.

It is clear that γ is a decreasing labeling of D. Checking that γ(x) < γ(y) when x and
y are incomparable under <D with x <P y requires justification. For this, one can adapt
the argument in the proof of [18, Thm. 3.1].

Following [15], a multipermutation of n ∈ N is a word w = w1w2 · · ·wm with

{w1, w2, . . . , wm} = {1, 2, . . . , n} and wi 6= wi+1 for all i ∈ [m− 1].

Let Sm
n be the set of all multipermutations of n.

For w = w1w2 · · ·wm ∈ Sm
n let Inv(w) be the set of pairs (wi, wj) with i < j and

wi > wj and {w1, w2, . . . , wi−1} ∩ {wi} = {w1, w2, . . . , wj−1} ∩ {wj} = ∅. If P is a poset
on [n] and G = inc(P ) is its incomparability graph, then set

invG(w) := |{(a, b) ∈ Inv(w) : {a, b} ∈ E(G)}|,
S(w,P ) := {m− i : i ∈ [m− 1] and wi 6>P wi+1}.

(4.4)

The following generalizes [18, Thm. 3.1]:
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Theorem 49. If G = inc(P ) for a poset P on [n] then

LG(q) =
∑

w∈Sm
n
qinvG(w)L`(w),S(w,P ).

Proof. Let G = inc(P ) for a poset P on [n]. By (3.7) and Proposition 47,

LG(q) =
∑

D∈mAO(G)

∑
v∈M(D)

qalign(D)L`(v),Des(v,γD) (4.5)

where for each D ∈ mAO(G) the map γD is any decreasing labeling of D.
Fix D ∈ mAO(G) and v = (v1, v2, · · · , vm) ∈ M(D). Each entry of v has the form

vj = (wj, ij) for some wj ∈ V (G) = [n] and ij ∈ P. If a := wj = wk for some 1 6 j < k 6 n
then we must have ij > ik, since if ij < ik then a directed path must connect (a, ik)
to (a, ij) in D which would imply that k < j. We can never have wj = wj+1 since
(a, i + 1) <D (a, i) is never a covering relation when D is an acyclic multi-orientation.
Hence, the sequence w = w1w2 · · ·wm belongs to Sm

n .
Let wr = wm · · ·w2w1 ∈ Sm

n and observe that

align(D) = invG(wr). (4.6)

Note that D is an acyclic orientation of the incomparability graph of the partial order
on V (D) ⊂ [n] × P that has (x, i) < (y, j) if and only if x <P y. By Lemma 48, we
can therefore choose γD to be a decreasing labeling of D with γD(x, i) < γD(y, j) for all
(x, i), (y, i) ∈ V (D) that are incomparable under <D but have x <P y. For this labeling,
we have

Des(v, γD) = {j ∈ [m− 1] : wj 6<P wj+1} = S(wr, P ) (4.7)

since for each j ∈ [m− 1] one of the following occurs:

(1) If {wj, wj+1} ∈ E(G) then vj and vj+1 are comparable in <D by the definition of
an acyclic multi-orientation. In this case vj <D vj+1 as we cannot have vj+1 <D vj
for v ∈ M(D), so γD(vj) > γD(vj+1) and j ∈ Des(v, γD), while at the same time
wj 6<P wj+1 holds as G = inc(P ).

(2) If {wj, wj+1} /∈ E(G) then vj → vj+1 and vj+1 → vj are not edges in D, so vj and
vj+1 are incomparable in <D, as any vertices in a directed path from vj to vj+1 in
D would have to appear between two consecutive elements v, which is impossible.
In this case, since wj and wj+1 are comparable in P , we have j ∈ Des(v, γD) if and
only if wj 6<P wj+1.

Now observe that (D, v) 7→ w is a bijection from the set of pairs (D, v) with D ∈
mAO(G) and v ∈M(D) to Sm

n . To recover v = (v1, v2, . . . , vm) from w = w1w2 · · ·wm, we
set vj = (wj, ij) where either ij = 1 if wj /∈ {wj+1, . . . , wm}, or if there is a smallest index
k with j < k 6 m such that wj = wk, then

ij =

{
ik if wj+1, wj+2, . . . , wk−1 are all comparable to wj = wk in P ;

ik + 1 if one of wj+1, wj+2, . . . , wk−1 is incomparable to wj = wk in P .
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In turn, we recover D as the directed graph with vertex set {v1, v2, . . . , vm} that has a
directed edge vj → vk whenever either wj = wk and ij > ik, or {wj, wk} ∈ E(G) and
{l ∈ [m] : vl = vj} ≺ {l ∈ [m] : vl = vk}.

Combining (4.6) and (4.7) with this observation turns (4.5) into

LG(q) =
∑
w∈Sm

n

qinvG(wr)L`(wr),S(wr,P )

which is equivalent to the desired formula.

Unlike XG(q), the power series LG(q) is rarely symmetric. However, we can exactly
characterize the ordered graphs G for which LG(q) ∈ mSym.

Theorem 50. One has LG(q) ∈ mSym[q] if and only if G is a cluster graph, that is, a
disjoint union of complete graphs.

The proof of the theorem will use three lemmas. For an ordered graph G, let minG
be the set of vertices v ∈ V (G) such that if {v, w} ∈ E(G) then v < w, and let maxG
be the set of vertices v ∈ V (G) such that if {u, v} ∈ E(G) then u < v. Both minG
and maxG are independent sets. Also let WG := XG(0) =

∑
κ x

κ where the sum is over
proper colorings κ : V (G)→ P with ascG(κ) = ∅.

Lemma 51. If WG ∈ Sym[q] then |minG| = |maxG|.

Proof. If f =
∑

α cαMα is a quasisymmetric function then let [Mα]f := cα. Notice that
this is also the coefficient of xα = xα1

1 x
α2
2 · · · in f .

Now let p = |minG|, m = |maxG|, and n = |G|. If p > m then

[M(p,1n−p)]WG = 0 < [M(1n−p,p)]WG

since in this case there is no ascent-less proper coloring of G that assigns the color 1 to
p distinct vertices (as to have no ascents every 1-colored vertex must be in maxG), but
there is an ascent-less proper coloring that assigns the same color n−p+1 to all p minimal
vertices while assigning the distinct colors 1, 2, . . . , n − p to the non-minimal vertices (if
these vertices are totally ordered as v1 > v2 > · · · > vn−p then let vertex vi have color i).

Alternatively, if p < m then

[M(1n−m,m)]WG = 0 < [M(m,1n−m)]WG

since in this case there is no ascent-less proper coloring of G that assigns the distinct
colors 1, 2, . . . , n − m some set of vertices while assigning the same color n − m + 1 to
the m vertices that remain (as to have no ascents every (n−m+ 1)-colored vertex must
be in minG), but there is an ascent-less proper coloring that assigns the same color 1
to all m maximal vertices while assigning the distinct colors 2, 3, . . . , n − m + 1 to the
non-maximal vertices (if these vertices are totally ordered as v1 > v2 > · · · > vn−m then
let vertex vi have color i+ 1).

In either case, we have [Mα]WG 6= [Mβ]WG for two strict compositions α and β that
sort to the same partition, so WG is not symmetric. We conclude that if WG ∈ Sym is
symmetric then p = m.
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Lemma 52. If LG(q) ∈ mSym[q] then WG ∈ Sym and every independent subset of G has
size at most |maxG|.

Proof. As WG is the homogeneous component of degree |G| in LG(0), if we have LG(q) ∈
mSym then WG ∈ Sym. Let n := |G|. If S is an independent subset of G of size
s := |S| > |minG|, then

[M(1n,s)]LG(0) = 0 < [M(s,1n)]LG(0)

since in this case there is no ascent-less proper set-valued coloring of G that assigns its
largest color to s distinct vertices (as to have no ascents, each vertex whose colors include
the largest appearing color must be in minG), but if the vertices of G are totally ordered
as v1 > v2 > · · · > vn then the set-valued coloring κ : G→ Set(P) with

κ(vi) =

{
{1, i+ 1} if vi ∈ S
{i+ 1} if vi /∈ S

is ascent-less and proper, and this contributes at least one monomial term xs1x2x3 · · ·xn+1

to the monomial-positive expansion of LG(0).
Thus if G has an independent subset with more than |maxG| elements then LG(0) is

not symmetric. Therefore if LG(q) ∈ mSym, then WG is symmetric so |minG| = |maxG|
by Lemma 51, and LG(0) is symmetric so every independent subset of G has size at most
|minG| = |maxG|.

Lemma 53. Suppose WG ∈ Sym and every independent subset of G has size at most
|maxG|. Then G is a cluster graph.

Proof. Suppose G has an isolated vertex v. Let K be the subgraph formed by removing
this vertex. Then WG = e1WK so WK is symmetric, and if S is an independent subset of K
then |S| 6 |maxK| since St{v} is an independent subset of G and maxG = maxKt{v}.
In this case, we may assume by induction that K is a cluster graph, and then G is also a
cluster graph.

Assume G has no isolated vertices so that minG and maxG are disjoint. Let m =
|minG| and define H to be the subgraph G induced on the vertex set V (G) \minG. If
m = 0 then G is empty so there is nothing to prove. Therefore, assume m > 0 so that H
is a proper subgraph.

If α = (α1, α2, . . . , αl) is any strict composition of |H| then

[Mα]WH = [M(α1,α2,...,αl,m)]WG

since in any ascent-less proper coloring of G assigning the color i to αi vertices and the
color l + 1 to m vertices, the set of vertices colored by l + 1 must be exactly minG, so
restriction defines a bijection from such colorings to ascent-less proper colorings of H that
assign the color i to αi vertices. Since WG ∈ Sym, it follows that WH ∈ Sym.

Since G has no isolated vertices, one has maxH = maxG. Therefore |minH| =
|maxH| = |minG| = |maxG| = m. If S is an independent subset of H then S is also
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an independent subset of G, so |S| 6 |maxG| = |maxH|. Thus, we may assume by
induction that H is a disjoint union of m complete graphs.

We now make some observations. Each element of minH must be connected by an
edge in G to at least one element of minG since minH and minG are disjoint. Any two
elements of minH must be connected by edges in G to at least two different elements of
minG, since if b, c ∈ minH were connected to the same element a ∈ minG and to no
other elements of minG, then (minG \ {a}) t {b, c} would be an independent subset of
G of the impossible size |minG|+ 1 = |maxG|+ 1. Therefore, if p = |H| = |G| −m, and
k1, k2, . . . , km are the sizes of the m connected components of H, then

[M(1p,m)]WG =
(

p
k1,k2,...,km

)
> [M(1p−1,m,1)]WG

with equality if and only if each element of minH is connected by an edge in G to exactly
one element of minG. This last property must hold as WG is symmetric.

Let minG = {u1, u2, . . . , um} and minH = {v1, v2, . . . , vm}. By the properties in the
paragraph above, we may assume that {ui, vi} ∈ E(G) for each i ∈ [m] and that {ui, vj} /∈
E(G) for i 6= j. For each i ∈ [m], every vertex w ∈ V (H) with {vi, w} ∈ E(G) must have
{ui, w) ∈ E(G), since otherwise (minH \ {vi})t {ui, w} would be an independent subset
of G of the impossible size m+ 1 = |maxG|+ 1.

To conclude that G is a cluster graph, suppose w ∈ V (H) has {vj, w} ∈ E(G). We
must show that {ui, w} /∈ E(G) for all i 6= j. This is trivial if m = 1, and if m > 1 then
no such edge can exist as then the equalities

[M(1p,m)]WG = [M(1a,m,1b)]WG = [M(m,1p)]WG

cannot hold for all a, b ∈ P with a+ b = p, contradicting WG ∈ Sym.

Proof of Theorem 50. If G is a disjoint union of m cluster graphs of sizes n1, n2, . . . , nm,
then LG(q) =

∏m
i=1 LKni (q) ∈ mSym[q] by Example 45. If LG(q) ∈ mSym[q], then G is a

cluster graph by Lemmas 52 and 53.

4.3 Another quasisymmetric analogue

The preceding results indicate that LG(q) is an interesting quasisymmetric q-analogue of
XG and K-theoretic analogue of XG(q). However, there is another candidate for such
a generalization. Continue to let G be an ordered graph. Following [14], an ascent
(respectively, descent) of a set-valued map κ : V (G) → Set(P) is a tuple (u, v, i, j) with
{u, v} ∈ E(G), i ∈ κ(u), j ∈ κ(v), u < v, and i < j (respectively, i > j). Let ascG(κ)
denote the number of ascents, and let desG(κ) be the number of descents.

Definition 54. Given an ordered graph G, define

XG(q) =
∑
κ

qascG(κ)xκ ∈ mQSymJqK

where the sum is over all proper set-valued colorings κ : V (G)→ Set(P).
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As with LG(q), it is clear that if G = G1 t G2 is the disjoint union of two ordered
graphs, then we have a factorization XG(q) = XG1(q)XG2(q).

The power series XG(q) is closely related to the quasisymmetric functions XG(x, q, µ)
studied in [14]. For each map µ : V (G)→ N, Hwang [14] defines

XG(x, q, µ) :=
∑
κ

qascG(κ)xκ (4.8)

where the sum is over all proper set-valued colorings κ of G with |κ(v)| = µ(v). Evidently
XG(q) =

∑
µ:V (G)→PXG(x, q, µ), and, as noted in [14, Rem. 2.2],

XG(x, q, µ) = 1
[µ]q !

XClanµ(G)(q) where [µ]q! :=
∏

v∈V (G)[µ(v)]q!. (4.9)

Here, we view Clanµ(G) as an ordered graph with (v, i) < (w, j) if either v < w or v = w
and i < j.

Using (4.9), various positive or alternating expansions of XG(q) (e.g., into fundamental
quasisymmetric functions [18, Thm. 3.1], Schur functions [18, Thm. 6.3], power sum
symmetric functions [2, Thm. 3.1], or elementary symmetric functions [18, Conj. 5.1]) can
be extended in a straightforward way to XG(x, q, µ) and XG(q). See Hwang’s results [14,
Thms. 3.3, 4.10, and 4.19] and his conjecture [14, Conj. 3.10].

Some of these statements require G to be isomorphic to the incomparability graph of a
natural unit interval order , meaning a poset P on a finite subset of P such that if x <P z
then x < z and every y incomparable in P to both x and z has x < y < z [18, Prop. 4.1].

Remark 55. A finite poset is isomorphic to a (unique) natural unit interval order if and
only if it is both (3 + 1)- and (2 + 2)-free [18, Prop. 4.2]. This does not mean that
every (3 + 1)- and (2 + 2)-free poset on a finite subset of P is a natural unit interval
order. For example, the poset P = {1 < 2} t {3} is (3 + 1)- and (2 + 2)-free but not
a natural unit interval order; however, it is isomorphic to the natural unit interval order
Q = {1 < 3} t {2}.

If G is the incomparability graph of a natural unit interval order, then so are all of its
α-clans, and the following holds:

Lemma 56. If G is the incomparability graph of a natural unit order interval, then XG(q)
is symmetric and XG(q) =

∑
κ q

desG(κ)xκ where the sum is over all proper set-valued
colorings κ : V (G)→ Set(P).

Proof. In this case XG(x, q, µ) is symmetric by [14, Thm. 3.8], so the same is true of
XG(q), and the alternate formula for XG(q) holds by [14, Prop. 2.1].

Some sample computations of XG(q) are shown in Tables 2 and 3. One of the few
cases where we have explicit formulas is discussed in the following example.

Example 57. If Kn is the complete graph on [n] then

XKn(q) =
∞∑
r=n

F (n)
r er for F (n)

r :=
∑

k1,k2,...,kn∈P
k1+k2+···+kn=r

(
r

k1,k2,...,kn

)
q
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where (q)n :=
∏

i∈[n](1− qi) and
(

r
k1,k2,...,kn

)
q

= (q)r
(q)k1 (q)k2 ···(q)kn

.

When q is a prime power, F
(n)
r counts the strictly increasing flags of Fq-subspaces

0 = V0 ( V1 ( · · · ( Vn = Frq. The article [22] contains a recurrence for the generalized

Galois number G
(n)
r , which counts all increasing flags 0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn = Frq. An

inclusion-exclusion argument shows that

G
(n)
r =

∑n
i=0

(
n
i

)
F

(i)
r and F

(n)
r =

∑n
i=0(−1)n−i

(
n
i

)
G

(i)
r (4.10)

where F
(0)
r = G

(0)
r = 0 if r > 0. Vinroot shows in [22] that

G
(n)
r+1 =

∑n−1
i=0

(
n
i+1

)
(−1)i (q)r

(q)r−i
G

(n)
r−i (4.11)

by using a recurrence for the q-multinomial coefficients, namely:(
r

k1,k2,...,kn

)
q

=
∑

∅6=J⊆[n]

(−1)|J |−1 (q)r−1

(q)r−|J|

(
r−|J |
k−eJ

)
q

(4.12)

where k = (k1, k2, . . . , kn) and where eJ = (e1, e2, . . . , en) is the n-tuple with ei = |{i}∩J |.
A more complicated recurrence holds for F

(n)
r .

Proposition 58. For each r ∈ N and n ∈ P it holds that

F
(n)
r+1 =

∑n−1
i=0

∑n
j=n−1−i

(
n
j

)(
j

n−1−i

)
(−1)i (q)r

(q)r−i
F

(j)
r−i

under the convention that F
(0)
0 = 1 and F

(n)
r = 0 if r < n or r > 0 = n.

Proof. Starting from the definition, we have

F
(n)
r+1 =

∑
k∈Pn

(
r+1
k

)
q

=
∑
k∈Pn

∑
∅6=J⊆[n]

(−1)|J |−1 (q)r
(q)r−|J|+1

(
r+1−|J |
k−eJ

)
q

=
∑

∅6=J⊆[n]

∑
k∈Pn

(−1)|J |−1 (q)r
(q)r−|J|+1

(
r+1−|J |
k−eJ

)
q

=
n−1∑
i=0

∑
J⊆[n]
|J |=i+1

∑
k∈Pn

(−1)i (q)r
(q)r−i

(
r−i
k−eJ

)
q
.

As k varies over all sequences in Pn and J varies over all i+ 1 element subsets of [n], the
modified sequence k − eJ varies over all sequences in Pn as well as some elements of Nn.
Let reduce(k − eJ) be the sequence in Pm for m 6 n formed by removing all zero entries.
Each element of Pn arises as k−eJ = reduce(k−eJ) for exactly

(
n
i+1

)
different pairs (k, J).

More generally, if j ∈ [i + 1] then each of element of Pn−j arises as reduce(k − eJ) for
exactly

(
n
j

)(
n−j
i+1−j

)
pairs (k, J). So, continuing from the displayed equation, we get

F
(n)
r+1 =

n−1∑
i=0

i+1∑
j=0

∑
k′∈Pn−j

(
n
j

)(
n−j
i+1−j

)
(−1)i (q)r

(q)r−i

(
r−i
k′

)
q
.

Now substitute the identities
(
n
j

)
=
(
n
n−j

)
and F

(n−j)
r−i =

∑
k′∈Pn−j

(
r−i
k′

)
q
.
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The result of applying the coproduct of mQSym to XG(q) cannot be expressed as a
finite linear combination of terms XG1(q)⊗XG2(q), and XG(q) does not seem to naturally
arise as the image in mQSym of a combinatorial LC-Hopf algebra. In general XG(q)
is neither e-positive nor multifundamental-positive (see the examples in Tables 2 and
3). However, XG(q) does have a nontrivial positivity property that is not shared by
XG(x, q, µ).

A set-valued tableau T of shape λ is an assignment of sets Tij ∈ Set(P) to the cells
(i, j) in the Young diagram Dλ = {(i, j) ∈ P × P : 1 6 j 6 λi} of a partition λ. We
write (i, j) ∈ T to indicate that (i, j) belongs to the shape of T . A set-valued tableau T
is semistandard if Tij � Ti,j+1 and Tij ≺ Ti+1,j for all relevant positions. Let

xT :=
∏

(i,j)∈T
∏

k∈Tij xk and |T | :=
∑

(i,j)∈T |Tij|.

Definition 59. The symmetric Grothendieck function of a partition λ is the power se-
ries sλ :=

∑
T∈SetSSYT(λ)(−1)|T |−|λ|xT ∈ ZJx1, x2, . . .K where SetSSYT(λ) is the set of all

semistandard set-valued tableaux of shape λ.

Each sλ is in mSym and the set of all symmetric Grothendieck functions is another
pseudobasis for mSym [3]. When restricted to n variables, these symmetric functions are
the K-theory classes for the Schubert cells in the type A Grassmannian; see the discussion
in [4, §2.2].

We write µ ⊆ λ for two partitions if Dµ ⊆ Dλ and set Dλ/µ := Dλ\Dµ. In the definition
below, a semistandard tableau of shape λ/µ means a filling of Dλ/µ by positive integers
such that each row is weakly increasing (as column indices increase) and each column is
strict increasing (as row indices increase).

Definition 60 ([4, Def. 3.8]). Suppose P is a finite poset and λ is a partition. A
Grothendieck P -tableau of shape λ is a pair T = (U, V ) with both of these properties:

(a) U is a filling of Dµ by elements of P for some partition µ ⊆ λ, such that each element
of P is in at least one cell, and for each (i, j) ∈ Dµ one has Uij <P Ui,j+1 if (i, j+1) ∈
Dµ and Uij 6>P Ui+1,j if (i+ 1, j) ∈ Dµ;

(b) V is a semistandard tableau of shape λ/µ, whose entries in each row i are all less
than i (so Dλ/µ must have no cells in the first row).

Let GP be the set of Grothendieck P -tableaux. Let λ(T ) be the shape of T ∈ GP .

Example 61. When the elements of P do not include any positive integers, we can draw
a Grothendieck P -tableau T = (U, V ) of shape λ as simply a filling of Dλ in English
notation, as there is no ambiguity about which boxes belong to U and which belong to
V . Suppose P is the poset on {a, b, c, d, e} with a < c < d < e and b < c < d < e, while
a and b are incomparable. Then

a c d e
b d e 1
c 1 2
3

and

a c d e
b c d e
a e 2
1

are both Grothendieck P -tableaux of shape λ = (4, 4, 3, 1).
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Suppose P is a finite poset on a subset of Z, and let G = inc(P ). Choose some
T = (U, V ) ∈ GP and let µ be the shape of U . A G-inversion of T is a pair of cells
(i, j), (k, l) ∈ Dµ containing incomparable elements of P such that i < k and Uij > Ukl.
Let invG(T ) be the number of all G-inversions of T .

Example 62. Define P as in Example 61 and set a = −1, b = −2, c = −3, d = −4, and
e = −5. Then the two Grothendieck P -tableaux in Example 61 both have only a single
G-inversion, given by the pair of cells (1, 1) and (2, 1).

One of the main results of [4] establishes that if G is the incomparability graph inc(P )
of a (3 + 1)-free poset P then XG =

∑
T∈GP

sλ(T ). This is a K-theoretic generalization
of a theorem of Gasharov [7] showing that XG is Schur positive for the same family of
claw-free incomparability graphs .

Shareshian and Wachs [18] discovered a refinement of Gasharov’s result, which has the
following K-theoretic extension. Both our theorem and its predecessor in [18] only apply
to incomparability graphs of natural unit interval orders, which make up a proper subset
of all claw-free incomparability graphs. This loss of generality is to be expected, since we
need P to be a natural unit interval order to deduce from Lemma 56 that X inc(P )(q) is
symmetric.

Theorem 63. If G = inc(P ) for a natural unit interval order P then

XG(q) =
∑

T∈GP
qinvG(T )sλ(T ).

Table 4 shows some examples of these positive s-expansions.

Proof. Our argument is a hybrid of the proofs of [4, Thm. 3.9] and [18, Thm. 6.3]. To
remove any ambiguity in the following definitions, we assume that the elements of P are
all negative integers, so that as a set P is disjoint from P = {1, 2, 3, . . . }. Fix a partition
λ and let n = |λ| and N > 2n.

Following [4], define a Grothendieck P -array of type λ to be a pair (π,A) where π ∈ SN
and A is a map P × P → P t {∅} t P, written (i, j) 7→ Aij, with all of the following
properties:

• Aij = ∅ unless i 6 `(λ) and j 6 λπ(i) − π(i) + i;

• for each p ∈ P there is some (i, j) ∈ P× P with Aij = p;

• if Aij ∈ P when j > 1, then Ai(j−1) ∈ P and Ai(j−1) <P Aij;

• if Aij ∈ P, then Aij 6 π(i)− 1; and

• if Aij ∈ P when j > 1, then Ai(j−1) ∈ P , or Ai(j−1) ∈ P and Ai(j−1) 6 Aij.

One can think of A as a partial filling of an infinite matrix by elements of the poset P
(viewing Aij = ∅ as an unfilled position), with left-justified rows that each consist of an
increasing chain in P followed by a weakly increasing sequence of positive integers.
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If (π,A) is a Grothendieck P -array of type λ, then define invG(A) to be the set of
pairs of positions (i, j), (k, l) ∈ P× P with i < k, such that Aij and Akl are incomparable
elements of P with Aij > Akl.

Write XG(q) =
∑

λ cλ(q)sλ where cλ(q) ∈ ZJqK. Then, repeating the part of the proof
of [4, Thm. 3.9] through [4, Eq. (3.4)], using the formula XG(q) =

∑
κ q

desG(κ)xκ from
Lemma 56 in place of XG, shows that

cλ(q) =
∑
(π,A)

sgn(π)qinvG(A) (4.13)

where the sum ranges over all Grothendieck P -arrays of type λ.
As in [4], we refer to a position (i, j) with i > 2 as a flaw of a Grothendieck P -array

(π,A) if one of the following occurs:

• Aij ∈ P and either A(i−1)j /∈ P or Aij <P A(i−1)j; or

• Aij ∈ P and either A(i−1)j = ∅ or A(i−1)j ∈ P with Aij 6 A(i−1)j.

One can check that a Grothendieck P -array (π,A) has no flaws if and only if π = 1 is the
identify permutation and A ∈ GP corresponds to a Grothendieck P -tableau.

The goal now is to produce a sign-reversing, inversion-preserving involution Ψ of the
set of all Grothendieck P -arrays (π,A) that have flaws. The existence of such a map will
imply that (4.13) reduces to cλ(q) =

∑
T∈GP ,λ(T )=λ q

invG(A). The involution used in the

proof of [4, Thm. 3.9] is sign-reversing but not inversion-preserving. We can correct this
by incorporating ideas in the proof of [18, Thm. 6.3].

Given a flawed Grothendieck P -array (π,A), let c be the minimal column in which a
flaw occurs, and let r be the maximal row such that (r, c) is a flaw. Let Cr−1(A) be the
set of elements of P that appear in row r− 1 weakly to the right of column c. Let Cr(A)
be the set of elements of P that appear in row r strictly to the right of column c. Then
let H(A) be the subgraph of G induced on Cr−1(A) ∪Cr(A). For i ∈ {r, r + 1} let Oi(A)
be the set of x ∈ Ci(A) that belong to a connected component of odd size in H(A). All
elements of P that belong to both Cr−1(A) and Cr(A) are comparable in P to all vertices
in H(A), so must belong to connected components of size one, and are therefore in both
Or−1(A) and Or(A).

Set Ei(A) := Ci(A) \Oi(A). Then let Ir−1(A) be the set of elements of P that appear
in row r − 1 strictly to the left of column c, and let Ir(A) be the set of elements of P
in row r weakly to the left of column c. By repeating the argument in the proof of [18,
Thm. 6.3], which uses the hypothesis that P is (3 + 1)-free as a natural unit interval
order, one checks that Ir−1(A) ∪ Er−1(A) ∪ Or(A) is a chain in P in which Ir−1(A) is an
initial chain, and that Ir(A)∪Er(A)∪Or−1(A) is a chain in P in which Ir(A) is an initial
chain. Therefore we can define Ψ(π,A) = (π′, A′) where π′ is the product of π and the
transposition (r− 1 r), where A′ is formed from A by changing row r− 1 and r as follows:

• replace row r − 1 by the chain Ir−1(A) ∪ Er−1(A) ∪Or(A) followed by any integers
strictly to the right of column c in row r of A;
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• replace row r by the chain Ir(A)∪Er(A)∪Or−1(A) followed by any integers weakly
to the right of column c in row r − 1 of A.

Then one can check that (π′, A′) is a Grothendieck P -array also with a flaw at (r, c), and
that Ψ(π′, A′) = (π,A). The details are similar to what is presented in the proof of [4,
Thm. 3.9].

Finally, we explain why invG(A) = invG(A′). This relies on the fact that the connected
components in H(A) are paths with numerically increasing vertices [18, Lem. 4.4]. In each
such component of even size exactly half the elements must appear in row r− 1 of A and
exactly half must appear in row r of A. In the components of odd size, every other
element must appear in row r − 1 of A with the elements in between appearing in row r
of A. Thus in any given odd sized component with 2k + 1 > 1 vertices, either vertices 1,
3, 5, . . . , 2k− 1 contribute inversions to invG(A) while vertices 2, 4, 6, . . . , 2k contribute
inversions to invG(A′), or vice versa. Either way, we have invG(A) = invG(A′).
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Graph G LG(q) in the monomial basis {Mα} LG(q) in the basis {Lα}

2 3

1 (1 + 4q + q2)M111 + qM12 + qM21 + (6 + 24q +

6q2)M1111 +5qM112 +5qM121 +(1+3q+q2)M211 +
. . .

(1+2q+q2)L111+qL12+qL21+(2+5q+2q2)L1111+

3qL112 + 3qL121 + (1 + q + q2)L211 + . . .

3 2

1 (2 + 2q + 2q2)M111 + M12 + q2M21 + (12 + 12q +

12q2)M1111 + 5M112 + (2 + 3q2)M121 + (2q +

3q2)M211 + . . .

(1+2q+q2)L111+L12+q
2L21+(2+4q+3q2)L1111+

3L112 + (1 + 2q2)L121 + (2q + q2)L211 + . . .

1 3

2 (2 + 2q + 2q2)M111 + q2M12 + M21 + (12 + 12q +

12q2)M1111 + 5q2M112 + (3 + 2q2)M121 + (3 +
2q)M211 + . . .

(1+2q+q2)L111+q
2L12+L21+(3+4q+2q2)L1111+

3q2L112 + (2 + q2)L121 + (1 + 2q)L211 + . . .

2 3

1
(1+2q+2q2+q3)M111+(6+12q+12q2+6q3)M1111+
. . .

(1+2q+2q2+q3)L111+(3+6q+6q2+3q3)L1111+. . .

1 2

34
(1+8q+6q2+8q3+q4)M1111+(2q+2q3)M112+(2q+

2q3)M121+(2q+2q3)M211+(q+q3)M22+(10+80q+

60q2 + 80q3 + 10q4)M11111 + (18q + 18q3)M1112 +

(18q+18q3)M1121+(1+14q+6q2+14q3+q4)M1211+

(1+14q+6q2 +14q3 + q4)M2111 +(4q+4q3)M122 +

(4q + 4q3)M212 + (4q + 4q3)M221 + . . .

(1+3q+6q2 +3q3 + q4)L1111 +(q+ q3)L112 +(2q+

2q3)L121 + (q + q3)L211 + (q + q3)L22 + (4 + 16q +

24q2 + 16q3 + 4q4)L11111 + (7q + 7q3)L1112 + (9q +

9q3)L1121 + (1 + 5q + 6q2 + 5q3 + q4)L1211 + (1 +

3q + 6q2 + 3q3 + q4)L2111 + (3q + 3q3)L122 + (2q +

2q3)L212 + (3q + 3q3)L221 + . . .

1 2

43
(2 + 4q + 12q2 + 4q3 + 2q4)M1111 + 4q2M112 + (1 +

2q2 + q4)M121 + 4q2M211 + 2q2M22 + (20 + 40q +

120q2+40q3+20q4)M11111+36q2M1112+(7+22q2+

7q4)M1121 +(3+4q+22q2 +4q3 +3q4)M1211 +(2+

4q+24q2 +4q3 +2q4)M2111 +8q2M122 +8q2M212 +

(1 + 6q2 + q4)M221 + . . .

(1+4q+4q2 +4q3 +q4)L1111 +2q2L112 +(1+2q2 +

q4)L121+2q2L211+2q2L22+(5+16q+22q2+16q3+

5q4)L11111 + 14q2L1112 + (4 + 10q2 + 4q4)L1121 +

(1+4q+8q2 +4q3 + q4)L1211 +(1+4q+4q2 +4q3 +

q4)L2111+6q2L122+4q2L212+(1+4q2+q4)L221+
. . .

1 3

24
(4 + 4q + 8q2 + 4q3 + 4q4)M1111 + (2 + 2q4)M112 +

4q2M121 +(2+2q4)M211 +(1+q4)M22 +(40+40q+

80q2+40q3+40q4)M11111+(18+18q4)M1112+(4+

28q2+4q4)M1121+(8+4q+12q2+4q3+8q4)M1211+

(10+4q+8q2 +4q3 +10q4)M2111 +(4+4q4)M122 +

(4 + 4q4)M212 + (2 + 4q2 + 2q4)M221 + . . .

(1 + 4q + 4q2 + 4q3 + q4)L1111 + (1 + q4)L112 +

4q2L121 + (1 + q4)L211 + (1 + q4)L22 + (6 + 16q +

20q2 + 16q3 + 6q4)L11111 + (7 + 7q4)L1112 + (1 +

16q2 + q4)L1121 + (3+ 4q+4q2 +4q3 +3q4)L1211 +

(1+4q+4q2 +4q3 + q4)L2111 +(3+3q4)L122 +(2+

2q4)L212 + (1 + 4q2 + q4)L221 + . . .

1 2

34
(2+4q+6q2+6q3+4q4+2q5)M1111+(q2+q3)M112+

(1 + q5)M121 + (q2 + q3)M211 + (20 + 40q + 60q2 +

60q3+40q4+20q5)M11111+(9q2+9q3)M1112+(7+

2q2 +2q3 +7q5)M1121 + (3+ 2q+4q2 +4q3 +2q4 +

3q5)M1211 + (2q + 7q2 + 7q3 + 2q4)M2111 + . . .

(1+4q+4q2+4q3+4q4+q5)L1111+(q2+q3)L112+

(1+q5)L121+(q2+q3)L211+(6+20q+22q2+22q3+

20q4+6q5)L11111+(6q2+6q3)L1112+(5+q2+q3+

5q5)L1121 + (1 + 2q + 3q2 + 3q3 + 2q4 + q5)L1211 +

(2q + 4q2 + 4q3 + 2q4)L2111 + . . .

1 2

34
(6 + 6q+ 6q2 + 6q3)M1111 + (3q2 + 3q3)M112 + (3 +

3q3)M121 + (3 + 3q)M211 + q3M13 + M31 + (60 +

60q + 60q2 + 60q3)M11111 + (27q2 + 27q3)M1112 +

(21 + 6q2 + 27q3)M1121 + (21 + 18q + 15q3)M1211 +

(21+21q+12q2)M2111 +7q3M113 +(4+3q3)M131 +

(4 + 3q)M311 + 6q3M122 + 6q2M212 + 6M221 + . . .

(1 + 3q + 3q2 + q3)L1111 + (3q2 + 2q3)L112 + (2 +

2q3)L121 + (2 + 3q)L211 + q3L13 +L31 + (7 + 12q +

9q2 + 3q3)L11111 + (12q2 + 8q3)L1112 + (7 + 3q2 +

11q3)L1121 + (7 + 12q + 2q3)L1211 + (5 + 9q +

6q2)L2111+5q3L113+(3+2q3)L131+(2+3q)L311+

5q3L122 + 6q2L212 + 5L221 + . . .

Table 1: Partial computations of LG(q) for some small graphs G. The ellipses “. . . ” mask
higher order terms indexed by compositions α with |α| > |V (G)|+ 1.
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Graph G XG(q) in the monomial basis {Mα} XG(q) in the basis {Lα}

2 3

1 (1+4q+ q2)M111 + qM12 + qM21 +(3+12q+16q2 +

4q3 +q4)M1111 +(2q+3q2)M112 +(2q+3q2)M121 +

(2q + 3q2)M211 + . . .

(1 + 2q + q2)L111 + qL12 + qL21 + (4q2 + 4q3 +

q4)L1111 + 3q2L112 + 3q2L121 + 3q2L211 + . . .

3 2

1 (2+2q+2q2)M111 +M12 +q2M21 +(8+8q+10q2 +

8q3+2q4)M1111+(3+2q)M112+(2+q2+2q3)M121+

(2q2 + 2q3 + q4)M211 + . . .

(1 + 2q + q2)L111 + L12 + q2L21 + (4q2 + 4q3 +

q4)L1111 + (1 + 2q)L112 + (1 + 2q3)L121 + (2q3 +

q4)L211 + . . .

1 3

2 (2 + 2q+ 2q2)M111 + q2M12 +M21 + (8 + 8q+
10q2+8q3+2q4)M1111+(2q2+2q3+q4)M112+
(2 + q2 + 2q3)M121 + (3 + 2q)M211 + . . .

(1 + 2q+ q2)L111 + q2L12 +L21 + (4q2 + 4q3 +
q4)L1111 + (2q3 + q4)L112 + (1 + 2q3)L121 +
(1 + 2q)L211 + . . .

2 3

1 (1+2q+2q2 + q3)M111 +(3+6q+9q2 +9q3 +
6q4 + 3q5)M1111 + . . .

(1 + 2q + 2q2 + q3)L111 + (3q2 + 6q3 + 6q4 +
3q5)L1111 + . . .

1 2

34

(1 + 8q + 6q2 + 8q3 + q4)M1111 + (2q +
2q3)M112 +(2q+2q3)M121 +(2q+2q3)M211 +
(q+ q3)M22 + (4 + 32q+ 56q2 + 56q3 + 56q4 +
32q5 + 4q6)M11111 + (6q + 9q2 + 6q3 + 9q4 +
6q5)M1112+(6q+9q2+6q3+9q4+6q5)M1121+
(6q+9q2 +6q3 +9q4 +6q5)M1211 +(6q+9q2 +
6q3 + 9q4 + 6q5)M2111 + (q+ 2q2 + 2q3 + 2q4 +
q5)M122 + (2q + 2q2 + 2q4 + 2q5)M212 + (q +
2q2 + 2q3 + 2q4 + q5)M221 + . . .

(1+3q+6q2 +3q3 + q4)L1111 +(q+ q3)L112 +
(2q+ 2q3)L121 + (q+ q3)L211 + (q+ q3)L22 +
(2q2+24q3+22q4+12q5+4q6)L11111+(5q2+
q3 + 5q4 + 3q5)L1112 + (7q2 − q3 + 7q4 +
5q5)L1121+(7q2−q3+7q4+5q5)L1211+(5q2+
q3+5q4+3q5)L2111+(2q2+q3+2q4+q5)L122+
(2q2−2q3 +2q4 +2q5)L212 +(2q2 +q3 +2q4 +
q5)L221 + . . .

1 2

43

(2 + 4q+ 12q2 + 4q3 + 2q4)M1111 + 4q2M112 +
(1+2q2+q4)M121+4q2M211+2q2M22+(10+
20q+50q2+80q3+50q4+20q5+10q6)M11111+
(9q2 + 18q3 + 9q4)M1112 + (3 + 2q + 6q2 +
14q3 +6q4 +2q5 +3q6)M1121 +(3+2q+6q2 +
14q3 + 6q4 + 2q5 + 3q6)M1211 + (9q2 + 18q3 +
9q4)M2111 + (2q2 + 4q3 + 2q4)M122 + (2q2 +
4q3 + 2q4)M212 + (2q2 + 4q3 + 2q4)M221 + . . .

(1+4q+4q2 +4q3 +q4)L1111 +2q2L112 +(1+
2q2 + q4)L121 + 2q2L211 + 2q2L22 + (10q2 +
12q3+22q4+16q5+4q6)L11111+(−q2+10q3+
5q4)L1112 + (1 + 2q− 2q2 + 10q3 + 2q4 + 2q5 +
3q6)L1121 + (1 + 2q− 2q2 + 10q3 + 2q4 + 2q5 +
3q6)L1211 + (−q2 + 10q3 + 5q4)L2111 + (4q3 +
2q4)L122 + (−2q2 + 4q3 + 2q4)L212 + (4q3 +
2q4)L221 + . . .

1 3

24

(4+4q+8q2+4q3+4q4)M1111+(2+2q4)M112+
4q2M121+(2+2q4)M211+(1+q4)M22+(24+
24q+48q2+48q3+48q4+24q5+24q6)M11111+
(10 + 4q+ 4q2 + 4q4 + 4q5 + 10q6)M1112 + (4 +
10q2 + 8q3 + 10q4 + 4q6)M1121 + (4 + 10q2 +
8q3+10q4+4q6)M1211 +(10+4q+4q2+4q4+
4q5+10q6)M2111+(2+2q2+2q4+2q6)M122+
(4+4q6)M212+(2+2q2+2q4+2q6)M221+ . . .

(1+4q+4q2 +4q3 +q4)L1111 +(1+q4)L112 +
4q2L121 + (1 + q4)L211 + (1 + q4)L22 + (8q2 +
16q3 + 20q4 + 16q5 + 4q6)L11111 + (1 + 4q +
2q2 − q4 + 4q5 + 4q6)L1112 + (1 + 8q3 + 7q4 +
2q6)L1121 + (1 + 8q3 + 7q4 + 2q6)L1211 + (1 +
4q + 2q2 − q4 + 4q5 + 4q6)L2111 + (1 + 2q2 +
q4+2q6)L122+(2−2q4+4q6)L212+(1+2q2+
q4 + 2q6)L221 + . . .

Table 2: Partial computations of XG(q) for some small graphs G. The ellipses “. . . ” mask
higher order terms indexed by compositions α with |α| > |V (G)|+ 1.
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Graph G XG(q) in the monomial basis {Mα} XG(q) in the basis {Lα}

1 2

34

(2 + 4q+ 6q2 + 6q3 + 4q4 + 2q5)M1111 + (q2 +
q3)M112 + (1 + q5)M121 + (q2 + q3)M211 +
(10 + 20q+ 34q2 + 44q3 + 48q4 + 38q5 + 28q6 +
14q7 + 4q8)M11111 + (3q2 + 5q3 + 6q4 + 3q5 +
q6)M1112 +(3+2q+q2 +3q3 +2q4 +q5 +3q6 +
2q7 + q8)M1121 + (3 + 2q + q2 + 3q3 + 2q4 +
q5 + 3q6 + 2q7 + q8)M1211 + (3q2 + 5q3 + 6q4 +
3q5 + q6)M2111 + . . .

(1 + 4q + 4q2 + 4q3 + 4q4 + q5)L1111 + (q2 +
q3)L112+(1+q5)L121+(q2+q3)L211+(10q2+
12q3+16q4+26q5+20q6+10q7+2q8)L11111+
(2q3 + 6q4 + 3q5 + q6)L1112 + (1 + 2q + 2q3 +
2q4 − q5 + 3q6 + 2q7 + q8)L1121 + (1 + 2q +
2q3 + 2q4− q5 + 3q6 + 2q7 + q8)L1211 + (2q3 +
6q4 + 3q5 + q6)L2111 + . . .

1 2

34

(6+6q+6q2 +6q3)M1111 +(3q2 +3q3)M112 +
(3 + 3q3)M121 + (3 + 3q)M211 + q3M13 +
M31 + (42 + 42q + 48q2 + 48q3 + 48q4 +
6q5 + 6q6)M11111 + (15q2 + 15q3 + 18q4 +
3q5 + 3q6)M1112 + (15 + 3q2 + 18q3 + 15q4 +
3q6)M1121 + (18 + 15q + 3q3 + 18q4)M1211 +
(18+18q+18q2)M2111+(3q3+3q4+q6)M113+
(3+q3+3q4)M131+(4+3q)M311+6q4M122+
6q2M212 + 6M221 + . . .

(1+3q+3q2+q3)L1111+(3q2+2q3)L112+(2+
2q3)L121 +(2+3q)L211 +q3L13 +L31 +(6q2 +
12q3+9q4+3q5+q6)L11111+(6q3+9q4+3q5+
2q6)L1112+(2+8q3+9q4+2q6)L1121+(5+9q−
2q3 + 9q4)L1211 + (2 + 6q+ 12q2)L2111 + (q3 +
3q4 + q6)L113 +(2+3q4)L131 +(2+3q)L311 +
(−q3 + 6q4)L122 + 6q2L212 + 5L221 + . . .

Table 3: More partial computations of XG(q) for some small graphs G. The ellipses “. . . ”
mask higher order terms indexed by compositions α with |α| > |V (G)|+ 1.
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Order P G = inc(P ) XG(q) in the Grothendieck basis {sλ}

1
2

3

1 2

3 (1 + 2q + q2)s111 + qs21 + (6 + 12q + 10q2 + 4q3 + q4)s1111 + (4q + 3q2)s211 + qs22 +

(12q+ 15q2 + 6q3 + 2q4)s2111 + (4q+ 4q2)s221 + (12q+ 20q2 + 8q3 + 3q4)s2211 + (4q+

5q2)s222 + (12q + 25q2 + 11q3 + 4q4)s2221 + (12q + 29q2 + 15q3 + 5q4)s2222 + . . .

1 2 3
1 2

3
(1 + 2q + 2q2 + q3)s111 + (6 + 12q + 15q2 + 12q3 + 6q4 + 3q5)s1111 + . . .

1 2

43

1 2

34

(1 + 3q+3q2 + q3)s1111 + (2q+2q2)s211 + (q+ q2)s22 + (8+ 24q+30q2 +20q3 +8q4 +

2q5)s11111+(12q+18q2+10q3+2q4)s2111+(6q+10q2+4q3)s221+(48q+90q2+82q3+

46q4 +16q5 +6q6)s21111 +(24q+52q2 +42q3 +17q4 +3q5)s2211 +(10q+21q2 +12q3 +

3q4)s222 + (80q + 204q2 + 228q3 + 166q4 + 76q5 + 32q6 + 8q7)s22111 + (40q + 105q2 +

102q3+59q4+18q5+4q6)s2221+(128q+385q2+492q3+426q4+236q5+123q6+40q7+

12q8)s22211+(56q+163q2+183q3+131q4+56q5+21q6+3q7+q8)s2222+(192q+635q2+

908q3 + 898q4 + 580q5 + 363q6 + 144q7 + 64q8 + 12q9 + 4q10)s22221 + (256q + 891q2 +

1381q3+1514q4+1099q5+797q6+379q7+205q8+65q9+28q10+4q11+3q12)s22222+. . .

1 2

43

1 2

34

(1+3q+4q2+3q3+q4)s1111+(q+2q2+q3)s211+(8+24q+37q2+37q3+25q4+13q5+5q6+

q7)s11111+(6q+14q2+14q3+7q4+3q5)s2111+(q+3q2+2q3)s221+(24q+62q2+82q3+

69q4+45q5+23q6+10q7+3q8)s21111+(6q+20q2+23q3+13q4+6q5)s2211+(q+4q2+

3q3)s222+(24q+86q2+126q3+116q4+80q5+42q6+20q7+6q8)s22111+(6q+26q2+34q3+

21q4+11q5)s2221+(24q+110q2+183q3+181q4+134q5+72q6+36q7+12q8)s22211+(6q+

31q2 +46q3 +31q4 +18q5)s2222 +(24q+133q2 +252q3 +267q4 +210q5 +117q6 +61q7 +

22q8)s22221 + (24q+151q2 +318q3 +363q4 +300q5 +181q6 +98q7 +37q8)s22222 + . . .

1
2 3

4

1 2

34
(1+3q+5q2+5q3+3q4+q5)s1111+(q2+q3)s211+(8+24q+44q2+54q3+48q4+34q5+

18q6+8q7+2q8)s11111+(5q2+9q3+6q4+4q5)s2111+(q2+q3)s221+(17q2+41q3+46q4+

42q5+23q6+14q7+5q8)s21111+(5q2+9q3+7q4+5q5)s2211+(q2+q3)s222+(17q2+41q3+

52q4+50q5+29q6+18q7+7q8)s22111+(5q2+9q3+8q4+6q5)s2221+(17q2+41q3+58q4+

58q5+36q6+23q7+9q8)s22211+(5q2+9q3+9q4+7q5)s2222+(17q2+41q3+64q4+66q5+

44q6 +29q7 +11q8)s22221 +(17q2 +41q3 +69q4 +73q5 +53q6 +36q7 +13q8)s22222 + . . .

1 2 3 4
1 2

34
(1 + 3q + 5q2 + 6q3 + 5q4 + 3q5 + q6)s1111 + (8 + 24q + 44q2 + 60q3 + 64q4 + 56q5 +

40q6 + 24q7 + 12q8 + 4q9)s11111 + . . .

Table 4: Partial Grothendieck expansions of XG(q) for incomparability graphs G = inc(P )
of some natural unit interval orders. The ellipses “. . . ” mask higher order terms indexed
by partitions λ with `(λ) > |V (G)|+ 1.
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