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Abstract

One definition of key polynomials is as the weight generating functions of key
tableaux. Assaf and Schilling introduced a crystal structure on key tableaux and
related it to Morse–Schilling crystals on reduced factorizations for permutations via
weak Edelman–Greene insertion. In this paper, we consider generalizations of both
crystals depending on a flag. We extend weak EG insertion to a bijection between
our flagged objects and show that the recording tableau gives a crystal isomorphism.
As an application, we show that flagged key tableaux have a natural Demazure
crystal structure, whose characters recover Reiner and Shimozono’s flagged key
polynomials.

Mathematics Subject Classifications: 05E05,05E10

1 Introduction

Schur polynomials sλ, indexed by partitions, are the weight generating functions for semi-
standard Young tableaux of shape λ. As λ varies over all partitions with at most n parts,
{sλ} forms a Z-basis for the ring of symmetric polynomials in n variables. In represen-
tation theory, Schur polynomials are characters of irreducible polynomial representations
of the general linear groups. Key polynomials κα, indexed by weak compositions, are
the characters of Demazure modules, which are representations of Borel subgroups of the
general linear groups [6]. Key polynomials are nonsymmetric generalizations of Schur
polynomials, and {κα} forms a basis for Z[x1, x2, . . . ] as α ranges over all weak compo-
sitions. Lascoux and Schützenberger proved that key polynomials are weight generating
functions of various combinatorial objects [12].

Key polynomials are also related to other important polynomials in combinatorics.
For example, Schubert polynomials are representatives of the Schubert classes in the co-
homology ring of the complete flag variety [11]. Schubert polynomials also generalize Schur
polynomials in the sense that Schur polynomials are representatives of the Schubert classes
indexed by Grassmannian permutations. Schubert polynomials are also weight generating
functions for bounded reduced factorizations , which are certain generalizations of reduced
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words for a permutation [4, 8]; see §3 for more details. Lascoux and Schützenberger
proved that Schubert polynomials expand as non-negative integer linear combinations of
key polynomials; see [15, Thm. 3].

Assaf generalized semistandard Young tableaux to provide another combinatorial for-
mula of key polynomials [1]. Namely, κα is the weight generating function for (semistan-
dard) key tableaux of shape α. Such generalization already appeared in earlier literature
such as Mason’s permuted basement semi-skyline augmented filling in [13, §6], and one
can show that Mason’s generalization is equivalent to Assaf’s generalization. But Assaf
introduced a weak Edelman–Greene (EG) insertion algorithm to give a new bijective proof
of the key positivity of Schubert polynomials in the later paper [2]. Assaf’s algorithm is
based on the Edelman–Greene insertion, which Edelman and Greene introduced in [7] to
prove that Stanley symmetric functions [16] have non-negative integer coefficients in the
Schur basis.

Let RFn(w) be the set of all reduced factorizations for a permutation w with exactly
n components. In [14], Morse and Schilling defined a gln-crystal structure on RFn(w),
which they related to a crystal structure on semistandard Young tableaux through EG
insertion. In [3], Assaf and Schilling defined a crystal on key tableaux and proved that
SSKT(α), the set of all key tableaux with shape α, is the Demazure truncation of the
highest weight crystal of the highest weight λ, where λ is the partition rearrangement of
α. Then they proved that the recording tableau for weak EG insertion gives a crystal
isomorphism between BRF(w) and

⊔
α SSKT(α), where BRF(w) ⊆ RFn(w) is the subset

of reduced factorizations that are bounded in the sense of Definition 29.
A flag is a weakly increasing function ϕ : Z>0 → Z>0 such that ϕ(n) > n for all

n ∈ Z>0. If ϕ(i) = i for all i, then we say that ϕ is the standard flag . In both BRF(w)
and SSKT(α), the entries in the i-th part of the elements are bounded by i which is the
i-th value of the standard flag. A natural way of generalizing these sets is to replace the
standard flag by an arbitrary flag. In a ϕ-flagged reduced factorization, a given letter i may
appear in the first ϕ(i) parts instead of the first i parts. The i-th row of a ϕ-flagged key
tableau is bounded above by ϕ(i) instead of i. We denote these ϕ-flagged generalizations
as BRF(w,ϕ) and SSKT(α, ϕ), respectively.

Our main results concern crystal structures on these sets. Let ϕ be any flag. The
set BRF(w,ϕ) inherits a crystal structure from [14], and we show how to extend the
existing crystal structure on SSKT(α) to the larger set SSKT(α, ϕ). Assaf’s weak EG
insertion algorithm can be evaluated on flagged factorizations, and we are able to prove
the following generalization of [3, Thm. 5.10]:

Proposition 1 (See Propositions 32 and 41). The weak EG insertion algorithm induces
a crystal isomorphism from BRF(w,ϕ) to

⊔
α SSKT(α, ϕ).

One of our other main results gives an explicit relation between the crystals BRF(w,ϕ)
and BRF(w). Let B be any crystal with raising operators ei : B → B t {0}. The i-th
Demazure operator DBi acts on subsets X ⊆ B by

DBi X := {b ∈ B : eki (b) ∈ X for some k > 0}.

the electronic journal of combinatorics 32(1) (2025), #P1.12 2



When B = RFn(w), applying arbitrary sequences of these operators to highest weight
elements generates a family of subcrystals called Demazure crystals ; see Definition 36.

Theorem 2 (See Theorem 37). Let n be sufficiently large such that BRF(w,ϕ) ⊆ RFn(w).

Then BRF(w,ϕ) = D
RFn(w)
i1

· · ·DRFn(w)
ik

BRF(w) for certain i1, . . . , ik ∈ Z>0 depending
only on ϕ.

Corollary 3. Each BRF(w,ϕ) is a disjoint union of Demazure crystals and its weight
generating function is key-positive.

It is shown in [3] that SSKT(α) is a Demazure crystal. We can upgrade this to any
flag:

Theorem 4 (See Theorem 42). Each SSKT(α, ϕ) is a Demazure crystal.

Taking the character of SSKT(α, ϕ) gives a flagged generalization of key polynomials.
One reason that our flagged constructions are natural to consider is that such flagged
key polynomials have already appeared in the literature in a different form. Reiner and
Shimozono considered flagged key polynomials in the context of a flagged Littlewood-
Richardson rule [15, Thm. 20]. Their original definition does not involve key tableaux;
however, we can prove the following:

Theorem 5. Reiner and Shimozono’s flagged key polynomial κ(α,ϕ) from [15] is equal to∑
T∈SSKT(α,ϕ)

xwt(T ).

Reiner and Shimozono observed that κ(α,ϕ) = κβ for some β. Our results imply a
crystal analog:

Corollary 6 (See Corollary 44). The Demazure crystal SSKT(α, ϕ) ∼= SSKT(β) for some
β.

Other recent work [10] has also considered crystal structures on flagged objects such
as flagged reversed plane partitions; however, these objects are different from what we
consider in this paper.

The structure of the paper is as follows. In §2, we review the definitions of (flagged)
key polynomials and key tableaux. In §3, we review Assaf’s weak EG insertion algorithm
and extend it to arbitrary flags. In §4, we review the Morse–Schilling crystal on RFn(w)
and extend the Assaf–Schilling crystal operators to SSKT(α, ϕ). Our main results are
proved in §4.

2 Preliminaries

In this section, we review some preliminaries on key polynomials and key tableaux from
[3, 15, 12].
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2.1 Key polynomials

Let S∞ be the group of permutations of Z>0 = {1, 2, · · · } that fix all but finitely many
points. Write si ∈ S∞ for the adjacent transposition that exchanges i and i+1. A word is
a finite sequence of positive integers. A minimal-length word i1 · · · in with w = si1 · · · sin
is a reduced word for w ∈ S∞. Let R(w) be the set of all reduced words for w. The
length of a permutation w ∈ S∞ is the common length of any of its reduced words. In this
article, whenever we say “reduced word” we mean an element of R(w) for some w ∈ S∞.

The group S∞ acts on Z[x1, x2, . . . ] by permuting indeterminates. One has divided
difference operators ∂i and πi on Z[x1, x2, . . . ] by the formulas ∂i(f) := f−si·f

xi−xi+1
and

πi(f) := ∂i(xif). When f is symmetric in xi and xi+1 (so that si · f = f), we have
∂i(f) = 0 and πi(f) = f . Both divided difference operators satisfy the braid relations for
S∞ along with ∂2i = 0, π2

i = πi for all i. This means that we can define ∂w := ∂i1 · · · ∂in
and πw := πi1 · · · πin for any i1 · · · in ∈ R(w).

For m ∈ Z>0, a weak composition α of m is an infinite tuple of non-negative integers
(α1, α2, . . . ) with finitely many αi > 0 and

∑∞
i=1 αi = m. We identify finite tuples

(α1, α2, . . . , αn) with the zero-padded infinite tuples (α1, α2, . . . , αn, 0, 0, . . . ). The length
`(α) is the minimal n ∈ Z>0 such that αi = 0 for all i > n. The group S∞ acts on weak
compositions on the right by permuting components. A partition λ = (λ1, λ2, . . . ) is a
weak composition such that λ1 > λ2 > · · · .

Given a weak composition α, let w be the minimal-length permutation such that
α · w = λ, where λ is a partition. The key polynomial associated to α is κα := πwx

λ,
where xλ = xλ11 x

λ2
2 · · · . For example, κ1201 = π1π3(x

2110) = x2110 + x1210 + x2101 + x1201.
We often use the following recursive property of key polynomials: if αi > αi+1 then
πi(κα) = κα·si and otherwise πi(κα) = κα.

2.2 Key tableaux

A diagram is a finite set of left-aligned boxes in the right half plane Z×Z>0. Most of the
diagrams appearing in this paper will be in Z>0 × Z>0. If not, we draw a horizontal line
between the rows indexed by 0 and 1. Throughout this paper, we use French notation
when we draw diagrams, where the columns are indexed from left to right and the rows are
indexed from bottom to top. The shape of a diagram is the weak composition recording
its number of boxes in each row whose index is positive. A tableau is a filling of a diagram
with positive integers. For example, the tableau on the left has a row with a non-positive
index, and the tableau on the right is in Z>0 × Z>0:

2 7

3 6

2 4 5

6

·
3 4

2

.

the electronic journal of combinatorics 32(1) (2025), #P1.12 4



The weight of a word u is the weak composition wt(u) := (β1, β2, . . . ) of `(u), where βi
is the multiplicity of i in u. The row reading word of a tableau T is the word row(T ) :=
· · · r(2)r(1)r(0)r(−1) · · · , where r(i) is the i-th row of T read from left to right. The weight
of a tableau T is wt(T ) := wt(row(T )). For example, the left tableau has row reading
word 2736245 and weight (0, 2, 1, 1, 1, 1, 1).

A semistandard Young tableau is a tableau of a partition shape whose rows are weakly
increasing and whose columns are strictly increasing. A standard Young tableau is a
semistandard Young tableau whose entries are the numbers 1, 2, . . . , n with no repetitions
for some integer n > 0. The following definition of a key tableau is identical to [3, Def. 3.1].
Here, given a tableau T and a box (i, j) which it contains, we write Ti,j for the entry in
box (i, j).

Definition 7. A key tableau T is a tableau such that

(a) each row is weakly decreasing, and each column has distinct entries; and

(b) if i < k and Ti,j > Tk,j, then T contains (i, j + 1) and Ti,j+1 > Tk,j.

A standard key tableau is a key tableau filled by 1, 2, . . . , n with no repetitions for
some n ∈ Z>0. For example, the tableaux

5 4 3

·
7 6 5 5

1 2

and

5 4

3

2 1

are key tableaux of shapes (2, 4, 0, 3) and (2, 1, 2).
Fix a flag ϕ. We say that a key tableau T is ϕ-flagged if Ti,j 6 ϕ(i) whenever (i, j) is a

box in T . We denote the set of all ϕ-flagged key tableaux of shape α as SSKT(α, ϕ). If φ
is another flag such that ϕ(i) = φ(i) for all 1 6 i 6 `(α), then SSKT(α, ϕ) = SSKT(α, φ).
When ϕ is the standard flag with ϕ(i) = i for all i, we omit ϕ in our notation and write
SSKT(α, ϕ) as SSKT(α). The elements of SSKT(α) are what Assaf and Schilling called
semistandard key tableaux in [3, Def. 3.2].

Theorem 8 ([1, Prop. 2.6]). If α is a weak composition then κα =
∑

T∈SSKT(α) x
wt(T ).

Example 9. If α = (1, 2, 0, 1) then κα = x2110+x1210+x2101+x1201 while the set SSKT(α)
consists of four key tableaux:

3

·
2 1

1

3

·
2 2

1

4

·
2 1

1

4

·
2 2

1

.

the electronic journal of combinatorics 32(1) (2025), #P1.12 5



Key polynomials generalize Schur polynomials in the following way. Let λ be a par-
tition such that `(λ) 6 n and let SSYTn(λ) be the set of semistandard Young tableaux
of shape λ filled by 1, 2, . . . , n. The Schur polynomial indexed by λ with n variables is
sλ(x1, . . . , xn) =

∑
T∈SSYTn(λ)

xwt(T ). It is well-known that sλ(x1, . . . , xn) is Sn-invariant

[17, Thm. 7.10.2].
Suppose α is the weak composition (λn, λn−1, . . . , λ1). For this choice of α, any T ∈

SSKT(α) is weakly decreasing along each row and strictly increasing along each column.
We have a weight-reversing bijection from SSKT(α) to SSYTn(λ) sending a key tableau
T to the unique semistandard Young tableau S with Si,j = n+ 1− Tn+1−i,j. Hence

κα = sλ(xn, xn−1, . . . , x1) = sλ(x1, . . . , xn)

and so every Schur polynomial is a key polynomial.
Theorem 8 suggests a natural flagged generalization of key polynomials. Our main

results imply that these flagged generalizations coincide with the flagged key polynomials
defined in [15].

Definition 10. The ϕ-flagged key polynomial of a weak composition α is κ(α,ϕ) :=∑
T∈SSKT(α,ϕ) x

wt(T ).

Example 11. Let α = (1, 2, 0, 1) as above. Let ϕ be the non-standard flag such that
ϕ(1) = 2, ϕ(2) = 3 and ϕ(3) = ϕ(4) = 4. There are 7 key tableaux in SSKT(α, ϕ) that
are not in SSKT(α):

2

·
3 3

1

4

·
3 3

1

4

·
3 2

1

4

·
3 1

1

4

·
3 3

2

4

·
3 2

2

4

·
3 1

2

.

In this case κ(α,ϕ) = x2110+x1210+x2101+x1201+x1120+x1021+2x1111+x2011+x0121+x0211.

3 Insertion algorithms

In this section, we review Assaf’s definition of weak EG insertion and the lift operation
[2]. The main goal is to prove Proposition 32, which describes a flagged version of the
weak EG correspondence. Most of the material in this section is either a review of [2, 3]
or a mild generalization of results therein. However, Corollary 24 and Lemma 31 were
not presented in [3].

3.1 Partial orders and weak EG insertion tableaux

Before we describe weak EG insertion, we need to define a partial order 6 on R(w).
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Definition 12. An increasing factorization ρ(•) of a reduced word ρ partitions ρ into
consecutive subwords (ρ(k)|ρ(k−1)| · · · |ρ(1)) that are each strictly increasing. Some of the
subwords ρ(j) in ρ(•) may be empty. We say that ρ(•) is a reduced factorization for w if
ρ ∈ R(w). We denote the i-th letter of the j-th component in the factorization ρ(•) by ρ

(j)
i .

The index i counts from left to right, but the index j counts from right to left, following
the convention in [2].

There are at least two canonical increasing factorizations associated to a reduced word
ρ. First, the run factorization of ρ is the increasing factorization obtained by dividing
ρ into increasing subwords of maximal length. Second, the trivial factorization of ρ is
the increasing factorization (ρ(k)|ρ(k−1)| · · · |ρ(1)) with k = `(ρ) in which each subword ρ(j)

has length one. For example, the run factorization of ρ = 2736245 is (27|36|245) and the
trivial factorization is (2|7|3|6|2|4|5).

Definition 13. The weak descent tableau of a reduced word ρ, denoted WeakDesTab(ρ), is
the tableau constructed as follows. Suppose ρ has run factorization (ρ(k)|ρ(k−1)| · · · |ρ(1)).
Place ρ(k) into row ρ

(k)
1 . Then iterating over i = k − 1, . . . , 2, 1, we either place ρ(i) into

row ρ
(i)
1 if this is below the row containing ρ(i+1) or place ρ(i) into the row directly below

ρ(i+1) otherwise.

This may result in a tableau with boxes in rows with non-positive index.

Example 14. Suppose ρ = 2736245 and σ = 64567342. Then

WeakDesTab(ρ) =

2 7

3 6

2 4 5

and WeakDesTab(σ) =

6

·
4 5 6 7

3 4

2

·

.

The horizontal line in WeakDesTab(ρ) divides the positive and non-positive rows.

Remark 15. In [2], Assaf defined both a descent tableau [2, Def. 2.3] and a weak descent
tableau [2, Def. 2.8] of a reduced word ρ. These are (accidentally) both denoted as D(ρ).
Definition 13 refers to [2, Def. 2.8]. In general, the descent tableau and the weak descent
tableau of a reduced word are different. The descent tableau of ρ can be obtained by
removing all empty rows in WeakDesTab(ρ).

A reduced word ρ is virtual if WeakDesTab(ρ) occupies a row with a non-positive
index. Otherwise, we say ρ is non-virtual . The weak descent composition of a non-virtual
reduced word ρ is the shape of WeakDesTab(ρ), denoted by des(ρ). When ρ is virtual, we
define des(ρ) = ∅.

Example 16. Continuing from Example 14, the reduced word ρ = 2736245 is virtual and
des(ρ) = ∅ since the row consisting of 245 in the weak descent tableau has a non-positive
index. But the reduced word σ = 64567342 is non-virtual and des(σ) = (0, 1, 2, 4, 0, 1).
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The Coxeter–Knuth equivalence relation is the transitive closure of the relations on
reduced words with axyzb ∼ axzyb for y < x < z, with axyzb ∼ ayxzb for y < z < x,
and with ai(i+1)ib ∼ a(i+1)i(i+1)b whenever x, y, z, i ∈ Z>0 and a and b are possibly
empty subwords.

For weak compositions µ and σ of n, we write µ 6 σ if
∑k

i=1 µi 6
∑k

i=1 σi for all
k > 1. Following [2], if ρ and τ are non-virtual reduced words, then we write ρ 6 τ
if ρ ∼ τ and des(ρ) 6 des(τ) as weak compositions. This is a partial order, and each
Coxeter–Knuth equivalence class of R(w) contains a unique minimal non-virtual element
by [2, Thm. 4.23]. A reduced word is Yamanouchi [2, Def. 4.13] if it is the minimal
element of its Coxeter–Knuth equivalence class under 6.

Definition 17. The weak Edelman–Greene insertion tableau P̂ (ρ) of a reduced word ρ
is the weak descent tableau of the unique Yamanouchi reduced word ρ̂ with ρ ∼ ρ̂. We
define P̂ (ρ(•)) := P̂ (ρ).

Definition 17 is a generalization of the ordinary Edelman–Greene insertion [7, Def. 6.20],
which can be defined similarly: the Edelman–Greene insertion tableau is the unique in-
creasing semistandard Young tableau whose row reading word is Coxeter–Knuth equiva-
lent to ρ. Both tableaux can be computed by explicit inductive algorithms, as we explain
in the next section.

3.2 Assaf’s lift operation

Here, we review Assaf’s lift operation [2, §4.2], an algorithm to compute Yamanouchi
reduced words.

The lift operation involves the following pairing procedure. Fix two increasing words
τ = τ1τ2 · · · τs and σ = σ1σ2 · · ·σt. If all letters of σ are greater than τs, then the
pairing procedure ends and all letters of σ are unpaired. Otherwise, we pair τs with the
largest letter σi such that τs > σi. Then we repeat the pairing process with the subwords
τ1 · · · τs−1 and σ1 · · ·σi−1. If the unpaired letters in σ are x1 < · · · < xk, then we can
arrange τ on top of σ as

τ (0) τ (1) τ (2) · · · τ (k+1)

σ(1) x1 σ(2) x2 · · · xk σ(k+1)

where τ (i) and σ(i) are possibly empty consecutive subwords with the same length, whose
corresponding entries are paired together.

Definition 18 ([2, Def. 4.17]). If τ (i), xi, and σ(i) are as above then we define

lift(τ, σ) = (τ (0)τ (1)x1τ
(2) · · ·xkτ (k+1)|σ(1)σ̌(2) · · · σ̌(k+1)).

For each 1 6 j 6 k, σ̌(j+1) denotes the word of length `(σ(j+1)) with

σ̌
(j+1)
i =

{
σ
(j+1)
i − 1 for 1 6 i 6 bj

σ
(j+1)
i for bj + 1 6 i 6 `(σ(j+1))

where bj ∈ Z>0 is maximum such that τ
(j+1)
i = σ

(j+1)
i = xj + i for all 1 6 i 6 bj.
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An important property of lift is that if τ and σ are increasing such that τσ is a
reduced word, then lift(τ, σ) is a reduced word (ignoring the division into factors), and
lift(τ, σ) ∼ τσ [2, Lem. 4.18].

Definition 19 ([2, Def. 4.19]). Let ρ(•) = (ρ(k)| · · · |ρ(1)) be an increasing factorization of
a reduced word ρ. Fix i ∈ [k − 1] and suppose (ρ̃(i+1)|ρ̃(i)) = lift(ρ(i+1), ρ(i)). If ρ(i+1) and
ρ(i) are both nonempty and ρ̃(i+1) begins with the same letter as ρ(i+1), then we define
lifti(ρ

(•)) = (ρ(k)| · · · |ρ̃(i+1)|ρ̃(i)| · · · |ρ(1)). Otherwise, let lifti(ρ
(•)) = ρ(•).

For i 6 j, we define the lifting sequence as lift[i,j] = liftj ◦ liftj−1 ◦ · · · ◦ lifti. We say
lifti acts faithfully on an increasing factorization ρ(•) if lifti(ρ

(•)) 6= ρ(•). We say lift[i,j]
acts faithfully if lifti acts faithfully on ρ(•) and liftk acts faithfully on lift[i,k−1](ρ

(•)) for
i < k 6 j.

Definition 20. For an increasing factorization ρ(•) = (ρ(k)| · · · |ρ(1)), we construct the in-
creasing factorization lift(ρ(•)) as follows. Set (σ0)

(•) = ρ(•), and assume (σ1)
(•), . . . , (σn−1)

(•)

are known.

(1) If lifti
(
(σn−1)

(•)) = (σn−1)
(•) for all i, then lift(ρ(•)) = (σn−1)

(•).

(2) Otherwise, set (σn)(•) = lift[in,jn]
(
(σn−1)

(•)) where jn is the maximum j < k for

which there exists i 6 j such that lift[i,j] acts faithfully on (σn−1)
(•), and in is the

minimum i 6 jn for which lift[i,jn] acts faithfully on (σn−1)
(•).

Definition 21. For an increasing Young tableau T with reduced reading word, let ρ(•)

be the run factorization of row(T ) and define lift(T ) := WeakDesTab(lift(ρ(•))).

Remark 22. If lift(ρ(•)) = (η(k)|η(k−1)| · · · |η(1)) then lift(T ) is obtained by just placing the

word η(i) in row η
(i)
1 . Definition 21 is intended to match [2, Def. 4.22], which uses the

same notation lift(T ). However, Assaf’s definition in [2] specifies lift(T ) as the tableau
obtained by placing η(i) in row i. This appears to be a mistake; although [2, Fig. 17]
matches [2, Def. 4.22], the later figure [2, Fig. 21] and associated results use Definition 21.
For example, see Figure 1.

T =

6 9

3 7 8

2 3 5

1 2 4 5 6

lift(T ) =

6 7 9

·
·
3 8

2 3 4 5 6

1 2 4

Figure 1: The run factorization of row(T ) is (69|378|235|12456), and T has lift sequences
[i0, j0] = [3, 3] and [i1, j1] = [1, 1].

For a reduced word ρ, let P (ρ) be the EG insertion tableau of ρ; see [7, Def. 6.20].
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Theorem 23 ([2, Thm. 4.23]). If ρ is a reduced word then P̂ (ρ) = lift(P (ρ)).

We note two useful properties of P (ρ). A reduced word ρ has a descent at i if ρi > ρi+1

where 1 6 i 6 `(ρ) − 1. A standard Young tableau has a descent at i if i + 1 appears
in one of the rows above i. Edelman and Greene proved that the EG insertion preserves
descents [7, Lem. 6.28]. This property combined with Theorem 23 implies:

Corollary 24. Suppose ρ and ρxy are reduced for x, y ∈ Z>0. Suppose the box in P̂ (ρx)\
P̂ (ρ) is in column cx and the box in P̂ (ρxy) \ P̂ (ρx) is in column cy. Then x < y if and
only if cx < cy.

P̂ (ρ) =

4 8

3 6

·
1 2

P̂ (ρx) =

4 6 8

3 7

·
1 2

P̂ (ρxy) =

4 6 7 8

3 7

·
1 2

Figure 2: Let ρ = 438612, x = 7, and y = 8. Then cx = 3 and cy = 4.

It also holds that if i the smallest letter in ρ then P (ρ)(1,1) = i. Therefore:

Corollary 25. If i is the smallest letter in ρ then the first nonempty row in P̂ (ρ) has
index i.

3.3 Weak EG recording tableaux

This section introduces a recording tableau Q̂(ρ(•)) for the weak EG insertion which
slightly generalizes constructions in [2, 3]. These references defined Q̂(ρ(•)) when ρ(•)

is either the trivial factorization or bounded by the standard flag. Here, we extend to
arbitrary flagged factorizations.

Definition 26. The weak Edelman–Greene recording tableau Q̂(ρ(•)) is the tableau with
same shape as P̂ (ρ(•)) having i in the all boxes that are in P̂ (ρ(k)| · · · |ρ(i+1)|ρ(i)) but not
in P̂ (ρ(k)| · · · |ρ(i+1)). We define Q̂(ρ) to be the weak EG recording tableau of the trivial
factorization of ρ.

The weak EG recording tableau is well-defined because if ρ and ρx are reduced for
x ∈ Z>0 then P̂ (ρx) \ P̂ (ρ) has exactly one box [2, Lem. 5.8].

Example 27. Let ρ(•) = (3|26|56|4). As we insert ρ(•) from left to right, insertion
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tableaux are

3

·
·

3

2

·

3 6

2

·

3 6

2 5

· ·

3 5 6

2 5

· ·

6

·
·
3 5 6

2 4

· ·

.

The corresponding weak EG recording tableau Q̂ at each step is as follows:

4

·
·

4

3

·

4 3

3

·

4 3

3 2

· ·

4 3 2

3 2

· ·

1

·
·
4 3 2

3 2

· ·

.

The final tableaux on the right are P̂ (ρ(•)) and Q̂(ρ(•)).

Let β = (β1, β2, . . . ) be the weight of a key tableau T . We standardize T by the
following procedure: first replace all the 1’s by 1, 2, . . . , β1 from right to left, then replace
all the 2’s by β1+1, β1+2, . . . , β1+β2, and so on. Denote the result by stdkey

(
T
)
, which is

a standard key tableau of the same shape as T . If ρ is a reduced word, then stdkey
(
Q̂(ρ(•))

)
is equal to Q̂(ρ). If

T =

3

·
2 2

5 4 3 1

· · · ·

then stdkey(T ) =

5

·
3 2

7 6 4 1

· · · ·

.

Lemma 28. The weak EG recording tableau Q̂(ρ(•)) is a key tableau.

Proof. By [2, Thm. 5.9], stdkey
(
Q̂(ρ(•))

)
is a standard key tableau. The conditions in

Definition 7 follow by the definition of standardization.

Fix a flag ϕ, that is, a weakly increasing map ϕ : Z>0 → Z>0 with ϕ(i) > i.

Definition 29. We say that ρ(•) is ϕ-flagged if for each i > 1, the first entry of block
i satisfies ϕ(ρ

(i)
1 ) > i when ρ(i) is nonempty. We denote the set of all ϕ-flagged reduced
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factorizations for w as BRF(w,ϕ). If ϕ is the standard flag, then we omit ϕ in the
notation and write BRF(w), which is the same as the set of reduced factorizations with
cutoff defined in [3, Def. 5.4].

Remark 30. Fix n ∈ Z>0 and let BRFn(w,ϕ) be the subset of BRF(w,ϕ) consisting
of factorizations whose nonempty components lie in the first n components. Let t =
min{i ∈ Z>0 : ϕ(i) > n}. If φ is another flag such that ϕ(j) = φ(j) for all 1 6 j 6 t, then
BRFn(w,ϕ) = BRFn(w, φ).

Lemma 31. The weak EG recording tableau Q̂(ρ(•)) is ϕ-flagged (in the sense that any
entry in the i-th row is at most ϕ(i)) if and only if ρ(•) is ϕ-flagged.

Proof. Suppose Q̂(ρ(•)) is ϕ-flagged. Let Q̂(ρ(•))|[i,k] be the restriction to boxes with

entries in {i, . . . , k}. For 1 6 i 6 k, Q̂(ρ(•))|[i,k] is ϕ-flagged. Assume ρ(i) is nonempty,

and suppose the first nonempty row of Q̂(ρ(•))|[i,k] is row li with the maximum entry
j. By the flagged condition, we have i 6 j 6 ϕ(li). Because the minimal letter of

ρ(k)ρ(k−1) · · · ρ(i) is li by Corollary 25, the first entry ρ
(i)
1 of the i-th component is at least

li. Hence, ϕ(ρ
(i)
1 ) > ϕ(li) > i. Thus, ρ(•) is ϕ-flagged.

Conversely, suppose ρ(•) is ϕ-flagged. The letters in ρ(k) · · · ρ(i) are bounded below by
li, where li = min{n : ϕ(n) > i}. By Corollary 25, Q̂(ρ(•))|[i,k] has no boxes below row

li. If an i-entry in Q̂(ρ(•)) shows up in row j, then we have li 6 j and i 6 ϕ(li) 6 ϕ(j).
Hence, Q̂(ρ(•)) is ϕ-flagged.

Given a weak composition α, let YRα(w) be the set of Yamanouchi reduced words
σ for w such that des(σ) = α. The map WeakDesTab(−) : YRα(w) → {P̂ (ρ) : ρ ∈
R(w), sh

(
P̂ (ρ)

)
= α} is a bijection and the inverse map is given by row(−). Here we

generalize [3, Cor. 5.8] to all flags.

Proposition 32. The weak EG insertion map ρ(•) 7→
(
P̂ (ρ(•)), Q̂(ρ(•))

)
is a weight-

preserving bijection BRF(w,ϕ)→
⊔
α

(
YRα(w)× SSKT(α, ϕ)

)
.

Proof. Suppose YRα(w) is nonempty and (P̂ , Q̂) ∈ YRα(w) × SSKT(α, ϕ). There exists
a unique reduced word ρ such that P̂ (ρ) = P̂ and Q̂(ρ) = stdkey(Q̂) by [2, Cor. 5.12].

Let β = (β1, . . . , βk) be the weight of Q̂ and define ρ(•) = (ρ(k)| · · · |ρ(1)) to be the unique
factorization of ρ with `(ρ(i)) = βi. The factorization is increasing by Corollary 24 and by
construction Q̂(ρ(•)) = Q̂. Since Q̂ is ϕ-flagged, Lemma 31 implies that ρ(•) is ϕ-flagged.
Hence, the weak EG insertion map is surjective.

Suppose σ(•) ∈ BRF(w,ϕ) such that (P̂ (ρ(•)), Q̂(ρ(•))) = (P̂ (σ(•)), Q̂(σ(•))). Then
stdkey(Q̂(ρ(•))) = stdkey(Q̂(σ(•))), so ρ = σ by [2, Cor. 5.12]. Hence ρ(•) = σ(•) because

wt(Q̂(ρ(•))) = wt(Q̂(σ(•))).

4 Crystal structures

In this section, we prove our main results from the introduction. Throughout, we fix
n ∈ Z>0, w ∈ S∞, a flag ϕ, and a weak composition α. For a positive integer k, let
[k] := {1, 2, . . . , k}.
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4.1 Crystal structure on reduced factorizations

We begin with the basics of Morse–Schilling crystals on reduced factorizations [14, §3.2].
All crystals refer to gln-crystals in the sense of [5]. Such a crystal consists of a finite set B
with raising and lowering operators ei, fi : B → B t {0} indexed by 1 6 i 6 n− 1, along
with a weight function wt taking values in Zn. It is required that for any b, c ∈ B, we have
ei(b) = c if and only if fi(c) = b, and in this case wt(c) = wt(b) + ei − ei+1 where ei is
the i-th standard basis vector of Zn. Literature on crystals sometimes involves additional
axioms, but we will not impose any of those here.

The crystal graph of B is a directed graph with vertices in B and edges labeled by

[n − 1]. For x, y ∈ B, we draw an edge x
i−→ y if fi(x) = y. A connected component of

B is a subset of B whose elements form a connected component in the crystal graph of
B. The character of a finite crystal B is the Laurent polynomial ch(B) :=

∑
b∈B x

wt(b).
A crystal isomorphism between crystals B and C is a weight-preserving bijection B → C
that commutes with all raising and lowering operators.

Let RFn(w) be the set of all reduced factorizations r(•) = (r(n)| · · · |r(1)) for w ∈
S∞ (as specified in Definition 12) with exactly n components, some of which may be
empty. Suppose r(•) = (r(n)| · · · |r(1)) ∈ RFn(w). The operators ei and fi applied to r(•)

only change the factors r(i+1) and r(i). The definition of these operators depends on the
following pairing procedure.

Starting with the largest element b in r(i), pair it with the smallest element a in r(i+1)

with a > b. If there is no such a then b is unpaired. Next, we pair the second-largest
element b′ in r(i) with the smallest unpaired element a′ in r(i+1) with a′ > b′. If there is
no such a′ then b′ is unpaired. We continue this procedure for the remaining elements of
r(i) in decreasing order, ignoring at each stage any elements in r(i+1) that have already
been paired. Once the procedure ends, we define

Ri(r
(•)) = {b ∈ r(i) : b is unpaired in the pairing of r(i+1)r(i)},

Li(r
(•)) = {a ∈ r(i+1) : a is unpaired in the pairing of r(i+1)r(i)}.

(4.1)

Then fi(r
(•)) and ei(r

(•)) are given as follows:

Definition 33. If Ri(r
(•)) = ∅ then fi(r

(•)) = 0. Otherwise, fi(r
(•)) is obtained by

replacing r(i+1) and r(i) with r̃(i+1) and r̃(i), respectively, where

r̃(i) = r(i) \ {b} and r̃(i+1) = r(i+1) ∪ {b− t}

for b = minRi(r
(•)) and t = min{j > 0 : b− j − 1 /∈ r(i)}. Similarly, if Li(r

(•)) = ∅ then
ei(r

(•)) = 0. Otherwise, ei(r
(•)) is obtained by replacing r(i+1) and r(i) with r̃(i+1) and r̃(i),

respectively, where

r̃(i) = r(i) ∪ {a+ s} and r̃(i+1) = r(i+1) \ {a}

for a = maxLi(r
(•)) and s = min{j > 0 : a+ j + 1 /∈ r(i+1)}.
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The pairing procedure ensures that b− t+ 1, . . . , b− 1, b ∈ r(i+1) and a, a+ 1, . . . , a+
s− 1 ∈ r(i). Since r is reduced, we have b− t /∈ r(i+1) and a+ s /∈ r(i).

Example 34. Let r(•) = (268|14|345). Then L1(r
(•)) = {1} and R1(r

(•)) = {5, 4}, so
f1(r

(•)) = (268|134|35) and e1(r
(•)) = (268|4|1345).

For r(•) ∈ RFn(w), let wt(r(•)) := (`1, `2, . . . , `n) where `i is the length of r(i). For
example, this gives wt((268|134|35)) = (2, 3, 3). The operators fi and ei for 1 6 i < n and
the weight function wt define a normal gln-crystal structure on RFn(w), i.e. a gln-crystal
arises from representations of the quantized enveloping algebra Uq(An−1) [14, Thm. 3.5].
Additionally, if ei(r

(•)) 6= 0 then the underlying reduced words of r(•) and ei(r
(•)) are

Coxeter–Knuth equivalent by [14, Thm. 4.11].

Lemma 35. Assume r(•) ∈ RFn(w) is ϕ-flagged.

(1) ei(r
(•)) is ϕ-flagged or zero.

(2) If j = ϕ(i)− 1 > ϕ(i− 1) then fj(r
(•)) is ϕ-flagged or zero.

Proof. Assume r(•) is ϕ-flagged. Each number i only appears in the rightmost ϕ(i) com-
ponents. Since ei(r

(•)) 6= 0 is formed by removing a from r(i+1) and adding a + s > a to
r(i), it is ϕ-flagged.

Suppose j = ϕ(i) − 1 > ϕ(i − 1). The factorization fj(r
(•)) is obtained from r(•) by

removing b = minRj(r
(•)) from block j and adding b − t to block j + 1, where t > 0 is

minimal such that b− t− 1 /∈ r(j). Since r(•) is ϕ-flagged, fj(r
(•)) can fail to be ϕ-flagged

only if ϕ(b− t) < j + 1 = ϕ(i), which can only happen if b− t < i. However, as i− 1 can
only show up in the first ϕ(i− 1) < j blocks of r(•), we must have i− 1 /∈ r(j) so b− t > i.
Thus fj(r

(•)) is ϕ-flagged.

4.2 Demazure crystals

Recall that if B is a crystal and X ⊆ B, then we define DBi X := {b ∈ B : eki (b) ∈
X for some k > 0}. We abbreviate the Demazure operator DBi as Di if B is clear from
the context.

Suppose u(•) ∈ RFn(w) is a highest weight element in the sense that ei(u
(•)) = 0 for

all 1 6 i < n. If i1 · · · ik, j1 · · · jk ∈ R(σ) for some σ ∈ Sn and Di := D
RFn(w)
i , then

Di1 · · ·Dik{u(•)} = Dj1 · · ·Djk{u(•)} [5, Thm. 13.5]. We can therefore define Dσ{u(•)} :=
Di1 · · ·Dik{u(•)} when i1 · · · ik ∈ R(σ) and refer to Dσ{u(•)} as a Demazure subcrystal of
RFn(w). We view Dσ{u(•)} as a crystal by redefining ei and fi to act as zero whenever
they would send an element outside the subset. The Demazure character formula [5,

Thm. 13.7] implies that ch(Dσ{u(•)}) = πσx
wt(u(•)).

Definition 36. A Demazure crystal is a crystal isomorphic to a Demazure subcrystal of
RFn(w) for some w ∈ S∞ and some n ∈ Z>0.
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It is known (see [9]) that two Demazure crystals are isomorphic if and only if they have
the same character, and that every κα (with `(α) 6 n) occurs as the character of some
Demazure crystal. Moreover, any Demazure crystal that can be embedded in RFn(w)
must be equal to Dσ{u(•)} for some σ ∈ Sn and some highest weight element u(•).

In [3, Thm. 5.11], Assaf and Schilling showed that BRF(w) is a union of Demazure
crystals. If ϕ is a flag, we denote ϕ − ei : Z>0 → Z>0 to be the function such that
(ϕ − ei)(l) = ϕ(l) − δil, where δil is the Kronecker delta. The following theorem is the
main ingredient to prove Theorem 2.

Theorem 37. Suppose ϕ is non-standard, and i ∈ Z>0 is minimal with ϕ(i) > i. Let
j = ϕ(i) − 1. If j > n then BRFn(w,ϕ) = BRFn(w,ϕ − ei). Otherwise, BRFn(w,ϕ) =

D
RFn(w)
j BRFn(w,ϕ− ei).

Proof. The flagged condition says that i can only show up in the first j + 1 = ϕ(i) blocks
of any factorization in BRFn(w,ϕ), counting from right to left. However, i can only show
up in the first j blocks for any factorization in BRFn(w,ϕ − ei). Therefore, we have
BRFn(w,ϕ− ei) ⊆ BRFn(w,ϕ). When j > n, the desired equality holds by Remark 30.
Assume j < n from now on.

Suppose r(•) ∈ BRFn(w,ϕ) \BRFn(w,ϕ− ei). Then r(j+1) must start with i, but r(j)

does not contain any number smaller than i since

ϕ(i− 1) = i− 1 < i 6 ϕ(i)− 1 = j.

Therefore, we will have i ∈ Lj(r(•)) when we pair r(j+1) and r(j). The operator ej removes
the largest element a ∈ Lj(r(•)) from r(j+1) and adds a+ s to r(j), where s is the smallest
non-negative integer such that a+ s+ 1 /∈ r(j+1). If a = i, then block j+ 1 of ej(r

(•)) does
not contain i and ej(r

(•)) ∈ BRFn(w,ϕ− ei). If a 6= i, then we have a + s > a > i so
ej(r

(•)) ∈ BRFn(w,ϕ) \ BRFn(w,ϕ− ei) and i ∈ Lj
(
ej(r

(•))
)
. Since we can only apply

ej a finite number of times before reaching zero, we must have ekj (r
(•)) ∈ BRFn(w,ϕ− ei)

for some k > 0, so BRFn(w,ϕ) ⊆ DjBRFn(w,ϕ− ei).
Conversely, suppose r(•) ∈ DjBRFn(w,ϕ− ei). We want to show that r(•) is ϕ-flagged.

By definition, ekj (r
(•)) ∈ BRFn(w,ϕ− ei) for some k > 0, which is the same as saying

fkj (u(•)) = r(•) for some u(•) ∈ BRFn(w,ϕ−ei). Fix v(•) ∈ BRFn(w,ϕ) such that fj(v
(•)) 6=

0. Since BRFn(w,ϕ− ei) ⊆ BRFn(w,ϕ), it suffices to show that fj(v
(•)) ∈ BRFn(w,ϕ),

which follows from Lemma 35 because ϕ(i− 1) = i− 1 and j = ϕ(i)− 1 > (i+ 1)− 1 = i.

For n > b > a > 1, let Db↓a := D
RFn(w)
b−1 D

RFn(w)
b−2 · · ·DRFn(w)

a and Da↓a := id.

Corollary 38. Let ti = min{n, ϕ(i)} for 1 6 i 6 n. Then we have

BRFn(w,ϕ) = Dt1↓1Dt2↓2 · · ·Dtn↓nBRFn(w). (4.2)

As a consequence,
∑

ρ(•)∈BRFn(w,ϕ)
xwtρ

(•)
is key-positive.

Proof. Let ϕ(i) = min{n, ϕ(i)} for all 1 6 i 6 n. Since BRFn(w,ϕ) = BRFn(w,ϕ), (4.2)
follows by repeatedly applying Theorem 37. Because BRFn(w) is a disjoint union of De-
mazure crystals, so is BRFn(w,ϕ); hence the character of BRFn(w,ϕ) is
key-positive.
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4.3 Crystal structures on key tableaux

Assaf and Schilling [3, §3.2] defined a gln-crystal on key tableaux, and they proved that
SSKT(α) is a Demazure crystal. Instead of reviewing their definition, we summarize some
important properties.

First, the raising operator ei specified in [3, Def. 3.7] can be applied to all key tableaux
T not just the semistandard ones. If T is a key tableau, then ei(T ) is obtained by changing
some entries i+ 1 in the same row of T to i and then changing all i’s in the same columns
as these entries to i+ 1’s. All entries i+ 1 changed by ei are in consecutive columns, and
each of these entries has an i above it except for the rightmost one; see the proof of [3,
Prop. 3.8].

Proposition 39. If T ∈ SSKT(α, ϕ) then ei(T ) ∈ SSKT(α, ϕ) t {0}.

Proof. Assume ei(T ) 6= 0 and those i+1 changed by ei are in row r. Then i+1 6 ϕ(r) by
the flagged condition. Replacing an i+ 1 by i does not violate the flagged condition. For
an entry i in row r′ replaced by i + 1, we have r′ > r by the observation in the previous
paragraph. Hence, we have i+ 1 6 ϕ(r) 6 ϕ(r′), so ei(T ) ∈ SSKT(α, ϕ).

There is a unique way to define lowering operators fi : SSKT(α, ϕ)→ SSKT(α, ϕ)t{0}
such that ei(T ) = U if and only if T = fi(U) for T, U ∈ SSKT(α, ϕ); see [3, Def. 3.10],
which also applies in our ϕ-flagged case. By the previous proposition, we can view the
set SSKT(α, ϕ) as a gln-crystal with raising operators ei for all n with ϕ(`(α)) 6 n. The
bound on n is necessary and sufficient for the weight function of SSKT(α, ϕ) to take
values in Zn. Let λ be the partition rearrangement of α and λT be the transpose of λ.
Inspecting [3, Def. 3.7] gives the following proposition:

Proposition 40. The unique highest weight element in SSKT(α, ϕ) is the tableau in
which column i is filled by 1, 2, . . . , λTi from bottom to top.

Assaf and Schilling showed that the crystal operators for BRF(w) and SSKT(α) com-
mute with the weak EG recording tableau Q̂(−) [3, Thm. 5.10]. Our goal is to show
that this relation remains true for all flags. Before we proceed to the proof, we need to
define two shifting maps: one on BRF(w,ϕ), and the other on SSKT(α, ϕ). These shifting
maps commute with the crystal operators ei. Hence, the action of ei on BRF(w,ϕ) and
SSKT(α, ϕ) can be computed from the action of ei in the case of the standard flag.

Let N be a positive integer. If w ∈ Sm then 1N ×w ∈ SN+m is the permutation fixing
[N ] that has (1N × w)(i + N) = w(i) + N for all i ∈ Z>0. We define shiftN : RFn(w) →
RFn(1N × w) by adding N to each letter of every factor. Since the flagged condition on
reduced factorizations gives a lower bound for the letters in each component, the shifting
map shiftN sends BRF(w,ϕ) ↪→ BRF(1N × w,ϕ).

For any key tableau T , we define shiftN(T ) to be the key tableau obtained from T
by shifting up N rows. By the definition, shiftN preserves the flagged condition. Then
shiftN sends SSKT(α, ϕ) ↪→ SSKT(0N × α, ϕ), where 0N × α is the weak composition by
adding N 0’s at the beginning of α. Now, we are ready to prove the ϕ-flagged analog of
[3, Thm. 5.10].
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Proposition 41. Given r(•) ∈ BRF(w,ϕ) and any i > 0, if ei(r
(•)) 6= 0, then P̂

(
ei(r

(•))
)

=

P̂ (r(•)) and Q̂(ei(r
(•))) = ei

(
Q̂(r(•))

)
.

Proof. By [14, Thm. 4.11], ei preserves the Coxeter–Knuth equivalence relation. Thus,
we have P̂

(
ei(r

(•))
)

= P̂ (r(•)). Now let N be a large positive integer such that the images

of shiftN lie in the relevant subsets corresponding to the standard flag. Let Q̂(0) = 0,
shiftN(0) = 0 and consider the following diagram:

BRF(w,ϕ)
⊔
α SSKT(α, ϕ)

BRF(w,ϕ) t {0}
⊔
α SSKT(α, ϕ) t {0}

BRF(1N × w)
⊔
α SSKT(0N × α)

BRF(1N × w) t {0}
⊔
α SSKT(0N × α) t {0}

shiftN

Q̂

ei ei

shiftNQ̂

shiftN
Q̂

ei ei

Q̂

shiftN
.

The proposition is equivalent to saying that the top face of this diagram commutes. The
bottom face commutes by [3, Thm. 5.10]. Crystal operators ei for both reduced factoriza-
tions and key tableaux only depend on the relative order of the entries, so shiftN commutes
with crystal operators ei. Also, shiftN commutes with Q̂(−) because P̂ (shiftN(r(•))) is ob-
tained from P̂ (r(•)) by shifting all boxes up by N rows and adding N to all entries. Hence,
all vertical faces commute. Since the rightmost vertical arrow is injective, the top face
must commute.

The following theorem is a generalization of [3, Thm. 3.14], which asserts that SSKT(α)
is a Demazure crystal with character κα. For positive integers t > s define πt↓s :=
πt−1πt−2 · · · πs and let πt↓t := id.

Theorem 42. Suppose α is a weak composition with length k and ϕ is any flag. Then
SSKT(α, ϕ) is a Demazure crystal (of type gln for any n > ϕ(k)) with character κ(α,ϕ) =
πϕ(1)↓1πϕ(2)↓2 · · · πϕ(k)↓k(κα).

Proof. By [3, Thm. 3.14], SSKT(α) is a Demazure crystal. Suppose ϕ(k) 6 n and
SSKT(α) can be embedded into RFn(w) for some w ∈ S∞; hence, YRα(w) 6= ∅. Choose
any T ∈ YRα(w). Define C to be the set of ρ(•) ∈ BRF(w) with P̂ (ρ(•)) = T . Let C ′ be
the set of ρ(•) ∈ BRF(w,ϕ) with P̂ (ρ(•)) = T . By Proposition 32 and Proposition 41, the
map Q̂(−) is a crystal isomorphism SSKT(α) ∼= C and SSKT(α, ϕ) ∼= C ′. Therefore C is a

Demazure crystal embedded in RFn(w), so C = D
RFn(w)
σ {u(•)} for some σ ∈ Sn and some

highest weight element u(•).
Let Di = D

RFn(w)
i . Since the ei operators preserve the weak EG insertion tableau,

Corollary 38 implies that C ′ = Dt1↓1Dt2↓2 · · ·Dtn↓nC where ti = min{n, ϕ(i)}. Hence, C ′
is also a Demazure crystal. Because RFn(w) is normal, the Demazure character formula
[5, Thm. 13.7] implies that

ch(SSKT(α, ϕ)) = ch(C ′) = πt1↓1 · · · πtn↓n ch(C) = πt1↓1 · · · πtn↓n(κα). (4.3)
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Since α has length k, πtk+1↓k+1 · · · πtn↓n(κα) = κα by properties in §2.1. Also, ti = ϕ(i)
for all 1 6 i 6 k since ϕ(i) 6 ϕ(k) 6 n. Therefore, (4.3) reduces to ch(SSKT(α, ϕ)) =
πϕ(1)↓1 · · · πϕ(k)↓n(κα).

As an application of the theorem, we derive a recurrence for κ(α,ϕ).

Theorem 43. Let ϕ be a flag. If ϕ is strictly increasing, then κ(α,ϕ) = κβ where βj = αi
if ϕ(i) = j for some i or 0 otherwise. If ϕ is not strictly increasing and i is the smallest
index with ϕ(i) = ϕ(i+ 1), then

κ(α,ϕ) =

{
κ(α,ϕ−ei) if αi 6 αi+1,

κ(α·si,ϕ−ei) if αi > αi+1.
(4.4)

Proof. By Theorem 42, we have κ(α,ϕ) = πϕ(1)↓1 · · · πϕ(n)↓nκα. If ϕ is strictly increasing,
then κ(α,ϕ) expands into κβ directly using the recursive property in §2.1.

Assume ϕ is not strictly increasing and i is the smallest integer such that ϕ(i) =
ϕ(i+ 1) = N . Notice that

πN↓iπN↓(i+1) = (πN−1 · · · πi+1πi)(πN−1 · · · πi+2πi+1)

= (πN−2 · · · πi+1πi)(πN−1 · · · πi+2πi+1)πi = π(N−1)↓iπN↓(i+1)πi

since both expressions give reduced words for the same permutation when every “π” is
replaced by “s”. Substituting this identity and noting that all subscripts in the expression
πϕ(i+2)↓(i+2) · · · πϕ(n)↓n are at least i+ 2, we deduce that

κ(α,ϕ) = πϕ(1)↓1 · · · π(ϕ(i)−1)↓iπϕ(i+1)↓(i+1) · · · πϕ(n)↓n(πiκα)

and this becomes the desired identity by the recursive property in §2.1.

Continue to assume that n > ϕ(`(α)), so that SSKT(α, ϕ) is a gln-crystal.

Corollary 44. Suppose ϕ is a non-standard flag with i 6 n the smallest positive integer
such that ϕ(i) = ϕ(i+1). Then the crystal SSKT(α, ϕ) is isomorphic to SSKT(α·si, ϕ−ei)
if αi > αi+1 or to SSKT(α, ϕ− ei) if αi 6 αi+1.

Proof. By Theorems 42 and 43, the relevant crystals are Demazure crystals with the same
character. Hence, they are isomorphic.

Reiner and Shimozono defined ϕ-flagged key polynomials associated to α as∑
u•∈W (α,ϕ)

xwt(u
•)

for a certain set W (α, ϕ); see [15]. As a final application, we can now prove Theorem 5
from the introduction.
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Proof of Theorem 5. If ϕ is the standard flag, κα =
∑

u•∈W (α,ϕ) x
wt(u•) [12]. In the proof

of [15, Thm. 21], Reiner and Shimozono observed the following list of recursive properties
of W (α, ϕ). When ϕ is strictly increasing, we have W (α, ϕ) = W (β), where βj = αi
if j = ϕ(i) and βj = 0 otherwise. When ϕ is not strictly increasing, assume i ∈ Z>0

is minimal such that ϕ(i) = ϕ(i + 1). If αi 6 αi+1 then W (α, ϕ) = W (α, ϕ − ei). If
αi > αi+1 then there is a bijection between W (α, ϕ) and W (α · si, ϕ) = W (α · si, ϕ− ei).
Hence, W (α, ϕ) satisfies the same recursive relations involving the flag ϕ as SSKT(α, ϕ)
in Corollary 44.
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