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Abstract

Linear Nakayama algebras over a field K are in natural bijection to Dyck paths
and Dyck paths are in natural bijection to 321-avoiding permutations via the Billey-
Jockusch-Stanley bijection. Thus to every 321-avoiding permutation π we can asso-
ciate in a natural way a linear Nakayama algebra Aπ. We give a homological inter-
pretation of the fixed points statistic of 321-avoiding permutations using Nakayama
algebras with a linear quiver. We furthermore show that the space of self-extensions
for the Jacobson radical of a linear Nakayama algebra Aπ is isomorphic to Ks(π),
where s(π) is defined as the cardinality k such that π is the minimal product of
transpositions of the form si = (i, i + 1) and k is the number of distinct si that
appear.

Mathematics Subject Classifications: Primary 16G10, 18G20

1 Introduction

We assume all algebras are finite dimensional over a field K and are given by a connected
quiver and admissible relations. Nakayama algebras with a linear quiver and n simple
modules are in natural bijection to Dyck paths and Dyck paths are in natural bijection to
321-avoiding permutations via the Billey-Jockusch-Stanley bijection. Thus to every 321-
avoiding permutation π we can associate a Nakayama algebra with a linear quiver that we
denote by Aπ. In [13], it was shown that for the incidence algebra of a finite distributive
lattice L, the number of indecomposable projective A-modules with injective dimension
one is equal to the number of join-irreducible elements of L (we refer to Corollary 7 for
an explicit description of indecomposable projective modules with injective dimension
one). Thus it is a natural question whether this number of indecomposable projective
A-modules with injective dimension one also has a combinatorial interpretation for other
finite dimensional algebras. An important statistic for 321-avoiding permutations is the
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number of fixed points, see for example [12]. Our first main result gives a homological
interpretation of fixed points of 321-avoiding permutations using Nakayama algebras and
the number of indecomposable projective A-modules with injective dimension one.

Theorem 1. Let Aπ be a Nakayama algebra corresponding to the 321-avoiding permuta-
tion π. Then the number of indecomposable projective A-modules with injective dimension
one is equal to the number of fixed points of π.

As a part of the proof of the above theorem, we provide a formula for the fixed points
of every 321-avoiding permutation (see Corollary 21). Moreover, this proof also specifies
which indecomposable projectives have injective dimension 1 (see proof of Proposition
20).

A classical topic in homological algebra is the calculation of extension spaces between
modules of a ring. One of the most important modules for finite dimensional algebras is
the Jacobson radical J that is defined as the intersection of all maximal right ideals. A
central result is that the algebra is semi-simple if and only if the Jacobson radical is zero.
In this article we want to look at the vector space of extensions Ext1A(J, J) that classifies
short exact sequences of the form 0 → J → W → J → 0. Viewing the symmetric
group Sn as a Coxeter group with standard generators the transpositions si = (i, i + 1),
the support size s(π) of a permutation π is defined as the cardinality k such that π is
the minimal product of transpositions of the form si and k is the number of distinct
si that appear (see http://www.findstat.org/StatisticsDatabase/St000019 for this
statistic on permutations). Our second main result relates the space of self-extensions of
the Jacobson radical and the support size of a 321-avoiding permutation.

Theorem 2. Let Aπ be a linear Nakayama algebra with Jacobson radical J associated to
the 321-avoiding permutation π. Then Ext1Aπ(J, J) ∼= Ks(π).

As a corollary of the previous theorem we obtain that the number of linear Nakayama
algebras A with Jacobson radical J having n + 2 simple modules such that
dim(Ext1A(J, J)) = k is equal to the number of standard tableaux of shape [n, k]. In
particular the maximal vector space dimension of Ext1A(J, J) is equal to n for linear
Nakayama algebras with n + 2 simple modules and the number of algebras where this
maximal vector space dimension is attained is given by the Catalan number Cn.

2 Preliminaries

We always assume that algebras are finite dimensional, connected quiver algebras over a
field K. A module M is called uniserial if it has a unique composition series. A Nakayama
algebra is by definition an algebra such that every indecomposable module is uniserial.
They can be characterized as the quiver algebras having either a linear oriented line as a
quiver or a linear oriented cycle.
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The quiver of a Nakayama algebra with a cycle as a quiver:

◦0 // ◦1
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��
◦5
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◦4oo

The quiver of a Nakayama algebra with a line as a quiver:

◦0 // ◦1 // ◦2 ··· ◦n−2 // ◦n−1

In this article we will only work with Nakayama algebras having a line as a quiver.
Thus Nakayama algebra means in the rest of the article a Nakayama algebra that is a
quiver algebra with a connected line as a quiver. Let ei be the primitive idempotents
corresponding to the points in the quiver of a Nakayama algebra A. A Nakayama algebra
is uniquely determined by the dimensions of the indecomposable projective modules eiA.
Set ci := dim(eiA), then the list [c0, c1, . . . , cn−1] is called the Kupisch series of A when A
has n simple modules. Every indecomposable module of a Nakayama algebra A is of the
form eiA/eiJ

k for some i = 0, 1, . . . , n− 1 and 1 6 k 6 ci. The indecomposable injective
A-modules are the modules D(Aei) and we denote their vector space dimensions by di.
We have that di = min

{
k | k > ci−k

}
, see Theorem 2.2 in [11]. Nakayama algebras with

a linear quiver are in a natural bijection to Dyck paths by associating to a Nakayama
algebra A the Dyck path given as the top boundary of the Auslander-Reiten quiver of A,
see the preliminaries in [17] for full details.

On the other hand, Dyck paths are in natural bijection to 321-avoiding permutations
via the Billey-Jockusch-Stanley bijection that was introduced in [6]. We will explain the
Billey-Jockusch-Stanley bijection in the last section. Using those two bijections, we see
that we can associate to every 321-avoiding permutation π in a bijective way a Nakayama
algebra Aπ.

3 Translation

In the following we give elementary translations of the homological notions in Theorem
2.

Lemma 3. Let A be a finite dimensional algebra with a simple A-module S.
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1. Let M be an A-module with minimal projective resolution

· · ·Pi → · · ·P1 → P0 →M → 0.

For l > 0, ExtlA(M,S) 6= 0 if and only if there is a surjection Pl → S.

2. Dually, let
0→M → I0 → I1 → · · · → Ii → · · ·

be a minimal injective coresolution of M . For l > 0, ExtlA(S,M) 6= 0 if and only if
there is an injection S → Il.

Proof. See for example [5, Corollary 2.6.5].

Lemma 4. Let A be a finite dimensional algebra with n simple modules.

1. For a natural number k > 1 and an indecomposable module N , we have
ExtkA(J,N) = 0 if and only if the injective dimension of N is at most k.

2. For algebras of finite global dimension, Ext1A(J, J) = 0 if and only if the algebra is
hereditary, that is gldimA = 1.

Proof.

1. Let 0 → N → I0 → · · · → I i → · · · be a minimal injective coresolution of N . We
have ExtkA(J,N) = ExtkA(Ω1(A/J), N) = Extk+1

A (A/J,N). Now by 3 (2), we see
that Extk+1

A (A/J,N) is zero if and only if the term Ik+1 is zero (since A/J has every
simple module as a direct summand), which is equivalent to N having injective
dimension at most k.

2. Here we use the result that the global dimension of an algebra with finite global
dimension is equal to the injective dimension of its Jacobson radical, see [16]. We
have Ext1A(J, J) = 0 if and only if Ext1A(J, eiJ) = 0 for all i = 1, 2, . . . , n. Now by
(1) of this lemma Ext1A(J, eiJ) = 0 for all i = 1, 2, . . . , n if and only if the injective
dimension of each eiJ is at most one and thus also the injective dimension of J is
at most one which is equivalent to A having global dimension at most one.

Remark 5. In [8] we show that for any finite dimensional algebra A with Jacobson radical
J the injective dimension of the Jacobson radical J is equal to the global dimension of
A. Using this, one can show with the same proof as in (2) of the previous lemma that
Ext1A(J, J) = 0 if and only if A is hereditary for general algebras A.

By (2) of 4, every quiver algebra A = KQ/I of finite global dimension with non-zero
relations I has that Ext1A(J, J) 6= 0, which motivates us to study this vector space for
Nakayama algebras with a linear quiver here. Note that the number of Nakayama algebras
with a linear quiver and n simple modules is equal to the Catalan number Cn−1 and only
one such algebra is hereditary, namely the one with Kupisch series [n, n− 1, . . . , 2, 1].

We give a general statement when an indecomposable module over such an algebra has
injective dimension at most one and then specialize in the next two corollaries to modules
that are projective or powers of radicals of indecomposable projective modules.
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Proposition 6. Let A be a Nakayama algebra. The indecomposable module eiA/eiJ
k

has injective dimension at most one if and only if (k = di+k−1) or ( k < di+k−1 and
di+k−1 − k = di−1). k = di+k−1 holds if and only if eiA/eiJ

k is injective.

Proof. The following short exact sequence gives the injective envelope and cokernel of
eiA/eiJ

k (see for example the preliminaries in [15]):

0→ eiA/eiJ
k → D(Aei+k−1)→ D(Jkei+k−1)→ 0.

The injective envelope of D(Jkei+k−1) is D(Aei−1). This shows that eiA/eiJ
k is injective

if and only if it is isomorphic to D(Aei+k−1), which is equivalent to the condition that both
modules have the same vector space dimension since eiA/eiJ

k embeds into D(Aei+k−1).
Thus eiA/eiJ

k is injective if and only if k = dim(eiA/eiJ
k) = dim(D(Aei+k−1)) = di+k−1.

Now assume that eiA/eiJ
k is not injective, which means that k < di+k−1. Then eiA/eiJ

k

has injective dimension equal to one if and only if Ω−1(eiA/eiJ
k) = D(Jkei+k−1) is

injective which is equivalent to D(Jkei+k−1) having the same vector space dimension
as its injective envelope D(Aei−1). This translates into the condition di+k−1 − k =
dim(D(Jkei+k−1)) = dim(D(Aei−1)) = di−1.

Corollary 7. A module of the form eiA has injective dimension equal to one if and only
if ci < di+ci−1 and di+ci−1 − ci = di−1.

Proof. Just set k = ci in Proposition 6.

Remark 8. When A has n simple modules, the module en−1J
1 is the zero module and thus

always has injective dimension zero. In fact this is the only module of the form eiJ
1 of in-

jective dimension zero as those modules are proper submodules of another indecomposable
module, namely eiA, when they are non-zero.

Corollary 9. A module of the form esJ
t for 1 6 t 6 cs − 1 and s 6= n − 1 has injective

dimension at most one if and only if ds+cs−1−cs+ t = ds+t−1 and in this case the injective
dimension is equal to one. Especially: esJ

1 has injective dimension at most one if and
only if ds+cs−1 − cs − t = ds+t−1.

Proof. Note that esJ
t for t > 1 is a proper submodule of esA and thus is never injective

since esA is indecomposable and an injective proper submodule would show that esJ
t

is a direct summand, which is absurd. The projective cover of esJ
t is given by ft :

es+tA→ esJ
t and by comparing dimensions we see that ker(ft) = es+tJ

cs−t. By the first
isomorphism theorem, we have esJ

t ∼= es+tA/es+tJ
cs−t. Now we can use Proposition 6

and set i := s+ t and k := cs − t, to see that esJ
t has injective dimension equal to one if

and only if ds+cs−1 − cs − t = ds+t−1.

The previous results gave an algebraic characterization of modules of injective dimen-
sion at most one in Nakayama algebras. In the final section we will use a more pictorial
description of those modules. The next result shows how to calculate dim(Ext1A(J, J)) in
terms of radicals of indecomposable projective modules with injective dimension at most
one.
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Theorem 10. Let A be a Nakayama algebra with a linear quiver and Jacobson radical J .
Then dim(Ext1A(J, J)) = n− |{eiJ | id(eiJ) 6 1}|.

Proof. We have dim(Ext1A(J, J)) =
n−1∑
i=0

dim(Ext1A(J, eiJ)). Now dim(Ext1A(J, eiJ)) is non-

zero if and only if eiJ has injective dimension larger than one by Lemma 4. In case
dim(Ext1A(J, eiJ)) 6= 0, we have that dim(Ext1A(J, eiJ)) = 1, since

Ext1A(J, eiJ) = Ext1A(Ω1(A/J), eiJ) = Ext2A(A/J, eiJ)

counts by Lemma 3 the number of indecomposable summands of I2 when (I i) is a minimal
injective coresolution of eiJ . But I2 is indecomposable since A is a Nakayama algebra
and thus dim(Ext1A(J, eiJ)) = 1.

Since we need to count the indecomposable projective modules with injective dimen-
sion one, the following is relevant:

Lemma 11. Let A be a Nakayama algebra. The number of indecomposable projective
A-modules with injective dimension equal to one is equal to the number of indecomposable
injective A-modules with projective dimension equal to one.

Proof. Since Nakayama algebras have dominant dimension at least one, see [2], we have
for each indecomposable projective module P of injective dimension equal to one the
following short exact sequence:

0→ P → I(P )→ Ω−1(P )→ 0.

Here I(P ) is the injective envelope of P . Since P has injective dimension one, Ω−1(P )
is injective and since I(P ) is projective-injective (using that the dominant dimension is
at least one) Ω−1(P ) has projective dimension one. Thus Ω−1(−) induces a bijection
between the set of indecomposable projective modules of injective dimension one and
indecomposable injective modules with projective dimension one with inverse Ω1(−).

Another consequence of Nakayama algebras having dominant dimension at least one is
that we have id(eiJ

1) 6 1 if and only if Ω−1(eiJ
1) is an indecomposable injective module

whose first Syzygy is a radical of a projective module. We note this also as a lemma:

Lemma 12. Let A be a Nakayama algebra. Then |{eiJ | id(eiJ) 6 1}| equals the number
of indecomposable injective modules I such that Ω1(I) is isomorphic to the radical of a
projective module.

4 Relation to 321-avoiding permutations and proofs

4.1 Dyck paths

A Dyck n-path D is a lattice path from (0, 0) to (2n, 0) consisting of n number of upsteps
u = (1, 1) and n number of downsteps d = (1,−1) that never dip below the axis y = 0. A
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peak vertex of D is a vertex preceded by a u and followed by a d. Analogously, a valley
vertex of D is a vertex preceded by a d and followed by a u. We refer to Figure 1 for an
illustration of our conventions.

The level of a point (a, b) of D is the number b + 1. In Figure 1, for example, the
peaks are of levels 4, 4, 6, 4 and 6, while the valleys are of levels 3, 3 and 1.

The ascent sequence a = (a1, a2, . . . , a`) of D is a sequence of non-negative integers ai,
which correspond to the contiguous upsteps of D. It is a1 + · · · + a` = n. Similarly, we
can define the descent sequence d = (d1, d2, . . . , d`) of D. We write D =

∏`
i=1 u

aiddi .

For each i = 1, . . . , ` − 1 we can define the partial sums Ai :=
∑i

j=1 aj and Di :=∑i
j=1 dj. The reason we omit the case i = ` is because we always have A` = D` = n. For

the Dyck path D = undn, these partial sums are the empty sequences. By the definition
of a Dyck n-path we have:

1 6 A1 < A2 < · · · < A`−1 6 n− 1,

1 6 D1 < D2 < · · · < D`−1 6 n− 1,

Di 6 Ai, for 1 6 i 6 `− 1.

We call the sequences A := (A1, . . . , A`−1) and D := (D1, . . . , D`−1) the partial ascent
code and the partial descent code of D, respectively. We also call the pair (A,D) the
partial-sum ascent-descent code of D.

Figure 1: An example of a Dyck 8-path

Example 13. The Dyck path of Figure 1 is the Dyck 8-path D = u3d1u3d3u1d3u1d1

with ascent sequence a = (3, 3, 1, 1) and descent sequence d = (1, 3, 3, 1). Therefore, the
partial-sum ascent-descent code of D is (A,D) =

(
(3, 6, 7), (1, 4, 7)

)
.

As mentioned in the previous section we can associate to every linear Nakayama al-
gebra a canonical Dyck path via the top boundary of the Auslander-Reiten quiver. We
assume that the reader is familiar with this construction and refer to the preliminaries of
[17] for full details. We just give one example here.

Example 14. Let A be the Nakayama algebra with the following quiver Q

◦0 α1 // ◦1 α2 // ◦2 α3 // ◦3 α4 // ◦4
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and relations I =< α1α2, α3α4 >. Then the Kupisch series of A is given by [2, 3, 2, 2, 1]
and the corresponding Dyck path is given by uduuddud.

Let D :=
∏`

i=1 u
aiddi a Dyck n-path. We define a sequence of natural numbers ki,

i = 1, . . . , ` as follows:

• k1 = 1.

• ki = ki−1 + ai−1 − di−1, for all i = 2, . . . , `.

The number k1 corresponds to the level of the point (0, 0) and the numbers ki, i = 2, . . . , `
correspond to level of the valleys of D (see Figure 2).

Figure 2: The points with level ki

Lemma 15. Let D :=
∏`

i=1 u
aiddi be a Dyck n-path and ki the natural numbers defined

above. We have:

1. ki = 1 + Ai−1 −Di−1, for all i = 2, . . . , `.

2. k` + a` − d` = 1.

Proof. (1) follows by using the definition of ki and induction on i. For (2) we have:

k` + a` − d`
(1)
= 1 + (a1 + · · ·+ a`)− (d1 + · · ·+ d`) = 1 + n− n = 1.

We finish this section by reminding the reader of the basics on linear Nakayama al-
gebras, in particular where the projective covers, injective envelopes, and the Syzygies of
indecomposable modules are located in the Dyck path corresponding to the Auslander-
Reiten quiver of the algebra. This is explained in standard texts on Auslander-Reiten
theory such as [3] and in a combinatorial context in [17].

The indecomposable A-modules correspond to the lattice points with coordinates
(xI , xI − 2α), α = 0, . . . , n in the region enclosed by the path and the x-axis. In the
example of Figure 3, these are exactly the black dots. In the same example, we choose an
indecomposable A-module M , by drawing a red circle around it.

One can notice that each point (xI , xI − 2α) is the intersection of two diagonals; a
“right” diagonal RI : y = x − 2α and a “left” diagonal LI : y = −x + 2(xI − α). The
projective cover of the corresponding module is depicted by the upper point obtained by
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intersecting LI and the diagram, while its injective envelope is depicted by the upper
point obtained by intersecting RI and the diagram. In the example of Figure 3 the point
inside the blue circle corresponds to the projective cover of M , while the point inside the
green circle corresponds to its injective envelope.

We now calculate the level of the point corresponding to the first Sygygy of an inde-
composable A-module, by subtracting the level of the indecomposable module from the
level of its projective cover. Then we depict the first Sygygy in the left diagonal the
projective cover belongs to. In our example, the first Sygygy of M corresponds to the
point inside the purple circle.

Lastly, the radical of an indecomposable A-module is always one level below and in the
same left diagonal as its projective cover. In our example, the radical of M corresponds
to the point inside the yellow circle.

Figure 3: An example of an indecomposable A-module

As a result of the above depiction, indecomposable projective-injective modules corre-
spond to the peaks of the diagram and the indecomposable modules with dominant and
codominant dimension at least 1 correspond to its valleys.

4.2 321-avoiding permutations

A 321-avoiding permutation on [n] is a permutation π on [n] such that there is no triple
i < j < k with π(k) < π(j) < π(i).

Example 16. The permutation

(
1 2 3 4 5 6 7 8
8 1 5 2 4 3 6 7

)
∈ S8 is not a 321-avoiding

permutation, since, for example, π(6) < π(3) < π(1).
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4.3 The Billey-Jockusch-Stanley bijection

This bijection [6] is a bijection between the set of Dyck n-paths and the set of 321-avoiding
permutations on [n] and it is described as follows: Let D be a Dyck path with partial-
sum ascent-descent code (A,D), as described in section 4.1. We now obtain a partial
permutation, where A+ 1 are its excedance values and D its excedance locations. Filling
in the missing entries in increasing order, we obtain a 321-avoiding permutation.

Example 17. Let D = u3d1u3d3u1d3u1d1 be the Dyck 8-path of Example 13 with partial-
sum ascent-descent code (A,D) =

(
(3, 6, 7), (1, 4, 7)

)
. It is A + 1 = (4, 7, 8) and, hence,

according to the Billey-Jockusch-Stanley bijection we obtain the following partial permu-
tation on [8], with excedance values (4, 7, 8) and excedance locations (1, 4, 7).(

1 2 3 4 5 6 7 8
4 7 8

)
Filling in the missing entries in increasing order, we obtain the following 321-avoiding
permutation: (

1 2 3 4 5 6 7 8
4 1 2 7 3 5 8 6

)
4.4 The inverse of the Billey-Jockusch-Stanley bijection

Let π ∈ Sn be a 321-avoiding permutation and let L := {i1, i2, . . . , ir} be the set of all
excedance locations of π (i.e. π(ik) > ik for all k = 1, . . . , r). We order the elements
of L, such that i1 < i2 < · · · < ir. Since π is a 321-avoiding permutation, we have
π(i1) < π(i2) < · · · < π(ir). We now define a Dyck n-path as follows:

• The partial ascend code is A := (π(i1) − 1, π(i2) − 1, . . . , π(ir) − 1). Hence, the
ascent sequence is the following: a = (a1, a2, . . . , ar, ar+1), where a1 = π(i1) − 1,
aj = π(ij)− π(ij−1), for all j = 2, . . . , r and ar+1 = n+ 1− π(i`).

• The partial descend code is D := (i1, i2, . . . , ir). Hence, the descent sequence is the
following: d = (d1, d2, . . . , dr, dr+1), where d1 = i1, dj = ij − ij−1, for all j = 2, . . . , r
and dr+1 = n− ir.

Example 18. Let π =

(
1 2 3 4 5 6 7 8
4 1 2 7 3 5 8 6

)
∈ S8 be the 321-avoiding permuta-

tion we calculated in Example 17. We apply the inverse of the Billey-Jockusch-Stanley
bijection. It is r = 3, (i1, i2, i3) = (1, 4, 7) and (π(i1), π(i2), π(i3)) = (4, 7, 8). The as-
cent sequence is then a = (3, 3, 1, 1) and the descent sequence is d = (1, 3, 3, 1), which
correspond to the Dyck path.

Lemma 19. Let π be a 321-avoiding permutation on [n] with excedance locations i1 <
i2 < · · · < ir and let D =

∏r+1
i=1 u

aiddi be the corresponding Dyck n-path, obtained from
the inverse of the Billey-Jockusch bijection. Then, for all j = 1, 2, . . . , r we have:
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1. Aj = π(ij)− 1.

2. Dj = ij.

Proof. It follows directly from the definition of the inverse of the Billey-Jockusch
bijection.

4.5 The kernels of the projective covers of the indecomposable injective mod-
ules

The next proposition counts the number of indecomposable injective modules with pro-
jective dimension one in a linear Nakayama algebra.

Proposition 20. Let A be an (n+ 1)-linear Nakayama algebra with corresponding Dyck
n-path D. The number of points P , which correspond to the the indecomposable injective
modules with projective dimension one is:

1. n, if D = undn.

2. d1 − 1 +
∑`−1

i=2 max{di − ki − 1, 0}+ a` − 1, if D =
∏`

i=1 u
aiddi, ` > 2.

Proof. 1. This is clear.

2. We first consider the part ua1dd1 . It is a1 > d1. Since ` > 2, the indecomposable
injective modules Q, which are not projective, correspond to the points in the right
side of the peak, whose levels are 1 + a1 −m, where m = 1, 2, . . . , d1 − 1, as we can
see in the following piture:

Hence, the points P are the ones of level 1+a1−(1+a1−m) = m, m = 1, 2, . . . , d1−1.
If d1− 1 < 1, i.e. d1 = 1, then #P = 0. We consider now the case, where d1 > 1. It
is d1 − 1 < d1 6 a1 < a1 + 1, hence #P = d1 − 1. Summarizing the two cases, for
the part ua1dd1 we have #P = d1 − 1.
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We now consider the part ua`dd` . It is a` 6 d`. The indecomposable injective
modules Q, which are not projective, correspond to the points in the right side of
the peak, whose levels are k` + a` −m, where m = 1, 2, . . . , d`. Hence, the points P
are the ones of level k` + a` − (k` + a` −m) = m, m = 1, 2, . . . , d`.

If d` < k` then k` − d` + a` > a`. From Lemma 15(2) we have then that 1 > a`,
which is a contradiction. Therefore, d` > k`. If d` = k` then #P = 0. We now
consider the case d` > k`. From Lemma 15(2) we have k` − d` + a` = 1 > 0, hence
d` < k` + a`. Hence, #P = d` − k`. Summarizing the two cases, for the part
ua`dd` we have #P = d` − k`. Using Lemma 15(2) again, we have #P = d` − k` =
a` − (k` + a` − d`) = a` − 1.

We now consider the part uaiddi , where 1 < i < `. The indecomposable injective
modules Q, which are not projective, correspond to the points in the right side of
the peak, whose level is ki +ai−m, where m = 1, 2, . . . , di− 1. Hence, the points P

are the ones of level ki + ai − (ki + ai −m) = m, m = 1, 2, . . . , di − 1. if di − 1 6 ki
then #P = 0. We now consider the case di − 1 > ki. It is −1 < ki+1 = ki + ai − di.
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Therefore, di − 1 < ki + ai. Hence, #P = di − 1− ki. Summarizing the two cases,
for the part uaiddi , 1 < i < ` we have #P = max{di − ki − 1, 0}.

Let π ∈ Sn be a 321-avoiding permutation, {i1, i2, . . . , ir} the set of all excedance
locations of π, as described in Section 4.4. We have the following corollary.

Corollary 21. Let A be an (n + 1)-linear Nakayama algebra with corresponding Dyck
n-path D and π the 321-avoiding permutation under the Billey-Jockusch-Stanley bijec-
tion applied to D. The number of points P , which correspond to the the indecomposable
injective modules with projective dimension one is:

1. n, if π is the identity.

2. i1 − 1 +
∑r

j=2 max{ij − π(ij−1)− 1, 0}+ n− π(ir), if π is not the identity.

Proof. If π is the identity, then following section 4.4 the corresponding n-Dyck path is
D = undn. Hence, (1) follows directly from Proposition 20 (1).

Let π now not be the identity. Following section 4.4 the corresponding n-Dyck path
is D =

∏r+1
j=1 u

ajddj , where a1 = π(i1) − 1, aj = π(ij) − π(ij−1), for j = 2, . . . , r, ar+1 =
n+ 1−π(ir), d1 = i1, dj = ij− ij−1, for j = 2, . . . , r, dr+1 = n− ir. Following Proposition
20(2) we have that #P = i1− 1 +

∑r
j=2 max{ij − ij−1− kj − 1, 0}+ n− π(ir). It remains

to prove that for every j = 2, . . . , r, ij−1 + kj = π(ij−1). This result follows directly from
Lemma 19 and Lemma 15.

Theorem 22. Let π ∈ Sn be a 321-avoiding permutation with {i1, . . . , ir} the set of all
excedance locations of π, with i1 < i2 < · · · < ir. The number of fixed points of π is the
following:

1. n, if π is the identity.

2. i1 − 1 +
∑r

j=2 max{ij − π(ij−1)− 1, 0}+ n− π(ir), if π is not the identity.

Proof. (1) is obvious, therefore we prove (2). Let

π =

(
1 2 . . . i1 − 1 i1 . . . ir ir + 1 . . . n
∗ ∗ ∗ ∗ π(i1) ∗ π(ir) ∗ ∗ ∗

)
Since π is a 321-avoiding permutation, we must fill the missing entries in increasing order.
We have i1 < π(i1) and, hence, we first fill the entries with the numbers 1, 2, . . . , i1 − 1.
Therefore, the permutation takes the following form:

π =

(
1 2 . . . i1 − 1 i1 . . . ir ir + 1 . . . n
1 2 . . . i1 − 1 π(i1) ∗ π(ir) ∗ ∗ ∗

)
Therefore, we have at this point i1 − 1 fixed points. We now consider the indices ir +
1, ir + 2, . . . , n. Firstly, we notice that in this last part of the permutation we have to fill
n − ir entries. Since ir < π(ir), among the numbers, with which we fill these entries in
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increasing order, are the numbers (in decreasing order) n, n− 1, . . . , π(ir) + 1. The only
possible choice is the following:

π =

(
. . . ir ir + 1 π(ir)− 1 π(ir) π(ir) + 1 . . . n− 1 n

π(ir) ∗ ∗ ∗ π(ir) + 1 . . . n− 1 n

)
Therefore, we have from this last part of the permutation n− π(ir) fixed points.

We now consider the following part of the permutation:

π =

(
. . . ij−1 . . . ij . . .

π(ij−1) ∗ π(ij)

)
,

where j = 2, . . . , r. We distinguish the following cases:

• π(ij−1) < ij. In this case, the permutation is of the following form:

π =

(
1 . . . i1 . . . ij−1 . . . π(ij−1) π(ij−1) + 1 . . . ij − 1 ij . . .
∗ ∗ π(i1) ∗ π(ij−1) ∗ ∗ ∗ ∗ ∗ π(ij) ∗

)

Let x ∈ {1, 2, . . . , ij − 1}. We recall that we fill in the missing entries in increasing
order and that π(i1) < π(i2) < · · · < π(ij−1) < ij. Therefore, π(x) ∈ {1, 2, . . . , ij −
1}. In particular, we fill the entries π(x), x ∈ {1, 2, . . . , π(ij−1)} \ {i1, . . . , ij−1} in
increasing order with the numbers belonging to the set

{1, 2, . . . , π(ij−1)} \ {π(i1), . . . , π(ij−1)}.
Therefore, we have π(x) ∈ {1, 2, . . . , π(ij−1)}, for x ∈ {1, 2, . . . , π(ij−1)}.
Let now x ∈ {π(ij−1)+1, π(ij−1)+2, . . . , ij−1}. We fill the entries π(x) in increasing
order with the numbers belonging to the set {π(ij−1) + 1, π(ij−1) + 2, . . . , ij − 1}.
Therefore, we have π(x) = x, for x ∈ {π(ij−1)+1, π(ij−1)+2, . . . , ij−1} and hence,
in this part of the permutation we have ij − 1− π(ij−1) fixed points.

• π(ij−1) > ij. Let Sj := {` ∈ {1, . . . , ij−1} : π(`) > ij}. It is Sj 6= ∅, since ij−1 ∈ Sj.
Let x ∈ {1, . . . , ij − 1} \ {` : ` ∈ Sj}. We have π(x) ∈ {1, . . . , ij − 1 − |Sj|}. In
particular, for the elements x ∈ {ij−1 + 1, . . . , ij − 1} we have π(x) 6 x− |Sj| and,
hence, there are no fix points in this part of the permutation.

Combining the two cases, the number of fixed points in this part of the permutation
is max{ij − π(ij−1)− 1, 0}.

We can now give a proof of our first main result:

Theorem 23. Let Aπ be a Nakayama algebra corresponding to the 321-avoiding permuta-
tion π. Then the number of indecomposable projective A-modules with injective dimension
one is equal to the number of fixed points of π.

Proof. By Lemma 11 the number of indecomposable projective A-modules with injective
dimension one equals the number of indecomposable injective A-modules with projective
dimension one. Those modules were counted for a general Nakayama algebra with cor-
responding Dyck path D in Corollary 21 and in Theorem 22 we saw that this number
coincides with the fixed points of the 321-avoiding permutation π which is the image of
D under the Billey-Jockusch-Stanley bijection.
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4.6 The number of self-extensions of the Jacobson radical of a Nakayama
algebra

LetA be an (n+1)-linear Nakayama algebra. In Theorem 10 we saw that dim(Ext1A(J, J)) =
n+ 1− |{eiJ | id(eiJ) 6 1}| and in Lemma 12 that |{eiJ | id(eiJ) 6 1}| equals the number
of indecomposable injective modules I whose first syzygy is the radical of a projective
module. We will now count those modules for a general (n+ 1)-linear Nakayama algebra
A corresponding to a Dyck n-path D.

Proposition 24. Let A be an (n+ 1)-linear Nakayama algebra with corresponding Dyck
n-path D =

∏`
i=1 u

aiddi, ` > 2. The number of points P , which correspond to the inde-
composable injective modules whose first Syzygy is a radical of a projective module is:

d1 +
`−1∑
i=2

max{di − ki, 0}+ a`.

Proof. We first consider the part ua1dd1 . It is a1 > d1. The injective modules Q correspond
to the points of the right side of the peak, whose level is 1+a1−m, where m = 1, 2, . . . , d1−
1.

Their Syzygies are 1 + a1− (1 + a1−m) = m, m = 1, 2, . . . , d1− 1. We notice that in this
case, all these Syzygies correspond to points P (since d1 6 a1) and, hence, including also
the 0, we have #P = d1.

We now consider the part ua`dd` . It is a` 6 d`. The points Q, which are the injective
modules, correspond to the points of the right side of the peak, whose level is k` +a`−m,
where m = 1, 2, . . . , d`.

The Syzygy of the injective modules correspond to the points k`+a`− (k`+a`−m) =
m, m = 1, 2, . . . , d`. Hence, the level of the points we are interested is the intersec-
tion of the intervals [1, 2, . . . , d`] and [k`, k` + 1, . . . , k` + a` − 1]. From Lemma 15(2) we
have k` + a` − 1 = d`, therefore the intersection of the above intervals is the interval
[k`, k` + 1, . . . , k` + a` − 1]. Therefore, #P = a`.

We now consider the part uaiddi , where 1 < i < `. The injective modules correspond
to points Q, whose level is ki + ai −m, where m = 1, 2, . . . , di − 1.
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The Syzygies of the injective modules are those of level ki + ai − (ki + ai − m) = m,
m = 1, 2, . . . , di − 1. Hence, the levels of the points P is the intersection of the intervals
[1, 2, . . . , di − 1] and [ki, ki + 1, . . . , ki + ai]. We first notice that ki + ai > di− 1, since by
definition ki+ai−di = ki+1. If di 6 ki then #P = 0. If di > ki then the intersection of the
above intervals is the interval [ki, ki + 1, . . . , di − 1]. Hence, #P = di − ki. Summarizing
the two cases, for the part uaiddi , 1 < i < ` we have #P = max{di − ki, 0}.

Let π ∈ Sn be a 321-avoiding permutation, {i1, i2, . . . , ir} the set of all excedance
locations of π, as described in Section 4.4. We assume that π is not the identity. We have
the following corollary.

Corollary 25. Let A be an (n+ 1)-linear Nakayama algebra with corresponding n-Dyck
path D and let π be the image of D under the Billey-Jockusch-Stanley bijection. The
number of points P , which correspond to the indecomposable injective modules whose first
Syzygy is a radical of a projective module is:

i1 +
r∑
j=2

max{ij − π(ij−1), 0}+ n+ 1− π(ir).

Proof. Following Section 4.4 the corresponding n-Dyck path is D =
∏r+1

j=1 u
ajddj , where

a1 = π(i1) − 1, aj = π(ij) − π(ij−1), for j = 2, . . . , r, ar+1 = n + 1 − π(ir), d1 = i1,
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dj = ij − ij−1, for j = 2, . . . , r, dr+1 = n − ir. Following Proposition 24 we have that
#P = i1 +

∑r
j=2 max{ij− ij−1−kj, 0}+n+1−π(ir). It remains to prove that ij−1 +kj =

π(ij−1), for j = 2, . . . , r. This result follows directly from Lemma 19 and Lemma 15.

Definition 26. The connectivity set of a permutation σ ∈ Sn is the set of indices 1 6 i 6 n
such that σ(k) < i for all k < i. The support size s(σ) of σ is defined as the cardinality k
such that π is the minimal product of transpositions of the form si and k is the number
of distinct si that appear.

We refer to http://www.findstat.org/StatisticsDatabase/St000019 for more data
on the support size. In particular we have that the connectivity set is the complement
of the support. And thus we can calculate the support size of a permutation using the
connectivity set as we will do in the following.

Theorem 27. Let π ∈ Sn be a 321-avoiding permutation (not the identity) with {i1, . . . , ir}
the set of all excedance locations of π, corresponding to an n-Dyck path using the Billey-
Jockusch-Stanley bijection. The connectivity set of π has the following cardinality:

i1 +
r∑
j=2

max{ij − π(ij−1), 0}+ n− π(ir).

Proof. Let

π =

(
1 2 . . . i1 − 1 i1 . . . ir ir + 1 . . . n
∗ ∗ ∗ ∗ π(i1) ∗ π(ir) ∗ ∗ ∗

)
According to the Billey-Jockusch-Stanley bijection, we must fill the missing entries in
increasing order. Since i1 < π(i1) we first fill the entries with the numbers 1, 2, . . . , i1− 1.
Therefore, the permutation takes the following form:

π =

(
1 2 . . . i1 − 1 i1 . . .
1 2 . . . i1 − 1 π(i1) ∗

)
Since i1 < π(i1) the points 1, 2, . . . , i1 belong to the connectivity set. Therefore, we have
at this point i1 points inside the connectivity set.

We now consider the indices ir+1, ir+2, . . . , n. Firstly, we notice that in this last part
of the permutation we have to fill n − ir entries. Since ir < π(ir), among the numbers,
with which we fill these entries in increasing order, are the numbers (in decreasing order)
n, n− 1, . . . , π(ir) + 1. The only possible choice is the following:

π =

(
. . . ir ir + 1 π(ir)− 1 π(ir) π(ir) + 1 . . . n− 1 n

π(ir) ∗ ∗ ∗ π(ir) + 1 . . . n− 1 n

)
Therefore, for each i ∈ {ir + 1, . . . , π(ir)} we have i 6 π(ir) and, hence, these points
don’t belong to the connectivity set of the permutation. On the other hand, the indices
π(ir) + 1, . . . , n − 1, n belong to this set. Hence, we have n − π(ir) elements inside the
connectivity set.

We now consider the indices between ij−1 + 1 and ij, for j = 2, . . . , r. We distinguish
the following cases:
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• π(ij−1) < ij. In this case, the permutation is of the following form:

π =

(
1 . . . i1 . . . ij−1 . . . π(ij−1) π(ij−1) + 1 . . . ij − 1 ij . . .
∗ ∗ π(i1) ∗ π(ij−1) ∗ ∗ ∗ ∗ ∗ π(ij) ∗

)

Let x ∈ {1, 2, . . . , ij − 1}. By the definition of the Billey-Jockusch-Stanley bijection
and the fact that π(i1) < π(i2) < · · · < π(ij−1) < ij, we have π(x) ∈ {1, 2, . . . , ij−1}.
In particular, we fill the entries π(x), x ∈ {1, 2, . . . , π(ij−1)} \ {i1, . . . , ij−1} in in-
creasing order with the numbers belonging to the set

{1, 2, . . . , π(ij−1)} \ {π(i1), . . . , π(ij−1)}.

Therefore, we have π(x) ∈ {1, 2, . . . , π(ij−1)}, for x ∈ {1, 2, . . . , π(ij−1)}.
Let now x ∈ {π(ij−1)+1, π(ij−1)+2, . . . , ij−1}. We fill the entries π(x) in increasing
order with the numbers belonging to the set {π(ij−1) + 1, π(ij−1) + 2, . . . , ij − 1}.
Therefore, we have π(x) = x, for x ∈ {π(ij−1)+1, π(ij−1)+2, . . . , ij−1}. Therefore,
for each x ∈ {ij−1 + 1, . . . , π(ij−1)} we have x 6 π(ij−1) and, hence, these points
don’t belong to the connectivity set of the permutation. On the other hand, the
indices π(ij−1) + 1, . . . , ij belong to this set. Hence, we have ij − π(ij−1) elements
inside the connectivity set.

• π(ij−1) > ij. Firstly, we notice that since π(ij−1) > ij, the index ij doesn’t belong
to the connectivity set. We now consider the indices x ∈ {ij−1 + 1, . . . , ij − 1}.
Let Sj := {` ∈ {1, . . . , ij−1} : π(`) > ij} ⊂ {i1, . . . , ij−1}. We have Sj 6= ∅, since
ij−1 ∈ Sj. Let x ∈ {1, . . . , ij−1}\{` : ` ∈ Sj}. We have π(x) ∈ {1, . . . , ij−1−|Sj|}.
In particular, by the definition of Billey-Jockusch-Stanley bijection, for the elements
x ∈ {ij−1 + 1, . . . , ij − 1} we have π(x) 6 x − |Sj| and, hence, these indices don’t
belong to connectivity set.

Therefore, by combining the two cases, we have that the number of points in the connec-
tivity set is max{ij − π(ij−1), 0}.

We now obtain our second main result:

Theorem 28. Let Aπ be an (n + 1)-linear Nakayama algebra with Jacobson radical J
associated to the 321-avoiding permutation π on [n]. Then Ext1Aπ(J, J) ∼= Ks(π).

Proof. In Theorem 10 we saw that dim(Ext1A(J, J)) = n + 1 − |{eiJ | id(eiJ) 6 1}| and
in Lemma 12 that |{eiJ | id(eiJ) 6 1}| equals the number of indecomposable injective
modules I whose first Syzygy is the radical of a projective module. We counted those
modules I for a general Nakayama algebra A corresponding to a Dyck n-path D in Corol-
lary 25 and in Theorem 27 we saw that it coincides with the cardinality of the connec-
tivity set of the corresponding 321-avoiding permutation π. Thus dim(Ext1A(J, J)) =
n+ 1− |{eiJ | id(eiJ) 6 1}| equals the support size of π.

As a corollary of the previous theorem we obtain:
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Corollary 29. Let k be a natural number with 0 6 k 6 n. The number of linear
Nakayama algebras A and Jacobson radical J with n + 2 simple modules such that
dim(Ext1A(J, J)) = k is equal to the number of standard tableaux of shape [n, k]. In
particular, the number of such Nakayama algebras such that dim(Ext1A(J, J)) is equal to
the maximal possible number n is given by the Catalan numbers Cn.

Proof. Let π be a general permutation in Sn. Then we have that the support size
s(π) is given by n − |{1 6 k 6 n | {π1, . . . , πk} = {1, . . . , k}}|, where |{1 6 k 6 n |
{π1, . . . , πk} = {1, . . . , k}}| is called the block number of π, see http://www.findstat.

org/StatisticsDatabase/St000056. The result now follows from Proposition 2.5 of
[1].

5 Outlook on generalizations

Motivated by the main result of our article, we pose the following problem:

Problem 30. Let k > 0 and n > 2. Give a combinatorial interpretation of the statistic
that associates the number of indecomposable projective A-modules of injective dimension
6 k to a linear Nakayama algebra with n simple modules.

In this article we gave a solution to this problem for k = 1. For k = 0 the problem
is about the number of indecomposable projective-injective modules and those clearly
correspond to the number of peaks of the Dyck path. We give the following combinatorial
conjecture for the case k = 2:

Conjecture 31. The statistic that associates to a Dyck path from (0, 0) to (0, 2n−2) (in
canonical bijection to a linear Nakayama algebra with n simple modules) the number of
indecomposable projective modules with injective dimension 6 2 has the same distribution
as the statistic that associates the pyramid weight plus one to an n− 1-Dyck path.

Here the pyramid weight of a Dyck path D is defined as the sum of the lengths of
the maximal pyramids (maximal sequences of the form uhdh ) in the path, see https:

//www.findstat.org/StatisticsDatabase/St000144/ for this statistic in findstat and
[4] and [9] for references where this statistic was studied. We came up this this conjecture
thanks to findstat and we verified this conjecture for n 6 10 with the computer. We
remark that findstat suggests that the pyramid statistic is related to several other statistics
on pattern avoiding permutations.
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