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Abstract

We characterize ratios of permanents of (generalized) submatrices which are
bounded on the set of all totally positive matrices. This provides a permanental
analog of results of Fallat, Gekhtman, and Johnson [Adv. Appl. Math. 30 no.
3, (2003) pp. 442–470] concerning ratios of matrix minors. We also extend work
of Drake, Gerrish, and the first author [Electron. J. Combin., 11 no. 1, (2004)
Note 6] by characterizing the differences of monomials in Z[x1,1, x1,2, . . . , xn,n] which
evaluate positively on the set of all totally positive n× n matrices.

Mathematics Subject Classifications: 15A15, 15B48, 06F25, 05A05, 15A45

1 Introduction

Given an n × n matrix A = (ai,j) and subsets I, J ⊆ [n] := {1, . . . , n}, let AI,J =
(ai,j)i∈I,j∈J denote the (I, J)-submatrix of A. For |I| = |J |, call det(AI,J) the (I, J)-minor
of A. A real n× n matrix A is called totally positive (totally nonnegative) if every minor
of A is positive (nonnegative). Let MTP

n ⊂MTNN
n denote these sets of matrices.

These and the setMHPS
n of n×n Hermitian positive semidefinite matrices arise in many

areas of mathematics, and for more than a century mathematicians have been studying
inequalities satisfied by their matrix entries. (See, e.g., [8].) Many such inequalities involve
minors and permanents. For instance inequalities of Fischer [9], Fan [4], and Lieb [15]
state that for all matrices A ∈ MTNN

n ∪MHPS
n , and for all I ⊆ [n] and Ic := [n] r I, we

have
det(A) 6 det(AI,I) det(AIc,Ic),

per(A) > per(AI,I) per(AIc,Ic).
(1)
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Koteljanskii’s inequality [13], [14] states that for A ∈MTNN
n ∪MHPS

n and for all I, J ⊆ [n]
we have

det(AI∪J,I∪J) det(AI∩J,I∩J) 6 det(AI,I) det(AJ,J). (2)

Many open questions about inequalities exist and seem difficult. For instance, it is
known which 8-tuples (I, J,K, L, I ′, J ′, K ′, L′) of subsets satisfy

det(AI,I′) det(AJ,J ′) 6 det(AK,K′) det(AL,L′) (3)

for all A ∈ MTNN
n [7], [16], but few permanental analogs of such inequalities are known.

While some of these 8-tuples also satisfiy

per(AI,I′) per(AJ,J ′) > per(AK,K′) per(AL,L′), (4)

this second inequality is not true in general. For example, the natural permanental analog

per(AI∪J,I∪J) per(AI∩J,I∩J) > per(AI,I) per(AJ,J), (5)

of (2) holds neither for all A ∈ MHPS
n nor for all A ∈ MTNN

n . (See [17, §6] for a coun-
terexample with n = 3.)

Let us put aside MHPS
n and consider conjectured inequalities of the form

product1 6 product2 (6)

involving minors and permanents of matrices in MTNN
n and MTP

n . One strategy for
studying (6) is to view the difference product2 − product1 as a polynomial

f(x) := f(x1,1, x1,2, . . . , xn,n) ∈ Z[x] := Z[x1,1, x1,2, . . . , xn,n] (7)

in matrix entries. Then the validity of the inequality (6) is equivalent to the statement
that for all A = (ai,j) ∈MTNN

n , we have

f(A) := f(a1,1, a1,2, . . . , an,n) > 0. (8)

We call a polynomial (7) with this property a totally nonnegative polynomial. SinceMTP
n

is dense in MTNN
n , the inequality (8) holds for all A ∈MTP

n if and only if it holds for all
A ∈MTNN

n .
A second strategy for studying (variations of) a potential inequality (6) is to ask for

which positive constants k1, k2 the modified inequalities

k1 · product1 6 product2 6 k2 · product1 (9)

hold for all A ∈ MTNN
n . Bounds of k1 = 1 or k2 = 1 imply the inequality (6) or its

reverse to hold; other bounds give information not apparent in the proof or disproof of
(6). Equivalently, we may view the ratio of product2 to product1 as a rational function

R(x) := R(x1,1, x1,2, . . . , xn,n) ∈ Q(x) := Q(x1,1, x1,2, . . . , xn,n) (10)
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in matrix entries, and we may ask for upper and lower bounds as x varies over MTP
n .

While a ratio (10) is not defined everywhere on MTNN
n , the density of MTP

n in MTNN
n

allows us to restrict our attention to MTP
n : we have

k1 6 R(x) 6 k2 (11)

for all x ∈MTP
n if and only if the same inequalities hold for all x ∈MTNN

n such that R(x)
is defined. Clearly the lower bound k1 is interesting only when positive, since products of
minors and permanents of totally nonnegative matrices are trivially bounded below by 0.

A characterization of all ratios of the form

det(xI,I′) det(xJ,J ′)

det(xK,K′) det(xL,L′)
, I, I ′, . . . , L, L′ ⊂ [n], (12)

which are bounded above and/or nontrivially bounded below on MTP
n follows from work

in [7] and [16]. Each ratio (12) is bounded above and/or below by 1, and for each n,
factors as a product of elements of a finite set of indecomposable ratios. This result was
extended in [11] to include ratios of products of arbitrarily many minors

det(xI1,I′1) · · · det(xIp,I′p)

det(xJ1,J ′1) · · · det(xJp,J ′p)
. (13)

Again, each of these factors as a product of elements belonging to a finite set of indecom-
posable ratios. For n = 3, each ratio (13) is bounded above and/or below by 1; for n > 4,
such bounds are conjectured [3].

While the permanental version (5) of Koteljanskii’s inequality is false, we will show in
Section 3 that the corresponding ratio is bounded above and nontrivially below. Specifi-
cally,

1

|I ∪ J |! |I ∩ J |!
6

per(xI,I) per(xJ,J)

per(xI∪J,I∪J) per(xI∩J,I∩J)
6 |I|! |J |! (14)

for all I, J ⊆ [n] and x ∈ MTP
n . The failure of (5), combined with (14), exposes a

difference between ratios of minors and of permanents: unlike the bounded ratios in (12),
not all bounded ratios of permanents are bounded by 1. Thus it is natural to ask which
ratios

R(x) =
per(xI1,I′1)per(xI2,I′2) · · · per(xIr,I′r)

per(xJ1,J ′1)per(xJ2,J ′2) · · · per(xJq ,J ′q)
(15)

are bounded above and/or nontrivially below as real-valued functions on MTP
n , and to

state bounds.
In Section 2 we describe a multigrading of the coordinate ring Z[x] of n× n matrices.

Extending work in [6], we define a partial order on the monomials in Z[x] which charac-
terizes the differences

∏
x
ci,j
i,j −

∏
x
di,j
i,j which are totally nonnegative polynomials. This

leads to our main results in Section 3 which characterize ratios (15) which are bounded
above and nontrivially below as real-valued functions on MTP

n . We provide some such
bounds, which are not necessarily tight. We finish in Section 4 with some open questions.
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2 A multigrading of the coordinate ring and the total nonneg-
ativity order

We will find it convenient to view degree-r monomials in Z[x] in terms of permutations in
the symmetric group Sr and multisets of [n]. In particular, given permutations v, w ∈ Sr

define the monomial
xv,w := xv1,w1 · · ·xvr,wr .

Define an r-element multiset of [n] to be a nondecreasing r-tuple of elements of [n]. In
exponential notation, we write ik to represent k consecutive occurrences of i in such an
r-tuple, e.g.,

(1, 1, 2, 3) = 122131, (1, 2, 2, 2) = 1123. (16)

Two r-element multisets

M = (m1, . . . ,mr) = 1α1 · · ·nαn , O = (o1, . . . , or) = 1β1 · · ·nβn , (17)

determine a generalized submatrix xM,O of x by (xM,O)i,j := xmi,oj . For example, when
n = 3, we have the 4× 4 generalized submatrix and monomial

x1123,1222 =


x1,1 x1,2 x1,2 x1,2
x1,1 x1,2 x1,2 x1,2
x2,1 x2,2 x2,2 x2,2
x3,1 x3,2 x3,2 x3,2

, (x1123,1222)
1234,4312 = x1,2x1,2x2,1x3,2. (18)

The ring Z[x] has a natural multigrading

Z[x] =
⊕
r>0

⊕
M,O

AM,O, (19)

where the second direct sum is over pairs (M,O) of r-element multisets of [n],

AM,O := spanZ{(xM,O)e,w |w ∈ Sr}, (20)

and e is the identity element of Sr. More precisely, for M , O as in (17), a basis for AM,O

is given by all monomials ∏
i,j∈[n]

x
ci,j
i,j (21)

with C = (ci,j) ∈ Matn×n(N) satisfying

ci,1 + · · ·+ ci,n = αi, c1,j + · · ·+ cn,j = βj for i, j = 1, . . . , n. (22)

One may express a monomial (21) in the form (xM,O)e,w by the following algorithm.

Algorithm 2.1. Given a monomial (21) in AM,O with M , O as in (17),

(i) Define the rearrangement u = u1 · · ·ur of O by writing (21) with variables in lexi-
cographic order as xm1,u1 · · ·xmr,ur .
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(ii) Let j1 < · · · < jβ1 be the positions of the β1 ones in u, let jβ1+1 < · · · < jβ1+β2 be
the positions of the β2 twos in u, etc.

(iii) For i = 1, . . . , r, define wji = i.

(iv) Call the resulting word w = w(C).

For example, it is easy to check that for n = 3 and multisets

(1123, 1222) = (122131, 112330)

of {1, 2, 3}, the graded component A1123,1222 of Z[x1,1, x1,2, . . . , x3,3] is spanned by mono-
mials (21), where C = (ci,j) is one of the matrices1 1 0

0 1 0
0 1 0

,
0 2 0

1 0 0
0 1 0

,
0 2 0

0 1 0
1 0 0

 (23)

having row sums (2, 1, 1) and column sums (1, 3, 0). These are

x1,1x1,2x2,2x3,2, x21,2x2,1x3,2, x21,2x2,2x3,1, (24)

with column index sequences equal to the rearrangements 1222, 2212, 2221 of 1222. Al-
gorithm 2.1 then produces permutations 1234, 2314, 2341 in S4, and we may express the
monomials (24) as

(x1123,1222)
1234,1234, (x1123,1222)

1234,2314, (x1123,1222)
1234,2341. (25)

For r-element multisets M , O of [n], the monomials in AM,O are closely related to
parabolic subgroups of Sr with standard generators s1, . . . , sr−1, and double cosets of the
form Wι(M)wWι(O) where w belongs to Sr, WJ is the subgroup of Sr generated by J , and

ι(M) := {s1, . . . , sr−1}r {sα1 , sα1+α2 , . . . , sr−αn} = {sj |mj = mj+1},
ι(O) := {s1, . . . , sr−1}r {sβ1 , sβ1+β2 , . . . , sr−βn} = {sj | oj = oj+1}.

(26)

It is easy to see that the map M 7→ ι(M) is bijective: one recovers M = 1α1 · · ·nαn

from the generators not in ι(M) as in (26). It is known that each double coset has
unique minimal and maximal elements with respect to the Bruhat order on Sr, defined
by declaring v 6 w if each reduced expression si1 · · · si` for w contains a subword which
is a reduced expression for v. (See, e.g., [2], [5].) Let Wι(M)\W/Wι(O) denote the set of
all double cosets of W = Sr determined by r-element multisets M , O.

Proposition 1. Fix r-element multisets M , O of [n] as in (17). The double cosets
Wι(M)\W/Wι(O) satisfy the following.

(i) Each double coset has a unique Bruhat-minimal element u satisfying su > u for all
s ∈ ι(M) and us > u for all s ∈ ι(O); it has a unique Bruhat-maximal element u′

satisfying su′ < u′ for all s ∈ ι(M) and u′s < u′ for all s ∈ ι(O).
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(ii) We have Wι(M)vWι(O) = Wι(M)wWι(O) if and only if (xM,O)e,v = (xM,O)e,w.

(iii) The cardinality |Wι(M)\W/Wι(O)| is the dimension of AM,O, equivalently, the number
of matrices in Matn×n(N) with row sums (α1, . . . , αn) and column sums (β1, . . . , βn).

(iv) Each permutation w produced by Algorithm 2.1 is the unique Bruhat-minimal ele-
ment of its coset Wι(M)wWι(O).

Proof. (i) See [5].
(ii) The dimension of AM,O is the cardinality of the set {(xM,O)e,w |w ∈ Sr}. But we have
(xM,O)e,v = (xM,O)e,w if and only if when we partition the r × r permutation matrices
P (v), P (w) of v, w into blocks by drawing bars after rows α1, α1 +α2, . . . , r−αn and after
columns β1, β1 + β2, . . . , r− βn, the corresponding blocks of P (v) and P (w) contain equal
numbers of ones. It follows that for fixed w ∈ Sr, the set {v ∈ Sr | (xM,O)e,v = (xM,O)e,w}
is Wι(M)wWι(O).
(iii) This follows from (ii), where ci,j is the number of ones in block (i, j) of the permutation
matrix of any permutation belonging to the double coset.
(iv) By Step (i) of the algorithm, subwords w1 · · ·wα1 , wα1+1 · · ·wα1+α2 , etc., of w(C) are
increasing. It follows that for any generator s ∈ ι(M) we have sw > w. By Step (ii) of the
algorithm, letters 1, . . . , β1 appear in increasing order in w(C), as do β1 + 1, . . . , β1 + β2,
etc. It follows that for any generator w ∈ ι(O) we have ws > w.

For any subsets I, J of generators of Sr, the Bruhat order on Sr induces a poset
structure on WI\W/WJ as follows. We declare WIvWJ 6 WIwWJ if elements of the
cosets satisfy any of the three (equivalent) inequalities in the Bruhat order on Sr. (See
[5, Lemma 2.2].)

(i) The minimal element of WIvWJ is less than or equal to the minimal element of
WIwWJ .

(ii) The maximal element of WIvWJ is less than or equal to the maximal element of
WIwWJ .

(iii) At least one element of WIvWJ is less than or equal to at least one element of
WIwWJ .

Call this the Bruhat order on WI\W/WJ . A fourth equivalent inequality can be stated
in terms of matrices associated to monomials in AM,O. (See, e.g., [12, Proposition 3].)
Given a matrix C = (ci,j) ∈ Matn×n(N), define the matrix C∗ = (c∗i,j) ∈ Matn×n(N) by

c∗i,j = sum of entries of C[i],[j]. (27)

Proposition 2. Fix monomials

(xM,O)e,v =
∏
i,j

x
ci,j
i,j , (xM,O)e,w =

∏
i,j

x
di,j
i,j ,
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in AM,O and define matrices C∗, D∗ as in (27). Then we have
Wι(M)vWι(O) 6 Wι(M)wWι(O) in the Bruhat order if and only if C∗ > D∗ in the com-
ponentwise order.

The Bruhat order on Wι(M)\W/Wι(O) is closely related to certain totally nonnegative
polynomials in AM,O. Indeed, when M = O = 1n, totally nonnegative polynomials of the
form xe,v − xe,w are characterized by the Bruhat order on Sn [6, Theorem 2].

Theorem 3. For v, w ∈ Sn, the polynomial xe,v − xe,w is totally nonnegative if and only
if v 6 w in the Bruhat order.

We will now extend this result to all monomials in Z[x]. Let us define a partial order
6T on all monomials in Z[x] by declaring (xM,O)e,v 6T (xP,Q)e,w if (xP,Q)e,w − (xM,O)e,v is
a totally nonnegative polynomial. We call this the total nonnegativity order on monomials
in Z[x]. It is not hard to show that the total nonnegativity order is a disjoint union of its
restrictions to the multigraded components (19) of Z[x].

Lemma 4. Monomials ∏
i,j

x
ci,j
i,j ,

∏
i,j

x
di,j
i,j (28)

are comparable in the total nonnegativity order only if they belong to the same multigraded
component of Z[x].

Proof. For k, ` ∈ [n] and t ∈ R>0, define the n× n matrix Ek,`(t) = (ek,`i,j )i,j∈[n] by

ek,`i,j =

{
t if i 6 k and j 6 `,

1 otherwise.
(29)

This matrix is totally nonnegative if t > 1, or k = n, or ` = n.
Suppose that the monomials belong to components AM,O and AM ′,O′ of Z[x], with M ,

O, as in (17) and
M ′ = 1α

′
1 · · ·nα′n , O′ = 1β

′
1 · · ·nβ′n .

If M 6= M ′, then let k ∈ [n] be the least index appearing with different multiplicities in the
two multisets. Evaluating the monomials (28) at Ek,n(t) yields tα1+···+αk and tα

′
1+···+α′k .

The difference of these can be made positive or negative by choosing t < 1 or t > 1. On
the other hand, if O 6= O′, then the evalulation of the monomials (28) at matrices of the
form En,`(t) leads to a similar conclusion.

Theorem 5. Fix r-element multisets M = 1α1 · · ·nαn, O = 1β1 · · ·nβn as in (17), and
matrices C,D ∈ Matn×n(N) with row and column sums (α1, . . . , αn), (β1, . . . , βn), and
define the polynomial

f(x) =
∏
i,j

x
ci,j
i,j −

∏
i,j

x
di,j
i,j

in AM,O. Then the following are equivalent.
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(i) f(x) is totally nonnegative.

(ii) C∗ > D∗ in the componentwise order.

(iii) w(C) 6 w(D) in the Bruhat order on Sr.

(iv) f(x) is equal to a sum of products of the form det(xI,J)xu1,v1 · · ·xur−2,vr−2 in AM,O

with |I| = |J | = 2.

Proof. (i ⇒ ii) Suppose C∗ 6> D∗ in the componentwise order and let (k, `) the the
lexicographically least pair satisfying c∗k,` < d∗k,`. Now choose t > 1 and evaluate f(x) at

the totally nonnegative matrix Ek,`(t) to obtain tc
∗
k,` − td∗k,` < 0. It follows that f(x) is

not a totally nonnegative polynomial.
(ii⇒ iii) This follows from Proposition 2 and the definition of the Bruhat order on double
cosets.
(iii ⇒ iv) Suppose that w(C) 6 w(D) and let p = `(w(D))− `(w(C)). Then there exist
a sequence

w(C) = y(0) < y(1) < · · · < y(p−1) < y(p) = w(D)

of permutations and a sequence ((i0, j0), . . . , (ip−1, jp−1)) of transpositions in Sr such that
we have

y(k) = (ik−1, jk−1)y
(k−1), `(y(k)) = `(y(k−1)) + 1

for k = 1, . . . , p. We may thus write f(x) = (xM,O)e,w(C)− (xM,O)e,w(D) as the telescoping
sum(
(xM,O)e,y

(0)−(xM,O)e,y
(1)
)

+
(
(xM,O)e,y

(1)−(xM,O)e,y
(2)
)

+ · · ·+
(
(xM,O)e,y

(p−1)−(xM,O)e,y
(p)
)
,

where each parenthesized difference either has the desired form or is 0.
(iv ⇒ i) A sum of products of minors is a totally nonnegative polynomial.

For example, let us revisit the monomials (24) – (25) in the graded componentA1123,1222

of Z[x1,1, x1,2, . . . , x3,3]. It is easy to see that 1234 < 2314 < 2341 in the Bruhat order
on S4 and that the application of (27) to the corresponding matrices in (23) yields the
componentwise comparisons1 2 2

1 3 3
1 4 4

 >

0 2 2
1 3 3
1 4 4

 >

0 2 2
0 3 3
1 4 4

. (30)

Thus we have (x1123,1222)
1234,1234 >T (x1123,1222)

1234,2314 >T (x1123,1222)
1234,2341, i.e.,

x1,1x1,2x2,2x3,2 >T x21,2x2,1x3,2 >T x21,2x2,2x3,1.

Furthermore, the chain 1234 < 2134 < 2314 < 2341 in the Bruhat order on S4 with

2134 = (1, 2)1234, 2314 = (2, 3)2134, 2341 = (3, 4)2314 (31)
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allows us to write x1,1x1,2x2,2x3,2 − x21,2x2,1x3,2 as(
(x1123,1222)

1234,1234 − (x1123,1222)
1234,2134

)
+
(
(x1123,1222)

1234,2134 − (x1123,1222)
1234,2314

)
= det

[
x1,1 x1,2
x1,1 x2,2

]
x2,2x3,2 + x1,2 det

[
x1,1 x1,2
x2,1 x2,2

]
x3,2,

and to write x21,2x2,1x3,2 − x21,2x2,2x3,1 as(
(x1123,1222)

1234,2314 − (x1123,1222)
1234,2341

)
= x21,2 det

[
x2,1 x2,2
x3,1 x3,2

]
.

3 Main results

LetMTP
n be the set of totally positive n×n matrices. To characterize ratios of products of

permanents which are bounded above and/or nontrivially bounded below on the setMTP
n ,

we first consider necessary conditions on the multisets of rows and columns appearing in
such ratios. Let

R(x) =
per(xI1,I′1)per(xI2,I′2) · · · per(xIr,I′r)

per(xJ1,J ′1)per(xJ2,J ′2) · · · per(xJq ,J ′q)
, (32)

be such a ratio, where

(I1, . . . , Ir), (I ′1, . . . , I
′
r), (J1, . . . , Jq), (J ′1, . . . , J

′
q) (33)

are multisets of [n] satisfying |Ik| = |I ′k|, |Jk| = |J ′k| for all k. In order for R(x) to be
bounded above or nontrivially bounded below onMTP

n the multisets (33) must be related
in terms of an operation which we call multiset union. Given multisets M = 1α1 · · ·nαn ,
O = 1β1 · · ·nβn of [n], define their multiset union to be

M dO := 1α1+β1 · · ·nαn+βn . (34)

For example, 1124 d 1233 = 11122334.

Proposition 6. Given multiset sequences as in (33), a ratio (32) can be bounded above
or nontrivially bounded below on MTP

n only if we have the multiset equalities

I1 d · · · d Ir = J1 d · · · d Jq, I ′1 d · · · d I ′r = J ′1 d · · · d J ′q. (35)

Proof. Given a multiset K, let µi(K) denote the multiplicity of i in K, and define

αi =
r∑

k=1

µi(Ik), βi =
r∑

k=1

µi(I
′
k), α′i =

q∑
k=1

µi(Jk), β′i =

q∑
k=1

µi(J
′
k). (36)

Assume that the multiset equalities (35) do not hold, e.g., for some i we have αi 6= α′i.
Let A be a totally positive matrix and construct a family of matrices (A(t))t>0 by scaling
row i of A by t. Clearly, each matrix A(t) is totally positive, since each minor det(A(t)I,J)
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equals either det(AI,J) or t times this. Furthermore, we have R(A(t)) = tαi−α′iR(A), since
each permanent with row multiset K containing i is scaled by tµi(K). Thus, by letting t
approach 0 or +∞, we can make R(A(t)) arbitrarily large or arbitrarily close to 0. The
same is true if we have βi 6= β′i.

To state sufficient conditions for the boundedness of ratios (32) we observe that it is
possible to bound the permanent above and below as follows.

Proposition 7. For any n× n totally nonnegative matrix A = (ai,j) we have

a1,1 · · · an,n 6 per(A) 6 n! · a1,1 · · · an,n. (37)

Proof. The first inequality follows from the fact that a1,w1· · · an,wn > 0 for all w ∈ Sn.
The second inequality follows from the fact (Theorem 3) that a1,w1 · · · an,wn 6 a1,1 · · · an,n
for all w ∈ Sn.

Now we state our main result, which characterizes ratios R(x) as in (32) which are
bounded above for x ∈MTP

n .

Theorem 8. Let rational function

R(x) =
per(xI1,I′1)per(xI2,I′2) · · · per(xIr,I′r)

per(xJ1,J ′1)per(xJ2,J ′2) · · · per(xJq ,J ′q)
(38)

have index sets which satisfy (35), and define matrices C = (ci,j), C∗ = (c∗i,j), D = (di,j),
D∗ = (d∗i,j) by

(xI1,I′1)
e,e · · · (xIr,I′r)

e,e =
∏

x
di,j
i,j , (xJ1,J ′1)

e,e · · · (xJq ,J ′q)
e,e =

∏
x
ci,j
i,j , (39)

and (27). Then R(x) is bounded above on the set of totally positive matrices if and only
if D∗ 6 C∗ in the componentwise order. In this case, it is bounded above by |I1|! · · · |Ir|! .

Proof. Suppose that D∗ � C∗. Then for some indices (k, `) we have d∗k,` > c∗k,`.

Then, we have R(Ek,`(t)) = p(t)
q(t)

where deg(p(t)) = d∗i,j > c∗i,j = deg(q(t)). Thus we
have

lim
t→∞

R(Ek,`(t)) = td
∗
i,j−c∗i,j =∞.

Assume therefore that we have D∗ 6 C∗ and let A be any n × n totally positive
matrix. Applying the inequalities of Proposition 7 to the numerator and denominator of
R(A) respectively, we see that R(A) is at most

|I1|!(AI1,I′1)
e,e · · · |Ir|!(AIr,I′r)e,e

(AJ1,J ′1)
e,e · · · (AJq ,J ′q)e,e

=
|I1|! · · · |Ir|!

∏
a
di,j
i,j∏

a
ci,j
i,j

. (40)

By Theorem 5 we have that Πa
di,j
i,j < Πa

ci,j
i,j . Thus the right-hand side of (40) is at most

|I1|! · · · |Ir|! .
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Observe that Theorem 8 guarantees no nontrivial lower bound for R(x) and gives an
upper bound which is sometimes tight. Indeed the ratio

x1,2x2,1
x1,1x2,2

attains all values in the open interval (0, 1) as x varies over matrices in MTP
2 . On the

other hand, special cases of the ratios in Theorem 8 can be shown to have both upper
and nontrivial lower bounds.

Corollary 9. For ratio R(x) and matrices C, D defined as in Theorem 8, if C = D, then
R(x) is bounded above and below by

1

|J1|! · · · |Jq|!
6 R(x) 6 |I1|! · · · |Ir|! , (41)

for x ∈MTP
n .

For example, consider the ratio

R(x) =
per(x12,34)per(x34,12)

x1,3x2,4x3,1x4,2
(42)

with |I1| = |I2| = 2, |J1| = |J2| = |J3| = |J4| = 1, and

C = D =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (43)

By Corollary 9, we have
1

1!4
6 R(x) 6 2!2.

It is easy to see that R(x) attains values arbitrarily close to 4 as x approaches the matrix
of all ones. It is also possible to show that R(x) attains values arbitrarily close to 1.
Indeed, consider the matrix A = A(ε) = (ai,j) defined by

A(ε) =


1 1 ε ε3

1 2 1 ε
ε 1 2 1
ε3 ε 1 1

 , (44)

where ε is positive and close to 0. To see that A(ε) is totally positive, it suffices to verify
the positivity of the sixteen minors det(A[a1,b1],[a2,b2]) indexed by pairs of intervals, at least
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one of which contains 1 [10, Theorem 9]. Observe that we have a1,j > 0 and ai,1 > 0 for
all i, j. Also,

det(A12,12) = 1,

det(A12,23) = det(A23,12) = 1− 2ε,

det(A12,34) = det(A34,12) = ε2 − ε3,
det(A123,123) = 1 + 2ε− 2ε2,

det(A123,234) = det(A234,123) = 1− 4ε+ ε2 + 3ε3,

det(A) = 4ε− 6ε2 − 2ε3 + 9ε4 − 2ε5 − 3ε6.

It follows that we have

lim
ε→0+

R(A) = lim
ε→0+

(ε2 − ε3)2

ε4
= lim

ε→0+
1− 2ε+ ε2 = 1.

In the case that all submatrices in (38) are principal, the necessary condition (35) for
boundedness is in fact sufficient to guarantee the existence of upper and nontrivial lower
bounds.

Corollary 10. For ratio R as in Theorem 8, if all submatrices in R(x) are principal,
(Ik = I ′k, Jk = J ′k for all k), then R(x) is bounded above and below as in (41).

Proof. For principal submatrices xI1,I1 , . . . , the condition (35) implies the equality of the
matrices C and D in (39): this matrix is diagonal with (i, i) entry equal to the multiplicity
of i in I1 d · · · d Ir.

For example, consider the ratio

per(xI,I) per(xJ,J)

per(xI∪J,I∪J) per(xI∩J,I∩J)
(45)

coming from the (false) permanental version (5) of Koteljanskii’s inequality (2). By
Corollary 10, the four principal submatrices of x imply that the exponent matrices C and
D are equal and diagonal with (i, i) entry equal to the multiplicity of i in I d J . Thus
Corollary 9 gives the lower and upper bounds

1

|I ∪ J |! |I ∩ J |!
, |I|! |J |! (46)

as claimed in (14). These bounds are not in general tight. Consider the special case

1

3!1!
6

per(x12,12)per(x23,23)

per(x123,123)per(x2,2)
6 (2!)2 (47)

with

C = D =

1 0 0
0 2 0
0 0 1

 . (48)

We improve (47) as follows.
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Proposition 11. For x ∈MTP
3 we have

1

2
6

per(x12,12)per(x23,23)

per(x123,123)per(x2,2)
6 2. (49)

Proof. The first inequality follows from expanding

2 · per(x12,12)per(x23,23)− per(x123,123)per(x2,2)

and grouping terms as

(x11x
2
22x33 − x13x222x31) + (x12x21x22x33 − x12x22x23x31) + (x12x21x23x32 − x13x21x22x32)

+ x11x22x23x32 + x12x21x23x32

= det(x13,13)x
2
22 + det(x23,13)x12x22 + det(x12,23)x21x32 + x11x22x23x32 + x12x21x23x32.

Similarly, the second inequality follows from expanding

2 · per(x123,123)per(x2,2)− per(x12,12)per(x23,23)

and grouping terms as

x11x
2
22x33 + det(x23,23)x12x21 + 2x12x22x23x31

+ x11x22x23x32 + 2x13x21x22x32 + 2x13x
2
22x31.

The authors believe that even these bounds are not tight. The smallest and greatest
values for (49) that we have found are 2/3 and 121/114, respectively.

4 Future directions

It would be interesting to characterize the ratios (15) which are bounded by 1, i.e., to
solve the following problem.

Problem 12. Characterize the differences

per(xJ1,J ′1) · · · per(xJq ,J ′q)− per(xI1,I′1) · · · per(xIr,I′r) (50)

which are totally nonnegative polynomials.

To consider a special case, it is possible to show that for small n, the sets I = [2n]r2Z,
J = [2n] ∩ 2Z define a totally nonnegative polynomial

per(x[n],[n]) per(x[n+1,2n],[n+1,2n])− per(xI,I) per(xJ,J). (51)

If this polynomial is totally nonnegative in general, then it provides a permanental analog
of the known totally nonnegative polynomial

det(xI,I) det(xJ,J)− det(x[n,n]) det(x[n+1,2n],[n+1,2n]).
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Conjecture 13. The polynomial (51) is totally nonnegative for all n.

Other families of possible inequalities are suggested by the known inequalities appear-
ing in Proposition 7. In particular, the first inequality there compares the permanent to
a product of permanents of 1×1 matrices. Comparing further to products of permanents
of the form

per(xI1,I1) · · · per(xIr,Ir), (52)

we obtain polynomials of the forms

per(x)− per(xI1,I1) · · · per(xIr,Ir), per(xI1,I1) · · · per(xIr,Ir)− x1,1 · · · xn,n, (53)

which are totally nonnegative because they belong to spanN{xe,w |w ∈ Sn}. It is natural
to ask if the cardinalities of the index sets determine whether a difference of the form (50)
is totally nonnegative, but this is not the case. It is natural then to ask how averages
of such products compare to one another. This problem is open. (See [1], [17, Problem
5.3].)

Problem 14. Characterize the pairs of partitions λ = (λ1, . . . , λr), µ = (µ1, . . . , µq) such
that ∑

(I1,...,Ir)
|Ik|=λk

per(xI1,I1) · · · per(xIr,Ir)(
n

λ1,...,λr

) −
∑

(J1,...,Jq)
|Jk|=µk

per(xJ1,J1) · · · per(xJq ,Jq)(
n

µ1,...,µr

) (54)

is totally nonnegative.

Now consider generalizing the second inequality in Proposition 7 to products of per-
manents of the form (52). Differences of the form

per(xI1,I1) · · · per(xIr,Ir)

|I1|! · · · |Ir|!
− per(x)

n!
(55)

are not totally nonnegative, while differences of the form

x1,1 · · ·xn,n −
per(xI1,I1) · · · per(xIr,Ir)

|I1|! · · · |Ir|!
(56)

are (by Proposition 7). It is natural then to ask about the averages of differences (55),
over all set partitions (I1, . . . , Ir) of a partition λ.

Problem 15. Decide if for fixed λ = (λ1, . . . , λr), the polynomial∑
(I1,...,Ir)
|Ik|=λk

per(xI1,I1) · · · per(xIr,Ir)− per(x)

is totally nonnegative.
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To illustrate (55) and Problem 15, let us consider the case that n = 3. It is straight-
forward to show that

per(x12,12)x3,3
2!1!

− per(x)

3!
, (57)

equivalently, 3per(x12,12)x3,3−per(x), is totally nonnegative because the latter expression
equals a sum of matrix minors. Similarly,

per(x23,23)x1,1
2!1!

− per(x)

3!
, (58)

is totally nonnegative. On the other hand,

per(x13,13)x2,2
2!1!

− per(x)

3!
, (59)

is not, because its evaluation at 1 1 0
1 1 1
1 1 1


is negative. However, two times the sum of the three differences (57) – (59) is

2x1,1x2,2x3,3 − x1,2x2,3x3,1 − x1,3x2,1x3,2,

which is totally nonnegative by Theorem 3.
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