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Abstract

The generalized Ramsey number f(n, p, q) is the smallest number of colors
needed to color the edges of the complete graph Kn so that every p-clique spans at
least q colors. Erdős and Gyárfás showed that f(n, p, q) grows linearly in n when p
is fixed and q = qlin(p) :=

(
p
2

)
− p + 3, but f(n, p, q − 1) is sublinear. Similarly they

showed that f(n, p, q) is quadratic in n when p is fixed and q = qquad(p) :=
(
p
2

)
− p

2 +2,
but f(n, p, q−1) is subquadratic. In this note we improve on the known estimates for
f(n, p, qlin) and f(n, p, qquad). Our proofs involve establishing a significant strength-
ening of a previously known connection between f(n, p, q) and another extremal
problem first studied by Brown, Erdős and Sós, as well as building on some recent
progress on this extremal problem by Delcourt and Postle and by Shangguan. Also,
our upper bound on f(n, p, qlin) follows from an application of the recent forbidden
submatchings method of Delcourt and Postle (a method which appears indepen-
dently as the conflict-free matching method of Glock, Joos, Kim, M. Kühn, and
Lichev).

Mathematics Subject Classifications: 05C55, 05C15, 05D40

1 Introduction

Erdős and Shelah [12] first considered the following generalization of a classical Ramsey
problem.

Definition 1. Fix integers p, q such that p > 3 and 2 6 q 6
(
p
2

)
. A (p, q)-coloring of

Kn is a coloring of the edges of Kn such that every p-clique has at least q distinct colors
among its edges. The generalized Ramsey number f(n, p, q) is the minimum number of
colors such that Kn has a (p, q)-coloring.
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Erdős and Gyárfás [13] systematically studied f(n, p, q) for fixed p, q as n → ∞. In
this paper all asymptotic statements are as n → ∞. Among other results, Erdős and
Gyárfás [13] proved that for arbitrary p and

q = qlin(p) :=

(
p

2

)
− p+ 3,

f(n, p, q) is linear, but f(n, p, q − 1) is sublinear. Similarly, they showed in [13] that for

q = qquad(p) :=

(
p

2

)
− bp/2c+ 2,

f(n, p, q) is quadratic, but f(n, p, q − 1) is subquadratic. Thus for fixed p, we call the
value qlin the linear threshold and qquad the quadratic threshold. The main goal of this
note is to estimate f(n, p, q) when q is at the linear or quadratic threshold. In terms of
explicit general bounds, we prove the following.

Theorem 2. For all p > 3 we have

3p− 7

4p− 10
n+ o(n) 6 f(n, p, qlin) 6 n+ o(n). (1)

For even p > 6 we have

2p− 7

5p− 18
n2 + o(n2) 6 f(n, p, qquad) 6

5

12
n2 + o(n2). (2)

We note that recently Gómez-Leos, Heath, Parker, Schwieder, and Zerbib independently
show in [17] that 6

7
(n− 1) 6 f(n, 5, 8) 6 n+ o(n).

Since the initial investigation by Erdős and Gyárfás [13], the asymptotic behavior of
f(n, p, q) has attracted a considerable amount of attention. Here we will just mention a
few results that are near the linear or quadratic threshold, but the reader can refer to
the recent paper of the first author, third author and English [6] for some more history of
the problem. Axenovich [1] showed that f(n, 5, 9) 6 n1+o(1) (and it is at least linear since
f(n, 5, 8) is linear). It is an open question whether f(n, 5, 9) = O(n), and more generally
whether f(n, p, q) could be linear for any q > qlin(p). Sárközy and Selkow [21] addressed
this question by proving that there are at most log p many such values q. Indeed, they
showed that f(n, p, q) > n1+Ω(1) for q > qlin(p) + log p. At the quadratic threshold, Erdős
and Gyárfás [13] showed that f(n, p, qquad(p)) 6

(
1
2
− Ω(1)

)
n2. Above the quadratic

threshold, they asked how large p needs to be before we have f(n, p, q) =
(

1
2
− o(1)

)
n2.

Again, Sárközy and Selkow [22] addressed this question by proving that there are at most
1
2

log p many such values q.
Except for the trivial case of f(n, 3, 3) = n + O(1) and some values of q larger than

the quadratic threshold, there have only been two results where f(n, p, q) is known with
a (1 + o(1)) multiplicative error. Erdős and Gyárfás [13] stated that it “can be easily
determined” that

f(n, 6, 14) =
5

12
n2 +O(n). (3)
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More recently, the present authors with Pra lat [4] proved that f(n, 4, 5) = 5
6
n + o(n) (a

fact for which Joos and Mubayi gave a second proof in [19], and for which Joos, Mubayi
and Smith gave a third proof in [20]). In this note we provide a proof for (3) and also
obtain f(n, 6, 14) exactly when n ≡ 1, 4 (mod 12) (see Theorem 7). We also obtain two
more explicit and asymptotically sharp estimates for generalized Ramsey numbers at the
quadratic threshold.

Theorem 3. We have

f(n, 8, 26) =
9

22
n2 + o(n2) and f(n, 10, 42) =

5

12
n2 + o(n2).

The proofs of Theorems 2 and 3 will involve establishing certain connections between
f(n, p, q) and the following extremal problem first studied by Brown, Erdős and Sós [7].

Definition 4. Let H be an r-uniform hypergraph. A (s, k)-configuration in H is a
set of s vertices inducing k or more edges. We say H is (s, k)-free if it has no (s, k)-
configuration. Let F (r)(n; s, k) be the largest possible number of edges in an (s, k)-free
r-uniform hypergraph with n vertices. In terms of classical extremal numbers,

F (r)(n; s, k) = exr(n,Gs,k),

where Gs,k is the family of all r-uniform hypergraphs on s vertices and k edges.

In fact, three of the four explicit bounds in Theorem 2 follow by first bounding f(n, p, q)
implicitly in terms of some values F (r)(n; s, k) and then using explicit bounds on the
latter. Thus, further improvements on the estimates for F (r)(n; s, k) would in some cases
automatically give improved estimates for f(n, p, q). In the case of the quadratic threshold
(and even p), we actually show that the problem of asymptotically estimating f(n, p, q)
completely reduces to asymptotically estimating a certain value F (r)(n; s, k).

However, before we introduce that result, we need to review some recent advances in
this area. Shangguan [23] and independently Delcourt and Postle [11] showed that

lim
n→∞

F (4)
(
n; p, p

2
− 1
)

n2

exists. These proofs extend the recent result by Delcourt and Postle [11], which resolved
a conjecture from Brown, Erdős and Sós [7] regarding the existence of a similar limit
involving the function F (3) for 3-uniform hypergraphs. In particular, Delcourt and Postle
[11] proved the existence (for fixed ` > 3) of the limit

lim
n→∞

F (3) (n; `, `− 2)

n2
.

Interestingly, the proofs of Delcourt and Postle [11] and Shangguan [23] do not seem
to shed much light (at least, not as much as one might hope) on how to actually find
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the limits whose existence they establish. However, these limits are known in two cases
relevant to us. In particular, it is known due to Shangguan and Tamo [24] that

F (4)(n; 8, 3) =
1

11
n2 + o(n2). (4)

It is also known due to Glock, Joos, Kuhn, Kim, Lichev and Pikhurko [16] that

F (4)(n; 10, 4) =
1

12
n2 + o(n2). (5)

Theorem 5. For all even p > 6 we have

lim
n→∞

f (n, p, qquad)

n2
=

1

2
− lim

n→∞

F (4)
(
n; p, p

2
− 1
)

n2
. (6)

In particular, the limit on the left exists. Furthermore, there exist (p, qquad)-colorings using
f(n, p, qquad) + o(n2) colors that use no color more than twice.

Thus, Theorem 3 follows from Theorem 5 together with (4) and (5).
It is perhaps surprising that we need not use any color more than twice. Indeed a

(p, qquad)-coloring is allowed to use a color up to p
2
− 1 times, and it would seem more

efficient to use the same color as many times as possible.
The lower bound on f(n, p, qlin) in Theorem 2 is similar to the quadratic case, in the

sense that it follows from an upper bound on F (3)(n; p, p−2). In particular we prove that

Theorem 6. For all p > 3 we have

lim inf
n→∞

f (n, p, qlin)

n
> 1− lim

n→∞

F (3) (n; p, p− 2)

n2
. (7)

In light of Theorem 5, one might suspect that there is a matching upper bound for (7),
but unfortunately this is not the case. Indeed, Glock [14] proved that

lim
n→∞

F (3) (n; 5, 3)

n2
=

1

5
,

which together with (7) yields f(n, 5, 8) > 4
5
n + o(n). However this lower bound is not

close to the truth. Indeed, recently it was proved that f(n, 5, 8) = 6
7
n + o(n). The lower

bound was proved by Gómez-Leos, Heath, Parker, Schwieder, and Zerbib [17] and the
upper bound by the current authors [3].

1.1 Comparison to previous bounds

Here we compare the bounds in Theorem 2 to what was previously known. For the linear
threshold, Erdős and Gyárfás [13] showed that

(n− 1)/(p− 2) 6 f(n, p, qlin) 6 cpn (8)
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for some coefficient cp. The lower bound in (8) follows from the simple fact that in a
(p, qlin)-coloring each vertex is adjacent to at most p − 2 edges of each color. The upper
bound in (8) follows from the Local Lemma. The constant cp is not explicitly discussed
in [13] but it is easy to see from their proof that cp → ∞ as p → ∞. Thus we see
that in Theorem 2, (1) is a significant improvement on previous bounds. Indeed, the gap
between the coefficients in (8) grows without bound with p, whereas the coefficients in
(1) are always between 3/4 and 1.

Likewise, for the quadratic threshold (and even p) the trivial bounds are(
n
2

)
p
2
− 1

6 f(n, p, qquad) 6

(
n

2

)
.

The upper bound follows since we can give different colors to the different edges, and the
lower bound follows from the fact that each color must be used at most p

2
−1 times. Thus

we see that (2) in Theorem 2 is a significant improvement.

1.2 Structure of the note

The structure of this note is as follows. In Section 2 we address the quadratic threshold.
We start with a proof of a more precise version of (3). We go on to prove Theorem 5
and (2) from Theorem 2. In Section 3 we address the linear threshold. There we prove
Theorem 6 and (1) from Theorem 2.

2 Quadratic Threshold

In this section we address the quadratic threshold. First we introduce some terminology.
Suppose we are given a coloring of the edges of Kn. For a set of vertices S, let c(S) be
the number of colors appearing on edges within S, and let r(S) be

(|S|
2

)
− c(S). We call

r(S) the number of color repetitions (or just repeats) in S. Sometimes it may help the
reader to imagine counting r(S) by examining each edge of S in some order and counting
a repeat whenever we see a color we have already seen.

2.1 Estimating f(n, 6, 14)

In this subsection we state and prove our more precise result for f(n, 6, 14). As we noted,
Erdős and Gyárfás [13] stated that f(n, 6, 14) = 5

12
n2 + O(n) without proof. To help

the reader gain familiarity with the concepts in this paper, we present a proof of a more
precise version of this result.

Theorem 7. We have

5

6

(
n

2

)
6 f(n, 6, 14) 6

5

6

(
n

2

)
+O(n).

Furthermore, the lower bound above is the exact value of f(n, 6, 14) whenever n is con-
gruent to 1 or 4 modulo 12.
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Proof. Starting with the lower bound, suppose we have any (6, 14)-coloring. Since
(

6
2

)
=

15, any set of 6 vertices is allowed to have only one repeat, which implies that we cannot
have 3 edges of the same color. Indeed, taking the union of these edges would be a set
of at most 6 vertices with more than one repeated color. This also means that there
can be at most one monochromatic path on three vertices P3, since the union of two
of them would be a set of at most 6 vertices with at least two repeats. If our coloring
contains a monochromatic P3, then we remove it and get a coloring of Kn−3. So we have
a (6, 14)-coloring of Kn′ with n′ ∈ {n− 3, n} with no monochromatic P3.

Suppose the color c is used twice, say on the (nonincident) edges ab and xy. Then the
other four edges in {a, b, x, y} must all have different colors which are only used once in
the whole graph. Let C1 be the set of colors used once and C2 the colors used twice. For
each c ∈ C2 let Kc be the set of 4 vertices consisting of both endpoints of both edges of
color c. Note that for c, c′ ∈ C2 we have |Kc∩Kc′| 6 1, since otherwise Kc∪Kc′ is a set of
at most 6 vertices with too many repeats. Thus the sets Kc induce edge-disjoint 4-cliques.
Thus, if we did not remove any P3, we have that |C2|, the number of such cliques, is at
most

1

6

(
n

2

)
. (9)

On the other hand, if we did remove a P3, this would contribute one additional color to
C2 along with the restriction on the Kc. From our discussion above, we note that this P3

is vertex disjoint from all the Kc and does not share a color with any other edges. Thus,
in this case, |C2| is at most

1 +
1

6

(
n− 3

2

)
. (10)

But since (9) is at least (10) for n > 4, we conclude that the number of colors used is at
least

|C1|+ |C2| =
((

n

2

)
− 2|C2|

)
+ |C2| =

(
n

2

)
− |C2| >

5

6

(
n

2

)
.

Thus we are done with the lower bound for Theorem 7. We move on to the upper bound.
If n ≡ 1 or 4 mod 12, then we are guaranteed a perfect packing of 1

6

(
n
2

)
edge-disjoint 4-

cliques by Hanani’s result [18]. Then for each clique in the packing, color two nonadjacent
edges the same color and give a unique color to the remaining edges. Since we use exactly
5 colors for each clique, we use exactly 5

6

(
n
2

)
colors to color all the edges.

Otherwise, let i = (n mod 12) and partition the vertices into Kn−i+1∪Ki−1, and find
a perfect packing of edge-disjoint 4-cliques for Kn−i+1. Follow the same coloring as above
for the perfect packing, and then color the remaining (n − i + 1)(i − 1) +

(
i−1

2

)
= O(n)

edges with a different color for each edge. Thus, we use 5
6

(
n−i+1

2

)
+ O(n) = 5

6

(
n
2

)
+ O(n)

colors.
Notice that in either case, the resulting coloring satisfies the (6, 14)-coloring condition.

If not, then there exists a set S of 6 vertices with more than 2 repeated colors. In our
coloring, this means that S must contain two cliques from the packing. But since the
cliques must be edge-disjoint, this implies that |S| > 7, a contradiction.

the electronic journal of combinatorics 32(1) (2025), #P1.16 6



2.2 Proof of Theorem 5

In this subsection we will prove Theorem 5 after some discussion. We consider the case
of (p, q)-coloring, where

p = 2` and q = qquad(p) =

(
2`

2

)
− `+ 2.

This choice of parameters allows using a color ` − 1 times but not ` times. Erdős and
Gyárfás [13] showed that for this choice of parameters f(n, p, q) is quadratic in n. Of
course the upper bound f(n, p, q) 6

(
n
2

)
is trivial, but [13] also gives a nontrivial upper

bound of (1/2−ε)n2 for some ε > 0. Specifically, Erdős and Gyárfás [13] used a 4-uniform
(2`, ` − 1)-free hypergraph H in which for each edge of H, a new color is used to color
two pairs of vertices from that edge (and then coloring uncolored edges with distinct
colors). Crucially, every color repetition in the coloring corresponds to a hyperedge of
H. We also notice that each color is used at most twice, and for any color used on two
edges, the union of those two edges is a hyperedge of H. The existence of a suitable
hypergraph had already been established by Brown, Erdős and Sós [7]. The same basic
connection between (p, q)-coloring near the quadratic threshold and 4-uniform (s, k)-free
hypergraphs (for the appropriate s, k) was exploited by Sárközy and Selkow [22] and again
by Conlon, Gishboliner, Levanzov and Shapira [9]. However, this connection as it was
used in [8, 13, 22] is not precise enough to prove Theorem 5. Indeed, all these previous
results give away a constant factor in the main term of their estimate of f(n, p, q), while
we want an asymptotically tight estimate. Thus, we will have to significantly refine these
previously established connections between the Erdős-Gyárfás coloring problem and the
Brown-Erdős-Sós packing problem.

Now we will define some functions related to F (4)(n; 2`, ` − 1). The first one relaxes
the problem to multi-hypergraphs.

Definition 8. Let H be an r-uniform multi-hypergraph, meaning that H can have edges
with multiplicity (but each edge has r distinct vertices). A (s, k)-configuration in H is a
set of s vertices inducing k or more edges (counted with multiplicity). Let G(r)(n; s, k) be
the largest possible number of edges in an (s, k)-free r-uniform multi-hypergraph with n
vertices.

Next we define a function that restricts the extremal problem for F (4)(n; 2`, ` − 1) to a
smaller family of hypergraphs.

Definition 9. Let H(4)(n; 2`, `−1) be the largest possible number of edges in a 4-uniform
hypergraph H on n vertices which satisfies the following conditions:

1. H is (2`, `− 1)-free,

2. H is (2i+ 1, i)-free for i = 2, . . . , `− 2, and

3. for every vertex v of H, either v has degree 0 or degree at least `− 1.
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Using Shangguan’s notation [23], our function H(4)(n; 2`, `− 1) defined above is the same

as what Shangguan refers to as f
(t)
r (n; er− (e− 1)k, e), where 4 is substituted for r, 2 for

k, 2 for t, and `− 1 for e. Since H(4) is a restriction and G(4) is a relaxation, we have

H(4)(n; 2`, `− 1) 6 F (4)(n; 2`, `− 1) 6 G(4)(n; 2`, `− 1).

Shangguan [23] proved (see Lemma 5.5 and the discussion above it) that

Lemma 10 (Lemma 5.5 in [23]).

lim
n→∞

H(4)(n; 2`, `− 1)

n2
= lim

n→∞

F (4)(n; 2`, `− 1)

n2
. (11)

Now we will easily see that G is likewise asymptotically the same as the others.

Claim 11.

lim
n→∞

G(4)(n; 2`, `− 1)

n2
= lim

n→∞

F (4)(n; 2`, `− 1)

n2
. (12)

Proof. Let H be an extremal multi-hypergraph for the G(4)(n; 2`, ` − 1) problem, i.e.,
H has G(4)(n; 2`, ` − 1) edges and is (2`, ` − 1)-free. We form a new hypergraph H′ by
simply deleting all multiple edges in H. Clearly H′ is (2`, ` − 1)-free, so it has at most
F (4)(n; 2`, `− 1) edges.

We show that H′ has almost the same number of edges as H. Indeed, suppose we
enumerate all the multiple edges of H, say {e1, . . . , ea} where ei has multiplicity mi > 2.
Notice that, for even `, taking `/2 of the ei would give a (2`, `)-configuration and, for odd
`, taking (`−1)/2 of ei would give a (2`−2, `−1)-configuration. Therefore, we have a 6 `.
In addition is easy to see that each mi 6 ` (otherwise there is a (2`, `− 1)-configuration).
Thus, we remove at most `2 edges from H to get H′. Consequently, we have

F (4)(n; 2`, `− 1) 6 G(4)(n; 2`, `− 1) 6 F (4)(n; 2`, `− 1) + `2

and (12) follows (recall we already knew that the limit on the right exists due to
Lemma 10).

Now we start to attack the lower bound for the coloring problem.

Claim 12.

f (n, p, qquad) >

(
n

2

)
−G(4)(n; 2`, `− 1).

We will prove this claim directly, by using a (p, qquad)-coloring to construct a (2`, `−1)-
free multi-hypergraph. Towards that end we define the following.

Definition 13. Consider any coloring C of the edges of Kn. We say a 4-uniform hyper-
graph H is a repeat multi-hypergraph for the coloring C if it is formed as follows. H has
the same vertex set as Kn. For each color c used in the coloring, let E(c) 6= ∅ be the set
of edges of color c and let ec be some particular (arbitrary) edge of color c. Then H will
have all the edges {e ∪ ec : e ∈ E(c) \ {ec}}. Of course, e ∪ ec might only have 3 vertices
(when we claimed H would be 4-uniform) but we fix this by arbitrarily adding vertices to
edges of size 3.
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Note that H can have multiple edges since a single set of 4 vertices can contain, say,
two red edges and also two blue edges. Also, since the construction of H potentially
involves some arbitrary choices (in particular, the choice of the edges ec as well as the
choice of vertices used to enlarge 3-edges), in general a coloring C may give rise to several
possible repeat multi-hypergraphs H.

We now make the key observation about repeat multi-hypergraphs. Essentially it
says that edges in H count color repetitions of C “faithfully,” i.e., without under- or
over-counting.

Observation 14. Let H be a repeat multi-hypergraph for the coloring C. Then if S is
the set of all vertices,

r(S) = |E(H)|.

Proof of Observation 14. Recall that each hyperedge of H contains e ∪ ec for some color
c and some edge e that has color c. Now if S spans b hyperedges all corresponding to the
same color c, then S contains ei∪ec for 1 6 i 6 b and some edges e1, . . . , eb which all have
color c. In particular S contains b + 1 edges, namely ec, e1, . . . eb, which all have color c,
i.e., S spans b repeats in the color c. Now if S spans b hyperedges (which now need not
all correspond to the same color), we likewise conclude that S spans b repeats by simply
summing over the colors.

We are now ready to prove Claim 12.

Proof of Claim 12. Consider a (p, qquad)-coloring C of Kn that is optimal, i.e., uses
f (n, p, qquad) colors. In such a coloring, any set of p = 2` vertices spans at most ` − 2
repeats. Let H be a repeat multi-hypergraph for C. By Observation 14, a (2`, ` − 1)-
configuration in H would be a set of 2` vertices spanning at least `−1 repeats. Since C is
a (2`,

(
2`
2

)
− `+ 2)-coloring, H is (2`, `− 1)-free. In particular, |E(H)| 6 G(4)(n; 2`, `− 1).

But now applying Observation 14, we have |E(H)| =
(
n
2

)
− f (n, p, qquad) since C uses

f (n, p, qquad) colors. The claim now follows from(
n

2

)
− f (n, p, qquad) = |E(H)| 6 G(4)(n; 2`, `− 1).

Next we attack the upper bound for the coloring problem. To get a bound that comes
close to matching Claim 12, we will have to “reverse” the procedure we used to turn a
coloring C into a repeat multi-hypergraph H. We must be careful for a few reasons. First,
as we discussed earlier, a single coloring C can give rise to many different H. Second,
although we saw that if C is a (p, qquad)-coloring then H must be (2`, `−1)-free, in general
the converse does not hold. In particular, if some set of vertices S does not contain the
edge ec then S could have many repeats in the color c but not span even one edge of H.
We will get around these issues by ensuring that our coloring uses each color at most twice,
and we never use the same color on adjacent edges. For such a coloring C, the repeat
multi-hypergraph H is unique. Furthermore, such a coloring C is a (p, qquad)-coloring if
and only if H is (2`, `− 1)-free.
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Claim 15.

f (n, p, qquad) 6

(
n

2

)
−H(4)(n; 2`, `− 1).

Proof. We will construct a (p, qquad)-coloring that uses
(
n
2

)
−H(4)(n; 2`, `− 1) colors. We

start with an extremal graph H for the H(4)(n; 2`, `− 1) problem. In other words, H has
n vertices, H(4)(n; 2`, `− 1) edges, and properties (1)–(3).

We construct a coloring as follows. Start with an edge h1 ∈ H and choose two
arbitrary, disjoint pairs e1, f1 ⊆ h1 and assign them the color c1. Assign all other pairs
in h1 a different color. Let the set of “active” pairs after step 1 be A1 = {e1, f1}. Then
define

H1 = {h ∈ E(H) \ {h1} : e ⊆ h for some e ∈ A1}.

In general, assume that we have defined colors in h1, h2, . . . , hk−1 such that

e2

f2

f1 e1

h1 h2

Figure 1: The coloring after step 2. Dotted edges are given all unique colors.

• Ak−1 = {e1, . . . , ek−1} ∪ {f1, . . . , fk−1}

• Hk−1 = {h ∈ E(H) \ {h1, . . . , hk−1} : e ⊆ h for some e ∈ Ak−1}, and

• |
⋃k−1
i=1 hi| = 2k.

Notice that these are true for step 1 and that k < ` − 1 since otherwise there would
be a set of 2` vertices on ` − 1 edges, violating property (1). We choose an arbitrary

edge hk from Hk−1. We will show that
(⋃k−1

i=1 hi

)
∩ hk = e for some e ∈ Ak−1. Indeed,

clearly e ⊆
(⋃k−1

i=1 hi

)
∩ hk and by property (2) if the cardinality of the intersection were

3, then
⋃k
i=1 hi has 2k + 4 − 3 = 2k + 1 vertices that induces at least k edges, violating

the (2k + 1, k)-free condition in H. Thus,
∣∣∣⋃k

i=1 hi

∣∣∣ = 2(k + 1). Then pick two disjoint,

uncolored pairs ek, fk ⊆ hk (there are two such choices) and color them ck and color the
different uncolored pairs in hk different colors. Finally, define

Ak = Ak−1 ∪ {ek, fk}

and
Hk = {h ∈ E(H) \ {h1, . . . , hk} : e ⊆ h for some e ∈ Ak}.
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Continue in this way until Hk = ∅ for some k. Notice that k < `− 1 since otherwise there
would be a set of 2` vertices on `−1 edges, violating property (1). Then repeat this process
with any edge other than h1, . . . , hk. Continue until all edges have been processed, and
give any uncolored pairs a unique color. Notice that each newly chosen edge will intersect
the union of any of the former edges by at most 2 by property (2). Note that for each
edge in H, the coloring has exactly one repeat, and there are H(4)(n, 2`, `−1) edges. Thus
when considering the coloring of the pairs, we obtain a coloring C of Kn with

|C| =
(
n

2

)
−H(4)(n, 2`, `− 1).

To verify that C is a (p, qquad)-coloring, choose any set S of p = 2` vertices. By prop-
erty (1), in H, the set S induces at most ` − 2 hyperedges. And our coloring defines
exactly one repeat per hyperedge, and none elsewhere. So the total number of distinct
colors among the edges of Kn[S] is at least qquad =

(
2`
2

)
− `+ 2.

Finally observe that Theorem 5 follows from Lemma 10 and Claims 11, 12 and 15.

2.3 Proof of (2) from Theorem 2

In this subsection we establish the explicit bounds (2). They will follow from Theorem 5
together with explicit bounds for the function F (4).

As we mentioned before, Delcourt and Postle [10] proved some very general and pow-
erful results to the effect that certain hypergraphs have almost-perfect matchings which
avoid certain forbidden submatchings. Similar results were independently proved by
Glock, Joos, Kim, Kühn and Lichev [15]. Each team of researchers was motivated in
part by finding approximate designs of high “girth”. In particular, it follows just as well
from either [10] (Theorem 1.3) or [15] (Theorem 1.1) that for any ` > 3 there exists a linear
4-uniform hypergraph H on n vertices with 1

12
n2 +o(n2) edges which is also (2`, `−1)-free.

In other words, F (4)(n; 2`, `−1) > 1
12
n2 +o(n2). Now the upper bound in (2) follows from

Theorem 5.
We move on to the lower bound in (2), which will follow from an upper bound on

H(4)(n; 2`, ` − 1) (which of course gives an asymptotic upper bound on F (4)(n; 2`, ` − 1)
by (11)). In particular, we will be done when we prove the following:

Claim 16. For ` > 2 we have

H(4)(n; 2`, `− 1) 6
`− 2

10`− 18
n2 + o(n2).

The proof is a straightforward adaptation of Delcourt and Postle’s proof of their Lemma
1.9 in [11].

Proof. LetH be a 4-uniform hypergraph on n vertices which is (2`, `−1)-free and (2i+1, i)-
free for i = 2, . . . , `− 2 (recall Definition 9).

Define a graph G with V (G) = E(H), where e1e2 ∈ E(G) whenever |e1∩e2| > 2. Each
component of G must have order at most `−2 since H is (2`, `−1)-free. Let {e1, . . . eb} be
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a component in G for some 1 6 b 6 `− 2. Assume that the ordering {e1, . . . eb} is chosen
so that for each 2 6 i 6 b there is 1 6 j 6 i− 1 such that |ei ∩ ej| > 2. We claim that for
each i > 2, ei has two vertices (in V (H)) which are not in e1 ∪ . . . ∪ ei−1; otherwise, we
would have a (2i + 1, i)-configuration in H. On the other hand, due to our choice of the
ordering, there is an edge ej ∈ {e1 ∪ . . . ∪ ei−1} such that |ei ∩ ej| > 2. Consequently, ei
shares only one pair of vertices with e1 ∪ . . .∪ ei−1 and so ei contains five pairs of vertices
which are not subsets of any ej, j < i. Of course e1 contains six pairs and each edge after
that has five more, so the total number of pairs contained in some ej, j 6 b is at least
5b + 1. Note that for two edges of H, if they are in different components of G then they
do not share any pair of vertices in H.

For 1 6 b 6 `− 2 let Cb be the number of components of G of order b. Then we have

|E(H)| =
∑

16b6`−2

bCb, (13)

which implies ∑
16b6`−2

Cb >
1

`− 2
|E(H)|. (14)

But now by summing the vertex-pairs in H we have(
n

2

)
>

∑
16b6`−2

(5b+ 1)Cb >

(
5 +

1

`− 2

)
|E(H)|,

where the last inequality uses (13) and (14). It follows that

|E(H)| 6 `− 2

10`− 18
n2 + o(n2),

which completes the proof.

3 Linear threshold

In this section we address the linear threshold. First we prove Theorem 6 and the lower
bound in (1).

3.1 Proof of Theorem 6 and the lower bound in (1)

We start by comparing F (3) with G(3). This is analogous to Claim 11.

Claim 17. For all p > 3,

G(3)(n; p, p− 2) = F (3)(n; p, p− 2) +O(n).

Proof. Let H be an extremal multi-hypergraph for the G(3)(n; p, p− 2) problem. We will
show that H has G(3)(n; p, p−2) edges and is (p, p−2)-free. Then H has at most Cn edges
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of multiplicity at least 2, where 3C = 2x and x is whichever of (p−2)/2 or (p−1)/2 is an
integer. Suppose to the contrary. Let H2 be the multi-hypergraph with V (H2) = V (H)
and all edges from H with multiplicity at least 2. Then the average degree in H2 is at
least 3C = 2x. So there is a set of 2x edges on at most 1 + 2x vertices. But 2x > p − 2
and 2x+ 1 6 p, so this contradicts the fact that H is (p, p− 2)-free.

Now we form H′ by deleting the edges with multiplicity at least 2 that appear in H.
Since H′ is also (p, p− 2)-free, then it has at most F (4)(n; p, p− 2) edges. In addition, we
must delete at most Cn edges of H to obtain H′, so

F (3)(n; p, p− 2) 6 G(3)(n; p, p− 2) 6 F (3)(n; p, p− 2) + Cn,

proving the claim.

The next claim is analogous to Claim 12.

Claim 18. For all p > 3

f (n, p, qlin) > n− 1− 1

n
G(3)(n; p, p− 2).

Proof. Consider any (p, qlin)-coloring using color set C. So any set of p vertices spans at
most p − 3 repeats. We form the 3-uniform hypergraph H as follows. For each vertex
v and color c used on at least one edge adjacent to v, say {e1, . . . e`} is the set of edges
adjacent to v and colored c. Then H has the edges e1 ∪ ei for i = 2, . . . , `.
H is (p, p− 2)-free, but it might have multiple edges which come from monochromatic

triangles. Therefore
|E(H)| 6 G(3)(n; p, p− 2).

Each hyperedge of H corresponds to two edges of the same color sharing a vertex v, and
so some particular vertex v plays that role at most

1

n
|E(H)| 6 1

n
G(3)(n; p, p− 2)

times. But these hyperedges of H count all of the color repeats on edges incident with v.
Thus the number of different colors used on edges adjacent with v is at least

n− 1− 1

n
G(3)(n; p, p− 2).

Theorem 6 now follows from Claims 17 and 18. In turn, the lower bound in (1) follows
from Theorem 6 and Lemma 1.9 from Delcourt and Postle [11], which states that

F (3)(n, p, p− 2) 6
p− 3

4p− 10
n2 + o(n2).

the electronic journal of combinatorics 32(1) (2025), #P1.16 13



3.2 Proof of the upper bound in (1)

We now turn to the upper bound at the linear threshold found in Theorem 2. We use the
forbidden submatchings method of Delcourt and Postle [10]. This method, and the very
similar method of Glock, Joos, Kim, Kühn and Lichev [15], consists of some theorems
which guarantee “large” matchings avoiding certain submatchings (i.e. not containing
certain sets of edges) in “nice” hypergraphs. Joos and Mubayi [19] first applied the method
from [15] to generalized Ramsey problems. Since then, both of the two similar methods
from [15] and [11] have been applied to several more generalized Ramsey problems ( see
[2, 3, 5, 17, 20]).

To introduce this method, we require the following definitions from [10].

Definition 19.

(i) For r > 1, we say a hypergraph is r-bounded if every edge has size at most r. The
i-degree of a vertex v of H, denoted dH,i(v), is the number of edges of H of size
i containing v. The maximum i-degree of H, denoted ∆i(H), is the maximum of
dH,i(v) over all vertices v of H.

(ii) Let G be a hypergraph. We say a hypergraph H is a configuration hypergraph for
G if V (H) = E(G) and E(H) consists of a set of matchings of G of size at least 2.
We say a matching of G is H-avoiding if it spans no edge of H.

(iii) We say a hypergraph G = (A,B) is bipartite with parts A and B if V (G) = A ∪ B
and every edge of G contains exactly one vertex from A. We say a matching of G
is A-perfect if every vertex of A is in an edge of the matching. We say a matching
in G is H-avoiding if it contains no edge of H.

(iv) Let H be a hypergraph. The maximum (k, `)-codegree of H is

∆k,`(H) = max
S∈(V (H)

` )
|{e ∈ E(H) : S ⊂ e, |e| = k}|

We will use a slightly simplified version of Theorem 1.16 of Delcourt and Postle [10].
In particular the full version allows H to have edges of size 2, at the cost of having to
check some extra conditions. For our application we will avoid edges of size 2 in H.

Theorem 20 (Delcourt and Postle [10]). For all integers r > 2, g > 3 and real β ∈ (0, 1),
there exist an integer Dβ > 0 and real α > 0 such that following holds for all D > Dβ:

Let G = (A,B) be a bipartite r-bounded hypergraph such that

(G1) every pair of vertices is in at most D1−β edges, and

(G2) every vertex in A has degree at least (1 +D−α)D and every vertex in B has degree
at most D.

Let H be a g-bounded configuration hypergraph of G whose edges all have size at least 3
such that
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(H1) ∆i(H) 6 α ·Di−1 logD for all 3 6 i 6 g;

(H2) ∆k,`(H) 6 Dk−`−β for all 3 6 ` < k 6 g; and

Then there exists an H-avoiding A-perfect matching of G.

Proof of upper bound in (1). Fix some β ∈ (0, 1), set r = 3 and g =
(
p
2

)
and let α > 0

be the value guaranteed by Theorem 20. Fix some ε with 0 < ε < α. Let C be a set of
n+ n1−ε colors. For each c ∈ C and v ∈ V (Kn), we define the vertex vc. Let G = (A,B)
be a bipartite hypergraph with parts A = E(Kn) and B = {vc : v ∈ V (Kn), c ∈ C}, and
with edge set

E(G) = {{uv, uc, vc} : u, v ∈ V (Kn), c ∈ C} .
Note that G is 3-uniform (and thus 3-bounded). We intend to find an A-perfect matching
M in G, which will give us a (p, p− 2)-coloring as follows. For each edge {uv, uc, vc} ∈M
we just color the edge uv with the color c. Since M is A-perfect, every edge of Kn gets
exactly one color. Note that since M is a matching, no two incident edges uv and vw in
Kn can get the same color c.

We now define H, our configuration hypergraph of G. Of course we let V (H) = E(G).
Suppose S ⊆ E(G) = V (H) is a matching, so S corresponds to a coloring cS of some of
the edges of Kn. We will let S be an edge of H if we have that

the number of vertices of Kn spanned by edges that are colored by cS is v(S)
where 4 6 v(S) 6 p and the number of color repetitions in cS is R(S) >
v(S)− 2.

If any edge in E(H) is not minimal (i.e., it properly contains another edge) we remove
it. When k = p, an edge of H corresponds to a violation of the (p, qlin)-condition in
Kn. Including the edges of H corresponding to 4 6 k 6 p− 1 is important to verify the
conditions Theorem 20. It is easy to see that H is

(
p
2

)
-bounded. Also, note that for all

e ∈ E(H), |e| > 4.
We now verify that condition (G1) holds. Define D = n. Let x, y ∈ V (G). Clearly, if

x, y ∈ A, then the codegree is zero since there is exactly one member of A in each edge of
G. If x ∈ A and y ∈ B then x = uv for some u, v ∈ Kn. If y = uc or vc, then the codegree
is 1. Otherwise, the codegree is 0. Finally, if x, y ∈ B, then the codegree is either 0 or
1, depending on whether they share the same color subscript c. Thus, all codegrees in G
are at most 1, verifying condition (G1).

Next, we verify that condition (G2) holds. For any vertex uv ∈ A, the degree of uv
in G is exactly |C| = n+ n1−ε = D(1 +D−ε) > D(1 +D−α). In addition, for any vertex
uc ∈ B, the degree of uc in G is exactly n− 1 6 D. So condition (G2) is verified.

Next, we verify that condition (H1) holds. Let e = {uv, uc, vc} ∈ V (H) = E(G). We
count edges I of H of size i with e ∈ I. For some 4 6 k 6 p, the number v(I) of vertices
of Kn spanned by edges of I in G is k and the number of color repetitions R(I) is at least
k − 2. So besides u and v, v(I) must count exactly k − 2 other vertices of Kn. Let x be
the number of colors induced by I other than c. We count R(I) by taking the difference
between the number of edges colored by cS and the number of distinct colors used. Thus
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we have i− (1 + x) > k − 2, so x 6 i− k + 1. There are at most
(
p
2

)
= O(1) choices for

remaining, unaccounted for, colored edges of Kn edges in I. I is determined by choosing
k − 2 vertices of Kn and at most i− k + 1 colors, so

∆i(H) = O

(
p∑

k=4

nk−2 · ni−k+1

)
= O(ni−1) 6 α ·Di−1 logD

for all 2 6 i 6 g, verifying condition (H1).
To verify condition (H2), fix k and `, and let L ⊆ V (H) have size `. We count the

number of K ∈ E(H) such that L ⊂ K and |K| = k. If v(L) > p there is no possible K,
so we assume v(L) 6 p. If v(L) is 2 or 3 then R(L) = 0. Otherwise we have v(L) > 4.
If R(L) > v(L)− 2 then there is no possible K ⊆ L since we removed nonminimal edges
from H, so assume R(L) 6 v(L)− 3. Let us count possible edges K such that v(K) = t.
Since K is an edge of H, we have R(K) = t − 2. Then v(L) − 3 > R(L) = ` − |CL|, so
|CL| > ` − v(L) + 3. Suppose there are ` − R(L) many colors used by the coloring cL,
and say there are x colors used by cK that are not used by cL. Then the number of colors
used by cK is

x+ `−R(L) 6 k −R(K) = k − t+ 2

and so
x 6 R(L)− `+ k − t+ 2 6 v(L)− `+ k − t− 1.

To determine K we choose t− v(L) vertices of Kn which are not touched by the coloring
cL, and then we choose x many colors. Given that choice there are only a constant number
of ways to choose which edges are colored and which colors they get. Therefore,

∆k,`(H) 6 O

(∑
t6p

nt−v(L) · nv(L)−`+k−t−1

)
= O(nk−`−1) 6 Dk−`−β

for all 2 6 ` < k 6 g, verifying condition (H2).
Therefore, there exists an H-avoiding A-perfect matching of G, which corresponds to

a
(
p,
(
p
2

)
− p+ 3

)
-coloring of Kn using our set C of n+ n1−ε colors.

4 Concluding remarks

We previously conjectured that f(n, 5, 8) > 7
8
n+ o(n). However there was an error in our

proof, and recently in [3] we proved that instead we have f(n, 5, 8) = 6
7
n+o(n), matching

the lower bound of Gómez-Leos, Heath, Parker, Schwieder, and Zerbib [17].
It is plausible to conjecture the following. Currently it is known only for p = 3, 4.

Conjecture 21. The limit

lim
n→∞

f(n, p, qlin)

n

exists for all p > 3.
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Finally, at the quadratic threshold, recall that we only proved that the analogous limit
exists when p is even. The same should likely also hold when p is odd, as well as when q
is above the quadratic threshold.

Conjecture 22. The limit

lim
n→∞

f(n, p, q)

n2

exists for all p > 4 and q > qquad.
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[15] S. Glock, F. Joos, J. Kim, M. Kühn, and L. Lichev. Conflict-free hypergraph match-
ings. J. Lond. Math. Soc. (2), 109(5):Paper No. e12899, 78, 2024.
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[22] G. N. Sárközy and S. M. Selkow. An application of the regularity lemma in generalized
Ramsey theory. J. Graph Theory, 44(1):39–49, 2003.

[23] C. Shangguan. Degenerate Turán densities of sparse hypergraphs II: a solution to the
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