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Abstract

We analyze a random greedy process to construct q-uniform linear hypergraphs using
the differential equation method. We show for q = o(

√
log n), that this process yields a

hypergraph with n(n−1)
q(q−1)

(1− o(1)) edges. We also give some bounds for maximal linear
hypergraphs.

1 Introduction

1.1 F -free processes and the Differential Equation Method

The differential equation method for graph processes was popularized by Wormald in 1999
[13] to analyze random graph processes. The survey [1] provides an accessible introduction
to the differential equation method. A common application of the differential method is
the analysis of the F -free process where F is a family of graphs. This is random process
which creates a graph Gi on n vertices by adding edges uniformly at random one at a
time so Gi contains no subgraph in the family F . The case in which F is a single graph
has been studied for graphs including K3 and K4 to give lower bounds on the Ramsey
numbers r(3, t) and r(4, t) [3, 5, 7, 11].

This paper uses the differential equation method to construct approximate partial
Steiner systems. An (n, q, t) Steiner system is a family H ⊂


[n]
q


so that any t subset is

contained in exactly one element of H. When each t subset is contained in at most one

element in H, the family is called a partial Steiner system. It is easy to see that |H|  (nt)
(qt)

for a partial Steiner system H with equality when the family is a Steiner system. When

|H| = (nt)
(qt)

(1− o(1)) as n → ∞ we say H is an approximate Steiner system. The existence

of approximate Steiner systems for q constant is proven by Rödl in [12]. A design with
parameters (n, q, r,λ) is a collection S of q sets from [n] where each r subset of [n] is
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contained in exactly λ sets in S. In the groundbreaking paper [9] Keevash proves that
designs exist given the necessary divisibility conditions. Furthermore, in [10] this result
was generalized to the setting of subset sums in lattices with coordinates indexed by
labelled faces of simplicial complexes.

Theorem 7.1 of [13] uses the differential equation method to show that a greedy match-
ing of a k-uniform hypergraph will use almost all of the vertices given certain degree con-
ditions are satisfied. The problem of finding an (n, q, t) partial Steiner system on [n] can
be viewed as finding a matching in a particular k-uniform hypergraph. In [13], Wormald
analyzes the greedy packing process to construct a hypergraph matching. He comments
that while the proof only works for fixed k, one should be able to let k be a function
of the number of vertices and get an analogous result. Wormald’s result suggests the
greedy packing process could construct a (n, q, 2) approximate partial Steiner system for
q = o( 4

√
log n). We explain the connection between Wormald’s result and our result in Sec-

tion 1.2. Bohman, Frieze, and Lubetzky studied a random triangle removal process which
constructs a partial Steiner triple system [4]. We analyze a process that is equivalent to
randomly removing Kq subgraphs. Bennett, Dudek, and Zerbib analyze a similar process
they call the online triangle packing process to prove Tuza’s conjecture for G(n,m) under
certain conditions [2]. Our main contribution is that we show that an F -free process
constructs an (n, q, 2) approximate partial Steiner system for q = o(

√
log n).

Bohman and Warnke showed there exists approximate partial Steiner triple systems
with high girth by analyzing an F -free process [6]. Our work uses their approach to
analyze the process of q-uniform graphs where q may depend on n.

1.2 Notation

For a sequence of events {En} we say that this sequence occurs with high probability if

lim
n→∞

P(En) = 1.

We abbreviate with high probability as whp. We will use the notation f(n) ≪ g(n)

interchangeably with f(n) = o(g(n)) to mean limn→∞
f(n)
g(n)

= 0. For a sequence of random

variables {Xi}ni=1, let ∆Xi = Xi+1 −Xi.

1.3 q-Linear Process

A hypergraph H is called linear if for any A,B ∈ E(H) we have |A ∩B|  1. In other
words, any pair of vertices appears in at most one edge. Suppose that H is q-uniform.

Then |E(H)|  (n2)
(q2)

= n(n−1)
q(q−1)

as the

q
2


pairs in each edge are distinct.

Consider the following simple randomized greedy algorithm for constructing a maximal
q-uniform linear hypergraph where we add one edge at each step. Let Hi be the
hypergraph at step i and let ei be the edge added at step i.

1. Let H0 be the empty q-uniform hypergraph on [n].
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2. For i  1, in step i pick ei uniformly at random from the set

e ∈


[n]

q


: |e ∩ ej|  1 for 1  j  i− 1



and form Hi by adding ei to Hi−1.

We call this the q-linear process. We analyze the stopping time of this algorithm for
various values of q that may depend on n. Our first result gives a lower bound on sizes
of maximal linear hypergraphs. Note that such lower bounds give a lower bound on the
stopping time of the q-linear process.

Proposition 1. Let H be a q-uniform linear hypergraph on [n] that is maximal (i.e. no
edge can be added to H while maintaining linearity). Then

e(H)  n(n−q+1)
q(q−1)2

= n2

q3
(1− o(1)).

Observe that Proposition 1 shows that any maximal partial (n, q, 2) Steiner system
asymptotically has at least n2

q3
edges. In particular the q-linear process must continue for

at least n2

q3
(1− o(1)) steps.

In addition to Proposition 1, notice that there is a trivial lower bound for the size of a
maximal (n, q, 2) partial Steiner system on the order of n

q
by a counting argument.

Notice that if q >
√
n, we have that n

q
> n2

q3
and so in this case, the trivial lower is better

than the bound from Proposition 1. Furthermore, when the trivial lower bound is better
than the bound from Proposition 1, Proposition 2 says exactly how long the process
continues asymptotically.

Proposition 2. Let H be a q-uniform linear hypergraph on [n] with q 
√
2n. Then

e(H) < q. Further, if H is maximal then e(H) = Θ(n
q
).

The problem of finding an (n, q, t) partial Steiner system on [n] can be viewed as finding
a matching in a


q
t


-uniform hypergraph H where V (H) =


[n]
t


and for each S ∈


[n]
q


H

has an edge which corresponds to all of the t-sets in S. In [13] Wormald defines the
greedy packing process on a hypergraph H as the process which picks an edge from H
one at a time uniformly at random and then deletes all the vertices in the chosen edge
and continues until there are no edges remaining. We state Wormald’s result below:

Theorem 3. Let H be a k-uniform hypergraph with ν vertices where k is a fixed
constant. Assume ν < rC for some constant C, δ = o(r1/3) and r = o(ν). Also if d(v) is
the degree of vertex v in H then assume |d(v)− r|  δ. Then for any 0 <

1
9k(k−1)+3

a.a.s. at most ν
r0

vertices remain at the end of the greedy packing process applied to H.

Based on the connection between partial Steiner systems on [n] and matchings in the
hypergraph H, the number of unused vertices in the greedy packing process is the
number of unused pairs at the end of the q-linear process. Note that the
correspondences between the greedy packing process and the q-linear process is given by
ν =


n
2


and k =


q
2


. Hence, for the partial Steiner system to have (1− o(1))n(n−1)

q(q−1)
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edges, Wormald’s result suggests that if k were allowed to grow as a function of ν then
we would need that ν

r0
= o(n2).Then using the fact that r = o(ν) = o(n2) and

0 = O( 1
k2
) = O( 1

q4
), we would need that q = o( 4

√
log n).

Our main result allows us to still get almost all of the edges until q is o(
√
log n), giving

an improvement over the expected result from Wormald 1999 [13].

Theorem 4. Let q = o(
√
log n) and let Hn be a q-uniform hypergraph on [n] obtained

from the q-linear process. Then whp |E(Hn)|  n(n−1)
q(q−1)

(1− o(1)).

Note that for q between
√
log n and

√
2n all we know about the q-linear process is the

lower bound from Proposition 1.

In Section 2 of this paper, we will prove Proposition 1 and Proposition 2 and in Section
3 we will prove Theorem 4.

2 Auxiliary Results

We will begin by proving Proposition 1

Proof. Let H be a q-uniform linear hypergraph on [n] that is maximal. Consider the
graph G on [n] whose edge set is pairs that are not present in any edge of H. Then G is
Kq-free as a Kq in G corresponds to an edge that can be added to H. Then
n
2


= e(H)


q
2


+ e(G). Hence, by Turán’s Theorem

e(H) =


q

2

−1 
n

2


− e(G)





q

2

−1 
n

2


−


1− 1

q − 1


n2

2



=
n(n− q + 1)

q(q − 1)2
.

Next, we prove Proposition 2.

Proof. Let H be a q-uniform linear hypergraph on [n]. Let e(H) = m and let
E(H) = {ei : i ∈ [m]}. Now define Hi as the q-uniform hypergraph on [n] with
E(Hi) = {ej : j ∈ [i]}. Define Vi = [n] \ ∪i

j=1ej be the set of vertices not used by any
edge in Hi. Now notice that since H is linear, |ei+1 ∩ ∪i

j=1ej|  i, so |Vi \ Vi+1|  q − i.
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Now let V0 = [n] and notice that for all i ∈ [m]

|Vi| = n−
i

j=1

|Vj−1 \ Vj|

 n−
i

j=1

q − (j − 1)

= n− iq +
1

2
i(i− 1).

Now let f(x) = n− qx+ 1
2
x(x− 1) and notice that f(i)  |Vi| for all i ∈ [m]. Also, notice

that |Vi| is a non-negative integer for all i ∈ [m] since it is the number of vertices not
used in any edge of Hi. Then notice that f(q) = n− 1

2
q2 − 1

2
q < 0 since q 

√
2n, so if

m  q this would lead to a contradiction since |Vq|  f(q) < 0 but |Vq|  0. Thus m < q.

Now notice that
m

i=1 |Vi−1\Vi| 
m

i=1(q − (i− 1)) = mq − 1
2
m(m− 1) and further,m

i=1 |Vi−1\Vi|  n. Thus we get that m(q − 1
2
(m− 1))  n but since m− 1 < q then

m(q − 1
2
q)  n. Thus m  2n

q
so m = O(n

q
).

Next, assume Hi is maximal and notice that every new edge uses at most q vertices not
used by other edges, and there cannot be q unused vertices because H is maximal. Thus
m > n−q

q
= Ω(n

q
). Thus e(H) = Θ(n

q
).

3 Analysis of the q-Linear Process

We prove Theorem 4 using the differential equation method.

3.1 Trajectories and Definitions

To understand q-linear process we need to track the codegree of sets A ⊂ [n]. The
codegree of A at step i is the number of B ⊂ [n] with A ∩B = ∅ so that A ∪B can be
added to Hi−1 = {e1, . . . , ei−1}. Towards this end, for each J ⊂ [n] with
|J | = j ∈ {0} ∪ [q − 1] consider the sets

H(i) :=


e ∈


[n]

q


: |e ∩ ek|  1 for 1  k  i− 1



Pj(i) :=


J ∈


[n]

j


: J ⊂ e for some e ∈ H(i)



YJ(i) :=


K ∈


[n]\J
q−j


: J ∪K ∈ H(i)


J ∈ Pj(i)

YJ(i− 1) J ∕∈ Pj(i).

Here Pj(i) represents j sets which can still be a subset of a new edge at step i, and
|YJ(i)| represents the codegree of a set in Pj(i) with the convention that if J ∕∈ Pj(i)
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then we freeze YJ at its current value. We are particularly interested in |Y∅(i)| as this
gives the number of available edges at step i, and we give this set another name H(i) for
clarity.

Next we will define trajectory functions which we expect the random variables |YJ(i)| to
follow. Observe that after i steps the proportion of pairs that are not in any edge is
(n2)−i(q2)
(n2)

= 1− iq(q−1)
n(n−1)

. Our heuristic is that the probability that a pair is not in any edge

at step i is 1− iq(q−1)
n(n−1)

and the events that distinct pairs are not in any edges are
mutually independent. Now we will define a continuous time variable t which relates to
discrete steps by

t(i) = ti =
i

n(n− 1)

and define the following functions

p(t) := 1− q(q − 1)t

yj(t) :=


n− j

q − j


p(

q
2)−(

j
2) for all j ∈ [q − 1] ∪ {0}

h(t) :=


n

q


p(

q
2).

Notice that p is a real-valued function which matches our heuristic for the probability
that a pair is not in an edge at step i when t = i

n(n−1)
. Further, notice that if our

heuristic is close to true, then yj(ti) gives the approximate size of YJ(i) when t = i
n(n−1)

given that J ∈ Pj. Also note that h(t) = y0(t).

Now, we define our targeted stopping time m0 and the errors j we allow on these
trajectories as

f := (log log n)2

β :=
1

6q2

m0 :=


n(n− 1)

q(q − 1)
(1− n−β)



j(t) :=


n− j

q − j


n−1+3β(q2)qfp−(

j
2)−2(q2)

H(t) := 0(t).

Now to prove Theorem 4, we prove the following lemma:
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Lemma 5. For all 0  i  m0, and for all j ∈ [q − 1] ∪ {0} we have that

||H(i)|− h(ti)|  H(ti)

||YJ(i)|− yj(ti)|  j(ti) for all J ∈ Pj(i)

whp.

We now prove Theorem 4 assuming Lemma 5.

Proof. Now notice that if H(t) = o(h(t)) and j(t) = o(yj(t)), Lemma 5 will show that
whp H(i) ∼ h(ti) and YJ(i) ∼ yj(ti), which since h(tm0) ≫ 1 will prove Theorem 4.

To see that j(t) = o(yj(t)) for all j ∈ [q − 1] ∪ {0} notice that for all t ∈ [0, m0

n(n−1)
]

j(t)

yj(t)
=


n−j
q−j


n−1+3β(q2)qfp−(

j
2) − 2


q
2




n−j
q−j


p(

q
2)−(

j
2)

= qfn−1+3β(q2)p−3(q2)

= qfn−1+3β(q2)(1− q(q − 1)t)−3(q2)

 qfn−1+3β(q2)

1− q(q − 1)

m0

n(n− 1)

−3(q2)

 qfn−1+6β(q2) = o(1),

where the last statement in the above follows from our choices of f and β.

Notice that since we want n−β = o(1) then we need β = ω


1
logn


, and we also need

β = Θ (q−2). Thus we need that

q
2


= o(log n) which holds since we assumed

q = o(
√
log n).

3.2 Expected One-Step Change

Let ∆YJ(i) = |YJ(i+ 1)|− |YJ(i)| and let Fi be the natural filtration of the process at
step i. We refer to ∆YJ(i) as the one step change of YJ(i).

Lemma 6. The one step change E[∆YJ(i)|Fi] is given by

− 1

|H(i)|






K∈YJ (i)






S⊂J, T⊂K, |S|+|T |2, |T |1

(−1)|S|+|T |(|S|+ |T |− 1)|YS∪T (i)|







 . (1)

Proof. Observe that ∆YJ(i) is the number of elements in the codegree of YJ(i) that are
made unavailable by the addition of ei to Hi−1. We show that for fixed K ∈ YJ(i) the
number of edges ei that causes K /∈ YJ(i+ 1) is



S⊂J, T⊂K, |S|+|T |2, |T |1

(−1)|S|+|T |(|S|+ |T |− 1)|YS∪T (i)|. (2)
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Suppose e ∈ H(i) with |e ∩ J | = k and |e ∩K| = ℓ such that k + ℓ  2. We will use the
following Lemma to show that if k = 0, 1 then e is counted once in (2) and that if k  2
then e is counted 0 times in (2).

Lemma 7. The following identities hold

ℓ

m=2


ℓ

m


(−1)m(m− 1) = 1

ℓ

m=2


ℓ

m


(−1)m(m− 1) +

ℓ

m=1


ℓ

m


(−1)m+1m = 1



0m1k,1m2ℓ,m1+m22


k

m1


ℓ

m2


(−1)m1+m2(m1 +m2 − 1) = 0.

We leave the proof of Lemma 7 to the appendix.
Let k = 0. Then e is counted

ℓ

m=2


ℓ

m


(−1)m(m− 1) = 1

times in (2).

Let k = 1. Then e is counted

ℓ

m=2


ℓ

m


(−1)m(m− 1) +

ℓ

m=1


ℓ

m


(−1)m+1m = 1

times in (2).

Let k  2. Then e is counted



0m1k,1m2ℓ,m1+m22


k

m1


ℓ

m2


(−1)m1+m2(m1 +m2 − 1) = 0

times in (2).

3.3 Supermartingale and Submartingale Properties

Let Gi be the event that all the bounds in Lemma 5 hold for all j  i. To prove Lemma
5, we will define the following random variable where J ∈


[n]
j


for j ∈ [q − 1] ∪ {0} as

Y ±
J (i) =


|YJ(i)|− (yj(ti)± j(ti)), if Gi−1 holds and J ∈ Pj(i)

Y ±
J (i− 1), otherwise.
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Lemma 8. Let n  n0 for some sufficiently large constant n0. For all J ⊆ [n] with
|J |  q − 1, {Y +

J (i)}m0
i=0 is a supermartingale and {Y −

J (i)}m0
i=0 is a submartingale.

Proof. We first note that

∆Y +
J (i) = (YJ(i+ 1)− YJ(i))− (yj(ti+1)− yj(ti))− (j(ti+1)− j(ti)).

Since by Taylor’s theorem

yj(ti+1)− yj(ti) =
y′j(ti)

n(n− 1)
+

1

2

y′′j (c)

n2(n− 1)2

for some c ∈ [ti, ti+1], and similarly

j(ti+1)− j(ti) =
′j(ti)

n(n− 1)
+

1

2

′′j (c)

n2(n− 1)2

for some c ∈ [ti, ti+1], we have that E[∆Y +
J (i)|Fi] is at most

E[∆YJ(i)|Fi]−
y′j(ti)

n(n− 1)
−

′j(ti)

n(n− 1)
+

sups∈[0, m0
n(n−1)

] |y′′j (s)|
2n2(n− 1)2

+
sups∈[0, m0

n(n−1)
] |′′j (s)|

2n2(n− 1)2
. (3)

Note that if Gi−1 does not hold then ∆Y +
J (i) = 0. In the event Gi−1, by Lemma 6 we get

E[∆YJ(i)|Fi] 
yj(ti) + j(ti)

h(ti)− h(ti)

q

m=2


q

m


−


j

m


(m− 1)((−1)m+1ym(ti) + m(ti))

∼
q

m=2


q

m


−


j

m


(m− 1)


(−1)m+1yj(ti)ym(ti)

h(ti)
+

yj(ti)m(ti)

h(ti)


.

(4)

To show that

Y +
J (i)


is a supermartingale, we need to verify that E[∆Y +

J (i)|Fi]  0.
We do this by showing that the negative terms in (3) are larger than the positive terms.
We do this by showing the following lemma.

Lemma 9. The following hold for all large enough n and t ∈ [0,m0/(n(n− 1))]


q

2


−


j

2


yj(t)y2(t)

h(t)
= −

y′j(t)

n(n− 1)

q

2


yj(t)2(t)

h(t)
 1

2

′j(t)

n(n− 1)

q

m


yj(t)ym(t)

h(t)
≪ 1

q

′j(t)

n(n− 1)
for m  3


q

m


yj(t)m(t)

h(t)
≪ 1

q

′j(t)

n(n− 1)
for m  3

sups∈[0, m0
n(n−1)

] |y′′j (s)|
2n2(n− 1)2

+
sups∈[0, m0

n(n−1)
] |′′j (s)|

2n2(n− 1)2
≪

′j(t)

n(n− 1)
.

the electronic journal of combinatorics 32(1) (2025), #P1.17 9



We leave the proofs of Lemma 9 for the appendix. Note that the first equation in
Lemma 9 shows that the −


q
2


−


j
2

 yj(ti)y2(ti)

h
term from (4) cancels completely in (3)

with − y′j(ti)

n(n−1)
. The second, third, and fourth equations in Lemma 9 show that the

absolute value of the rest of the terms in (4) is smaller than the absolute value of the

− ′j(ti)

n(n−1)
term in (3). Finally the last term in Lemma 9 shows the absolute value of the

second derivative terms is smaller than the absolute value of the − ′j(ti)

n(n−1)
term in (3).

For showing {Y −
J (i)} is a submartingale, notice that the main term from E[∆YJ(i)|Fi]

and the y′j(ti) term still cancel, so the ′j(ti) term is still sufficiently larger than all the
other terms, but the ′(ti) term is positive in E[∆Y −

J (i)|Fi], so E[∆Y −
J (i)|Fi]  0.

3.4 Absolute Bound on One-Step Change

Lemma 10. For all J ⊆ [n] with |J |  q − 1 and all i ∈ [m0],

|∆Y +
J (i)|  (q − 1)


n− j

q − j − 1


(1 + o(1))

|∆Y −
J (i)|  (q − 1)


n− j

q − j − 1


(1 + o(1)).

Proof. First, notice that

|∆Y +
J (i)|  |∆YJ(i)|+ sup

t∈[ti,ti+1]

|y′j(t)|
n(n− 1)

+ sup
t∈[ti,ti+1]

|′j(t)|
n(n− 1)

. (5)

We will bound each of the terms in (5). We will start by bounding ∆|YJ(i)|. Notice that
since YJ only changes when an available edge containing J becomes unavailable, then
existing edges can only cause the absolute change in YJ(i) to be smaller since sets that
would have been removed from the codegree of J were already not in the codegree of J .
Thus without loss of generality we may assume i = 0, and now we will consider three
types of edges, e, which can be added, edges where |e ∩ J |  2, edges where |e ∩ J | = 1,
and edges where |e ∩ J | = 0. First, since we freeze YJ once J has an intersection with an
existing edge of size at least 2, in the case where |e ∩ J |  2 we get that ∆YJ(0) = 0.
Next, when |e ∩ J | = 1 then the number of f ∈ YJ(0) \ YJ(1) is the number of edges
which contain J and at least one vertex in e \ J . To upperbound this quantity, we pick
one of the q − 1 vertices in e \ J and then just pick the rest of the vertices of f as any
q − j − 1 vertices in [n] \ J , which gives an upper bound on |∆YJ(0)| of

|∆YJ(0)|  (q − 1)


n− j

q − j − 1


.
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We will now show that (q − 1)


n−j
q−j−1


is the largest term in (5) using the following

standard lower bound


n− j

q − j − 1





n− j

q − j − 1

q−j−1

= Ω(nq−j−1q−q+j+1). (6)

When |e ∩ J | = 0, the only element of YJ(0) that are not in YJ(1) are those with at least
2 vertices in e. It follows that when |e ∩ J | = 0,

|∆YJ(0)| 

q

2


n− j

q − j − 2



 1

2
q2


(n− j)e

q − j − 2

q−j−2

= O(nq−j−2eq−j−2q2)

= o


(q − 1)


n− j

q − j − 1



where the last line follows from (6). Thus for all J and for all i we have that
|∆YJ(i)|  (q − 1)


n−j

q−j−1


.

Next, we will bound supt∈[ti,ti+1]

|y′j(t)|
n(n−1)

. Notice that for all t ∈ [0,m0]


y′j(t)

n(n− 1)

 =




n−j
q−j


p(

q
2)−(

j
2)−1(


q
2


−


j
2


)(−q(q − 1))

n(n− 1)



= O


ne

q − j

q−j

q4n−2



= O(nq−j−2q4eq−j)

= o


(q − 1)


n− j

q − j − 1



where the last line follows from (6). Finally we will bound supt∈[ti,ti+1]

|′j(t)|
n(n−1)

. Now

notice that for all t ∈ [0,m0/n(n− 1)] we get that
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′j(t)

n(n− 1)

 =




n−j
q−j


n−1+3β(q2)qfp−(

j
2)−2(q2)−1(−


j
2


− 2


q
2


)(−q(q − 1))

n(n− 1)



= O


ne

q − j

q−j

n−1+3β(q2)qf

1− q(q − 1)

m0

n(n− 1)

−(j2)−2(q2)−1

n−2q4



= O(nq−j−3+3β(q2)+β((j2)+2(q2)+1)q4+feq−j)

= o


(q − 1)


n− j

q − j − 1



where the last line follows from (6). Thus |∆Y +
J (i)|  (q − 1)


n−j

q−j−1


(1 + o(1)) for all J

and i. A similar proof bounds |∆Y −
J (i)|.

3.5 Freedman’s Inequality

To finish the proof of Lemma 5 we use Freedman’s Inequality which we state below [8].

Theorem 11. Let {S(i)}i0 be a supermartingale with respect to the filtration F =
{Fi}i0. If maxi0 |∆S(i)|  C and


i0 E(|∆S(i)| | Fi)  V , then for any z > 0

P (S(i)  S(0) + z for some i  0)  exp


− z2

2C(V + z)


.

We now prove Lemma 5.

Proof. We first apply Theorem 11 to {Y +
J } to prove the upper bound in Lemma 5. Observe

that if we set S = Y +
J and zj = −Y +

J (0) = j(0) and show that
z2j

2Cj(Vj+zj)
→ ∞ as n → ∞

then we will have shown that P(Y +
J (i) < 0 for all i) goes to 1 as n goes to infinity. This

along with the analogous statement of Y −
J and a union bound argument will show that

the inequalities in Lemma 5 hold.
We now compute Cj and Vj. From the absolute bound on the one step change in Y +

J we

know that

|∆Y +
J (i)| 


q − 1

1


n− j

q − j − 1


(1 + o(1)).

So we can take Cj =

q−1
1


n−j

q−j−1


(1 + o(1)) Furthermore, Lemma 9 together with m0 
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n(n−1)
q(q−1)

implies that



i0

E(|∆Y +
J (i)| | Fi)

 n(n− 1)

q(q − 1)
O


supt∈[0,tm0 ]

|′j(t)|
n(n− 1)



 n(n− 1)

q(q − 1)
O








n−j
q−j


n−1+3β(q2)qfnβ((j2)+2(q2)+1)(−


j
2


− 2


q
2


)(−q(q − 1))

n(n− 1)







= O


n− j

q − j


qf+2n−1+6β(q2)


.

Hence, we can set Vj = O


n−j
q−j


qf+2n−1+6β(q2)


.

Set zj = j(0) =

n−j
q−j


n−1+3β(q2)qf . Notice that zj ≪ Vj, so to verify that

z2j
2Cj(Vj+zj)

≫ 1,

it suffices to check that
z2j

CjVj
≫ 1. Observe that

z2j
CjVj

=


n−j
q−j

2
n−2+6β(q2)q2f

O


n−j
q−j


qf+2n−1+6β(q2)


·

q−1
1


n−j

q−j−1



= Ω


n− q + 1

q − j
n−1qf−3



= Ω


1− q

n
+

1

n


qf−4



= Ω(qf−4).

By Theorem 11, for all J

P(Y +
J (i)  0 for some i)  exp


−Ω(qf−4)


.

Since {Y −
J } is a submartingale, {−Y −

J } is a supermartingale, so by applying Theorem 11
to {−Y −

J } with S = −Y −
J and z = Y −

J (0) = j(0), a similar argument shows for all J

P(−Y −
J (i)  0 for some i)  exp


−Ω(qf−4)


.

To get the conclusion of Lemma 5, we show P(Gc
m0

) → 0 as n → ∞. Observe that

P(Gc
m0

)  P






J⊂[n],|J |<q


Y +
J (i)  0 for some i  0


∪

Y −
J (i)  0 for some i  0






 2q


n

q


e−Ω(qf−4)

 2qnqe−Ω(qf−4).
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Observe that

log

2qnqe−Ω(qf−4)


= log 2 + log q + q log n− Ω(qf−4).

Since the largest term is q log n we need to verify that that q log n ≪ qf−4. To see this
note that f ≫ log logn

log q
. Hence, 2qnqe−Ω(qf−4) = o(1) and we have P(Gm0) → 1 as n → ∞

which proves Lemma 5.

3.6 Appendix

3.6.1 Proof of Lemma 9

We now prove Lemma 9.

Proof. Throughout this section, we will use the derivatives y′j(t) and ′j(t) which are
given by

y′j(t) = −


q

2


−


j

2


n− j

q − j


p(

q
2)−(

j
2)−1q(q − 1)

′j(t) =


j

2


+ 2


q

2


n− j

q − j


n−1+3β(q2)qfp−(

j
2)−2(q2)−1q(q − 1).

We first show that


q
2


−


j
2

 yj(t)y2(t)

h(t)
= − y′j(t)

n(n−1)
. Observe that


q

2


−


j

2


yj(t)y2(t)

h(t)
=


q

2


−


j

2

 
n−j
q−j


p(

q
2)−(

j
2)

n−2
q−2


p(

q
2)−1


n
q


p(

q
2)

=


q

2


−


j

2


n− j

q − j


q(q − 1)

n(n− 1)
p(

q
2)−(

j
2)−1

= −
y′j(t)

n(n− 1)
.

Next, we show that

q
2

yj(t)2(t)

h(t)
 1

2

′j(t)

n(n−1)
. Indeed


q

2


yj(t)2(t)

h(t)


′j(t)

n(n− 1)

−1

=

(q2)(
n−j
q−j)p

(q2)−(j2)(n−2
q−2)n

−1+3β(q2)qfp−(
2
2)−2(q2)

(nq)p
(q2)

(n−j
q−j)n

−1+3β(q2)qfp−(
j
2)−2(q2)−1

((j2)+2(q2))(q(q−1))

n(n−1)

=


q
2



j
2


+ 2


q
2

  1

2
.
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To prove the rest of Lemma 9, we will first give a lower bound on
′j(t)

n(n−1)
and then prove

this is asymptotically larger than all the remaining terms. First notice that

′j(t)

n(n− 1)
=


n−j
q−j


n−1+3β(q2)qfp−(

j
2)−2(q2)−1(


j
2


+ 2


q
2


)(q(q − 1))

n(n− 1)

= Ω


n− j

q − j


n−3+3β(q2)qf+4p−(

j
2)−2(q2)−1


.

Now, we will compute q

q
m

yj(t)ym(t)

h(t)
where 3  m  q − 1 and show that each of these

terms is o(

n−j
q−j


n−3+3β(q2)qf+4p−(

j
2)−2(q2)−1). Observe that

q


q

m


yj(t)ym(t)

h(t)
= q


q

m


n−j
q−j


p(

q
2)−(

j
2)

n−m
q−m


p(

q
2)−(

m
2 )


n
q


p(

q
2)



n− j

q − j


q
qe
m

m


ne

q −m

q−m  q

n

q

p−(
q
2)



n− j

q − j


n−m+β(q2)q2m+1eqm−m

= o


n− j

q − j


n−3+3β(q2)qf+4p−(

j
2)−2(q2)−1


.

Since m(t) = o(ym(t))

q


q

m


yj(t)m(t)

h(t)
= o


q


q

m


yj(t)ym(t)

h(t)


= o


n− j

q − j


n−3+3β(q2)qf+4p−(

j
2)−2(q2)−1


.

Lastly, we need to verify that
sups∈[0,m0/(n(n−1))] |y′′j (s)|

2n2(n−1)2
and

sups∈[0,m0/(n(n−1))] |′′j (s)|
2n2(n−1)2

are also

both o(

n−j
q−j


n−3+3β(q2)qf+4p−(

j
2)−2(q2)−1).

sups∈[0, m0
n(n−1)

] |y′′j (s)|
2n2(n− 1)2

=


n−j
q−j


(p(0))(

q
2)−(

j
2)−2(


q
2


−


j
2


)(

q
2


−


j
2


− 1)(q2(q − 1)2)

2n2(n− 1)2

= O


n− j

q − j


n−4q8



= o


n− j

q − j


n−3+3β(q2)qf+4p−(

j
2)−2(q2)−1


.

Similarly, we compute
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sups∈[0, m0
n(n−1)

] |′′j (s)|
2n2(n− 1)2

 O






n−j
q−j


n−1+3β(q2)qf+8


p


m0

n(n−1)

−(j2)−2(q2)−2

n2(n− 1)2





= O


n− j

q − j


n−5+β(6(q2)+2)qf+8



= o


n− j

q − j


n−3+3β(q2)qf+4p−(

j
2)−2(q2)−1


.

This completes the proof of Lemma 9.

3.6.2 Proof of Combinatorial Identities

We now prove Lemma 7

Proof. We first show that
ℓ

m=2


ℓ
m


(−1)m(m− 1) = 1. Observe that

(1 + x)ℓ − 1

x
=

ℓ

m=1


ℓ

m


xm−1.

This means
d

dx


(1 + x)ℓ − 1

x


=

ℓ

m=2


ℓ

m


(m− 1)xm−2.

Letting x = −1 yields
ℓ

m=2


ℓ
m


(−1)m(m− 1) = 1.

We now show that
ℓ

m=2


ℓ
m


(−1)m(m− 1) +

ℓ
m=1


ℓ
m


(−1)m+1m = 1. Observe that

(1 + x)ℓ =
ℓ

m=0


ℓ

m


xm.

Differentiating and letting x = −1 yields
ℓ

m=1


ℓ
m


(−1)m+1m = 0, so we haveℓ

m=2


ℓ
m


(−1)m(m− 1) +

ℓ
m=1


ℓ
m


(−1)m+1m = 1.

We now show that



0m1k,1m2ℓ,m1+m22


k

m1


ℓ

m2


(−1)m1+m2(m1 +m2 − 1) = 0.

We show this by verifying that



0m1k,0m2ℓ,m1+m22


k

m1


ℓ

m2


(−1)m1+m2(m1 +m2 − 1) = 1
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and the m2 = 0 part



0m1k,m12


k

m1


ℓ

0


(−1)0+m1(0 +m1 − 1) = 1.

This second equality is the same as the first identity we proved. For the first one,
observe that

(1 + x)k+ℓ − 1

x
=

(1 + x)k(1 + x)ℓ − 1

x
=



0m1k,0m2ℓ,m1+m21


k

m1


ℓ

m2


xm1+m2−1.

This implies

d

dx


(1 + x)k+ℓ − 1

x


=



0m1k,0m2ℓ,m1+m22


k

m1


ℓ

m2


(m1 +m2 − 1)xm1+m2−2.

Substituting x = −1 yields



0m1k,0m2ℓ,m1+m22


k

m1


ℓ

m2


(−1)m1+m2(m1 +m2 − 1) = 1.
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