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Abstract

We make two contributions pertaining to the study of the quantum chromatic
numbers of small graphs. Firstly, in an elegant paper, Mančinska and Roberson
[Baltic Journal on Modern Computing, 4(4), 846-859, 2016] gave an example of a
graph G14 on 14 vertices with quantum chromatic number 4 and classical chromatic
number 5, and conjectured that this is the smallest graph exhibiting a separation
between the two parameters, as measured by the number of vertices. We describe
a computer-assisted proof of this conjecture, thereby resolving a longstanding open
problem in quantum graph theory. Our second contribution pertains to the study
of the rank-r quantum chromatic numbers. While it can now be shown that for

every r, χq and χ
(r)
q are distinct, few small examples of separations between these

parameters are known. We give the smallest known example of such a separation

in the form of a graph G21 on 21 vertices with χq(G21) = χ
(2)
q (G21) = 4 and

ξ(G21) = χ
(1)
q (G21) = χ(G21) = 5. The previous record was held by a graph Gmsg

on 57 vertices that was first considered in the aforementioned paper of Mančinska

and Roberson and which satisfies χq(Gmsg) = 3 and χ
(1)
q (Gmsg) = 4. In addition,

G21 provides the first provable separation between the parameters χ
(1)
q and χ

(2)
q . We

believe that our techniques for constructing G21 and lower bounding its orthogonal
rank could be of independent interest.

Mathematics Subject Classifications: 05C15, 05C30, 05C85

1 Introduction

Let G be a finite simple graph. For a given number of colours k, this paper will be cen-
tered around the following scenario, which was first studied in full generality by Galliard
and Wolf ([1]) and is called the k-colouring game on G. Two participants, traditionally
named Alice and Bob, are physically separated, respectively given vertices x, y of G under
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Montréal. (olalonde@uwaterloo.ca).

the electronic journal of combinatorics 32(1) (2025), #P1.18 https://doi.org/10.37236/12506

https://doi.org/10.37236/12506


the promise that x and y are either equal or adjacent, and then requested to respectively
output colours a, b ∈ [k] that are equal if and only if their inputs were. In a given setting,
we are interested in the smallest value of k, denoted k∗, for which this can be achieved
with certainty: clearly, this will also be possible for all k ⩾ k∗.

It can be seen that perfect deterministic strategies for the k-colouring game on G
and classical k-colourings of G are equivalent concepts: fixing such a k-colouring, Alice
and Bob can play the game perfectly by each outputting the colour corresponding to the
vertex they were given, and conversely, it is fairly straightforward to see that all perfect
deterministic strategies for the game are of this form. We therefore have that k∗ = χ(G)
classically. When quantum mechanics is taken into account, the picture changes: as was
first shown by Brassard, Cleve and Tapp ([19]), though without using our now-standard
graph-theoretic terminology, certain graphs have the intriguing property that the sharing
of quantum entanglement enables Alice and Bob to play the k-colouring game on G per-
fectly for some values of k that are strictly smaller than χ(G). Put differently, defining the
quantum chromatic number of G, denoted χq(G), to be the value of k∗ in the entangled
setting, it can be the case that χq(G) < χ(G). G will be said to be quantumly k-colourable
if there exists a perfect entangled strategy for the k-colouring game on G, and we will
refer to such a strategy as a quantum k-colouring of G.

As could have been inferred from its title, this paper is concerned with the study of
the quantum chromatic numbers of small graphs. We make two contributions in this
direction: one negative, by giving a tight lower bound on the size of a graph exhibiting
a separation between the classical and quantum chromatic numbers, and one positive, by
giving an example of a small graph with interesting properties from the standpoint of the
study of the quantum chromatic number. Most of our results will be computer-assisted,
and most of the corresponding code, which is written in the Julia language, can be found
at https://github.com/lalondeo/QuantumColorings, which itself builds on the Koala
library (https://github.com/lalondeo/Koala.jl).

Firstly, while it was first shown in [19] that the classical and quantum chromatic num-
bers are distinct in general (though without giving a concrete example of a graph with
this property: their work was made explicit some time later by Galliard, Tapp and Wolf
([20])), the smallest graph arising from this line of work that exhibits the desired sepa-
ration, which is due to Avis, Hasegawa, Kikuchi and Sasaki ([25]), contains more than
a thousand vertices. This means that the corresponding colouring games are not very
well suited for an experimental demonstration of the existence of quantum entanglement.
In addition to initiating the formal study of the quantum chromatic number, Cameron,
Montanaro, Newman, Severini and Winter ([2]) came up with a much smaller separation
between the classical and chromatic numbers in the form of a graph G18 on 18 vertices with
χ(G18) = 5 and χq(G18) = 4. The corresponding quantum 4-colouring of G18 is obtained
by invoking Proposition 6 below together with the fact that G18 admits an orthogonal
representation in R4, by construction. This was later improved upon by Mančinska and
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Roberson ([3]), who gave a graph G14 on 14 vertices which otherwise shares the afore-
mentioned properties of G18 and conjectured that this separation is smallest possible. In
section 3, we will describe a computer-assisted proof of the following slight strengthening
of their conjecture:

Theorem 1. All graphs G with χq(G) < χ(G) satisfy one of the following:

1. |V (G)| ⩾ 15

2. |V (G)| = 14 and χq(G) ⩾ 4

The above result shows that the separation between the quantum and classical chro-
matic numbers that is given by G14 is minimal, both in terms of its size, and among
graphs of the same size exhibiting the separation, in terms of its quantum chromatic
number. The longstanding open problem of determining the smallest graph exhibiting a
separation between the quantum and classical chromatic numbers, which seems to have
appeared in print for the first time in the work of [25] and was also asked by [2], is thereby
completely solved. The idea of the proof of Theorem 1 is to exhaustively enumerate a
certain class of graphs with the property that if a counterexample to the theorem existed,
then that class would also contain a counterexample. This enumeration was achieved
using an algorithm based on the geng program of the NAUTY library of McKay ([4]), to
be described in subsection 3.1. With the resulting list in hand, we then ran every graph G
in it through a specialised semidefinite hierarchy due to Russell ([6]) to attempt to show
that the colouring game on G with χ(G) − 1 colours has entangled synchronous value
strictly less than one, which implies that G is not quantumly (χ(G) − 1)-colourable and
therefore that χq(G) = χ(G), as desired. How this was done is described in subsection 3.2.

Our first contribution showed the absence of a separation between the quantum and
classical chromatic numbers among a certain class of graphs. By contrast, in section 4,
we will provide an example of a small graph G21 on 21 vertices exhibiting a more exotic
separation between the quantum and classical chromatic numbers that that which is given
by G14 and G18. Prior to this work, all examples of small graphs exhibiting this separation
relied on Proposition 6, so that for the corresponding graphs G, it is always the case that
there exists a quantum χq(G)-colouring of G with corresponding measurement operators
all of rank one. Equivalently, defining the rank-r quantum chromatic number ([2]) of G,

denoted χ
(r)
q (G), to be the smallest value of k for which G admits a quantum k-colouring

with all measurement operators of rank exactly r (see Theorem 4 for why this is a useful

definition to make), we have that for these graphs, χ
(1)
q (G) = χq(G). The conclusion of

[2] asked if this last equation holds for all graphs. Although this question was seemingly
never addressed directly in the subsequent literature, it can now be established that this
is not the case, and more strongly, recent results of Harris ([17]) can be seen to imply

that for every r, there exists a graph G with χq(G) = 3 and χ
(r)
q (G) > 3. Indeed, as was

known to [2], the parameter χ
(r)
q is computable in principle, while [17] showed that the

problem of determining whether a given graph is quantumly 3-colourable is undecidable
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in general, by appealing to a result of Slofstra ([8]). The work of [17] can be leveraged in

principle to produce an explicit separation between χq and χ
(r)
q for any given choice of r,

but the resulting graphs will most likely be formidably large. Prior to this work, the only
reasonably small graph known to exhibit a separation of this kind came from the work
of [3] and is a graph Gmsg on 57 vertices with χq(Gmsg) = 3 and χ

(1)
q (Gmsg) = 4. The

graph Gmsg is obtained by applying Karp’s classical reduction from 3-SAT to 3-COL to the
system of equations defining the magic square game of Mermin ([27]) and Peres ([28]), and

the fact that χ
(1)
q (Gmsg) = 4 follows from the fact that ξ(Gmsg) = χ(Gmsg) = 4, as shown

by [3], combined with the first part of Proposition 6. The measurement operators in the
quantum 3-colouring of Gmsg corresponding to the standard perfect quantum strategy for
the magic square game are not all of the same rank, but by using the averaging trick of [2],

they can all be made to be of rank 4, so that χ
(4)
q (Gmsg) = 3. It may be that Gmsg admits

a quantum 3-colouring of rank 2 or 3, but we do not know of one. In addition to being
much smaller than Gmsg, our graph G21 could be shown to satisfy χq(G21) = χ

(2)
q (G21) = 4

and χ
(1)
q (G21) = χ(G21) = 5. Therefore, G21 is the smallest graph known to exhibit a

separation between χq and χ
(1)
q , and in particular, the smallest known separation between

the classical and quantum chromatic numbers such that no quantum colouring achieving
the separation can be built by appealing to Proposition 6. Moreover, this gives the first
proof of the following result:

Theorem 2. The parameters χ
(1)
q and χ

(2)
q are distinct.

As described in subsection 4.1, the graph G21 is obtained as the orthogonality graph of
the vector clumps listed in appendix A, which Theorem 12 shows how to turn into a rank-
two quantum 4-colouring of G21. It is easy to show that χ(G21) = 5 using a computer,

so that to show that χ
(1)
q (G21) = 5, it is enough to establish that ξ(G21) > 4, as per

Proposition 6. Our computer-assisted proof of this fact, which is described in subsection
4.2, relies on a new branch-and-bound-like algorithm predicated on a generalisation of the
square-free criterion of Arends, Ouaknine and Wampler ([12]) and on the graph parameter
ξSDP of Paulsen, Severini, Stahlke, Todorov and Winter ([5]), which is a strengthening of
sorts of the classical ϑ number of Lovász ([34]).

2 Preliminaries

The graphs under consideration in this paper are all finite and simple, and the size of a
graph will always be taken to mean the number of vertices in it. We will frequently use
the shorthand [n] to mean {1, . . . , n}.

Let G be a graph. For a given k ∈ N, a classical k-colouring of G is an assignment
{cv}v∈V (G) of elements of [k], which we traditionally refer to as colours, to the vertices
of G such that cu ̸= cv for all (u, v) ∈ E(G). The smallest value of k for which a k-
colouring of G exists is called the chromatic number of G, denoted χ(G). A clique is a set
of pairwise adjacent vertices of G: the size of the largest clique of G is called the clique
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number of G, denoted ω(G). An independent set is a set of pairwise nonadjacent vertices
of G. A k-dimensional orthogonal representation of G is an assignment of unit vectors
{|ψ⟩v}v∈V (G) in Ck to the vertices of G such that, for all (u, v) ∈ E(G), ⟨ψu|ψv⟩ = 0: the
smallest value of k for which G admits a k-dimensional orthogonal representation is called
the orthogonal rank of G, denoted ξ(G). The following is standard and simple to see:

Proposition 3. For all graphs G, it holds that

ω(G) ⩽ ξ(G) ⩽ χ(G)

Following Paulsen and Todorov ([18]), each entanglement model t ∈ {q, qa, qc} gives
rise to a quantum chromatic number χt, defined to be the smallest value of k for which
Alice and Bob can win the k-colouring game on a given graph with certainty when given
access to correlations in the corresponding correlation set. We easily have, for every graph
G:

χqc(G) ⩽ χqa(G) ⩽ χq(G) ⩽ χ(G)

In line with the literature, we always mean χq when we speak of ‘the’ quantum chromatic
number, although we are mainly concerned with small graphs in this paper, for which
the three quantum chromatic numbers are expected to always coincide. Though it had
already been defined in a passing remark in [25] (which attributes its definition to Patrick
Hayden), the extensive study of the parameter χq was first undertaken by [2], while the
specific study of χqc was first carried out in [5]. The three quantum chromatic numbers
were recently proven to all be uncomputable and distinct by [17], building on the work
of Ji ([22]) and on recent breakthrough results in the theory of nonlocal games, namely
those of Slofstra ([8], [9]) and of Ji, Natarajan, Vidick, Wright and Yuen ([10]).

In the finite-dimensional case, we have the following convenient structure theorem due
to [2], which provides a simpler way to specify a quantum k-colouring of a given graph:

Theorem 4 ([2]). Given a graph G and k ∈ N, G is quantumly k-colourable if and only
if, for some finite-dimensional complex Hilbert space H, there exists an assignment of a
projective measurement {Ev

c }c∈[k] on H to every v ∈ V (G) in such a way that for every
(u, v) ∈ E(G) and for every c ∈ [k], it holds that Eu

cE
v
c = 0. This assignment corresponds

to the following quantum k-colouring of G: Alice and Bob share the standard maximally
entangled state on HA⊗HB; on input x, Alice measures her part of the state with respect
to {Ex

a}a∈[k]; on input y, Bob measures his part of the state with respect to {Ey

b}b∈[k]; and
they both output the results. Furthermore, a perfect entangled strategy for the k-colouring
game on G can be assumed to be of the above form without loss of generality, i.e. without
increasing the local dimension of the shared entangled state. Moreover, the above projectors
can all be assumed to be of the same rank r, though at the cost of potentially increasing
the local dimension of the shared entangled state.

For a given r, following [2], the rank-r chromatic number χ
(r)
q (G) is defined to be

the smallest k such that G admits an assignment of the form above with projectors
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all of rank exactly r. By the last part of the previous structure theorem, we have that
χq(G) = minr χ

(r)
q (G), and as mentioned in the introduction, computability considerations

imply that for every r, there exists a graph G with χq(G) = 3 and χ
(r)
q (G) > 3. An earlier

version of this paper repeated the claim made without proof 1 by [2] that χ
(r)
q (G) ⩽ χ

(s)
q (G)

for all r ⩾ s. We thank the anonymous referee for pointing out to us that this claim is
unsubstantiated. The only general relationship between the rank-r quantum chromatic
number which seems to be straightforwardly provable is the following (which we also
thank the anonymous referee for):

Proposition 5. Given a graph G and natural numbers r and s such that s divides r, we
have that

χ(r)
q (G) ⩽ χ(s)

q (G)

Proof. Suppose that r = st, and that χ
(s)
q (G) = k. By definition, there exists an as-

signment of projective measurements {Ev
c }c∈[k] on Cks to the vertices of G with all the

projectors of rank s. It can be seen that this assignment can be turned into a valid rank-r
quantum k-colouring of G by tensoring the t× t identity matrix to all the projectors.

This shows that the rank-one quantum chromatic number is always the largest of all
the rank-r chromatic numbers.

The following proposition collects some results of [2] about the relationships between
orthogonal representations, rank-one colourings and classical colourings. While the first
part of the proposition is quite simple to prove, the second part requires considerably
more ingenuity and is based on a construction involving quaternions and octonions. Prior
to this work, this construction was the basis for all known instances of small separations
between the quantum and classical chromatic numbers.

Proposition 6 ([2]). For all graphs G, it holds that

ξ(G) ⩽ χ(1)
q (G) ⩽ χ(G)

Also, if, for some k ∈ {2, 4, 8}, G admits an orthogonal representation in Rk, then

χ
(1)
q (G) ⩽ k.

Whether ξ and χ
(1)
q coincide for all graphs was asked by [2]. This was shown not to be

the case by Scarpa and Severini ([23]). [3] gave a stronger version of this separation in the

form of a graph G13 on 13 vertices with ξ(G13) = 3 and χq(G13) = χ
(1)
q (G13) = χ(G13) = 4.

We also record the following standard but useful result:

Proposition 7. Given a graph G, the following are equivalent:

1This claim is in fact proclaimed in [2] as being ‘clear’, which seems to qualify as an instance of a proof
by intimidation ([26]).
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1. χ(G) = 2

2. χqc(G) = 2

3. ξ(G) = 2

In our computations, the real-valued graph parameter ξSDP of [5] will be very useful
to us. Despite its being NP-hard to compute in general, for the small graphs that came
under scrutiny in this work, ξSDP was found to be just as efficiently computable as the
ϑ number while providing stronger bounds. Given a graph G, ξSDP (G) is defined by the
following semidefinite program, where n is the size of V (G) which we identify with [n]:

ξSDP (G) = min Mn+1,n+1 (1)

s.t. Mi,j ⩾ 0 i, j ∈ [n+ 1] (2)

Mi,j = 0 (i, j) ∈ E(G) (3)

Mn+1,i =Mi,i = 1, i ∈ [n] (4)∑
i∈S

Mi,j ⩽ 1 S a clique of G, j ∈ [n] (5)

Mn+1,n+1 +
∑

i∈S,j∈T

Mi,j ⩾ |S|+ |T | S, T cliques of G (6)

M an (n+ 1)× (n+ 1) PSD matrix (7)

It can be seen that restricting to maximal cliques in the constraints (5) and (6) yields an

equivalent program, and is hence a desirable thing to do. The constraints (2) imply that
the constraints in (5) corresponding to non-maximal cliques are redundant, and in the
case of the constraints (6), the constraints (5) imply that deleting a vertex from either S
or T always yields a weaker inequality, so for these constraints as well we may restrict to
maximal cliques only.

The following proposition shows that ξSDP yields bounds on the same parameters of
interest as the ϑ number does, and justifies our thinking of ξSDP as a strengthening of the
ϑ number. The only part of the proposition that appears to be new 2 is the simple (but
important for us) observation that ξSDP lower bounds the orthogonal rank.

Proposition 8. For all graphs G, it holds that

ω(G) ⩽ ϑ(G) ⩽ ξSDP (G) ⩽ ξ(G), χqc(G)

Proof. The first inequality is a standard result, and the second is shown in [5]. The last
two follow from the fact that ξSDP (G) ⩽ ξtr(G) ⩽ χqc(G) and ξtr(G) ⩽ ξf (G) ⩽ ξ(G) (see
[5] for the definitions of the corresponding parameters).

2During email exchanges with Dan Stahlke, it transpired that he was aware of this, but we do not think
this was ever published.
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Since the graph parameters we wish to lower bound are integer valued, only the value
of ⌈ξSDP ⌉ is of interest to us. In order to show that k ⩽ ⌈ξSDP ⌉ for some k, we look for
a feasible solution for the dual of the program (1)-(6) with corresponding objective value
at least k − 1 + ϵ, for a fixed small positive value of ϵ. In our implementation, this dual
is solved using the COSMO solver of Garstka, Cannon and Goulart ([29]).

Finally, we recall that for a given graph G, the graph operation called vertex identifi-
cation with respect to two distinct vertices u, v of G amounts to deleting the vertex u and
adding the edge (v, w) to the resulting graph for every w /∈ {u, v} such that (u,w) ∈ E(G).

3 A computer-assisted proof of the minimality of G14

This section describes a computer-assisted proof of Theorem 1. Our proof technique
is based on the following simple observation: if G is a graph exhibiting a separation
between the quantum and classical chromatic numbers and if H is a subgraph of G with
χ(G) = χ(H), then H necessarily also exhibits the desired separation, since quantum k-
colourability is a hereditary property. Defining a graph G to be edge-critical if it contains
no isolated vertices and if, for every proper subgaph H of G, we have χ(H) < χ(G),
or, equivalently, the removal of any vertex or edge from G causes its chromatic number
to decrease, it is then apparent that if there existed a counterexample to Theorem 1,
an edge-critical counterexample would necessarily exist also. Defining a graph G to be
edge-k-critical if it is edge-critical and χ(G) = k, we will list all edge-k-critical graphs on
n vertices for 4 ⩽ k ⩽ n ⩽ 13 and for k = 4, n = 14. Theorem 1 is then equivalent to the
statement that none of the resulting graphs exhibits a separation between the classical
and quantum chromatic numbers: note that the edge-3-critical graphs can be omitted in
view of Proposition 7. The proof of the theorem is then completed by using a semidefinite
hierarchy due to [6] to show that for all the resulting graphs G, the commuting operator
value of the (χ(G)− 1)-colouring game on G is strictly less than one. It should be noted
that this also rules out the possibility that χqc(G) < χ(G), so that Theorem 1 goes
through for χqc as well. The algorithm that we used to enumerate edge-k-critical graphs
on a given number of vertices is the subject of subsection 3.1, and subsection 3.2 explains
in more detail how we go about proving a lower bound on the quantum chromatic number
of a given graph.

3.1 Enumerating edge-critical graphs

Given 4 ⩽ k ⩽ n, we describe our algorithm for generating all edge-k-critical graphs
on n vertices. Our approach is built upon the geng program of the NAUTY package of
McKay ([4]), which enumerates all graphs on a given number of vertices satisfying certain
properties exactly once up to isomorphism. geng allows the user to specify certain such
properties out of the box, such as connectedness or minimum degree, and also allows
for the implementation of custom filters through the functions prune and preprune.
Algorithm 1 describes the role of these functions in the course of the algorithm. preprune
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is called at an earlier stage and more often than prune, while prune is called at most once
on every graph.

Algorithm 1 A cartoon depiction of the inner workings of geng. shouldskip makes sure
that only one isomorphic copy of G is examined and enforces the restrictions specified by
the user. preprune and prune are to be implemented by the user.

function enumerate(G, n)
if preprune(G), shouldskip(G) and prune(G) are all false (tested in this order)

then
if G has n vertices then

Record G
else

for all graphs G′ obtained from G by adding a vertex to it and by adding
edges between that vertex and the other vertices do

enumerate(G′, n)

enumerate(the graph on one vertex, n)

In our implementation, we specify to geng that all graphs on n vertices under consid-
eration are to have minimum degree at least k − 1. This is a correct restriction because
if a vertex of a given graph G has degree at most χ(G) − 2, it can be seen that deleting
that vertex from the graph will not affect its chromatic number, which shows that the
graph is not edge-critical. We now turn to explaining how our preprune and prune func-
tions operate. In all that follows, we use the naive backtracking algorithm for testing for
k-colourability and for listing colourings, with the slight twist that we begin by finding
a large enough maximal clique v1, . . . , vl in the graph and we force the vertex vi to be
coloured with colour i for every i to reduce the size of the search space.

The idea of our implementation is to do as much precomputation as possible on the
graphs on n− 1 vertices so as to minimise the work that needs to be done on the graphs
on n vertices, which are far more numerous. In our case, preprune always returns ‘false’
unless it is called on a graph on n vertices. Given a graph G on n − 1 vertices, prune
begins by making sure that χ(G) = k − 1. If this does not hold, it can be seen that no
graph G′ obtained from G by adding a vertex can be edge-k-critical and so G may be
pruned. Otherwise, we do some precomputation on G to be able to run heuristic tests on
any extension G′ of G to rule out edge-k-criticality quickly in most cases. We compute
the following data in prune:

1. We list a number of distinct independent sets of size at most 2, each with the
property that there exists a (k − 1)-colouring of G such that, for some colour,
the vertices coloured with that colour are precisely the vertices contained in that
independent set. This is done by simply listing all (k − 1)-colourings of G and
examining each of them.
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2. We pick distinct edges (u1, v1), . . . , (un, vn) of G arbitrarily. For every such edge
(u, v), we list all assignments of colours in [k− 1] to the vertices of G such that any
two adjacent vertices are assigned different colours except for u and v, which are
assigned the same colour. This is achieved by contracting (u, v) and by listing the
(k−1)-colourings of the resulting graph. In the event that too many colourings were
found, which would harm performance, we give up on the edge and choose another
one. The edges are then sorted by increasing number of colourings found. In our
implementation, n = 4 was found to yield the best performance.

Then, in preprune, given a graph G′ on n vertices which extends G, we run the following
tests in the given order:

1. Heuristic (k− 1)-colouring test: for every independent set that was previously com-
puted for G, check if some vertex in that set is adjacent to the last vertex of G′. If
not, by construction, G′ is (k − 1)-colourable and may be pruned.

2. Heuristic edge-criticality test: for every edge (u, v) picked previously, check if at least
one of the previously computed assignments is such that, for some colour c ∈ [k−1],
c was not assigned to any of the neighbors of the last vertex. If not, G′ is not edge-
k-critical and may be pruned. To see why, suppose that G′ is edge-k-critical and
consider the graph G′′ obtained from G′ by removing the edge (u, v). By hypothesis,
G′′ is (k − 1)-colourable; and furthermore, any (k − 1)-colouring of G′′ must assign
the same colour to u and v because, otherwise, the colouring would also be a valid
(k− 1)-colouring for G′, which is supposed to have chromatic number k. Therefore,
if this test does not pass, either χ(G′) = k− 1 or χ(G′′) = k. In either case, we can
conclude that G′ is not edge-k-critical.

Finally, in prune, a full-blown edge-k-criticality test is run. Little regard to efficiency is
paid at this point because of how powerful the previous two heuristic tests are.

Our implementation of the above algorithm, which is written in C, can be found over
at https://github.com/lalondeo/gencrit. Brendan McKay gracefully agreed to host
the lists we produced, which can now be found over at https://users.cecs.anu.edu.
au/~bdm/data/graphs.html. The computation took roughly one year of CPU time, with
the great majority of this time going into enumerating the 4-critical graphs on 14 ver-
tices, and yielded around 13.8 million graphs. The number of edge-k-critical graphs on
n vertices for every k,n is given in Table 1. It should be mentioned that McKay had
separately enumerated all edge-4-critical graphs on 13 vertices or less and his lists agree
exactly with ours. The others were validated by first checking that every graph in the list
is indeed edge-critical as well as by generating a large number of edge-critical graphs at
random and by checking that they were all enumerated. It can therefore be asserted with
high confidence that the lists we produced are complete.
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Table 1: The number of edge-k-critical graphs for every graph size n, up to isomorphism.
There are 13,778,383 graphs in total. It is interesting that the number of graphs on every
diagonal appears to be converging to a definite value. We do not know why that is.

k
4 5 6 7 8 9 10 11 12 13

n

4 1 - - - - - - - - -
5 0 1 - - - - - - - -
6 1 0 1 - - - - - - -
7 2 1 0 1 - - - - - -
8 5 2 1 0 1 - - - - -
9 21 21 2 1 0 1 - - - -
10 150 162 22 2 1 0 1 - - -
11 1,221 4,008 393 22 2 1 0 1 - -
12 14,581 147,753 17,036 395 22 2 1 0 1 -
13 207,969 8,311,809 1,479,809 25,355 395 22 2 1 0 1
14 3,567,180 ? ? ? ? ? ? ? ? ?

3.2 The pipeline for proving a lower bound on the quantum chromatic num-
ber of a given graph

Having explained how the edge-critical graphs are enumerated, we now turn to describ-
ing a procedure for attempting to prove that a given graph does not admit a quantum
k-colouring for a given value of k. We will then systematically apply this to every pre-
viously enumerated graph G with k = χ(G) − 1 in order to show that χq(G) = χ(G).
We note that we are not the first to approach the problem of lower bounding the quan-
tum chromatic number of a given graph using computation: [3] report that Piovesan and
Burgdorf could find an alternative proof of their result that their graph G13 is not quan-
tumly 3-colourable using a computer algebra system. [3] remarked that this approach did
not work in many other cases, and in particular, was seemingly unable to show that a
graph does not admit a quantum k-colouring for any k ⩾ 4. This was later proven to be
true in general by Helton, Meyer, Paulsen and Satriano ([7]). Therefore, while their ap-
proach could conceivably have been used to deal with the edge-4-critical graphs, another
proof strategy is required to handle the graphs with larger chromatic numbers.

Our proof technique is based on a semidefinite hierarchy of the kind that was first
put forth independently by Navascués, Pironio and Aćın ([30]) and by Doherty, Liang,
Toner and Wehner ([31]). While this original hierarchy could have been used directly, in
our case, a more efficient alternative exists in the form of the hierarchy of Russell ([6]),
which is specialised to so-called synchronous correlations. Given finite input and output
sets X and A, a correlation p(a, b|x, y)a,b∈A,x,y∈X is said to be synchronous if, for all input
pairs x, y ∈ X, the outputs a, b ∈ A are equal with probability one. By definition, any
correlation which wins a colouring game with probability one is necessarily synchronous.
Taking X and A to be fixed, for a given entanglement model t ∈ {q, qc}, we will write
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Cs
t to mean the set of synchronous correlations in the entanglement model t. Given a

nonlocal game G specified by identical input sets X, identical output sets A, an input
distribution qx,y on X × X and a predicate V : X × X × A × A 7→ {0, 1}, with respect
to entanglement model t ∈ {q, qc}, the synchronous entangled value ([35]) of G, denoted
ωs
t (G), is defined by the supremum

sup
∑
x,y∈X

qx,y
∑
a,b∈A

p(a, b|x, y)V (x, y, a, b) (8)

s.t. p(a, b|x, y) ∈ Cs
t (9)

Similarly to the original hierarchy of [30] and [31], the hierarchy of [6] consists in a
nonincreasing sequence C1 ⊇ C2 ⊇ · · · of synchronous correlation sets all containing Cs

qc

and converging to it in the limit and which are all specified by semidefinite constraints.
For every level i, we then consider the semidefinite program

max
∑
x,y∈X

qx,y
∑
a,b∈A

p(a, b|x, y)V (x, y, a, b) (10)

s.t. p(a, b|x, y) ∈ Ci (11)

These programs can be optimised efficiently on a computer and their optimal values pro-
vide asymptotically tight upper bounds on ωs

qc(G), though the complexity of computing
the optimal value of the i-th program is exponential in i, meaning that unless G is very
small, only the first few upper bounds can feasibly be computed. In our case, given a graph
G and k ∈ N, writing GG,k to denote the k-colouring game on G with the input distribution
taken to be uniform over the legal inputs, our approach to showing that G is not quan-
tumly k-colourable is to try to prove the stronger statement that ωs

qc(GG,k) < 1 by means
of the above hierarchy. It can be seen that this holds if and only if k < χqc(G), and as
was mentioned in the preliminaries, it is now known that it may be that χqc(G) < χq(G),
in which case the approach we are outlining would be powerless at showing a tight lower
bound on χq. There is no way around this, at least in the k = 3 case: it follows from
computability considerations that the set of graphs that are not quantumly 3-colourable
is not recursively enumerable, and hence that there exists no computational procedure for
proving that a given graph is not quantumly 3-colourable that will systematically even-
tually succeed if this does hold. Since the graphs presently under consideration are quite
small, our hope is that the approach we described will work nevertheless.

We now turn to describing in more detail how the hierarchy of [6] is built. Letting
A be a C∗-algebra, a state τ : A 7→ R is said to be tracial if τ(AB) = τ(BA) for all
A,B ∈ A. The linchpin of the hierarchy of [6] is the following lemma of [5], which can be
seen to parallel Theorem 4:

Lemma 9 ([5]). The correlations in Cs
qc are precisely those for which there exists a C∗-

algebra A, a tracial state τ : A 7→ R and an assignment of projective measurements in A
to the elements of X {Ex

a}x∈X,a∈A such that, for every x, y ∈ X, a, b ∈ A,

p(a, b|x, y) = τ(Ex
aE

y
b )
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The way the semidefinite hierarchy of [6] is derived from this lemma is very similar to
the way the original semidefinite hierarchy of [30] and [31] is defined. Taking the alphabet
Σ to be the collection of letters {Ex

a}x∈X,a∈A, which we think of as being placeholders for
projective measurements on a generic C∗-algebra, and given a finite set S ⊆ Σ∗ containing
all words of length at most one, which we think of as being monomials over the Ex

a , we
look at the space of so-called pseudo-states ψ, which are functions S × S 7→ R satisfying
certain properties that would have to be satisfied if, for some C∗-algebra A, there existed
projective measurements Ex

a in A and a tracial state τ on A such that ψ(xR, y) = τ(x†y)
for every x, y ∈ S. The corresponding correlation set CS is then defined to be the set of
correlations p(a, b|x, y) such that, for some such pseudo-state ψ, p(a, b|x, y) = ψ(Ex

a , E
y
b )

for all x, y, a, b: by construction and by the previous lemma, we have that Cs
qc ⊆ CS. ψ

can be viewed as a square matrix of size |S|, which can be constrained to be positive
semidefinite, and the algebraic constraints that are imposed on it are linear in its entries,
so that membership in CS is indeed specified by a semidefinite program. The precise
algebraic constraints that are being imposed are somewhat tedious to spell out, and the
reader is referred to [6] for further details. Tying back to our previous high-level presen-
tation, for every i ∈ N, setting Si to be the collection of all words on Σ of length at most
i, we take Ci = CSi

. For our purposes, however, this presentation is too coarse-grained.
On the one hand, while the program (9)-(10) corresponding to the set C1 is very small
and can be optimised very quickly in all cases, for a significant proportion of our graphs
G, it is too weak to rule out the existence of a quantum (χ(G) − 1)-colouring. In fact,
corollaries 15 and 16 of Cubitt, Mančinska, Roberson, Severini, Stahlke and Winter ([32])
can be seen to imply that the test corresponding to C1 will succeed in showing that a given

graph G is not quantumly k-colourable if and only if k < ϑ
+
(G), where ϑ+ is Szegedy’s

([33]) strengthening of the Lovász ϑ number. Since ϑ
+
(G) ⩽ ξSDP (G) for all graphs,

this test is subsumed by the first step of our pipeline. On the other hand, while the test
corresponding to the set C2 was found to be extremely strong, the resulting semidefinite
program is quite large and takes a fair amount of time to solve for the larger graphs with
large chromatic numbers. A simple workaround is to run the test with carefully chosen
subsets of S2 instead, which reduces the amount of computation required by a fair amount.

The full pipeline that was used for proving that a given graph G satisfies χq(G) = χ(G)
is the following, where a particular ordering of V (G) is chosen arbitrarily, where k =
χ(G)−1 and where, given a choice of monomials S, the program (9)-(10) is being optimised
for the game GG,k with correlation set CS. We ran every test in the list sequentially until
one could prove the nonexistence of a quantum k-colouring of G.

1. Try to prove that ⌈ξSDP (G)⌉ = χ(G).

2. Run the test given by the hierarchy corresponding to the set

S = {Ex
cE

y
c | x, y ∈ V (G), c ∈ [k], x < y}

3. Run the test given by the hierarchy corresponding to the set

S ′ = {Ex
cE

y
c | x, y ∈ V (G), c ∈ [k]}
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4. Run the test given by the hierarchy corresponding to a subset S ′′ of C2 chosen by
randomly discarding every monomial of the form Ex

aE
y
b where x > y with probability

50%. This random choice is seeded so as to be reproducible.

In our implementation, the resulting semidefinite programs were all solved using the COSMO
solver of Garstka, Cannon and Goulart ([29]). A certificate for the nonexistence of a quan-
tum k-colouring was generated by the solver and was validated independently in exact
arithmetic. Running the above pipeline on every graph took about 17 weeks of CPU time
in total, with more detailed statistics being given by Table 3.2. The individual results for
every graph can be found at https://www.dropbox.com/scl/fi/r0yqvlltnrzamlzwz9x
xq/criticalgraphsresults.tar.gz?rlkey = c5bsskychxvewwv0o4ouk6bthdl = 0. The ex-
periment was run on several different machines of slightly varying computing power, so
that the times given are indicative only. Also, a time limit was put on each test, so it
may be that some graphs that should not have passed a test did because the solver could
not produce a proof of the nonexistence of a quantum (χ(G)− 1)-colouring in time.

Table 2: Performance of each step of the above battery of tests
Test # of graphs filtered # of remaining graphs Average CPU time spent

(in seconds)
1 10,728,817 3,049,566 0.015
2 3,048,050 1,516 3.3
3 1,510 6 27.6
4 6 0 48.0

We see that the ξSDP test prefiltered most graphs extremely quickly, whereas the sec-
ond test, while much slower, could rule out a very significant proportion of the remaining
graphs. All remaining graphs but six could then be ruled out by the third test. We note
that, based on the data of Table 2, it may seem like the fourth test is not significantly
more expensive than the third and hence that the third test could have been done with-
out, but this is because the graphs the fourth test was run on all have chromatic number
4, and the fourth test can be enormously slower than the third when applied to graphs
with larger chromatic numbers. Interestingly, out of the six graphs that could not be
ruled out by the first three tests, only one is on 13 vertices and turns out the be the only
edge-4-critical subgraph of the graph G13 of [3], and the other five are on 14 vertices and
were all found to be edge-4-critical subgraphs of graphs obtained by cloning a vertex in
G13. Our pipeline could recover their C orollary 1 (which states that G13 is not quantumly
3-colourable) in a bit less than two minutes, with 40 seconds being spent on test 4.

Since all the previously enumerated graphs could be shown to have equal classical and
quantum chromatic numbers, the proof of Theorem 1 is complete.
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4 The case of the graph G21

In this section, we give a novel mechanism for constructing quantum colourings, based on
the notion of a vector clump which we introduce. This construction will then be put to
use by exhibiting a graph G21 with χq(G21) = χ

(2)
q (G21) = 4 and χ(G21) = 5. This is the

content of subsection 4.1. In subsection 4.2, we will describe a computer-assisted proof
of the fact that ξ(G21) > 4. Since χ(G21) = 5, this, together with Proposition 6, implies

that ξ(G21) = χ
(1)
q (G21) = 5.

4.1 The clump rank of a graph and G21

We begin by making the following definition:

Definition 10. A (r,k)-vector clump is a collection of unit vectors {|ψi,j⟩}i∈[r],j∈[k] in Crk

which are all pairwise orthogonal. Two (r,k)-clumps {|ψi,j⟩} and {|ψ′
i,j⟩} are said to be

orthogonal if, for every i, i′ ∈ [r], it holds that

k∑
j=1

⟨ψi,j|ψ′
i′,j⟩ = 0

By analogy with the notion of an orthogonal representation, given a graph G, an
assignment of (r, k)-vector clumps to the vertices of G {|ψv

i,j⟩}v∈V (G),i∈[r],j∈[k] such that
for all (u, v) ∈ E(G), {|ψu

i,j⟩} and {|ψv
i,j⟩} are orthogonal will be called a (r,k)-clump

representation of G. For a given r, the rank-r clump rank of G, denoted ξ
(r)
c (G), is

defined to be the smallest k such that G admits a (r,k)-clump representation. It may not
be immediately obvious that these parameters are well-defined, but they are, and we even
have:

Proposition 11. For all graphs G and all ranks r, it holds that

ξ(r)c (G) ⩽ χ(r)
q (G)

Proof. Let k = χ
(r)
q (G) and let {Ev

c }v∈V (G),c∈[k] be a corresponding rank-r quantum k-
colouring of G, consisting of projective measurements on Ckr with all projectors being
of rank r. We may build a (r, k)-clump representation of G as follows. For every v ∈
V (G), j ∈ [k], take {|ψv

i,j⟩}i∈[r] to be an orthonormal basis of the support of Ev
j . Clearly,

for a fixed vertex v, these form an orthonormal basis of Ckr. Since ⟨ψx
i,j|ψ

y
i′,j⟩ = 0 for all

(x, y) ∈ E(G), this constitutes a (r, k)-clump representation of G, as desired.

Slightly more arduously, in the other direction, we can show:

Theorem 12. For all graphs G and all ranks r, it holds that

χ(r)
q (G) ⩽ ξ(r)c (G)2
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Proof. Suppose that ξ
(r)
c (G) = k, and take {|ψv

i,j⟩} to be a corresponding (r, k)-clump rep-
resentation ofG. We build a rank-r quantum k2-colouring ofG by appealing to Theorem 4.

Letting ζ be a fixed primitive k-th root of unity, for every v ∈ V (G), i ∈ [r], c1, c2 ∈ [k],
define |ϕv

i,(c1,c2)
⟩ ∈ Crk2 by:

|ϕv
i,(c1,c2)

⟩ = 1√
k

k∑
j=1

ζc1j |j⟩ |ψv
i,j⊕c2

⟩

Where j ⊕ c2 is taken to mean the only representative of j + c2 modulo k in [k]. For
i, i′ ∈ [r] and c1, c2, c

′
1, c

′
2 ∈ [k], we see that

⟨ϕv
i,(c1,c2)

|ϕv
i′,(c′1,c

′
2)
⟩ = 1

k

k∑
j=1

ζ(c
′
1−c1)j ⟨ψv

i,j⊕c2
|ψv

i′,j⊕c′2
⟩

= δi,i′δc2,c′2
1

k

k∑
j=1

(
ζ(c

′
1−c1)

)j

= δi,i′δc1,c′1δc2,c′2

Where the last equality holds because ζ(c
′
1−c1) is a k-th root of unity that is different from

one if c1 ̸= c′1. It follows that, for a fixed vertex v, the |ϕv
i,(c1,c2)

⟩ form an orthonormal basis

of Crk2 . For every c1, c2 ∈ [k], taking Ev
(c1,c2)

to be the projector on the r-dimensional

subspace spanned by the |ϕv
i,(c1,c2)

⟩, we see that for every v, these form a projective mea-

surement on Crk2 . Also, we see that for (u, v) ∈ V (G), for any choice of i, i′ ∈ [r] and for
every c1, c2 ∈ [k], by the correctness of the clump representation:

⟨ϕu
i,(c1,c2)

|ϕv
i′,(c1,c2)⟩ =

1

k

k∑
j=1

⟨ψu
i,c2⊕j|ψv

i′,c2⊕j⟩

= 0

So that Eu
(c1,c2)

Ev
(c1,c2)

= 0. The conclusion follows.

We now put the above result to use to construct the promised graph G21. This graph is
obtained as the orthogonality graph of the 21 (2, 2)−clumps listed in appendix A, mean-
ing that two vertices are adjacent if and only if the corresponding clumps are orthogonal.
G21 is depicted in Figure 1. The clumps were obtained using a computer by consider-
ing the orthogonality graph of all (2, 2)−clumps with corresponding unit vectors having
components in {−1, 0, 1} (pre-normalization) and by looking for a suitable vertex-critical
subgraph.

By design, we have that ξ
(2)
c (G21) = 2, and therefore χ

(2)
q (G21) ⩽ 4, by Theorem

12. We see that {1, 3, 10, 16} forms a clique of G21, so that ω(G21) ⩾ 4: Proposition
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Figure 1: A visual representation of the graph G21. This graph contains
21 vertices and 72 edges. The graph6 representation ([24]) of G21 is
TX ac~QhaBO TDaO@dDewW gCd?WWI c[?lg .

8 then implies that ω(G21) = χq(G21) = χ
(2)
q (G21) = 4. It is quite easy to show that

χ(G21) = 5 using, for example, the standard backtracking algorithm, and it even holds

that ξ(G21) > 4, which implies that ξ(G21) = χ
(1)
q (G21) = 5 and hence proves Theorem

2. The description of our computer-assisted proof of this fact is delegated to the next
subsection.

4.2 An algorithm for attempting to prove that a given graph does not admit
a k-dimensional orthogonal representation

We now turn to the problem of lower bounding the orthogonal rank of a given graph, with
the end goal of showing that ξ(G21) > 4. Unlike the case of the chromatic number, which,
despite being NP-hard to compute in general, can be computed reasonably comfortably
in practice for graphs on up to a few dozen vertices, we know of no practically usable and
provably correct algorithm for computing the orthogonal rank of a given graph G of any
size except in special cases, like when it so happens that ⌈ξSDP (G)⌉ = χ(G), for example,
in which case Propositions 3 and 8 imply that ξ(G) = χ(G). Since ω(G21) = χqc(G21) = 4,
it follows from this last proposition that ξSDP (G21) = 4, so this not the case here. From
the point of view of complexity theory, Briët, Buhrman, Leung, Piovesan and Speelman
([21]) showed that the problem of determining whether a given graph satisfies ξ(G) ⩽ k is
NP-hard for any fixed k ⩾ 3 (though the bulk of their proof is the k = 3 case, which can
also be seen to follow from Lemma 7 of [3]), and the results of Canny ([11]) imply that
this problem is contained in the complexity class PSPACE. It should be mentioned that
the problem of looking for a k-dimensional orthogonal representation of a given graph
can be tackled in practice using numerical root-finding methods, which will generally be
reasonably successful at finding one if one exists provided that the graph in question is

the electronic journal of combinatorics 32(1) (2025), #P1.18 17



not too large. Of course, their failure at finding one, while strong evidence that none
exists, does not provide an ironclad proof of this, and this is what we are after here.

The problem of determining whether a given graph admits a three-dimensional repre-
sentation satisfying certain additional properties has received a fair bit of attention in the
past, being a subproblem in current approaches in the minimal Kochen-Specker literature,
such as those of Arends, Ouaknine and Wampler ([12]), Uijlen and Westerbaan ([13]), Li,
Bright and Ganesh ([14]) and Kirchweger, Peitl and Szeider ([15]). The purpose of this
line of work is to prove lower bounds on the size of any graph that has an orthogonal
representation in R3 but is not 010-colourable (the precise definition of which is not im-
portant for our purposes). Though they did not state their results in these terms, the
work of Kochen and Specker ([16]) can be seen to give the first proof that such a graph
exists. Suppose that a given graph has this property. If two vectors in the corresponding
orthogonal representation were collinear, identifying the vertices corresponding to these
vectors would result in a smaller graph that also has an orthogonal representation in R3

and is also not 010-colourable: therefore, for the purpose of proving lower bounds, it is
permissible to assume that no two vectors in the orthogonal representation are collinear.
In the Kochen-Specker literature, a graph is called embeddable if it admits such an orthog-
onal representation. The approach taken in the previously cited works to show that no
embeddable and non-010-colourable graph on a certain number of vertices or less exists is
analogous to the proof technique that was employed in the first part of this paper: a col-
lection of non-010-colourable graphs is enumerated such that if a counterexample existed,
this collection would contain one, and an algorithm due to [13] is employed to prove that
none of the graphs in the collection is embeddable. Regrettably, this algorithm appears to
be tailor-made for the three-dimensional case and crucially requires the hypothesis that
no two vectors in the orthogonal representation be collinear. The requirement that the
vectors in the representation must be real is less critical and can be lifted, but doing so
will likely increase the complexity of the algorithm.

Fortunately, there is something in this line of work that can be generalised to yield a
method of proof for showing that a given graph does not admit a k-dimensional orthogonal
representation for any choice of k ⩾ 3, namely, the square-free criterion of [12], which
states that an embeddable graph must be square-free, i.e. not have the complete bipartite
graph K2,2 as a subgraph. We begin by providing a generalisation of sorts of this, with
the original criterion being recovered as the k = 3 case. Given a graph G and S ⊆ V (G),
we define a graph operation called set identification in the following way: the result is
a supergraph G′ of G with the same vertex set such that, for vertices u, v ∈ V (G) with
u ∈ S and v /∈ S, the edge (u, v) is added to G′ if, for every w ∈ S\{u}, it holds that
(v, w) ∈ E(G). We show:

Theorem 13. Take a graph G, k ⩾ 3, and suppose that v1, . . . , vk+1 are distinct vertices
of G such that the corresponding induced subgraph is a supergraph of the complete bipartite
graph Kk−1,2, meaning that for every i ∈ [k − 1] and every j ∈ {k, k + 1}, it holds that
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(vi, vj) ∈ E(G). G admits a k-dimensional orthogonal representation if and only if one
of the following graphs does:

1. The graph obtained by identifying the vertices vk and vk+1 in G.

2. For every two distinct vertices u,w ∈ {v1, . . . , vk−1}, the graph obtained by identify-
ing the vertices u and w in G.

3. For every S ⊆ {v1, . . . , vk−1} with |S| ⩾ 3, the graph obtained by performing set
identification with respect to S on G.

Also, a graph coming from one of point 1 and 2 can be dropped from the list if the ver-
tices that are to be identified are adjacent in G. Similarly, a graph coming from point 3
corresponding to a set S can be dropped if there is some vertex in S that is adjacent to all
the other vertices in S.

Proof. The backward direction is straightforward: if one of the graphs G′ coming from
point 3 has a k-dimensional orthogonal representation, so does G, since it is a subgraph
of G′. Similarly, a k-dimensional orthogonal representation for a graph coming from one
of point 1 or 2 lifts to a k-dimensional orthogonal representation of G in the obvious way.

For the forward direction, suppose that G has an orthogonal representation
{|ψv⟩}v∈V (G) in Ck. We proceed by case analysis. One of the following must be the
case:

• |ψv1⟩ , . . . , |ψvk−1
⟩ are linearly independent. Letting V be the (k − 1)-dimensional

subspace of Ck spanned by these vectors, by basic linear algebra, we have that V ⊥ is
one-dimensional. Since, by hypothesis, |ψvk⟩ , |ψvk+1

⟩ ∈ V ⊥, it follows that these two
vectors are collinear. This can be seen to mean that identifying vk and vk+1 in G
results in a graph that also has a k-dimensional orthogonal representation. Clearly,
if vk and vk+1 are adjacent in G, this case is impossible.

• |ψv1⟩ , . . . , |ψvk−1
⟩ are linearly dependent, so that there exist scalars λ1, λ2, . . . , λk−1 ∈

C, not all zero, such that:
k−1∑
i=1

λi |ψvi⟩ = 0

Defining the set S by:

S = {vi | i ∈ [k − 1], λi ̸= 0}

It must be the case that |S| ⩾ 2 because the |ψvi⟩ are nonzero. The following cases
are possible:

– |S| = 2: letting S = {u,w}, this case is much the same as the previous one. If
u and w are adjacent, this case is impossible and can be omitted, and if not,
|ψu⟩ and |ψw⟩ are collinear, so that by identifying u and w in G, we get a graph
that also has a k-dimensional orthogonal representation.
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– |S| ⩾ 3: in this case, for every u ∈ S, we see that |ψu⟩ can be written as a
linear combination of the vectors that were assigned to the other vertices in
S. If, for some u ∈ S, u is adjacent to all the other vertices in S, this case is
impossible. If not, pick some u ∈ S. If v /∈ S is such that for every w ∈ S\{u},
it holds that (v, w) ∈ E(G), and therefore that ⟨ψv|ψw⟩ = 0, it follows that
⟨ψv|ψu⟩ = 0, by the linearity of the inner product, and so the orthogonal
representation remains valid if the edge (u, v) is added to the graph. Hence,
applying set identification to G with respect to S results in a graph that also
has a k-dimensional orthogonal representation.

We see that the graphs listed in the statement of the theorem cover all of the above
cases.

The way the above result can be harnessed to attempt to prove that a given graph G
does not admit a k-dimensional orthogonal representation is reasonably straightforward.
We begin by checking if it is the case that ξSDP (G) > k: if this is so, Proposition 8 implies
that we are done. If not, we look for a copy of Kk−1,2 inside G such that the set identi-
fications given by the statement of Theorem 13 all result in proper supergraphs of G. If
no such copy exists, no further headway can be made and failure is declared: otherwise,
this procedure is applied recursively to the resulting graphs, which are all either smaller
than G or contain more edges than it, and, so we hope, are closer to having a ξSDP value
strictly greater than k. If the procedure could prove that none of the resulting graphs
admits a k-dimensional orthogonal representation, we can conclude that neither does G.

Applied to G21 with k = 4, this algorithm took about three seconds on our hardware
to show that G21 does not admit a four-dimensional orthogonal representation, with ξSDP

being evaluated on 128 graphs. In our implementation, a copy of Kk−1,2 inside the graph
is picked at random until one is found that is suitable. This choice is surely not optimal,
and there are a few variations on Theorem 13 based on other subgraphs that could be
considered. Since the algorithm we described turned out to be perfectly serviceable for
our purposes, such considerations are left for future work. It is reasonable that the algo-
rithm worked in this case because k is small, so that the branching factor of the algorithm
is not too large (being at most 5), and because it turns out that G21 contains a number
of distinct copies of K3,2, so that the algorithm never got stuck on a graph that was
maximal with respect to the operation described by Theorem 13. However, it should not
be very surprising that the above procedure will not systematically work in all cases, even
if it does hold that G does not admit a k-dimensional orthogonal representation. Indeed,
looking at some of the nonembeddable square-free graphs that were unearthed by works
in the Kochen-Specker literature, we could find some for which our algorithm failed at
proving the nonexistence of a 3-dimensional orthogonal representation despite numerical
evidence strongly suggesting that none exists.

Finally, we note that it so happens that for G21, χ
(1)
q and ξ coincide, so that tightly

lower bounding the latter allowed us to tightly lower bound the former. In general, as
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was mentioned in the preliminaries, it may happen that these two parameters disagree,
in which case our algorithm would be of no direct use for showing a tight lower bound
on χ

(1)
q . Fortunately, [23] showed that for all graphs G and all values of k, χ

(1)
q (G) ⩽ k if

and only if ξ(G□Kk) = k, where □ stands for the Cartesian product of graphs and Kk

stands for the complete graph on k vertices. This means that the problem of showing a
tight lower bound on the rank-one chromatic number of a given graph can be reduced to
the problem of proving that another graph does not admit an orthogonal representation
in a given dimension, which could then be tackled using our approach.

5 Conclusion and open problems

In conclusion, we have shown that for every graph G such that either |V (G)| ⩽ 13
or |V (G)| = 14 and χq(G) = 3, it holds that χ(G) = χq(G), thereby proving a con-
jecture of [3] and therefore solving a longstanding open problem regarding the quan-
tum chromatic number. Furthermore, making use of our notion of a vector clump, we
have given a small graph G21 on 21 vertices such that χq(G21) = χ

(2)
q (G21) = 4 and

ξ(G21) = χ
(1)
q (G21) = χ(G21) = 5, thereby giving the smallest separation known between

the parameters χq and χ
(1)
q , as well as proving χ

(1)
q and χ

(2)
q to be distinct graph parameters.

Our work suggests a number of avenues for future research, most prominently:

• Although it would be very surprising if this were not the case, at the time of writing,
no proof is known that the χ

(r)
q are all distinct graph parameters, and it could be

interesting to look for one. Relatedly, the fact that the claim made by [2] that

χ
(r)
q (G) ⩽ χ

(s)
q (G) whenever r ⩾ s lacks a proof means that the rank-r chromatic

numbers may enjoy a considerably richer structure than previously thought, possibly
being constrained only by Proposition 5: indeed, it seems perfectly possible that
for every natural number n, there exists a graph G such that χq(G) = χ

(r)
q (G)

precisely when n divides r. Nothing seems to speak against our graph G21 having
this property for n = 2, although proving this seems quite challenging.

• It would be very interesting to try to use our enumerative approach to gain a better
understanding of the quantum chromatic numbers of small graphs. For example, it
is reasonable to wonder whether all graphs on 14 vertices exhibiting a separation
between the quantum and classical chromatic numbers are subgraphs of G14. This
could maybe be tackled using our methods, but at the cost of several decades of CPU
time at minimum. Alternatively, it would be interesting to look for graphs on 20
vertices or less exhibiting a separation between χq and χ

(1)
q , or, more ambitiously,

to try to determine the smallest such graph. Unless, in an unexpected turn of
events, such a separation was found on 14 or 15 vertices, it seems unlikely that an
enumerative approach like the one that was used in this paper would be practically
feasible to attack this last problem.
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• As pointed out by the anonymous referee, it could also be interesting to determine
the minimal number of edges in a graph which exhibits a separation between the
quantum and classical chromatic numbers (this work addressed the minimal number
of vertices). The referee asked if it is conceivable that G14 is minimal in this respect:
the answer to this is not quite. Indeed, G14, which contains 37 edges, is found
not to be edge-5-critical, but only has one single edge-5-critical subgraph up to
isomorphism, which has one fewer edge than it (and hence also gives a separation
between the quantum and classical chromatic numbers). Proving that any graph
containing 35 edges or fewer does not exhibit this separation is most likely feasible,
but is left for future work.

• The fact that no general practical algorithm is known for computing the orthogonal
rank of a given graph G, even if G is small, is a rather problematic state of affairs.
It is ironic that although, theoretically, χq is uncomputable and ξ is, in practice
and for small graphs, the roles are reversed, with χq being well approachable using
semidefinite hierarchies while there are graphs on a dozen vertices whose orthogonal
ranks are not rigorously determined. The algorithm we presented in subsection 4.2
did succeed in showing that ξ(G21) > 4, but there are graphs for which we will not
be so lucky. It seems likely that in future computational attempts to look for small
separations between χq and χ

(1)
q , a surefire algorithm for computing the orthogonal

rank of a graph will be required, although a numerical approach will likely suffice
for exploration purposes.

We end by mentioning what we think is an important open problem in the theory of
the quantum chromatic number. We know from the work of [19] that not only are the
classical and quantum chromatic numbers distinct, but that the difference between the
two can be arbitrarily large. It would be very interesting to try to strengthen their
results by showing that there is some fixed k such that, for every n ∈ N, there exists a
graph G with χq(G) = k and χ(G) ⩾ n. It should be noted that this cannot be done
by only considering quantum colourings of a given fixed rank (as it is possible to upper
bound the chromatic number of a graph only knowing its rank-r chromatic number),
and except for the construction based on vector clumps that was given in this paper,
all known approaches for generating separations between χq and χ

(1)
q rely on variations

on the classical 3-SAT to 3-COL reduction and therefore yield graphs with chromatic
number at most 4. In particular, in order to establish this, one would have to either put
our construction to use or to look for a new way to construct quantum colourings.
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[32] T. Cubitt, L. Mančinska, D. Roberson, S. Severini, D. Stahlke and A. Winter (2014):
Bounds on Entanglement Assisted Source-Channel Coding via the Lovász Theta Num-
ber and its Variants. IEEE Transactions on Information Theory 60(11), p. 7330-7344.

[33] M. Szegedy (1994): A Note on the ϑ Number of Lovász and the Generalized Delsarte
Bound. Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, p. 36-39.

[34] L. Lovász (1979): On the Shannon Capacity of a Graph. IEEE Transactions on
Information Theory 25(1), p. 1-7.

[35] J. W. Helton, H. Mousavi, S. S. Nezhadi, V. I. Paulsen and T. B. Russell (2021):
Synchronous Values of Games. arXiv:2109.14741.

A The clumps corresponding to the graph G21

This appendix gives the (2, 2)-clumps of which G21 is the orthogonality graph. As in
matrix notation, when specifying a clump {|ψi,j⟩}, i runs from top to bottom and j runs
from left to right. Note that these clumps are also contained in the clumps.jld2 file of
https://github.com/lalondeo/QuantumColorings.

1.

1
√
2

[
1 0 −1 0

]
,

1
√
2

[
1 0 1 0

]
1

√
2

[
0 1 0 1

]
,

1
√
2

[
0 1 0 −1

]
2.

1
√

2

[
0 0 1 −1

]
,

1
√
2

[
1 −1 0 0

]
1

√
2

[
1 1 0 0

]
,

1
√
2

[
0 0 −1 −1

]
3.

1
√
2

[
1 0 1 0

]
,

1
√
2

[
−1 0 1 0

]
1

√
2

[
0 1 0 1

]
,

1
√
2

[
0 −1 0 1

]
4.

1
√

2

[
1 0 −1 0

]
,

1
√
2

[
−1 0 −1 0

]
1

√
2

[
0 1 0 1

]
,

1
√
2

[
0 1 0 −1

]

5.

1
√
2

[
1 −1 0 0

]
,

1
√
2

[
0 0 −1 −1

]
1

√
2

[
1 1 0 0

]
,

1
√
2

[
0 0 −1 1

]

6.

1
√
2

[
0 1 1 0

]
,

1
√
2

[
0 1 −1 0

]
1

√
2

[
1 0 0 1

]
,

1
√
2

[
1 0 0 −1

]

7.

1
√
2

[
1 0 −1 0

]
,

1
√
2

[
1 0 1 0

]
1

√
2

[
0 1 0 1

]
,

1
√
2

[
0 −1 0 1

]

the electronic journal of combinatorics 32(1) (2025), #P1.18 25

https://arxiv.org/abs/2109.14741
https://github.com/lalondeo/QuantumColorings


8.

1

2

[
1 1 1 −1

]
,
1

2

[
−1 −1 1 −1

]
1

2

[
1 −1 1 1

]
,
1

2

[
−1 1 1 1

]

9.

1

2

[
1 1 1 −1

]
,
1

2

[
−1 1 1 1

]
1

2

[
1 −1 1 1

]
,
1

2

[
1 1 −1 1

]

10.

1
√

2

[
0 1 0 −1

]
,

1
√
2

[
0 −1 0 −1

]
1

√
2

[
1 0 −1 0

]
,

1
√
2

[
−1 0 −1 0

]

11.

1
√

2

[
1 0 −1 0

]
,

1
√
2

[
0 −1 0 1

]
1

√
2

[
0 1 0 1

]
,

1
√
2

[
1 0 1 0

]

12.

1

2

[
1 −1 −1 1

]
,
1

2

[
−1 1 −1 1

]
1

2

[
1 1 1 1

]
,
1

2

[
−1 −1 1 1

]

13.

1

2

[
1 1 −1 −1

]
,
1

2

[
1 1 1 1

]
1

2

[
1 −1 1 −1

]
,
1

2

[
−1 1 1 −1

]

14.

1
√
2

[
0 0 1 −1

]
,

1
√
2

[
1 1 0 0

]
1

√
2

[
0 0 1 1

]
,

1
√
2

[
1 −1 0 0

]

15.

[
0 0 1 0

]
,
[

0 −1 0 0
]

[
0 0 0 1

]
,
[

−1 0 0 0
]

16.

1
√
2

[
0 1 0 −1

]
,

1
√
2

[
0 1 0 1

]
1

√
2

[
1 0 1 0

]
,

1
√
2

[
1 0 −1 0

]

17.

1

2

[
1 −1 −1 −1

]
,
1

2

[
−1 −1 −1 1

]
1

2

[
1 −1 1 1

]
,
1

2

[
1 1 −1 1

]

18.

1

2

[
1 1 −1 −1

]
,
1

2

[
1 −1 −1 1

]
1

2

[
1 −1 1 −1

]
,
1

2

[
−1 −1 −1 −1

]

19.

1

2

[
1 1 −1 −1

]
,
1

2

[
−1 1 1 −1

]
1

2

[
1 −1 1 −1

]
,
1

2

[
1 1 1 1

]

20.

1
√
2

[
0 1 1 0

]
,

1
√
2

[
−1 0 0 1

]
1

√
2

[
1 0 0 1

]
,

1
√
2

[
0 −1 1 0

]

21.

[
1 0 0 0

]
,
[

0 0 0 −1
]

[
0 1 0 0

]
,
[

0 0 −1 0
]

the electronic journal of combinatorics 32(1) (2025), #P1.18 26


	Introduction
	Preliminaries
	A computer-assisted proof of the minimality of G14
	Enumerating edge-critical graphs
	The pipeline for proving a lower bound on the quantum chromatic number of a given graph

	The case of the graph G21
	The clump rank of a graph and G21
	An algorithm for attempting to prove that a given graph does not admit a k-dimensional orthogonal representation

	Conclusion and open problems
	Acknowledgments
	The clumps corresponding to the graph G21

