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Abstract
An edge e in a matching covered graph G is removable if G − e is matching

covered, which was introduced by Lovász and Plummer in connection with ear de-
compositions of matching covered graphs. A brick is a non-bipartite matching cov-
ered graph without non-trivial tight cuts. The importance of bricks stems from the
fact that they are building blocks of matching covered graphs. Improving Lovász’s
result, Carvalho et al. [Ear decompositions of matching covered graphs, Combina-
torica, 19(2):151-174, 1999] showed that each brick other than K4 and C6 has ∆−2
removable edges, where ∆ is the maximum degree of G. In this paper, we show that
every cubic brick G other than K4 and C6 has a matching of size at least |V (G)|/8,
each edge of which is removable in G.
Mathematics Subject Classifications: 05C70,05C75

1 Introduction

We consider only undirected simple graphs. A connected graph G is matching covered,
also referred to as 1-extendable, if each edge lies in some perfect matching of G. For the
terminologies related to matching covered graphs, we follow Lovász and Plummer [10].

For a graph G, we denote by V (G) and E(G) the vertex set and edge set of G,
respectively. The degree of a vertex v in a graph G, denoted by dG(v), is the number of
edges of G incident with v. For two disjoint non-empty vertex subsets X,Y ⊆ V (G), we
denote by G[X] the subgraph of G induced by X, and by EG(X,Y ) the set of the edges
joining one vertex in X and one in Y . In particular, we call EG(X,X) an edge cut of G
and denote by ∂G(X), or simply by ∂(X), where X = V (G) \X. We refer to X and X as
the shores of ∂(X). An edge cut ∂(X) is trivial if either |X| = 1 or |X| = 1. For an edge
cut ∂(X), we denote the graph obtained from G by contracting X to a single vertex x
by G/(X → x), or simply G/X. Further, we call G/X the ∂(X)-contraction of G and x
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the contracted vertex. An edge cut ∂(X) of G is tight if |∂(X) ∩M | = 1 for every perfect
matching M of G and is separating if, for any e ∈ E(G), G has a perfect matching Me

such that e ∈ Me and |∂(X) ∩Me| = 1. Obviously, if G is matching covered then every
tight cut ∂(X) is separating and, hence both G/X and G/X are matching covered. We
call a matching covered graph G that contains no non-trivial tight cuts a brick if G is
non-bipartite, and a brace otherwise. Edmonds et al. [6] showed that a graph G is a brick
if and only if G is 3-connected and G−{x, y} has a perfect matching for any two distinct
vertices x, y ∈ V (G) (bicritical). Further, Lovász [9] proved that any matching covered
graph can be decomposed into a unique list of bricks and braces by a procedure called
the tight cut decomposition.

An edge e of a matching covered graph G is removable if G − e is matching covered.
For {e, f} ⊆ E(G), we say that {e, f} is a removable doubleton of G if neither e nor f is
removable and G−{e, f} is matching covered. Removable edges and removable doubletons
are generally called removable classes. The notion of removable class was introduced by
Lovász and Plummer, which arises in connection with ear decompositions of matching
covered graphs.

Lovász [8] proved that every brick distinct from K4 and C6 (the triangular prism) has
a removable edge. Further, Carvalho et al. [2] showed that each brick G other than K4

and C6 has at least ∆− 2 removable edges and the lower bound is attained by the cubic
brick R8 as shown Figure 2(a), where ∆ is the maximum degree of G. In [14] Zhai et
al. proved that the number of removable ears in every matching covered graph G is not
less than the minimum number of the perfect matchings needed to cover all edges of G.
Carvalho and Little [1] showed that every matching covered graph, except the cycle, has
at least three removable classes.

In this paper we consider the number of pair-wise non-adjacent removable edges in
cubic bricks in terms of the number of vertices.
Theorem 1.1. Let G be a cubic brick other than K4 and C6. Then G has a matching of
size at least |V (G)|/8, each edge of which is removable in G.

u v w

Figure 1: A 3-connected cubic matching covered graph with no removable edges.

We note that the size |V (G)|/8 in Theorem 1.1 is attained by the graph R8. Further,
though Theorem 1.1 gives the least numbers of removable edges for cubic bricks, this is
not the case in general cubic matching covered graphs. For example, the graph shown
in Figure 1 is a 3-connected cubic matching covered graph, which is not bicritical (the
removal of any two vertices in {u, v, w}, the resulting graph does not have a perfect
matching), and contains no removable edges at all.

the electronic journal of combinatorics 32(1) (2025), #P1.19 2



In the following section, we present some basic properties concerning removable edges.
In Section 3, we give a proof of Theorem 1.1.

2 Preliminaries

In this section, we recall some known results and present some basic properties concerning
removable edges that will be used in our proof of the main result.

2.1 Removable doubletons in edge cut contractions

Let G be a connected graph with a perfect matching. A nonempty subset X of V (G) is
a barrier if o(G − X) = |X|, where o(G − X) denotes the number of odd components
of G − X. It follows from the well-known Tutte’s Perfect Matching Theorem that if
uv ∈ E(G) and G has a barrier that contains both u and v, then no perfect matchings of
G contains the edge uv. The following result is proved by Tutte.
Lemma 2.1. [13] Every 2-edge-connected cubic graph is matching covered.

An edge cut with k edges is called a k-cut. The following proposition follows directly
from Lemma 2.1.
Proposition 2.2. [4] Every 3-cut of a 2-edge-connected cubic graph is a separating cut.

For a matching covered bipartite graph, we have the following theorem.
Theorem 2.3. (Theorem 4.1.1 in [10]) Let G be a matching covered bipartite graph with
color classes A and B. Then G− {u, v} has a perfect matching for any u ∈ A, v ∈ B.

We call an edge cut of a graph G good if it is separating but not tight, and call a
vertex covered by a matching M if it is incident with some edge in M . We note that if G
has a good edge cut, then G has a perfect matching that contains at least three edges in
this cut. Then every nontrivial separating cut in a brick is good. Carvalho et. al proved
the following lemma.
Lemma 2.4. (Lemma 3.1 in [3]) Let C := ∂(X) be a good cut of a matching covered graph
G and let H := G/X. Suppose that H is a brick, and let R be a removable doubleton of
H. If R ∩ C = ∅ or if the edge of R ∩ C is removable in G/X then R − C contains an
edge which is removable in G.

The following corollary follows directly from Lemma 2.4.
Corollary 2.5. Let G be a cubic brick different from K4, u1u2u3 be a triangle of G and
u1v1 ∈ E(G). If uv1 is removable in G/({u1, u2, u3} → u) and ∂({u1, u2, u3}) is good,
then u2u3 is removable in G.

2.2 Essentially 4-edge-connected cubic graphs

A cubic graph is essentially 4-edge-connected if it is 3-edge-connected and free of non-
trivial 3-cuts. Kothari et al. showed the following theorems.
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Theorem 2.6. [7] Every essentially 4-edge-connected cubic graph is either a brick or a
brace.
Theorem 2.7. [7] In an essentially 4-edge-connected cubic brick, each edge is either
removable or lies in a removable doubleton.

For the removability of edges in a brace, we have the following.
Theorem 2.8. [5] Each edge in a brace with at least six vertices is removable.

For a bipartite graph G(A,B), as usual we also call A and B the color classes of G.
Further, if |A| = |B| then we call G(A,B) balanced.
Proposition 2.9. Let G be an essentially 4-edge-connected cubic brick other than K4, let
E0 be the collection of all the removable doubletons of G, and let E0 be the set of the
edges in the removable doubletons of E0. Then the following statements hold.
(i). [11] If |E0| ⩾ 2, then G can be decomposed into balanced bipartite vertex-induced
subgraphs Gi (i = 1, 2, . . . , |E0|) satisfying EG(V (Gj), V (Gk)) is a removable doubleton of
G if |j − k| ≡ 1 (mod |E0|) and EG(V (Gj), V (Gk)) = ∅ otherwise.
(ii). G has a perfect matching M such that M ∩ E0 = ∅.

Proof of (ii). Let s = |E0|. If s = 0, that is E0 = ∅, then every perfect matching of
G is that we need. We consider the case when s = 1. Assume that {uv, xy} is the only
removable doubleton of G. Since G − {uv, xy} is matching covered, the result follows
directly by choosing any perfect matching M in G− {uv, xy}.

We now consider the case when s > 1. For i = 1, 2, . . . , s, let ui−1yi and vi−1xi denote
the two edges of E(V (Gi−1), V (Gi)), where xi, yi ∈ V (Gi), and the subscript is taken
modulo s. By (i), the pair R := {uiyi+1, vixi+1} is a removable doubleton of G. As G is
a brick, the graph G−R is bipartite by Lemma 3.4 in [9]. Moreover, the graph G−R is
matching covered by the definition of removable doubletons. By Theorem 2.3, the graph
G−R−{ui−1, vi−1} has a perfect matching, say, N . Then, Mi := N ∩E(Gi) is a perfect
matching of Gi. Thus, Gi has a perfect matching. This conclusion holds for i = 1, 2, . . . , s.
The assertion holds, by taking M := ∪iMi. □

The following is a direct consequence of Theorem 2.8 and Proposition 2.9 (ii).
Corollary 2.10. Let G be an essentially 4-edge-connected cubic graph other than K4.
Then G has a perfect matching consisting of removable edges of G.

2.3 The splicing of two graphs

Let G and H be two vertex-disjoint graphs. Let u ∈ V (G) and v ∈ V (H) be two vertices
with the same degree. Let E1 be edges of G incident with u and let E2 be edges of H
incident with v, and σ be a bijection between E1 and E2. The splicing of G and H at u
and v (with respect to the bijection σ), denote by G(u)⊙σ H(v) (or simply G(u)⊙H or
G ⊙H if no confusion occurs), is the graph obtained from G − u and H − v by joining,
for edge e in E1, the end of e in G − u to the end of σ(e) in H − v. Obviously, in the
case of any edge-transitive graph, there is no need to state the bijection (for the purposes
of the paper, the bijection is irrelevant). The two vertices u and v are called the splicing
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vertices of G and H, respectively; every edge in ∂(V (G) \ {u}) is called the splicing edge
of G⊙H. Obviously, the ∂(V (G) \ {u})-contractions of G⊙H are G and H.

If H = K4 and u is a vertex of degree 3, then the splicing operation G(u)⊙K4 can be
intuitively viewed as the operation that ‘inserts a triangle’ at u. In this sense, we also call
such an operation the triangle-insertion at u of G and denote G(u)⊙K4 simply by G⟨u⟩.
For a 3-cut ∂(X) of a graph G, we denote G∆(X) = (G/(X → v))⟨v⟩. We call G∆(X)
the ∆-replacement of X in G and call the triangle inserted at v the replacement-triangle.
In particular, if |X| = 1 then the splicing operation G∆(X) = G(u) ⊙ K4; if G[X] is a
triangle then G∆(X) = G.

We note that every edge (or vertex) in G ⊙ H corresponds to uniquely an edge (or
vertex other than the splicing vertex) in G or H. With a mild abuse of language, we will
use the same label of the edge (or vertex) in G ⊙ H as it is in G or H, and vice versa.
The following propositions are about the splicing of two graphs.
Proposition 2.11. [4] Any graph obtained by splicing two matching covered graphs is also
matching covered.
Proposition 2.12. [4] Any splicing of two cubic bricks is a cubic brick.

We say that two edge cuts ∂(X) and ∂(Y ) cross if the four sets X ∩ Y , X ∩ Y , X ∩ Y
and X ∩ Y are all nonempty.
Lemma 2.13. Let G0[A,B] be a cubic brace on six or more vertices, u ∈ A and v ∈ B.
And let G1 and G2 be two cubic bricks on six or more vertices, G = (G0(u)⊙G1)(v)⊙G2.
Then G is a brick.

Proof. Obviously, G is 3-connected cubic matching covered graph. Suppose, to the
contrary, that ∂(X) is a tight cut of G. By Theorem 8 in [7], ∂(X) is a 3-cut. Let
Y = V (G) ∩ V (G1). Then ∂(Y ) is a 3-cut of G.

We claim that ∂(X) and ∂(Y ) do not cross. Suppose, to the contrary, that ∂(X) and
∂(Y ) cross. Interchange X with X if necessary, so that |X ∩ Y | is odd. Then, |X ∩ Y |
is also odd, and |X ∩ Y | and |X ∩ Y | are both even and nonempty. Let C := ∂(X ∩ Y )
and let D := ∂(X ∩ Y ). Let λ be the set of edges that join X ∩ Y to X ∩ Y . Then,
|C|+ |D|+ 2|λ| = |∂(X)|+ |∂(Y )| = 6. The shores of C and D are nonempty and even,
hence C and D are nonempty and even. Thus, at least one of C and D is a 2-cut, a
contradiction to the fact that G is 3-connected.

Similarly, ∂(X) and ∂(Z) do not cross, where Z = V (G)∩ V (G2). Therefore, ∂(X) is
a subset of E(G0), E(G1) or E(G2). Thus, either ∂(X) is a nontrivial tight cut of G0, G1

or G2, or ∂(X) ∈ {∂(Y ), ∂(Z)}. As the graph G0 is a brace and the graphs G1 and G2

are bricks, we conclude that ∂(X) ∈ {∂(Y ), ∂(Z)}.
As G1 is a brick, the insertion of any triangle produces a brick. Thus, G has a matching,

M1, such that M1 ⊂ E(G1), M1 contains the three edges of ∂(Y ) and M1 covers all the
vertices of Y . Likewise, G has a matching, M2, such that M2 ⊂ E(G2), ∂(Z) ⊂ M2 and
M2 covers all the vertices of Z. As G0 is cubic and has six or more vertices, it does not
have multiple edges. Let v1 and v2 be two vertices of G0 − v adjacent to u and let u1 and
u2 be two vertices of G0−u adjacent to v. The graph G0−u1−u2− v1− v2 has a perfect
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matching, M0, by Theorem 5 in [12]. The set M0 ∪M1 ∪M2 is a perfect matching of G
that contains three edges in each one of the cuts ∂(Y ) and ∂(Z). We deduce that G in
fact does not have any nontrivial tight cuts. So G is a brick.

2.4 ∆-replacements and removable edges

The following proposition can be gotten by the definition of matching covered graphs
directly.
Proposition 2.14. Let uv be a (removable) edge of a matching covered graph G with
dG(v) = 3. Then no splicing edge in G⟨v⟩ is removable.

For the removability of an edge that is not a splicing edge, we have the following
proposition.
Lemma 2.15. Let G1 and G2 be matching covered graphs, u ∈ V (G1), v ∈ V (G2), dG1(u) =
3 and dG2(v) = 3. And let H = G1(u)⊙G2(v). For any edge e in G1 that is not incident
with u,
(i). if e is removable in G1, then e is removable in H; and
(ii). if e is removable in G1⟨u⟩ and ∂H(V (G1 − u)) is good in H, then e is removable in
H.

Proof. (i). Since G1 − e is matching covered and dG1−e(u) = 3, (i) follows directly by
Proposition 2.11.

(ii). Let C := ∂(V (G1) − u). For every edge f of the spliced triangle of G1 ⟨u⟩, the
graph G1 ⟨u⟩ − e has a perfect matching that contains the edge f and just one edge in
C. Thus, for every edge g in G2, a perfect matching of G2 containing the edge g may be
extended to a perfect matching of H − e.

Suppose that C is good in H and let f be an edge of G1 − u− e. As e is removable in
G1 ⟨u⟩, G1 ⟨u⟩−e has a perfect matching, say, M , that contains the edge f . If M contains
just one edge in C then M − C may be extended to a perfect matching of H, because
G2 is matching covered. Likewise, if M contains the three edges of C then M may be
extended to a perfect matching of H, because C is good in H.

On the other hand, the condition in Lemmas 2.4 and 2.15 (i) is not sufficient. Let’s
consider the graph G as shown in Figure 3(a). We can see that every edge in G[X] is
removable but does not admit the condition of Lemmas 2.4 or 2.15 (i), where X is the set
of the three vertices in the central triangle T3 of G.

The following corollary will be useful for the case when the two vertices are splicing
vertices in different splicings.
Corollary 2.16. Assume that G0, G1 and G2 are matching covered graphs, ui ∈ V (Gi)
(i = 1, 2). Let v1, v2 ∈ V (G0) and G = (G0(v1)⊙G1(u1))(v2)⊙G2(u2). For i = 1 and 2,
let Ei be the set of edges in E(Gi) \ ∂({ui}) that are removable in G0(vi)⊙Gi(ui). Then
every edge in E1 ∪ E2 is removable in G.
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Proof. Note that no edge in E1 is a splicing edge in the two splicings. By Lemma 2.15
(i), every edge in E1 is a removable edge in G. Similarly, every edge in E2 is a removable
edge in G, since (G0(v1)⊙G1(u1))(v2)⊙G2(u2) = (G0(v2)⊙G2(u2))(v1)⊙G1(u1). So the
result follows.

Proposition 2.17. Let ∂(X) be a 3-cut of a brick G. Then G∆(X) is a brick.

Proof. We only need to consider the case when |X| ⩾ 5. It is clear that G∆(X) is 3-
connected. We show that G∆(X) is bicritical, that is, G∆(X) − {u, v} has a perfect
matching for any two vertices u, v in G∆(X).

Let x1x2x3 label the replacement-triangle of G∆(X), and ∂G∆(X)({x1, x2, x3}) = {x1x
′
1,

x2x
′
2, x3x

′
3} and ∂G(X) = {x′

1x
′′
1, x

′
2x

′′
2, x

′
3x

′′
3}. Set w = x′′

i if u = xi; w = u otherwise. And
set z = x′′

i if v = xi; z = v otherwise.
Since G is a brick, G − {w, z} has a perfect matching, say M . Set M ′ = (M ∩

G[X]) ∪ (M ∩ ∂G(X)). Since |X| is odd, it can be checked that M ′ covers all vertices in
G∆(X)−{u, v}, or all vertices in G∆(X)−{u, v} except exactly two vertices in {x1, x2, x3}.
In the latter case, M ′, together with the edge between the two vertices that are not covered
by M ′, is a perfect matching of G∆(X)−{u, v} (note that any two vertices in {x1, x2, x3}
has an edge).

3 Proof of Theorem 1.1

In this section, we consider only cubic graphs. By showing that there exists a 3-cut such
that one shore of which contains enough independent removable edges, we will prove the
main theorem by induction.

Let G be the family of K4 and the cubic graphs obtained from K4 by a sequence
of successive triangle-insertions. It is clear that every graph G in G is a cubic brick by
repeated applications of Proposition 2.12, and except K4, every vertex in G lies in at most
one triangle. Moreover, we have the following proposition.
Proposition 3.1. Let G ∈ G \{K4} and let T0 be a triangle of G. The graph H := G/V (T0)
is in G .

Proof. By induction on the number of vertices of G. If |V (G)| = 6 then H ∼= K4, hence
the result holds. We may thus assume that G has eight or more vertices. Then, G was
obtained from a graph H1 ∈ G by the insertion of a triangle, say, T1, at a vertex t1. If
T1 = T0 then H ∼= H1 and there is nothing more to be proved. Assume then that T1 ̸= T0.
As H1 is a brick, it is 3-connected, hence the set of edges of T0 still induces a triangle of
H1. Moreover, as T0 is a triangle of G, the vertex t1 is not a vertex of T0. The graph G
has eight or more vertices, hence H1 ≇ K4. By induction, the graph H2 := H1/V (T0) is
in G . Let H0 be the graph obtained from H2 by the insertion of triangle T1 at t1. By
definition, the graph H0 is in G . Moreover, H0

∼= H. The result holds.

Lemma 3.2. Let G ∈ G and let T be triangle of G. If |V (G)| ⩾ 10 then G has a 3-
cut C := ∂(X) such that (i) X ∩ V (T ) = ∅, (ii) 5 ⩽ |X| ⩽ 11, and (iii) G[X] has a
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Figure 2: The graphs of order 8 and 10 of G ; bold lines indicate removable edges not in
T .

matching M consisting of two edges both of which are removable in G. Consequently,
|M | ⩾ (|X|+ 5)/8.

Proof. Let n = |V (G)|. By induction on n. The basis of the inductive hypothesis corre-
sponds to the case in which n = 10. The graph R8 is the only graph of G on 8 vertices. Up
to isomorphism, they are obtained from R8 by a triangle-insertion at one of the vertices
v0, v1 and v2 (see Figure 2(a)). We then obtain the three graphs: the tricorn (Figure
2(b)), G1 (Figure 2(c)), and G2 (Figure 2(d)). By Figure 2(b)-(d) and Lemma 2.15, we
have the following claim.

Claim 1. If ∂(X) is a nontrivial 3-cut of G such that |X| = 7, then G[X] has a
matching consisting of two edges both of which are removable in G.

The proof of the following auxiliary result is immediate by Corollary 2.5 and Lemma
2.15.

Claim 2. Let G′ ∈ G and let X ′ be a subset of V (G′)\V (T ). Let u ∈ X ′, G := G′⟨u⟩,
and X := X ′ ∪ V (T ) \ {u}. If G[X ′] has a matching M ′ of removable edges of G′ then
G[X] has a matching M of removable edges of G such that |M | ⩾ |M ′|.

If n = 10 then the assertion holds, with X := V (G) \ V (T ). See Figure 2. Note
that |X| = 7. Suppose that n ⩾ 12. Let G′ be the graph obtained from G by the
contraction of one triangle of G distinct from T , thereby creating the contraction vertex
v. By Proposition 3.1, G′ ∈ G . By induction, G′ has a subset X ′ of V (G′)\V (T ) such that
5 ⩽ |X ′| ⩽ 11 and G[X ′] has a matching M ′ consisting of two edges which are removable
in G′. If v /∈ X ′ then let X := X ′; otherwise let X be the set of vertices obtained from
X ′ by the triangle-insertion at v. By Lemma 2.15 and Claim 2, G[X] has a matching
consisting of two removable edges of G. Moreover, |X| = |X ′|+ 2|X ′ ∩ {v}|. If v /∈ X ′ or
if |X ′| ⩽ 9 then the assertion holds, as 5 ⩽ |X| ⩽ 11.

We may thus assume that |X ′| = 11 and v ∈ X ′, whereupon |X| = 13. Let H :=
G∆(X), and let TH be the replacement-triangle, that is H is the graph obtained from
G/(X → x) by the triangle-insertion at x, thereby obtaining the triangle TH of H. Thus,
|V (H)| = 16. Suppose that n > 16. By induction, V (H) has a subset Y of V (H) \V (TH)
such that 5 ⩽ |Y | ⩽ 11 and H[Y ] has a matching MH consisting of two removable edges
of H. Every edge in H[Y ] which is removable in H is also removable in G by Lemma
2.15. Hence, the assertion holds, with X := Y and M := MH .

We may thus assume that n = 16. Let G′ be obtained from G by repeated applications
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Figure 3: The graphs for Case 2 (the bold lines indicate removable edges).

of three contractions of triangles disjoint with T . Then |V (G′)| = 10. For 1 ⩽ i ⩽ 3, we
denote by Li the set of vertices of G′ of level i, that is the set of vertices resulting from G
by the contraction of i triangles. Then |L1| ⩽ 3, |L2| ⩽ 1 and |L3| ⩽ 1.

Case 1 L3 is not empty.
In that case, L3 is a singleton, say, v, which was originated from a subset X of

V (G) \ V (T ) having precisely seven vertices. Moreover, as v has degree three, ∂(X) is a
3-cut in G. By Claim 1, every 3-cut ∂(X) such that |X| = 7 satisfies the assertion. We
may thus assume that L3 is empty.

Case 2 The graph G′ is the tricorn (see Figure 2(b)).
Case 2.1 One of T1 and T2 (see Figure 2(b)) is the result of two triangle contractions.
Up to isomorphism, we may assume that T1 is the result of two triangle contractions.

As L3 = ∅, the set X which produced T1 consists of seven vertices. By Claim 1, G[X] has
a matching containing two removable edges of G.

Case 2.2 Neither T1 nor T2 is the result of two triangle contractions.
In this case, both T1 and T2 are the result of at most one triangle contraction. Hence,

the vertex v0 is the result of at least one contraction of a triangle. Let T3 be the triangle
whose contraction produces v0. We remark that T3 may contain a contraction vertex. See
Figure 3(a).

As L3 is empty, at least one of T1 and T2 is the result of a triangle contraction. Up to
isomorphism, we may assume that T1 is the result of precisely one triangle contraction.
In that case, T1 is the result of the contraction of a vertex set X having only five vertices
and such that G[X] contains a matching consisting of two removable edges of G. See
Figure 3(b).

Case 3 G′ = G1, the graph in Figure 2(c).
Case 3.1 The vertex set Y , indicated in the Figure 2(c), contains a contraction vertex.
Let X be the vertex set obtained from Y by repeated applications of triangle-insertions

on contracted vertices. As |Y | = 5, it follows that 7 ⩽ |X| ⩽ 11. For any 3-cut ∂(Z) such
that T and Z are disjoint and |Z| = 7, the graph G[Z] has a matching containing two
edges which are removable in G by Claim 1. From this and Claim 2, we infer that G[X]
contains a matching consisting of two edges which are removable in G.

Case 3.2 The vertex set Y , indicated in the Figure 2(c), does not contain a contraction
vertex.

Then, the contracted vertices of G′ are the ends of the removable edge of G′ not in
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Figure 4: The graphs for Case 3 and Case 4 (the bold lines indicate removable edges).

G[Y ]. As L3 = ∅, we deduce that both ends of that edge are contracted vertices of G′. Let
G′

1 be the result of G′ by one triangle-insertion at the vertex v0. The resulting graph is
depicted in Figure 4(a). The graph G′

1[X] has a matching M consisting of two removable
edges of G′

1. By Lemma 2.15, G[X] has a matching that consists of two removable edges
of G. The assertion holds.

Case 4 G′ = G2.
The analysis of this case has several points in common with the analysis of Case 3.

In particular, the analysis of the case in which Y contains a contraction vertex of G′ is
identical to the analysis of Case 3.1.

We may thus assume that Y does not contain any contraction vertex of G′. Again,
both ends of the removable edge not in G[Y ] are contraction vertices of G′. Let G′

2 be
the result of G′ by one triangle-insertion at the vertex v0. The resulting graph is depicted
in Figure 4(b). As in Case 3.2, the graph G[X] contains a matching consisting of two
removable edges of G and |X| = 5. The assertion holds.

In each one of the alternatives, we proved the existence of the set X with the asserted
properties.

We say that a cubic brick is small if it has at most six vertices. Thus, a cubic brick
is small if and only if it is either K4 or C6. Let G be a cubic matching covered graph.
Suppose that for some (possibly empty) set S of vertices of G, the graph G is spliced
at each vertex in S with a small cubic brick. We then say that the resulting graph is a
decoration of G.
Lemma 3.3. Let G be a cubic brick and let C := ∂(X) be a (possibly trivial) 3-cut of G
such that the C-contraction H := G/(X → x) is a decoration of an essentially 4-edge-
connected graph G′ distinct from K4. Suppose that the contracted vertex x of H is also
a vertex of G′. Then, |X| ⩾ 7 and G[X] has a matching consisting of at least (|X|+5)/8
edges which are removable in G.

Proof. By Corollary 2.10, G′ has a perfect matching, say, M ′, consisting of removable
edges of G′. Let e be the edge of M ′ incident with x. Let S1 be the set of vertices v of G′

such that G′ is spliced at v with a K4. Let S2 be the set of vertices v of G′ such that G′

is spliced at v with a C6. Let S := S1 ∪ S2. For i = 1, 2, let si := |Si|. Let s := |S|. Note
that x /∈ S. Let n′ := |V (G′)|. Clearly,

|X|+ 5 = n′ + 4 + 2s1 + 4s2 ⩽ n′ + 4(s+ 1). (1)

the electronic journal of combinatorics 32(1) (2025), #P1.19 10



By Theorem 2.6, G′ is either a brick or a brace. Suppose that G′ is a brick. As G′ is
an essentially 4-edge-connected brick distinct from K4, we infer that |V (G′)| ⩾ 8. Since
|V (H)| ⩾ |V (G′)|, we deduce that |X| = |V (H)| − 1 ⩾ 7. By Lemma 2.4, every spliced
small cubic brick at a vertex of S contributes with a removable edge of G, at the expense
of an edge in M ′ − e. Let M be the matching thereby obtained. Then every edge in M
is still removable in G by Lemma 2.15.

Alternatively, suppose that G′ is a brace. As G is a brick, it follows that there are
two vertices, v1 and v2, one in each part of the bipartition of G′, such that {v1, v2} ⊆ S.
Thus, |V (H)| ⩾ |V (G′)|+ 4 ⩾ 10, hence |X| = |V (H)| − 1 ⩾ 9.

The decoration of G′ with only the splicings at those two vertices, say G′′, has at least
two removable edges of G, contributed by the two small cubic bricks, at the expense of
the edges of M ′ incident with v1 and with v2. See Figure 5(a). Moreover, G′′ is a brick,
by Lemma 2.13. Again, the splicing of a small cubic brick at each vertex v in S \ {v1, v2}
contributes with a removable edge, at the expense of the edge of M ′ incident with v. Let
M be the matching thereby obtained.

In both alternatives, |X| ⩾ 7. Moreover, |M | ⩾ |M ′|−1−(s1+s2)+s1+s2 = n′/2−1,
hence |M | ⩾ n′/2− 1. We may also disregard the edges of M ′ and conclude that |M | ⩾
s1 + s2. In sum,

|M | ⩾ max(n′/2− 1, s). (2)
Case 1. s+ 1 ⩽ n′/2− 1.
From (1) and (2), and since n′ ⩾ 6, |X|+5 ⩽ n′+4(s+1) ⩽ 3n′−4 < 4n′−8 ⩽ 8|M |.

The assertion holds.
Case 2. s+ 1 ⩾ n′/2.
From (2), it follows that

|M | ⩾ s ⩾ n′/2− 1. (3)
Case 2.1. n′ ⩾ 8.
From the hypothesis of the case, and (3), we deduce that |M | ⩾ 3. From (1) and (2),

and since n′/2 ⩽ s+ 1, |X|+ 5 ⩽ n′ + 4(s+ 1) ⩽ 6(s+ 1) ⩽ 6|M |+ 6 ⩽ 8|M |, where the
last inequality follows from the fact that |M | ⩾ 3. The assertion holds.

Case 2.2. n′ ⩽ 6.
As G′ is essentially 4-edge-connected, it follows that n′ = 6 and G′ ∼= K3,3. Let

t := s1 + 2s2. As indicated in Figure 5(a), |M | ⩾ s1 + 2s2 = t by Corollary 2.16. We
have assumed that s + 1 ⩾ n′/2, hence t ⩾ s ⩾ 2. Thus, |X| + 5 = n′ + 2s1 + 4s2 + 4 =
2t+ 10 < 8t ⩽ 8|M |. The assertion holds in all cases considered.

Lemma 3.4. Let G be a cubic brick on n ⩾ 10 vertices. Then, G has a (possibly trivial)
3-cut ∂(X) such that |X| ⩾ 5 and G[X] has a matching consisting of at least (|X|+5)/8
edges, each of which is removable in G.

Proof. Consider first the case in which G has a 3-cut ∂(Y ) such that |Y | ⩾ 7 and G/Y ∈ G .
Then, G∆(Y ) is in G and has at least 10 vertices. By Lemma 3.2, G∆(Y ) has a 3-cut ∂(X)
such that |X| ⩾ 5, X ⊂ Y , and G[X] has a matching consisting of at least (|X| + 5)/8
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Figure 5: The bold edges represent the removable edges.

edges which are removable in G∆(Y ). So G[X] has a matching consisting of at least
(|X|+ 5)/8 edges which are removable in G by Lemma 2.15.

We may thus assume that if ∂(Z) is a 3-cut such that G/Z ∈ G then |Z| ⩽ 5. In
particular, as n ⩾ 10, this assumption implies that G /∈ G . For every 3-cut C of G,
at least one C-contraction of G is not in G . Let X be a minimal set of vertices of G,
|X| > 1, such that C := ∂(X) is a (possibly trivial) 3-cut of G and the C-contraction
H := G/(X → x) is not in G . We have assumed that for any 3-cut ∂(Z), if G/Z is in G
then |Z| ⩽ 5. It follows that H is a decoration of an essentially 4-edge-connected graph
distinct from K4. By Lemma 3.3, G has a 3-cut ∂(X) such that |X| ⩾ 7 and G[X] has a
matching consisting of at least (|X|+ 5)/8 edges, each of which is removable in G.

Proof of Theorem 1.1. By induction on n, the number of vertices of G. If n = 8 then
either G is R8, which has one removable edge, or G is a Möbius ladder, depicted in Figure
5(b), which has a perfect matching consisting solely of removable edges of G. We may
thus assume that n ⩾ 10.

By Lemma 3.4, G has a 3-cut C := ∂(X) such that |X| ⩾ 5 and G[X] has a matching
consisting of at least (|X|+ 5)/8 edges which are removable in G. If |X| ⩽ 5 then M has
at least n/8 edges.

We may thus assume that |X| ⩾ 7. Let H := G∆(X). As |X| ⩾ 7, we have that
|V (H)| ⩾ 10. As |X| ⩾ 5, |V (H)| < n. By induction, H has a matching, MH , consisting
of at least (|X|+3)/8 edges which are removable in H. The edges of C are not removable
in H by Proposition 2.14. The replacement-triangle of H contains at most one edge in
MH . By Lemma 2.15, M ′ := MH ∩ E(G[X]) is a matching of G[X] consisting of at least
|MH | − 1 = (|X| − 5)/8 edges which are removable in G. Consequently, M ∪ M ′ is a
matching of G consisting of at least n/8 edges, each of which is removable in G. The
result follows. □

It should be noted that the lower bound in Theorem 1.1 is not tight for large |V (G)|.
We do not know the attainable lower bound of independent removable edges of cubic
bricks with any number of vertices.
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