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Abstract

We explore how the asymptotic structure of a random n-term weak integer com-
position of m evolves, as m increases from zero. The primary focus is on establishing
thresholds for the appearance and disappearance of substructures. These include
the longest and shortest runs of zero terms or of nonzero terms, longest increasing
runs, longest runs of equal terms, largest squares (runs of k terms each equal to k), as
well as a wide variety of other patterns. Of particular note is the dichotomy between
the appearance and disappearance of exact consecutive patterns, with smaller pat-
terns appearing before larger ones, whereas longer patterns disappear before shorter
ones.

Mathematics Subject Classifications: 60C05, 05A05, 05C80

1 Introduction

We initiate the study of integer compositions from an evolutionary perspective, in an anal-
ogous manner to the Gilbert–Erdős–Rényi random graph [13, 14, 20]. Our two primary
models are the uniform random composition Cn,m, drawn uniformly from the family of
n-term weak integer compositions of m, and the geometric random composition Cn,p, an
n-term weak integer composition in which each term is sampled independently from the
geometric distribution with parameter q = 1 − p; that is, P

󰀅
Cn,p(i) = k

󰀆
= qpk for each

k 󰃍 0 and i ∈ [n]. We are interested in how, for large n, the structure of Cn,m or Cn,p

evolves as m or p increases from zero. The primary emphasis is on the establishment of
thresholds for the appearance and disappearance of small substructures.

A selection of our results is presented in evolutionary order in Table 1 on page 2. Here
we list a few highlights. A property of compositions holds with high probability (w.h.p.) if
asymptotically the probability of it holding tends to one. We defer the formal presentation
of this and other definitions and notational conventions until later.

1. A gap is a maximal run of zero terms. As long asm ≪ n1/2, with high probability the
length of the shortest gap exceeds any fixed value. However, as soon as m ≫ n1/2,
w.h.p. there are gaps of length 1. (Section 3.2)
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m Prop.

n1/4 shortest gap has length 󰃑 √
n 19

n1/2/
√
log n shortest gap has length 󰃑 log n 19

n1/2 longest component has length 2 14

shortest gap has length 1 18

n1/2 log n longest gap has length 󰃑 √
n 17

n2/3 largest term equals 3 27

increasing run of length 3 36

exact nonconsecutive patterns with largest term 3 41

increasing subsequence of length 4 45

n5/6 exact consecutive patterns of size 6 20

increasing run of length 4 36

≫ n1−ε any exact consecutive pattern 20

n/ log n longest component has length 󰃍 log n/ log log n 15

n longest component and longest gap have length log n 16

largest term 󰃍 log n 29

each total ordering of consecutive terms equally likely 35

n log n/ log log n largest possible square pattern, length 󰃍 log n/ log log n 24

n log n every gap has length 󰃑 log n/ log log n 15

n4/3 longest gap has length 2 14

no given exact consecutive pattern of length 4 20

n3/2/ log n longest component has length 󰃍 √
n 17

largest term 󰃍 √
n 30

n3/2 every gap has length 1 14

length of shortest component exceeds any fixed value 18

no run of 3 equal terms 40

n3/2
√
log n every component has length 󰃍 log n 19

n7/4 every component has length 󰃍 √
n 19

n2/ log n largest term 󰃍 n 30

n2 no gaps (single component) 14

smallest term exceeds any fixed value 31

no balanced peaks or valleys 39

no adjacent equal terms (Carlitz composition) 40

no given nonconsecutive exact pattern 41

n5/2 no three terms equal 46

n3 every term 󰃍 n 32

every term distinct 46

Table 1: Some thresholds encountered during the evolution of Cn,m
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2. In contrast, w.h.p. the length of the longest gap exceeds any fixed value as long as
m ≪ n1+δ for all δ > 0. But once m ≫ n1+1/k, w.h.p. Cn,m has no gap of length k
or greater. In particular, once m ≫ n3/2, w.h.p. every gap has length 1, and when
m ≫ n2, w.h.p. Cn,m no longer has any gaps. (Section 3.1)

3. There is a dichotomy between the thresholds for the arrival and for the departure of
exact consecutive patterns as Cn,m evolves, the former being ordered by size, smaller
patterns appearing before larger ones, and the latter being ordered by length, longer
patterns disappearing before shorter ones. (Proposition 20)

4. If n1−δ ≪ m ≪ n1+δ for every δ > 0, then w.h.p. any given exact consecutive
pattern occurs in Cn,m. In contrast, once m ≫ n2, then w.h.p. any specific exact
consecutive pattern is absent from Cn,m. (Proposition 20)

5. The largest square (run of k terms each equal to k) that we expect to see in the
evolution of Cn,m has side length a little greater than log n/log log n, and is seen
when m ∼ n log n/log log n. (Proposition 24)

6. As long as m ≪ n, w.h.p. the largest term in Cn,m exhibits two-point concentration
(that is, it takes one of only two possible values). (Proposition 28)

7. As long as m ≪ n2, w.h.p. the smallest term in Cn,m equals zero, but m ∼ n2 is the
threshold for the smallest term to exceed any fixed positive value. (Proposition 31)

8. Once m ≫ n, the relative ordering of any k consecutive terms of Cn,m is asymptot-
ically uniformly distributed over the k! permutations of length k. (Proposition 35)

9. A pattern specifying the relative ordering of k consecutive terms which has a re-
peated term and has largest term equal to r exhibits a threshold for its disappearance
from Cn,m at m ∼ n1+1/d, where d = k − 1− r. (Proposition 39)

10. Once m ≫ n2, w.h.p. Cn,m has no adjacent equal terms (that is, it is a Carlitz
composition). (Proposition 40)

11. The threshold for the appearance of a nonconsecutive exact pattern depends only on
its maximum term. In contrast, all such patterns share the same threshold m ∼ n2

for their disappearance. (Proposition 41)

12. The threshold for the appearance of a vincular pattern depends on the size of its
largest block. In contrast, the threshold for the disappearance of such a pattern
depends on the length of its longest block. (Proposition 44)

13. Once m ≫ n3, w.h.p. every term of Cn,m is distinct. (Proposition 46)

The random composition doesn’t exhibit a spectacular phase transition like that seen
in the random graph with the appearance of the giant component. Perhaps the most
dramatic change occurs when m ∼ n2 with the disappearance of both the last gap and
also of the last pair of adjacent equal terms as the smallest term jumps from zero to
exceed any fixed value.

There are many questions that we don’t address in this introductory paper. One
example would be to determine thresholds for the presence of components or gaps of
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equal length. Also, we only determine threshold probabilities for certain properties. It
would certainly be interesting to establish them for arbitrary nonconsecutive ordering
patterns, which we don’t investigate in detail. We also raise a general question concerning
our models: Does every nontrivial monotone property of compositions have a threshold?
(Question 7)

In another direction, in a subsequent paper we build on this work to determine thresh-
olds for the appearance of patterns in the evolution of random permutations [7], in a similar
manner to the work of Acan and Pittel [1]. A further possibility would be to extend our
models with additional structure in order to represent random multigraphs, each term in a
composition recording the number of edges between a pair of vertices (see [10, Theorems
2.9 and 2.10]). For example, the threshold for a random multigraph to cease being simple
and the threshold for the presence of a complete spanning subgraph follow directly from
results in this paper.

The evolution of the random graph is now a classical topic, with three graduate text-
books available [9, 18, 33]. In contrast, rather surprisingly, other combinatorial objects
do not appear to have been investigated from this perspective, with the notable exception
of the work of Acan and Pittel [1] on the threshold for connectivity in the evolution of
a random permutation. Existing work on the structure of large compositions either has
an enumerative flavour (determining generating functions), or else it takes a probabilistic
perspective, either considering the uniform distribution over all (non-weak) compositions
of n or investigating sequences of geometrically distributed random variables. For the
most part our approach is somewhat orthogonal to both of these. Specific intersecting
works are cited below in the relevant sections.

In the next section, we define our random models and explore their relationships, and
introduce the notions of a property and a threshold in these models. We also present
three key tools: the First Moment Method and the Second Moment Method which we use
to determine the location of thresholds, and the Chen–Stein Method which gives us the
probability of a property holding at its threshold. In Section 3, our focus is on components
(maximal runs of nonzero terms) and gaps (maximal runs of zero terms), establishing
thresholds for the length of the longest or shortest component to exceed some value, with
analogous results for the length of gaps. Finally, Section 4 concerns the appearance and
disappearance of a wide variety of types of pattern, including exact patterns (in which
terms must take specified values), upper and lower patterns (in which terms are bounded
below or above), and ordering patterns (which specify the relative ordering of terms).

If f and g are positive functions of n, then we use the following notation:

f ≲ g if lim sup
n→∞

f/g < ∞,

f ≍ g if 0 < lim inf
n→∞

f/g and lim sup
n→∞

f/g < ∞,

f ∼ g if lim
n→∞

f/g = 1,

f ∼ 0 if lim
n→∞

f = 0,

f ≪ g or g ≫ f if lim
n→∞

f/g = 0.

the electronic journal of combinatorics 32(1) (2025), #P1.21 4



0 0 2 3 1 0 1 5 0 0 0 3 2 0 1 1 2 2 2 0 4 3 0 0 4 4 4 4 1 0 3 1 5 1 6 3 3 0 1 0 0 0 0 1 0 1 1 2 1 2

Figure 1: Bar-chart representation of a 50-term composition of 80

In particular, f ≪ 1 if lim
n→∞

f = 0, and f ≫ 1 if lim
n→∞

f = ∞.

Note that we avoid the use of “big O” notation, preferring something more intuitive.
We have the following equivalences:

f ≲ g ⇐⇒ f = O(g), f ≍ g ⇐⇒ f = Θ(g), f ≪ g ⇐⇒ f = o(g).

Note also that f ∼ 0 is nonstandard; however, it significantly simplifies the presentation
of our results.

2 Random compositions

An n-term weak composition of m, or just an n-composition of m, is a sequence of n
nonnegative integers (c1, . . . , cn) such that

󰁓n
i=1 ci = m. Compositions can be considered

to be words over the nonnegative integers, and, if no term exceeds nine, we sometimes
write specific compositions simply as a sequence of digits. See Figure 1 for an example.
Alternatively, we can consider such a composition to consist of a sequence of n boxes, such
that for each i ∈ [n] := {1, 2, . . . , n}, box i contains ci balls. By a simple “stars and bars”
argument, it can be seen that the number of distinct n-compositions of m is

󰀃
m+n−1

m

󰀄
.

If C is an integer composition, then we use C(i) to denote its ith term, and |C| to
denote its size, the sum of its terms. Let Cn denote the set of all n-compositions, and
let Cn,m be the set of all n-compositions of m. We now present three models of random
integer compositions.

2.1 The uniform random composition Cn,m

The uniform random composition Cn,m is drawn uniformly from Cn,m. Thus, for every
composition C ∈ Cn,m,

P
󰀅
Cn,m = C

󰀆
=

󰀕
m+ n− 1

m

󰀖−1

,

each of the distinct n-compositions of m being equally likely. In statistical quantum
mechanics, this is known as Bose–Einstein statistics, modelling the distribution followed
by bosons. See [32, Example 12.2] for an exposition in the context of a variety of different
balls-in-boxes models, and [30] for work more closely related to our concerns.
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2.2 The evolutionary random composition Ct

An alternative, evolutionary, perspective comes from taking a dynamic view and consid-
ering a process on compositions, namely an infinite sequence of compositions,

0n, C1, C2, C3, . . . ,

where 0n denotes the empty n-composition (0, . . . , 0), and Ct+1 is obtained from Ct by
the addition of 1 to a single term. Note that there is no maximal n-composition (unlike
the situation with random graphs).

The evolutionary random composition (Ct)t󰃍0 is the Markov chain satisfying C0 = 0n

and, for each t 󰃍 0 and j ∈ [n],

P
󰀅
Ct+1 = C+j

t

󰀆
=

Ct(j) + 1

n+ t
,

where C+j denotes the composition obtained from C by the addition of 1 to its jth term.
The evolutionary random composition Ct is uniformly distributed over n-compositions
of t:

Proposition 1. For each t 󰃍 0, the random composition Ct is uniformly distributed
over Cn,t.

Proof. We use induction on t. Trivially, C0 is uniformly distributed over Cn,0. Suppose Ct

is uniformly distributed over Cn,t, and that C ∈ Cn,t+1. Let C−j denote the composition
obtained from C by the subtraction of 1 from its jth term (if this is possible). Then,

P
󰀅
Ct+1 = C

󰀆
=

󰁛

j∈[n], C(j) ∕=0

P
󰀅
Ct = C−j

󰀆C(j)

n+ t

=

󰀕
n+ t− 1

t

󰀖−1 󰁛

j∈[n]

C(j)

n+ t
=

t! (n− 1)!

(n+ t− 1)!

t+ 1

n+ t
=

󰀕
n+ t

t+ 1

󰀖−1

.

The evolutionary random composition corresponds to the following multicoloured
Pólya urn model: Consider an urn initially containing one ball of each of n different
colours. Balls are drawn at random one at a time, and after drawing the ball, it is re-
placed together with another of the same colour. Let Yi be the number of balls of colour
i in the urn after t draws. Then, (Y1 − 1, Y2 − 1, . . . , Yn − 1) has the same distribution
as Ct. See [29] and [32, Example 12.4].

2.3 The geometric random composition Cn,p

If p ∈ [0, 1), then the geometric random composition Cn,p is distributed over Cn so that
for each C ∈ Cn, we have P

󰀅
Cn,p = C

󰀆
= qnp|C|, where q = 1 − p. Each term of

Cn,p is sampled independently from the geometric distribution with parameter q; that is,
P
󰀅
C(i) = k

󰀆
= qpk for each k 󰃍 0 and i ∈ [n]. Note that Cn,p is not defined for p = 1.

the electronic journal of combinatorics 32(1) (2025), #P1.21 6



To avoid unnecessary repetition, when considering Cn,p in this work, q always denotes
1 − p. Moreover, we also assume that the definition of any annotated p also defines a
similarly annotated q, so we have q1 = 1−p1 and q+ = 1−p+, without stating so explicitly.

We collect here a few basic facts about Cn,p. Each term has mean p/q and variance
p/q2, and its size |Cn,p| satisfies a negative binomial distribution,

P
󰀅
|Cn,p| = m

󰀆
=

󰀕
m+ n− 1

m

󰀖
pmqn,

with mean µn,p = np/q. Note that if p ≪ 1 then µn,p ∼ np, and if q ≪ 1 then µn,p ∼ n/q.
The size |Cn,p| has variance np/q2, and so exhibits a concentrated distribution as long

as p ≫ n−1. In particular, by Chebyshev’s inequality, we have the following:

Observation 2. P
󰀅󰀏󰀏|Cn,p|− np/q

󰀏󰀏 󰃍 α
√
np/q

󰀆
󰃑 α−2.

Geometric random compositions of size m are uniformly distributed over Cn,m:

Proposition 3. A random composition Cn,p whose terms sum to m is equally likely to
be any one of the distinct n-compositions of m.

Proof. If C1, C2 ∈ Cn,m, then P
󰀅
Cn,p = C1

󰀆
= pmqn = P

󰀅
Cn,p = C2

󰀆
.

Thus, Cn,p conditioned on the event |Cn,p| = m is equal in distribution to Cn,m. Note
that this holds for any choice of p and m. As is the case with random graphs, Cn,p is
more amenable to analysis than Cn,m, so we prefer to work with Cn,p and then transfer
the results to Cn,m (see Propositions 6, 8 and 21 below).

2.4 Properties

We consider a property of n-compositions simply to be a subset of Cn. For example, the
set of n-compositions with no zero terms is a property, as is the set of n-compositions
with at least one term equal to three.

A property Q is increasing if C ∈ Q implies C+j ∈ Q for every j ∈ [n], or equivalently
if C ∈ Q implies C +C ′ ∈ Q for any C ′ ∈ Cn, where C +C ′ denotes the term-wise sum of
two n-compositions. The complement of an increasing property is decreasing. A property
that is either increasing or decreasing is monotone. For example, the n-compositions with
no zero terms form an increasing property, whereas the set of n-compositions with at least
one term equal to three is not monotone. Both Cn,m and Cn,p behave monotonically with
respect to monotone properties:

Proposition 4. If Q is an increasing property and m1 < m2, then P
󰀅
Cn,m1 ∈ Q

󰀆
󰃑

P
󰀅
Cn,m2 ∈ Q

󰀆
.

Proof. P
󰀅
Ct+1 ∈ Q

󰀆
󰃍 P

󰀅
Ct+1 ∈ Q ∧ Ct ∈ Q

󰀆
= P

󰀅
Ct ∈ Q

󰀆
, since Q is increasing.

Proposition 5. If Q is an increasing property and p1 < p2, then P
󰀅
Cn,p1 ∈ Q

󰀆
󰃑

P
󰀅
Cn,p2 ∈ Q

󰀆
.
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Proof. Let Cn,p1,p2 denote a random n-composition, each of whose terms is sampled inde-
pendently from the following distribution. For each i ∈ [n],

P
󰀅
Cn,p1,p2(i) = k

󰀆
=

󰀻
󰀿

󰀽

q2
q1
, if k = 0,

q2
q1

󰀃
1− p1

p2

󰀄
p k
2 , if k 󰃍 1.

We claim that Cn,p1 + Cn,p1,p2 has the same distribution as Cn,p2 if Cn,p1 and Cn,p1,p2

are chosen independently, thus providing a way of building Cn,p2 from 0n in two steps
via Cn,p1 .

To prove this equality of distribution, we use probability generating functions. Let

fp(x) =
󰁛

k󰃍0

P
󰀅
Cn,p(i) = k

󰀆
xk =

q

1− px
,

fp1,p2(x) =
󰁛

k󰃍0

P
󰀅
Cn,p1,p2(i) = k

󰀆
xk =

q2(1− p1x)

q1(1− p2x)
.

Thus fp2(x) = fp1(x)fp1,p2(x), and equality of distribution then follows from the indepen-
dence of each term in the random compositions.

Hence, by coupling Cn,p1 and Cn,p2 ,

P
󰀅
Cn,p2 ∈ Q

󰀆
= P

󰀅
Cn,p1 +Cn,p1,p2 ∈ Q

󰀆

󰃍 P
󰀅
Cn,p1 +Cn,p1,p2 ∈ Q ∧ Cn,p1 ∈ Q

󰀆
(where the Cn,p1 are the same)

= P
󰀅
Cn,p1 ∈ Q

󰀆
,

since Q is increasing.

A property Q is convex if C ∈ Q and C + C1 + C2 ∈ Q implies C + C1 ∈ Q. For
example, the property of having exactly one zero term is convex. Every convex property
is the intersection of an increasing property and a decreasing property.

Typically, we are interested in whether a property holds, or fails to hold, in the asymp-
totic limit. We say that Q holds asymptotically almost surely (a.a.s.) or, synonymously,
with high probability (w.h.p.) in Cn,p if P

󰀅
Cn,p ∈ Q

󰀆
∼ 1, and analogously for Cn,m. If a

property holds a.a.s., then its complement asymptotically almost never holds.
Since |Cn,p| is concentrated around its mean, it is reasonable to expect that, if n

is large, then Cn,p and Cn,m should behave in a similar fashion when m ∼ np/q, or
equivalently, when p ∼ m/(m+n). This is indeed the case, and the following proposition
enables us to transfer results fromCn,p toCn,m, the probability that an increasing property
holds being the same in both models.

Proposition 6. Let Q be an increasing property and α ∈ [0, 1] be a constant. Suppose
p0 = p0(n) and δ = δ(n) ≫ √

p0/(q0
√
n) are such that P

󰀅
Cn,p ∈ Q

󰀆
∼ α for all p for which

p/q differs from p0/q0 by no more than δ. Then P
󰀅
Cn,m0 ∈ Q

󰀆
∼ α, where m0 = np0/q0.
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Proof. Let p− satisfy p−/q− = p0/q0 − δ, and p+ satisfy p+/q+ = p0/q0 + δ.
Fix any ε > 0 and suppose n is sufficiently large that both P

󰀅
|Cn,p− | > m0

󰀆
󰃑 ε and

P
󰀅
|Cn,p+ | < m0

󰀆
󰃑 ε. This is possible by Observation 2 given that

m0 −
np−

q−
= nδ ≫

√
np0

q0
∼

√
np−

q−
, and

np+

q+
−m0 = nδ ≫

√
np0

q0
∼

√
np+

q+
.

Then,

P
󰀅
Cn,p− ∈ Q

󰀆
=

󰁛

k󰃑m0

P
󰀅
Cn,k ∈ Q

󰀆
P
󰀅
|Cn,p− | = k

󰀆
+

󰁛

k>m0

P
󰀅
Cn,k ∈ Q

󰀆
P
󰀅
|Cn,p− | = k

󰀆

󰃑 P
󰀅
Cn,m0 ∈ Q

󰀆
P
󰀅
|Cn,p− | 󰃑 m0

󰀆
+ P

󰀅
|Cn,p− | > m0

󰀆

󰃑 P
󰀅
Cn,m0 ∈ Q

󰀆
+ ε,

by Proposition 4, since Q is increasing. Thus, lim
n→∞

P
󰀅
Cn,m0 ∈ Q

󰀆
󰃍 α.

Similarly,

P
󰀅
Cn,p+ ∈ Q

󰀆
󰃍

󰁛

k󰃍m0

P
󰀅
Cn,k ∈ Q

󰀆
P
󰀅
|Cn,p+ | = k

󰀆

󰃍 P
󰀅
Cn,m0 ∈ Q

󰀆
P
󰀅
|Cn,p+ | 󰃍 m0

󰀆

󰃍 (1− ε)P
󰀅
Cn,m0 ∈ Q

󰀆
,

and so lim
n→∞

P
󰀅
Cn,m0 ∈ Q

󰀆
󰃑 α.

Note that, in general, we can’t remove the requirement that the property must be
increasing. For example, if Q is the set of n-compositions with no zero terms whose size
is not a perfect square, then P

󰀅
Cn,m ∈ Q

󰀆
= 0 whenever m is a perfect square, whereas Q

holds a.a.s. in Cn,p once p is sufficiently large that both conditions hold w.h.p. However,
in some situations we can transfer results concerning non-monotone properties from Cn,p

to Cn,m. For example, Proposition 21 enables us to do this for exact consecutive patterns.

2.5 Thresholds

One of the most striking observations regarding the evolution of large random combinato-
rial objects is the abrupt nature of the appearance and disappearance of many properties.
We say that a function m󰂏 = m󰂏(n) is a threshold for an increasing property Q in Cn,m if

P
󰀅
Cn,m ∈ Q

󰀆
∼

󰀫
0 if m ≪ m󰂏,

1 if m ≫ m󰂏,
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and that p󰂏 = p󰂏(n) or q󰂏 = q󰂏(n) is a threshold for Q in Cn,p if

P
󰀅
Cn,p ∈ Q

󰀆
∼

󰀫
0 if p/q ≪ p󰂏/q󰂏,

1 if p/q ≫ p󰂏/q󰂏.

Note here that p1/q1 ≪ p2/q2 if and only if either p1 ≪ p2 (and q1 ∼ 1) or else q1 ≫ q2
(and p2 ∼ 1).

That is, a property asymptotically almost never holds below its threshold, but holds
asymptotically almost surely above it. A priori, there is no reason why a property should
have a threshold. Nevertheless, it turns out that thresholds exist for every nontrivial
monotone property of the subsets of a set, and hence also of graphs (see [8, 17]). For a
recent short exposition, see [43]. Note, however, that this result does not encompass our
models.

Question 7. Does every nontrivial monotone property of compositions have a threshold?

In many situations, it can be determined that the threshold is more abrupt. A function
m󰂏 is a sharp threshold for a property Q in Cn,m, and p󰂏 is a sharp threshold for Q in
Cn,p, if, for every ε > 0,

P
󰀅
Cn,m ∈ Q

󰀆
∼

󰀫
0 if m 󰃑 (1− ε)m󰂏,

1 if m 󰃍 (1 + ε)m󰂏,

P
󰀅
Cn,p ∈ Q

󰀆
∼

󰀫
0 if p/q 󰃑 (1− ε)p󰂏/q󰂏,

1 if p/q 󰃍 (1 + ε)p󰂏/q󰂏.

Clearly, thresholds are not unique. Indeed, if a threshold for a property Q is not sharp,
then a constant multiple is also a threshold for Q. Sharp thresholds are not unique either,
although a constant multiple of a sharp threshold for a property is not a threshold for
that property.

A consequence of Proposition 6 is that a threshold in Cn,p can be transferred to one
in Cn,m:

Proposition 8. Let Q be an increasing property that has a threshold p󰂏 󰃍 n−1 in Cn,p.
Then np󰂏/q󰂏 is a threshold for Q in Cn,m.

Proof. Letm󰂏 = np󰂏/q󰂏. Supposem ≫ m󰂏 and p+ = m/(m+n), so p+/q+ ≫ p󰂏/q󰂏. Now,
since p󰂏 ≫ n−1, we also have p+/q+ ≫

√
p+/(q+

√
n), so we can find δ ≫

√
p+/(q+

√
n)

such that p+/q+ − δ ≫ p󰂏/q󰂏. Since Q holds a.a.s. in Cn,p when p/q ≫ p󰂏/q󰂏, by
Proposition 6, Q also holds a.a.s. in Cn,m.

Similarly, suppose now that m ≪ m󰂏 and p− = m/(m+ n), so p−/q− ≪ p󰂏/q󰂏. Since
p󰂏 ≫ n−1, we also have p󰂏/q󰂏 ≫

√
p−/(q−

√
n), so we can find δ ≫

√
p−/(q−

√
n) such that

p−/q−+δ ≪ p󰂏/q󰂏. Since Q asymptotically almost never holds in Cn,p when p/q ≪ p󰂏/q󰂏,
then by Proposition 6, Q also asymptotically almost never holds in Cn,m.
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To establish the presence of thresholds, we use the First Moment Method and the Sec-
ond Moment Method. The First Moment Method is an immediate corollary of Markov’s
Inequality and gives a sufficient condition for a property to asymptotically almost never
hold.

Proposition 9 (First Moment Method). If (Xn)
∞
n=1 is a sequence of nonnegative integer-

valued random variables and E
󰀅
Xn

󰀆
≪ 1, then P

󰀅
Xn = 0

󰀆
∼ 1.

The Second Moment Method, which follows from Chebyshev’s Inequality, gives a suf-
ficient condition for a property to hold a.a.s. The following presentation follows [2, Sec-
tion 4.3]. Given an indexed set of events {Ai : i ∈ I}, we write i ∼ j if i ∕= j and the
events Ai and Aj are not independent. We say that Ai and Aj are correlated. If i ∼ j, we
say that i, j is a dependent pair of indices. For example, if, for each i ∈ [n− 1], the event
Ai occurs if the ith and (i + 1)th terms of Cn,p are identical, then i ∼ j precisely when
|i− j| = 1.

Proposition 10 (Second Moment Method). Suppose, for each n 󰃍 1, that {Ai : i ∈ In}
is a set of events. Suppose X = Xn is the random variable that records how many of
these events occur, and let ∆ =

󰁓
i∼j

P
󰀅
Ai ∧ Aj

󰀆
, where the sum is over dependent pairs of

indices. If E
󰀅
X
󰀆
≫ 1 and ∆ ≪ E

󰀅
X
󰀆2
, then P

󰀅
X > 0

󰀆
∼ 1.

It is possible to determine the probability of a property holding at its threshold.
To do this we use the Chen–Stein Method [11]. The basic idea is that if events are
mostly independent (for some properly defined notion of “mostly”), then the number of
these events that occur tends to a Poisson distribution. As noted in [3], under suitable
conditions, Poisson convergence can be established by computing only the first and second
moments. In particular, this holds in the case of dissociated events [5, 6], which is sufficient
for our purposes. The following is adapted from [31, Theorem 4].

Proposition 11 (Chen–Stein Method). Suppose, for each n 󰃍 1, that {Ai : i ∈ In} is
a set of events, and that |In| ≫ 1. Suppose Xn is the random variable that records how
many of these events occur, and let

∆ =
󰁛

i∼j

P
󰀅
Ai ∧ Aj

󰀆
and Λ =

󰁛

i∈In

P
󰀅
Ai

󰀆2
+

󰁛

i∼j

P
󰀅
Ai

󰀆
P
󰀅
Aj

󰀆
.

If there exists a constant λ > 0 such that E
󰀅
Xn

󰀆
∼ λ, and ∆ + Λ ≪ 1, then Xn con-

verges in distribution to a Poisson distribution with mean λ. In particular, the asymptotic
probability that none of the events occur is e−λ.

3 Components and gaps

In this and the subsequent section we investigate how the structure of the random com-
position evolves as its size increases. Initially, as long as p ≪ n−1, the expected number
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of nonzero terms in Cn,p equals np ≪ 1, so, by the First Moment Method, w.h.p. every
term is zero and Cn,p is the empty n-permutation 0n. We are interested in what happens
after this.

Our focus in this current section is on components and gaps. A component of a weak
integer composition is a maximal run of nonzero terms. A gap is a maximal run of zero
terms. For example, the composition in Figure 1 on page 5 has 10 components, the longest
having length 7. It also has 10 gaps, the longest having length 4.

Components in Cn,p are equivalent to maximal runs of heads in sequences of coin
tosses, where p is the probability of a head. For constant p, this has been a topic of study
for many years. In particular, the length of the longest run of heads has been investigated
in considerable detail [12, 24, 22] (see also [16, pages 308–312]), of particular interest being
the tiny fluctuations in its distribution that depend on the fractional part of log2 n. The
asymptotic Gaussian distribution of the number of maximal runs of a fixed length (when
p is constant) is established in [42]. Finally, from a statistical mechanics perspective,
Huillet [30] investigates the length of both the shortest and longest component in both
the constant p regime and also when p ≍ n−1/k for fixed k ∈ N.

Components and gaps are dual in Cn,p, in the sense that any statement about com-
ponents can be transformed into one about gaps simply by switching the roles of p (the
probability that a term is nonzero) and q (the probability that a term is zero). Results
concerning gaps thus follow directly from those concerning components. Note however,
that there is an asymmetry between Cn,p with small values of p and Cn,p with small
values of q. Specifically, if p ≪ n−1, then w.h.p. there is literally nothing to see, whereas
if q ≪ n−1, then there’s a lot of structure to investigate, with each term asymptotically
having mean 1/q and variance 1/q2.

Below we determine thresholds for the appearance and disappearance of components
of a given length. Initially, however, we have a brief look at the number of components
in Cn,p.

Proposition 12. In Cn,p, the mean number of components equals nqp+p2, and the mean
number of gaps equals nqp+ q2. Therefore, for any positive constant α, asymptotically,

E
󰀅
number of components / gaps in Cn,p

󰀆
∼

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

0 / 1, if p ≪ n−1,

α / α + 1, if p ∼ αn−1,

np, if n−1 ≪ p ≪ 1,

npq, if p is constant,

nq, if 1 ≫ q ≫ n−1,

α + 1 / α, if q ∼ αn−1,

1 / 0, if n−1 ≫ q.

Proof. We count the left ends of components. The probability that the jth term of Cn,p

is the start of a component equals p if j = 1 and qp if 2 󰃑 j 󰃑 n. Thus the expected
number of components equals p+ (n− 1)qp = nqp+ p2.
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Thus the expected number of components is finite precisely when either p ≲ n−1 or
q ≲ n−1. In fact, for any fixed k 󰃍 2, we find using the First and Second Moment Methods
that p ≍ n−1 and q ≍ n−1 are the lower and upper thresholds for there being at least k
components and at least k gaps:

Proposition 13. Suppose k 󰃍 2 is constant. Then,

P
󰀅
Cn,p has at least k components / gaps

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

0, if p ≪ n−1,

1, if n−1 ≪ p and q ≫ n−1,

0, if n−1 ≫ q.

Proof. For each i ∈ [n], let Bi be the event that the ith term of Cn,p is the beginning of a
component. Thus, P

󰀅
B1

󰀆
= p, and P

󰀅
Bi

󰀆
= qp if i > 1. Suppose i := (i1, i2, . . . , ik) ∈ [n]k

is a vector such that ij+1 󰃍 ij + 2 for each j ∈ [k − 1], and let Ai = Bi1 ∧Bi2 ∧ . . . ∧Bik .
If i1 = 1, then P

󰀅
Ai

󰀆
= qk−1pk; otherwise P

󰀅
Ai

󰀆
= qkpk.

If X is the total number of these k-tuples of components in Cn,p, then by linearity of
expectation, their expected number equals

Ek := E
󰀅
X
󰀆
=

󰀕
n− k

k

󰀖
qkpk +

󰀕
n− k

k − 1

󰀖
qk−1pk ∼ nkqkpk

k!

󰀕
1 +

k

nq

󰀖
.

Suppose ω ≫ 1. If p = n−1/ω, then E
󰀅
X
󰀆
∼ ω−k(1 + k/n)/k! ≪ 1. Thus, by the First

Moment Method (Proposition 9), X = 0 a.a.s., or equivalently, w.h.p. Cn,p has fewer
than k components.

Similarly, if q = n−1/ω, then E
󰀅
X
󰀆
∼ ω−k(1+ kω)/k! ≪ 1, since k 󰃍 2, and so, again,

w.h.p. Cn,p has fewer than k components.
Finally, suppose that n−1 ≪ p and q ≫ n−1. Then, k/nq ≪ 1 and qp ≫ n−1, so we

have E
󰀅
X
󰀆
= Ek ∼ (nqp)k/k! ≫ 1.

Distinct events Ai and Aj are correlated (i ∼ j) if there exists a pair of indices ir in i
and js in j such that |ir − js| 󰃑 1. If, for any such pair, their difference equals 1, then
P
󰀅
Ai∧Aj

󰀆
= 0. Otherwise, the event Ai∧Aj represents, for some t ∈ [k−1], the presence

of k + t component left ends, with the indices of k − t of these occurring in both i and j.
Thus

∆ :=
󰁛

i∼j

P
󰀅
Ai ∧ Aj

󰀆
=

k−1󰁛

t=1

󰀕
k + t

k

󰀖󰀕
k

t

󰀖
Ek+t < Ck

k−1󰁛

t=1

Ek+t <
Ck

k!

k−1󰁛

t=1

(nqp)k+t,

for some constant Ck. Thus,

∆

E
󰀅
X
󰀆2 < Ck k!

k−1󰁛

t=1

(nqp)t−k 󰃑 Ck k!
k−1󰁛

s=1

(n/4)−s ≪ 1,

since qp 󰃑 1
4
.

So by the Second Moment Method (Proposition 10), if both n−1 ≪ p and q ≫ n−1

then X > 0 a.a.s., or equivalently, w.h.p. Cn,p has at least k components.
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3.1 The longest component and longest gap

We now establish thresholds for Cn,p to have a component or gap exceeding a specified
length. Note that these are monotone properties, since increasing a term by one can never
reduce the length of a component or increase the length of a gap. If C is a composition,
let compmax(C) be the length of the longest component of C, and gapmax(C) be the length
of the longest gap in C.

Given k, for each i ∈ [n+ 1− k], let Ai be the event “Cn,p(i), . . . ,Cn,p(i+ k − 1) are
all nonzero”. Then P

󰀅
Ai

󰀆
= pk. So, if X is the total number of runs of k nonzero terms

in Cn,p, then by linearity of expectation, E
󰀅
X
󰀆
= (n+ 1− k)pk ∼ npk, as long as k ≪ n.

Distinct events Ai and Aj are correlated (i ∼ j) if |i− j| < k. If i ∼ j and i < j, then
j = i+ t for some t ∈ [k − 1], and P

󰀅
Ai ∧ Aj

󰀆
= pk+t. So,

∆ :=
󰁛

i∼j

P
󰀅
Ai ∧ Aj

󰀆
< npk

k−1󰁛

t=1

pt < npk
∞󰁛

t=1

pt = npk+1/q,

and ∆/E
󰀅
X
󰀆2 ≲ p/npkq. Moreover,

Λ :=
󰁛

i

P
󰀅
Ai

󰀆2
+

󰁛

i∼j

P
󰀅
Ai

󰀆
P
󰀅
Aj

󰀆
< nkp2k.

To apply the Chen–Stein Method (Proposition 11), it is sufficient to show that ∆ ≪ 1
and Λ ≪ 1.

The threshold for the appearance in Cn,p of a component of fixed length k is p ≍ n−1/k.
We also establish the probability ofCn,p having a component of length k when p ∼ αn−1/k:

Proposition 14. Suppose k 󰃍 1 is constant. Then, for any positive constant α,

P
󰀅
compmax(Cn,p) 󰃍 k

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

0, if p ≪ n−1/k,

1− e−αk
, if p ∼ αn−1/k,

1, if n−1/k ≪ p,

P
󰀅
gapmax(Cn,p) 󰃍 k

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

1, if q ≫ n−1/k,

1− e−αk
, if q ∼ αn−1/k,

0, if n−1/k ≫ q.

Proof. If p ≪ n−1/k, then E
󰀅
X
󰀆
∼ npk ≪ 1, so by the First Moment Method, X = 0

a.a.s., or equivalently, compmax(Cn,p) < k a.a.s.

If n−1/k ≪ p, then E
󰀅
X
󰀆
≫ 1. If p ≪ 1, then ∆/E

󰀅
X
󰀆2 ≲ p/npk ≪ p ≪ 1. So by the

Second Moment Method, X > 0 a.a.s., or equivalently, compmax(Cn,p) 󰃍 k a.a.s. Since the
property of having a component of length at least k is increasing, then by Proposition 5
this also holds for larger p.

Finally, suppose that p ∼ αn−1/k. Then E
󰀅
X
󰀆
∼ αk and ∆ < αkp/q ≪ 1. Moreover,

we have Λ < nkp2k ∼ α2kkn−1 ≪ 1. So, by the Chen–Stein Method (Proposition 11), the
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number of components in Cn,p of length k asymptotically satisfies a Poisson distribution
with mean αk. In particular, the asymptotic probability that no components have length
k or greater is e−αk

.

Thus (using Proposition 8 to transfer the thresholds fromCn,p toCn,m), asm increases,
w.h.p. we first see components of length 2 in Cn,m when m ≍

√
n, first see components

of length 3 when m ≍ n2/3, and so forth. Hence, if m ∼ αnc, for positive constants α
and c ∈ (0, 1), then w.h.p. compmax(Cn,m) takes only one value unless c = 1 − 1/k for
some k ∈ N when a.a.s. it takes one of the two values in {k − 1, k}. However, once m
grows faster than n1−δ for every δ > 0 (for example, m = n/ log n), a.a.s. the length of
the longest component exceeds any fixed value. Similarly, w.h.p. gaps of length 3 vanish
once m ≫ n4/3, every gap has length 1 when m ≫ n3/2, and there are no gaps at all once
m ≫ n2.

We now investigate the presence of components or gaps with lengths that increase
with n. Our first result reveals a sharp threshold:

Proposition 15. Suppose 1 ≪ k ≪ log n. Then, for any ω ≫ 1 and constant α,

P
󰀅
compmax(Cn,p) 󰃍 k

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

0, if p = e−(logn+ω)/k,

1− e−eα , if p = e−(logn−α)/k,

1, if p = e−(logn−ω)/k,

P
󰀅
gapmax(Cn,p) 󰃍 k

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

1, if q = e−(logn−ω)/k,

1− e−eα , if q = e−(logn−α)/k,

0, if q = e−(logn+ω)/k.

Proof. This proof, and many subsequent ones, follow the same bipartite or tripartite
structure as seen above, so, from now on, we abbreviate the argument as far as possible.

If p = e−(logn+ω)/k, then E
󰀅
X
󰀆
∼ e−ω ≪ 1, so compmax(Cn,p) < k a.a.s.

If p = e−(logn−ω)/k, then E
󰀅
X
󰀆
∼ eω ≫ 1. If ω ≪ log n, then p ≪ 1 and ∆/E

󰀅
X
󰀆2 ≲

pe−ω ≪ 1. So compmax(Cn,p) 󰃍 k a.a.s.
Finally, if p ∼ e−(logn−α)/k, then E

󰀅
X
󰀆
∼ eα and ∆ < peα/q ≪ 1. Moreover, we have

Λ < nkp2k ∼ e2αkn−1 ≪ 1. So, the number of components in Cn,p of length at least k is
asymptotically Poisson with mean eα.

We first see components of length the order of log n when p is constant. Again, the
threshold is sharp:

Proposition 16. Suppose k = c log n for some constant c. Then, for any ω ≫ 1,

P
󰀅
compmax(Cn,p) 󰃍 k

󰀆
∼

󰀫
0, if p = e−1/c−ω/ logn,

1, if p = e−1/c+ω/ logn,

P
󰀅
gapmax(Cn,p) 󰃍 k

󰀆
∼

󰀫
1, if q = e−1/c+ω/ logn,

0, if q = e−1/c−ω/ logn.
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Proof. If p = e−1/c−ω/ logn, then E
󰀅
X
󰀆
∼ e−cω ≪ 1, so compmax(Cn,p) < k a.a.s.

If p = e−1/c+ω/ logn, then E
󰀅
X
󰀆
∼ ecω ≫ 1. If ω ≪ log n, then p is asymptotically

constant and ∆/E
󰀅
X
󰀆2 ≲ pe−cω/q ≪ 1. So compmax(Cn,p) 󰃍 k a.a.s.

It is notable (see [30, page 6]) that once p has increased to a constant, w.h.p. the
longest component in Cn,p has length of the order of log n, despite the mean length of a
component still being asymptotically constant (equal to 1/q).

The threshold for the appearance of components of length k ≫ log n is at q = k−1 log n.
For example, w.h.p. we first see a component of length

√
n in Cn,m once m reaches

n3/2/ log n.

Proposition 17. Suppose k = nc for some c ∈ (0, 1). Then, for any ω ≫ 1,

P
󰀅
compmax(Cn,p) 󰃍 k

󰀆
∼

󰀫
0, if q = k−1(log n+ ω),

1, if q = k−1
󰀃
(1− c) log n− ω

󰀄
,

P
󰀅
gapmax(Cn,p) 󰃍 k

󰀆
∼

󰀫
1, if p = k−1

󰀃
(1− c) log n− ω

󰀄
,

0, if p = k−1(log n+ ω).

Proof. If q = (log n + ω)/nc, then E
󰀅
X
󰀆
∼ n

󰀃
1− (log n + ω)/k

󰀄k ∼ e−ω ≪ 1. Therefore,
compmax(Cn,p) < k a.a.s.

We need to use an alternative bound on ∆.

∆ :=
󰁛

i∼j

P
󰀅
Ai ∧ Aj

󰀆
< npk

k−1󰁛

t=1

pt < nkpk+1.

Thus ∆/E
󰀅
X
󰀆2 ≲ pk/n(1− q)k.

If q = (log n− ω)/nc, then E
󰀅
X
󰀆
∼ eω ≫ 1. If q =

󰀃
(1− c) log n− ω

󰀄
/nc, then

∆/E
󰀅
X
󰀆2 ≲ pnc−1

󰀓
1−

󰀃
(1− c) log n− ω

󰀄
/k

󰀔−k

∼ pe−ω ≪ 1.

So compmax(Cn,p) 󰃍 k a.a.s.

Finally, once q ≪ n−1, the expected number of zero terms in Cn,p equals nq ≪ 1, so
w.h.p. every term is nonzero, and Cn,p consists of a single component of length n with
no gaps.

3.2 The shortest component and shortest gap

We now establish thresholds for Cn,p to have a component or gap shorter than a specified
length. Note that these are not monotone properties. For example, adding one to the
last term of the composition 11200 yields 11201 which reduces the length of the shortest
component from 3 to 1. If C is a composition, let compmin(C) be the length of the shortest
component of C, and gapmin(C) be the length of the shortest gap in C.
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For each ℓ ∈ [n− 1] and each i ∈ [n+ 1− ℓ], let Ai,ℓ be the event that the ith term of
Cn,p is the start of a component of length ℓ. Then

P
󰀅
Ai,ℓ

󰀆
=

󰀫
qpℓ, if i = 1 or i = n+ 1− ℓ,

q2pℓ, otherwise.

So, assuming ℓ ≪ n, if Xℓ is the number of components of length ℓ in Cn,p, then

E
󰀅
Xℓ

󰀆
= (n− 1− ℓ)q2pℓ + 2qpℓ ∼ nq2pℓ.

Given some k ≪ n and assuming kq ≪ 1 (so 1− pk ∼ kq), let X be the total number of
components of length at most k in Cn,p. Then

E
󰀅
X
󰀆
=

k󰁛

ℓ=1

E
󰀅
Xℓ

󰀆
∼ nq2(p+ p2 + . . .+ pk) = npq(1− pk) ∼ knq2.

Distinct events Ai,r and Aj,s (i 󰃑 j) are correlated (i, r ∼ j, s) in two situations. If
j 󰃑 i + r, then the corresponding components overlap in a contradictory manner, so
P
󰀅
Ai,r ∧ Aj,s

󰀆
= 0. If j = i+ r + 1, then the corresponding components are separated by

a single zero term and P
󰀅
Ai,r ∧Aj,s

󰀆
= q3pr+s, except when the pair of components occur

at the start or end of the composition, in which case P
󰀅
Ai,r ∧ Aj,s

󰀆
= q2pr+s. Thus,

∆ :=
󰁛

i,r∼ j,s

P
󰀅
Ai,r ∧ Aj,s

󰀆
=

k󰁛

r=1

k󰁛

s=1

(n− 2− r − s)q3pr+s + 2q2pr+s

∼ n

k󰁛

r=1

k󰁛

s=1

q3pr+s = np2q
󰀃
1− pk

󰀄2 ∼ k2nq3.

Thus ∆/E
󰀅
X
󰀆2 ∼ 1/nq, which tends to zero as long as q ≫ n−1. Moreover,

Λ :=
󰁛

i,ℓ

P
󰀅
Ai,ℓ

󰀆2
+

󰁛

i,r∼ j,s

P
󰀅
Ai,r

󰀆
P
󰀅
Aj,s

󰀆

∼ n

k󰁛

r=1

(r + 2)
k󰁛

s=1

q4pr+s ∼ 1

2
k2(k + 5)nq4 ≲ k3nq4.

Our first result shows thresholds at p ≍ n−1/2, for the appearance of short gaps, and
at q ≍ n−1/2 for the disappearance of short components:

Proposition 18. Suppose k 󰃍 1 is constant. Then, for any positive constant α,

P
󰀅
compmin(Cn,p) > k

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

0, if q ≫ n−1/2,

e−α2k, if q ∼ αn−1/2,

1, if n−1/2 ≫ q,

P
󰀅
gapmin(Cn,p) > k

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

1, if p ≪ n−1/2,

e−α2k, if p ∼ αn−1/2,

0, if n−1/2 ≪ p.
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Proof. Suppose ω ≫ 1. If q = n−1/2/ω, then E
󰀅
X
󰀆
∼ k/ω2 ≪ 1, so w.h.p. there are no

components of length k or less, and compmin(Cn,p) > k a.a.s.

If q = n−1/2ω, then E
󰀅
X
󰀆
∼ kω2 ≫ 1. Since ∆/E

󰀅
X
󰀆2 ≪ 1, so compmin(Cn,p) 󰃑 k

a.a.s.
Finally, if q ∼ αn−1/2, then E

󰀅
X
󰀆
∼ α2k. Also, we have ∆ ∼ α3k2n−1/2 ≪ 1 and

Λ ≲ α4k3n−1/2 ≪ 1. So, the number of components in Cn,p of length at most k is
asymptotically Poisson with mean α2k. In particular, the asymptotic probability that no
components have length k or less is e−α2k.

Thus, as soon as p ≫ n−1/2, w.h.p. there is a gap of length 1 in Cn,p. Prior to
this, a.a.s. there is no gap of any fixed length. However, w.h.p. components of length
1 remain until q ≍ n−1/2. At this point, the longest components have length the order
of

√
n log n (Proposition 17). But once q ≪ n−1/2, a.a.s. no component of any fixed

length remains. At these thresholds, we can calculate the asymptotic probability that
the shortest component or gap has a given length. For instance, when p ∼ n−1/2, with
probability 1− e−1 ≈ 0.63 a gap of length 1 has already appeared.

The thresholds for the disappearance of longer components are as follows. In par-
ticular, components of length nc vanish a.a.s. once q ≪ n−(1+c)/2. For example, once
m ≫ n7/4, a.a.s. all components have length ≫

√
n.

Proposition 19. Suppose 1 ≪ k ≪ n. Then, for any positive constant α,

P
󰀅
compmin(Cn,p) > k

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

0, if q ≫ 1/
√
kn,

e−α2
, if q ∼ α/

√
kn,

1, if 1/
√
kn ≫ q,

P
󰀅
gapmin(Cn,p) > k

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

1, if p ≪ 1/
√
kn,

e−α2
, if p ∼ α/

√
kn,

0, if 1/
√
kn ≪ p.

Proof. First, note that kq ∼
󰁳

k/n ≪ 1, as required for our asymptotics to be valid.

Suppose ω ≫ 1. If q = ω−1/
√
kn, then E

󰀅
X
󰀆
∼ ω−2 ≪ 1, so w.h.p. we have

compmin(Cn,p) > k.

If q = ω/
√
kn, then E

󰀅
X
󰀆
∼ ω2 ≫ 1. Since∆/E

󰀅
X
󰀆2 ≪ 1, we have compmin(Cn,p) 󰃑 k

a.a.s.
Finally, if q ∼ α/

√
kn, then E

󰀅
X
󰀆
∼ α2. Also, ∆ ∼ α3

󰁳
k/n ≪ 1 and Λ ≲ α4k/n ≪ 1.

So, the number of components in Cn,p of length at most k is asymptotically Poisson with
mean α2.

4 Patterns

The focus of the remainder of this work is on the appearance and disappearance of var-
ious types of pattern. A pattern is simply a sub-composition, under some notion of
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2 0 2 0 3 1 0 2 0 2 0 3 1 0 2 0 3 1 0 2 0 2 0 2

Figure 2: A composition containing four occurrences of the exact consecutive pat-
tern =202 and three occurrences of =02031020

containment. Below, we consider a variety of different types of pattern containment. To
distinguish between these, we sometimes add a prefix to the pattern (e.g., =π or 󰃍π).
Definitions are given below. For the most part we require the terms of a pattern to occur
consecutively in a composition, which we signify by using an overline (e.g., =123). This
requirement is eventually relaxed in the final subsection.

We begin in Section 4.1 by considering exact patterns, in which terms must take
specified values, including an investigation of runs of equal nonzero terms and of square
patterns (runs of k terms equal to k). Section 4.2 concerns upper and lower patterns,
including a consideration of the largest and smallest terms. We then look at patterns
specifying the relative ordering of terms (Section 4.3), including determining the threshold
for Cn,p to be a Carlitz composition (having no adjacent pair of equal terms). Finally, in
Section 4.4, we consider nonconsecutive patterns, including determining the threshold for
all the terms of Cn,p to be distinct.

There is quite an extensive literature on patterns in compositions and words, some
of which is mentioned below. This includes comprehensive expositions by Heubach and
Mansour [28] and Kitaev [35]. However, the enumerative and generatingfunctionological
perspective taken in these works is somewhat orthogonal to our interests.

4.1 Exact consecutive patterns

We begin with the simplest notion of pattern. The exact consecutive pattern =r1 . . . rk
occurs at position i in a composition C if, for each j ∈ [k], we have C(i − 1 + j) = rj.
In the language of combinatorics on words, such a pattern occurs in a composition if it is
a factor of the composition. See Figure 2 for an illustration. A pattern is nonzero if at
least one of its terms is positive.

The presence of an exact pattern is not a monotone property. It isn’t even convex; for
example, =22 occurs in the compositions 221 and 322, but does not occur in 321. However,
in Cn,p, the presence of a nonzero exact pattern =π does exhibit both a lower threshold,
for its appearance, and an upper threshold, for its disappearance. If π = r1 . . . rk, then
the lower threshold depends only on the size |π| =

󰁓k
i=1 ri of the pattern, whereas the

upper threshold depends only on its length k. (Recall that in this work |π| always denotes
the sum of the terms of π, not its length.)
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Proposition 20. If =π is a nonzero exact consecutive pattern of length k, then for any
positive constant α,

P
󰀅
Cn,p contains =π

󰀆
∼

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

0, if p ≪ n−1/|π|,

1− e−α|π|
, if p ∼ αn−1/|π|,

1, if n−1/|π| ≪ p and q ≫ n−1/k,

1− e−αk
, if q ∼ αn−1/k,

0, if n−1/k ≫ q.

The expected number of occurrences of =π in Cn,p is maximal when p/q = |π|/k.

Proof. Suppose π = r1 . . . rk and |π| = s. For each i ∈ [n + 1 − k], let Ai be the event
that =π occurs at position i in Cn,p, and let X be the number of occurrences of =π in
Cn,p. Then, P

󰀅
Ai

󰀆
= qkps, and E

󰀅
X
󰀆
∼ nqkps, which, by elementary calculus, is seen to

be maximal when p = s/(k + s).
If p ≪ n−1/s, then E

󰀅
X
󰀆
∼ nps ≪ 1. Similarly, if q ≪ n−1/k, then E

󰀅
X
󰀆
∼ nqk ≪ 1.

Thus, by the First Moment Method, in either case, w.h.p. =π doesn’t occur in Cn,p.
Distinct events Ai and Aj are correlated if t = |j − i| < k. If rℓ ∕= rℓ+t for some

ℓ ∈ [k − t], then P
󰀅
Ai ∧ Aj

󰀆
= 0. Otherwise, P

󰀅
Ai ∧ Aj

󰀆
󰃑 qk+1ps+1, since π is nonzero.

Thus,

∆ :=
󰁛

i∼j

P
󰀅
Ai ∧ Aj

󰀆
󰃑 nkqk+1ps+1 and R := ∆/E

󰀅
X
󰀆2 ≲ k

nqk−1ps−1
.

Moreover, Λ :=
󰁓

i P
󰀅
Ai

󰀆2
+
󰁓

i∼j P
󰀅
Ai

󰀆
P
󰀅
Aj

󰀆
∼ nkp2sq2k.

Suppose p = ωn−1/s ≪ 1 for some ω ≫ 1. Then E
󰀅
X
󰀆
∼ ωs ≫ 1 and R ≲ kp/ωs ≪ 1.

Similarly, if q = ωn−1/k ≪ 1 for some ω ≫ 1, then E
󰀅
X
󰀆
∼ ωk ≫ 1 and R ≲ kq/ωk ≪ 1.

Finally, if p is asymptotically bounded away from both 0 and 1, then E
󰀅
X
󰀆
≍ n ≫ 1

and R ≍ n−1 ≪ 1. Hence, by the Second Moment Method, if n−1/s ≪ p and q ≫ n−1/k,
w.h.p. =π occurs in Cn,p.

Suppose p ∼ αn−1/s. Then E
󰀅
X
󰀆
∼ αs and ∆ 󰃑 αskp ≪ 1, and Λ ∼ α2sk/n ≪ 1. So,

by the Chen–Stein Method, the number of occurrences of =π is asymptotically Poisson
with mean αs. Similarly, if q = αn−1/k then E

󰀅
X
󰀆
∼ αk and ∆ 󰃑 αkkq ≪ 1, and

Λ ∼ α2kk/n ≪ 1, so the number of occurrences of =π is asymptotically Poisson with
mean αk.

Thus, we have a dichotomy between the arrival and the departure of exact consecutive
patterns as Cn,p evolves, the former being ordered by size, smaller patterns appearing
before larger ones, and the latter being ordered by length, longer patterns disappearing
before shorter ones.

The following proposition enables us to transfer the thresholds for exact consecutive
patterns from Cn,p to Cn,m. Since the relevant properties are not monotone, we can’t
simply apply Proposition 6.
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Proposition 21. If =π is an exact consecutive pattern and m ∼ np/q ≫ 1, then

P
󰀅
Cn,m contains =π

󰀆
∼ P

󰀅
Cn,p contains =π

󰀆
.

Proof. Suppose π has length k and size s. For each i ∈ [n+1−k], let Pi be the probability
that =π occurs at position i in Cn,m. Then,

Pi =

󰀕
m− s+ n− k − 1

m− s

󰀖󰀕
m+ n− 1

m

󰀖−1

.

For brevity, let n1 = n − 1, nk = n1 − k and ms = m − s. Note that n1 ∼ nk ∼ n and
ms ∼ m (as along as k ≪ n and s ≪ m), and also that p ∼ m/(m+n) and q ∼ n/(m+n).

Then, by Stirling’s approximation,

Pi =

󰀕
ms + nk

ms

󰀖󰀕
m+ n1

m

󰀖−1

∼

󰁶
(ms + nk)mn1

ms nk (m+ n1)

(ms + nk)
ms+nk

mms
s nnk

k

mm nn1
1

(m+ n1)m+n1

∼
󰀓ms + nk

m+ n1

󰀔m+n1

(ms + nk)
−s−k

󰀓 m

ms

󰀔ms

ms
󰀓n1

nk

󰀔nk

n k
1

=
󰀓
1− s+ k

m+ n1

󰀔m+n1
󰀓
1 +

s

ms

󰀔ms
󰀓
1 +

k

nk

󰀔nk ms n k
1

(ms + nk)s+k

∼ e−s−k es ek ps qk = psqk ∼ P
󰀅
=π occurs at position i in Cn,p

󰀆
.

The result then follows from the fact that the probability of Cn,p or Cn,m containing an ex-
act consecutive pattern depends only on the asymptotic probabilities of exact consecutive
patterns occurring at a given position (see the proof of Proposition 20).

Thus, m ≍ n1−1/s is the threshold for the appearance of each exact consecutive pattern
of size s in Cn,m. So, if 0 < γ < 1 and m ∼ nγ, then w.h.p. Cn,m contains every exact
consecutive pattern of size less than 1/(1−γ), but contains no such pattern of size greater
than 1/(1− γ). For example, every fixed length gap of the form =10 . . . 01 appears when
m ≍ n1/2 (see Proposition 18), whereas no gap delimited by larger terms appears before
m ≍ n2/3.

Similarly, m ≍ n1+1/k is the threshold for the disappearance of each exact consecutive
pattern of length k in Cn,m. So, if 1 < γ < 2 and m ∼ nγ, then w.h.p. Cn,m contains
every exact consecutive pattern of length less than 1/(γ−1), but contains no such pattern
of length greater than 1/(γ − 1).

These results establish when any given exact consecutive pattern is present. For
example, w.h.p. the pattern =314159 appears when m ≍ n22/23 and has disappeared
once m ≫ n7/6. If π1 is both shorter and smaller than π2, then

=π1 arrives before =π2

and leaves after =π2. However, since the arrival and departure of patterns depend on
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different parameters, the values of which can be chosen independently, it is possible for
the departure order of a number of patterns to be any permutation of their arrival order.
For example, w.h.p., =101, =3, =1111 and =23 arrive in that order, but depart in the
order =1111, =101, =23, =3.

Observe that there is a range of values of m for which, a.a.s., any given exact consec-
utive pattern is present in Cn,m. Specifically, if n1−δ ≪ m ≪ n1+δ for every δ > 0 (for
example, m ∼ n/ log n or m ∼ n log n), then any given pattern occurs w.h.p.

In contrast, once m ≫ n2, then w.h.p. any specific exact consecutive pattern is absent
from Cn,m. In particular, this holds for patterns of length one: given any value r, a.a.s.
no term of Cn,m is equal to r.

4.1.1 Runs of equal terms

In this section we investigate runs of k equal nonzero terms; that is, the occurrence of
any of the exact consecutive patterns =11 . . . 1, =22 . . . 2, =33 . . . 3, etc. of length k.

Given k ∈ [n] and i ∈ [n+ 1− k], let Ai be the event that the ith term of Cn,p is the
start of a run of k equal nonzero terms. Then

P
󰀅
Ai

󰀆
=

∞󰁛

r=1

(qpr)k =
pkqk

1− pk
.

Thus, if X is the number of runs of k equal nonzero terms, E
󰀅
X
󰀆
∼ npkqk/(1 − pk),

assuming k ≪ n. Distinct events Ai and Aj are correlated if t = |j − i| < k, with

P
󰀅
Ai ∧ Aj

󰀆
=

∞󰁛

r=1

(qpr)k+t =
(pq)k+t

1− pk+t
󰃑 (pq)k+1

1− pk+1
.

Proposition 22. Let Pk = lim
n→∞

P
󰀅
Cn,p contains a run of k equal nonzero terms

󰀆
. Then,

for any fixed k 󰃍 2 and positive constant α,

Pk =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

0, if p ≪ n−1/k,

1− e−αk
, if p ∼ αn−1/k,

1, if n−1/k ≪ p and q ≫ n−1/(k−1),

1− e−αk−1/k, if q ∼ αn−1/(k−1),

0, if n−1/(k−1) ≫ q.

Proof. Suppose ω ≫ 1. If p = n−1/k/ω, then E
󰀅
X
󰀆
∼ ω−k ≪ 1. Similarly, if q =

n−1/(k−1)/ω, then E
󰀅
X
󰀆
∼ ω−(k−1)/k ≪ 1. So, in either case, w.h.p. Cn,p has no run of k

equal nonzero terms.
Let

∆ :=
󰁛

i∼j

P
󰀅
Ai ∧ Aj

󰀆
󰃑 nk(pq)k+1

1− pk+1
and R :=

∆

E
󰀅
X
󰀆2 ≲ kpq(1− pk)2

npkqk(1− pk+1)
.
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If p = ωn−1/k ≪ 1, then E
󰀅
X
󰀆
∼ ωk ≫ 1 and R ≲ kpω−k ≪ 1. Similarly, if we have

q = ωn−1/(k−1) ≪ 1, then E
󰀅
X
󰀆
∼ ωk−1/k ≫ 1 and R ≲ k2qω−(k−1) ≪ 1. Finally, if p is

asymptotically bounded away from both 0 and 1, then E
󰀅
X
󰀆
≍ n ≫ 1 and R ≍ n−1 ≪ 1.

Hence, if n−1/s ≪ p and q ≫ n−1/(k−1), w.h.p. Cn,p contains a run of k equal nonzero
terms.

Let

Λ :=
󰁛

i

P
󰀅
Ai

󰀆2
+

󰁛

i∼j

P
󰀅
Ai

󰀆
P
󰀅
Aj

󰀆
∼ nk(pq)2k

(1− pk)2
.

Suppose p ∼ αn−1/k. Then E
󰀅
X
󰀆
∼ αk and ∆ 󰃑 kαk+1n−1/k ≪ 1, and Λ ∼ kα2k/n ≪ 1.

So the number of occurrences of runs of k equal nonzero terms is asymptotically Poisson
with mean αk. Similarly, if q ∼ αn−1/(k−1) then E

󰀅
X
󰀆
∼ αk−1/k and∆ 󰃑 αkn−1/(k−1) ≪ 1,

and Λ ∼ α2k−2/kn ≪ 1, so the number of occurrences of runs of k equal nonzero terms is
asymptotically Poisson with mean αk−1/k.

Thus, as one would expect, a.a.s the arrival of a run of k nonzero terms coincides with
the appearance of the length k pattern =11 . . . 1. However, the threshold at q ≍ n−1/(k−1)

for the departure of all runs of k nonzero terms is later than that at q ≍ n−1/k for the
disappearance of any specific length k pattern =rr . . . r (see Proposition 20).

In the case that p is constant, the length of the longest run inCn,p has been investigated
in detail (see [38, 23, 15]), and Gafni [19] has considered the question for a random
composition with positive terms. For our variant of the problem, we have the following
sharp bounds on the length of the longest run of nonzero terms, which is maximal when
p = 1

2
.

Proposition 23. If p ∈ (0, 1) is constant and γ = 1/pq, then for any ω ≫ 1,

P
󰀅
Cn,p contains a run of k equal nonzero terms

󰀆
∼

󰀫
0 if k = logγ n+ ω,

1 if k = logγ n− ω.

Proof. If k = logγ n+ ω, then E
󰀅
X
󰀆
∼ npkqk ∼ γ−ω ≪ 1 since γ > 1. So w.h.p. Cn,p has

no run of k equal nonzero terms.
To apply the Second Moment Method, we require a stronger bound on ∆ than that

used in Proposition 22:

∆ :=
󰁛

i∼j

P
󰀅
Ai ∧ Aj

󰀆
󰃑 n

∞󰁛

t=1

(pq)k+t

1− pk+1
∼ n(pq)k+1

1− pq
.

If k = logγ n− ω, then E
󰀅
X
󰀆
∼ γω ≫ 1, so

∆

E
󰀅
X
󰀆2 ≲ (pq)−(k−1)

n(1− pq)
∼ γ−ω

γ − 1
≪ 1,

and w.h.p. Cn,p contains a run of k equal nonzero terms.
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4.1.2 Square patterns

We conclude our investigation of exact consecutive patterns by considering the k-square
pattern =kk . . . k, of length k, an occurrence of which is a run of k terms each equal
to k. For example, the composition in Figure 1 on page 5 contains a 4-square and two
2-squares. From Proposition 20, we know that, for any fixed k, a.a.s. k-squares appear
when p ≍ n−1/k2 and disappear when q ≍ n−1/k.

What is the largest square that we can expect to see in the evolution of the ran-
dom composition? Here we show that w.h.p. it has side length a little greater than
log n/log log n, as expected from the following non-rigorous heuristic argument: We ex-
pect to see the largest k-square when the two thresholds coalesce, that is when both
p = n−1/k2 and q = n−1/k, so q = pk. Thus pk + p = 1 or (1− q)k + (1− q) = 1. Approx-
imating (1 − q)k with 1 − kq (since k ≫ 1 implies q ≪ 1) then yields q = 1/(k + 1). So
1/(k + 1) = n−1/k or k log(k + 1) = log n, whose asymptotic solution matches the value
of k in the following proposition.

Proposition 24. Suppose q =
θ log log n

log n
and k =

log n

log log n

󰀕
1 +

c log log log n

log log n

󰀖
. Then,

P
󰀅
Cn,p contains a k-square pattern

󰀆
∼

󰀫
0 if c 󰃍 1 or θ is far,

1 if c < 1 and θ is near,

where we say that θ is near if (log log n)−γ ≪ θ ≪ log log log n for all constant γ > 0,
and θ is far if either θ ≪ (log log n)−γ for all constant γ or else log log log n ≪ θ.

Proof. For i ∈ [n + 1 − k], let Ai be the event that the ith term of Cn,p is the start of a
k-square. Then P

󰀅
Ai

󰀆
= qkpk

2
. Thus, if X is the number of k-squares,

E
󰀅
X
󰀆
∼ qkpk

2 ∼
󰀕
θ log log n

log n

󰀖k

exp

󰀕
−k2 θ log log n

log n

󰀖
.

Substituting for k and taking the dominant term, if θ is near and c ∕= 1 then

logE
󰀅
X
󰀆
∼ (1− c)

log n log log log n

log log n
,

and if θ is near and c = 1 then

logE
󰀅
X
󰀆
∼ − log n

log log n
.

If ω ≫ 1 and either θ = (log log n)−ω or else θ = ω log log log n, then

logE
󰀅
X
󰀆
∼ −ω log n log log log n

log log n
.

Thus, if c 󰃍 1 or θ is far, we have E
󰀅
X
󰀆
≪ 1 and so w.h.p. Cn,p contains no k-square,

whereas if c < 1 and θ is near then E
󰀅
X
󰀆
≫ 1.
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Distinct events Ai and Aj are correlated if t = |j−i| < k, with P
󰀅
Ai∧Aj

󰀆
= qk+tpk

2+kt.
Thus,

∆ :=
󰁛

i∼j

P
󰀅
Ai ∧ Aj

󰀆
󰃑 n

∞󰁛

t=1

qk+tpk
2+kt =

nqk+1pk
2+k

1− qpk
∼ nqk+1pk

2+k,

and

R :=
∆

E
󰀅
X
󰀆2 ≲ n−1q1−kpk−k2 ∼ n−1

󰀕
log n

log log n

󰀖k−1

exp

󰀕
(k2 − k)

log log n

log n

󰀖
.

Substituting for k and taking the dominant term, if θ is near and c ∕= 1 then

logR ∼ (c− 1)
log n log log log n

log log n
.

So if c < 1, we have R ≪ 1 and thus w.h.p. Cn,p contains a k-square.

4.2 Upper and lower consecutive patterns

Although the presence of an exact pattern is not even a convex property, we can weaken
our notion of a pattern in two natural ways to yield properties that are monotone. The
upper consecutive pattern 󰃍r1 . . . rk occurs at position i in a composition C if, for each
j ∈ [k], we have C(i − 1 + j) 󰃍 rj, and the lower consecutive pattern 󰃑r1 . . . rk occurs
at position i in C if, for each j ∈ [k], we have C(i − 1 + j) 󰃑 rj. Thus the presence of
an upper pattern is an increasing property, whereas the presence of a lower pattern is
decreasing.

The analysis of upper and lower patterns is similar to that for exact patterns in Propo-
sition 20. Indeed, the threshold for the appearance of 󰃍π is the same as that for =π, and
the threshold for the disappearance of 󰃑π is the same as that for =π, although in the
latter case the threshold probabilities differ.

Proposition 25. If 󰃍π is a nonzero upper consecutive pattern, then for any positive
constant α,

P
󰀅
Cn,p contains 󰃍π

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

0, if p ≪ n−1/|π|,

1− e−α|π|
, if p ∼ αn−1/|π|,

1, if n−1/|π| ≪ p.

Proof. Suppose π = r1 . . . rk and |π| = s. For each i ∈ [n + 1 − k], let Ai be the event
that 󰃍π occurs at position i in Cn,p, and let X be the number of occurrences of 󰃍π in
Cn,p. Then, P

󰀅
Ai

󰀆
= ps, and E

󰀅
X
󰀆
∼ nps. So if p ≪ n−1/s, then E

󰀅
X
󰀆
≪ 1 and w.h.p.

󰃍π doesn’t occur in Cn,p.
Distinct events Ai and Aj are correlated if t = |j − i| < k. Then,

P
󰀅
Ai ∧ Aj

󰀆
=

t󰁜

ℓ=1

prℓ ×
k−t󰁜

ℓ=1

pmax(rℓ, rℓ+t) ×
k󰁜

ℓ=k−t+1

prℓ ,
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which is at most ps+1, since either rℓ > 0 for some ℓ 󰃑 t or else rℓ+t > rℓ for some ℓ 󰃑 k−t.
Thus,

∆ :=
󰁛

i∼j

P
󰀅
Ai ∧ Aj

󰀆
󰃑 nkps+1 and R := ∆/E

󰀅
X
󰀆2 ≲ k

nps−1
.

Moreover, Λ :=
󰁓

i P
󰀅
Ai

󰀆2
+
󰁓

i∼j P
󰀅
Ai

󰀆
P
󰀅
Aj

󰀆
∼ nkp2s.

Suppose p = ωn−1/s ≪ 1 for some ω ≫ 1. Then E
󰀅
X
󰀆
∼ ωs ≫ 1 and R ≲ kp/ωs ≪ 1.

Hence, w.h.p. 󰃍π occurs in Cn,p.
Suppose p ∼ αn−1/s. Then E

󰀅
X
󰀆
∼ αs and ∆ 󰃑 αskp ≪ 1, and Λ ∼ α2sk/n ≪ 1. So

the number of occurrences of 󰃍π is asymptotically Poisson with mean αs.

For a lower consecutive pattern 󰃑π, the probability at the threshold depends on the
number of distinct patterns weakly dominated by π of the same length.

Proposition 26. If 󰃑r1 . . . rk is a lower consecutive pattern, then for any positive con-
stant α,

P
󰀅
Cn,p contains 󰃑r1 . . . rk

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

1, if q ≫ n−1/k,

1− e−αkρ, if q ∼ αn−1/k,

0, if n−1/k ≫ q,

where ρ =
󰁜

i∈[k]

(ri + 1).

Proof. For each i ∈ [n + 1− k], let Ai be the event that 󰃑π occurs at position i in Cn,p,
and let X be the number of occurrences of 󰃑π in Cn,p. Then, if q ≪ 1,

P
󰀅
Ai

󰀆
=

󰁜

ℓ∈[k]

(1− prℓ+1) =
󰁜

ℓ∈[k]

󰀃
1− (1− q)rℓ+1

󰀄
∼

󰁜

ℓ∈[k]

(rℓ + 1)q = ρqk,

and E
󰀅
X
󰀆
∼ ρnqk. So if q ≪ n−1/k, then E

󰀅
X
󰀆
≪ 1 and w.h.p. 󰃑π doesn’t occur in Cn,p.

Distinct events Ai and Aj are correlated if t = |j − i| < k. Then, if q ≪ 1,

P
󰀅
Ai ∧ Aj

󰀆
=

t󰁜

ℓ=1

(1− prℓ+1) ×
k−t󰁜

ℓ=1

(1− pmin(rℓ, rℓ+t)+1) ×
k󰁜

ℓ=k−t+1

(1− prℓ+1) 󰃑 ρ2qk+1.

Thus,

∆ :=
󰁛

i∼j

P
󰀅
Ai ∧ Aj

󰀆
󰃑 ρ2nkqk+1 and R := ∆/E

󰀅
X
󰀆2 ≲ k

nqk−1
.

Moreover, Λ :=
󰁓

i P
󰀅
Ai

󰀆2
+
󰁓

i∼j P
󰀅
Ai

󰀆
P
󰀅
Aj

󰀆
∼ ρ2nkq2k.

Suppose q = ωn−1/k ≪ 1 for some ω ≫ 1. Then E
󰀅
X
󰀆
∼ ρωk ≫ 1 and we have

R ≲ kq/ωk ≪ 1. Hence, w.h.p. 󰃑π occurs in Cn,p.
Suppose q ∼ αn−1/k. Then E

󰀅
X
󰀆
∼ αkρ and ∆ 󰃑 αkρ2kq ≪ 1, and we have Λ ∼

α2kρ2k/n ≪ 1. So the number of occurrences of 󰃑π is asymptotically Poisson with mean
αkρ.
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4.2.1 The largest term

We conclude our investigation of upper and lower consecutive patterns by considering the
largest and smallest terms in Cn,p. If max(C) is the largest term in a composition C, then
the following is an immediate consequence of Proposition 25.

Proposition 27. If r is a positive integer, then

P
󰀅
max(Cn,p) 󰃍 r

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

0, if p ≪ n−1/r,

1− e−αr
, if p ∼ αn−1/r,

1, if n−1/r ≪ p.

Thus max(Cn,p) = r a.a.s. if n−1/r ≪ p ≪ n−1/(r+1).
However, the analysis of largest term doesn’t require Proposition 25, since we have

an exact expression for the probability that all the terms are small: P
󰀅
max(Cn,p) < r

󰀆
=

(1− pr)n. For small p we have the following:

Proposition 28. Suppose ω ≫ 1 and p = ω−1. Then, for any constant c,

P
󰀅
max(Cn,p) 󰃍 r

󰀆
∼

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

0, if r − logn
logω

≫ 1
logω

,

1− e−e−c
, if r = logn+c

logω
,

1, if logn
logω

− r ≫ 1
logω

.

Proof. If r = logn+δ
logω

, then

P
󰀅
max(Cn,p) < r

󰀆
=

󰀕
1− e−δ

n

󰀖n

∼

󰀻
󰁁󰀿

󰁁󰀽

1, if δ ≫ 1,

e−e−c
, if δ ∼ c,

0, if −δ ≫ 1.

Thus, w.h.p. max(Cn,p) ∼ log n/ log(1/p) if p ≪ 1, and a.a.s. the largest term exhibits
two-point concentration, that is it takes one of only two possible values.

This is not true if p is constant. In this case, if Lp = log1/p n then the probability that
the largest term differs from Lp by a constant is bounded away from both 0 and 1:

Proposition 29. If p is constant, then for any constant c,

P
󰀅
max(Cn,p) 󰃍 r

󰀆
∼

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

0, if r − log1/p n ≫ 1,

1− e−pc , if r = log1/p n+ c,

1, if log1/p n− r ≫ 1.

Proof. If r = log1/p n+ δ, then

P
󰀅
max(Cn,p) < r

󰀆
=

󰀕
1− pδ

n

󰀖n

∼

󰀻
󰁁󰀿

󰁁󰀽

1, if δ ≫ 1,

e−pc , if δ ∼ c,

0, if −δ ≫ 1.
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Thus, when p is constant, the distribution of the largest term is concentrated around
log1/p n. For a more detailed analysis, including the very slight oscillatory behaviour
of its mean (dependent on the fractional part of log1/p n), and the determination of its

(constant) variance, see [41, Section 4.1] or the exposition (for p = 1
2
) in [16, Proposition

V.1].
When p tends to 1, we have the following bounds on the largest term:

Proposition 30. If q ≪ 1, then for any ε > 0,

P
󰀅
max(Cn,p) 󰃍 r

󰀆
∼

󰀫
0, if r 󰃍 (1 + ε)q−1 log n,

1, if r 󰃑 (1− ε)q−1 log n.

Proof. Let L = logP
󰀅
max(Cn,p) < r

󰀆
= n log

󰀃
1− exp

󰀃
r log(1− q)

󰀄󰀄
.

Now, for small enough x, we have −2x < log(1− x) < −x.
So, if r = (1 + ε)q−1 log n, then for sufficiently large n,

L > n log
󰀃
1− exp(−rq)

󰀄
= n log

󰀃
1− n−(1+ε)

󰀄
> −2n−ε.

Thus L ∼ 0, and P
󰀅
max(Cn,p) < r

󰀆
∼ 1.

Similarly, using the tighter bound −x − x2 < log(1 − x), if now r = (1 − ε)q−1 log n,
then for sufficiently large n,

L < n log
󰀃
1− exp(−rq(1 + q))

󰀄
= n log

󰀃
1− n−(1−ε)(1+q)

󰀄
< −nε−(1−ε)q,

Thus lim
n→∞

L = −∞, and P
󰀅
max(Cn,p) < r

󰀆
∼ 0.

Hence, when m ≫ n, a.a.s. max(Cn,m) ∼ m
n
log n, a factor of log n more than the

value of the average term.

4.2.2 The smallest term

We now turn briefly to consider the smallest term in Cn,p. If min(C) is the smallest term
in a composition C, then the following is an immediate consequence of Proposition 26.

Proposition 31. If r is a positive integer, then for any positive constant α,

P
󰀅
min(Cn,p) 󰃍 r

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

0, if q ≫ n−1,

e−αr, if q ∼ αn−1,

1, if n−1 ≫ q.

Thus, a.a.s. min(Cn,p) = 0 as long as q ≫ n−1, but q ≍ n−1 is the threshold for
min(Cn,p) to exceed any fixed positive value. This somewhat paradoxical phenomenon is
perhaps a little easier to understand if one recalls that the most likely value taken by any
term in Cn,p is zero — whatever the values of n and p.

More generally, we have the following.
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Proposition 32. If r ≫ 1, then for any positive constant α,

P
󰀅
min(Cn,p) 󰃍 r

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

0, if q ≫ 1/rn,

e−α, if q ∼ α/rn,

1, if 1/rn ≫ q.

Proof. Suppose ω ≫ 1. Then,

P
󰀅
min(Cn,p) 󰃍 r

󰀆
= (1− q)rn =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

(1− ω/rn)rn ≲ e−ω ≪ 1, if q = ω/rn,

(1− α/rn)rn ∼ e−α, if q ∼ α/rn,

(1− 1/ωrn)rn ∼ e−1/ω ∼ 1, if q = 1/ωrn.

Hence, once m ≫ n2, a.a.s. min(Cn,m) ≍ m/n2.

4.3 Consecutive patterns specifying relative ordering

A classical notion of pattern containment is that a pattern specifies an ordering. We
call such a pattern an ordering pattern, to distinguish from other types of pattern in
this work, and represent ordering patterns without a prefix. The consecutive ordering
pattern π of length k occurs at position ℓ in a composition C if the relative order of
C(ℓ), . . . , C(ℓ−1+k) is the same as that of π(1), . . . , π(k). That is, if, for every i, j ∈ [k],

C(ℓ− 1 + i) < C(ℓ− 1 + j) ⇐⇒ π(i) < π(j),

C(ℓ− 1 + i) = C(ℓ− 1 + j) ⇐⇒ π(i) = π(j),

C(ℓ− 1 + i) > C(ℓ− 1 + j) ⇐⇒ π(i) > π(j).

For example, 0211 occurs at position ℓ in C if C(ℓ) < C(ℓ + 2) = C(ℓ + 3) < C(ℓ + 1).
The composition in Figure 1 on page 5 contains a single occurrence of 0211, formed by
the consecutive terms 1633.

For uniqueness, we require that the set of numbers used in an ordering pattern is an
initial segment of the nonnegative integers. Thus, 0211 is an ordering pattern, whereas
0322, 1322 and 4977 are not valid patterns. For results concerning ordering patterns from
an enumerative perspective, see the paper by Kitaev, McAllister and Petersen [36] and
the papers by Heubach and Mansour [26, 27].

Let P (π) denote the probability that the ordering pattern π occurs at some specified
position in Cn,p. Then, since terms in Cn,p are independent, P (π) does not depend on
the order of numbers in π. For example, P (0211) = P (1021) = P (0112).

Before we proceed further, we need a technical result relating the probability of a
“shifted” occurrence of π to the value of the “unshifted” probability P (π).

Proposition 33. Suppose Eh
i (π) is the event that π occurs at position i in Cn,p with

every term of its occurrence at least h. If π has length k and i ∈ [n + 1 − k], then
P
󰀅
Eh

i (π)
󰀆
= phkP (π).
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Proof. Observe that, by definition,

P (π) =
󰁛

ρ∼=π

P ( =ρ),

where the sum is over all the exact patterns that are order-isomorphic to π. Also,

{ρ : ρ ∼= π ∧ min(ρ) 󰃍 h} = {ρ+ h : ρ ∼= π},

where ρ+ h is the result of adding h to each term of ρ.
Now P ( =ρ+ h) = phkP ( =ρ). So,

P
󰀅
Eh

i (π)
󰀆
=

󰁛

ρ∼=π

P ( =ρ+ h) =
󰁛

ρ∼=π

phkP ( =ρ) = phk
󰁛

ρ∼=π

P ( =ρ) = phkP (π).

With this result, we can determine the probability of an ordering pattern occurring at
some specified position in Cn,p.

4.3.1 Consecutive ordering patterns with distinct terms

We begin by considering patterns in which every term is distinct, such as 102 or 3120.
These patterns are permutations of an initial segment of the nonnegative integers, and
an occurrence of such a pattern induces a total order on the relevant terms, so we call an
ordering pattern in which every term is distinct a total ordering pattern.

Proposition 34. Suppose π is a total ordering pattern of length k. Then, for each
i ∈ [n+ 1− k],

P
󰀅
π occurs at position i in Cn,p

󰀆
= P (π) =

k󰁜

j=1

qpj−1

1− pj
= pk(k−1)/2

k󰁜

j=1

q

1− pj
.

Proof. Without loss of generality, let π = 01 . . . (k − 1). We proceed by induction on the
length of the pattern. Trivially, P (0) = 1.

Suppose k > 1. Let π1 = 01 . . . (k− 2), and assume that P (π1) satisfies the statement
of the proposition. Then, by Proposition 33,

P (π) =
∞󰁛

h=0

P
󰀅
(Cn,p(i) = h) ∧ Eh+1

i+1 (π1)
󰀆
=

∞󰁛

h=0

qphp(h+1)(k−1)P (π1) =
qpk−1

1− pk
P (π1),

as required.

If π is a total ordering pattern of length k 󰃍 2, then by Proposition 20, p ≍ n−1/|π| =
n−2/k(k−1) is the threshold in Cn,p for the arrival of the exact pattern =π, with any
other exact pattern order-isomorphic to π arriving later. Thus p ≍ n−2/k(k−1) is also
the threshold in Cn,p for the appearance of π. However, unlike the situation with exact
patterns, a.a.s. a total ordering pattern π does not disappear as p tends to 1. Indeed, once
q ≪ 1, the relative ordering of k consecutive terms of Cn,p is asymptotically uniformly
distributed over the k! permutations of length k.
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Proposition 35. If π is a total ordering pattern of length k, and q ≪ 1, then, for each
i ∈ [n+ 1− k],

P
󰀅
π occurs at position i in Cn,p

󰀆
∼ 1

k!
.

Proof.

P (π) =
k󰁜

j=1

qpj−1

1− pj
∼

k󰁜

j=1

1

1 + p+ . . .+ pj−1
∼

k󰁜

j=1

1

j
=

1

k!
.

A natural question in the context of total ordering patterns is to determine the length
of the longest increasing run in Cn,p. If p ≪ n−δ for some δ > 0, then Proposition 20
together with Proposition 35 gives us the following:

Proposition 36. If π is a total ordering pattern of length k 󰃍 2, then

P
󰀅
Cn,p contains π

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

0, if p ≪ n−2/k(k−1),

1− e−αk(k−1)/2
, if p ∼ αn−2/k(k−1),

1, if n−2/k(k−1) ≪ p.

Once p grows faster than any negative exponential function, then the asymptotic
length of the longest increasing run is given by the following proposition:

Proposition 37. Suppose n−δ ≪ p ≪ 1 for every positive δ. Then, for any ε > 0,

P
󰀅
Cn,p contains an increasing run of length k

󰀆
∼

󰀻
󰀿

󰀽
0, if k 󰃍 (1 + ε)

󰁳
2 log1/p n,

1, if k 󰃑 (1− ε)
󰁳

2 log1/p n.

Proof. For each i ∈ [n + 1− k], let Ai be the event that 01 . . . (k − 1) occurs at position
i in Cn,p, and let X be the number of increasing runs of length k in Cn,p.

Then, P
󰀅
Ai

󰀆
∼ qkpk(k−1)/2, and so E

󰀅
X
󰀆
∼ nqkpk(k−1)/2 if k ≪ n.

Suppose α > 1 and k = α
󰁳

2 log1/p n. Since E
󰀅
X
󰀆
≲ npk(k−1)/2, we have

logE
󰀅
X
󰀆
≲ log n + α2 log p log1/p n − α log p

󰁴
2 log1/p n

= −(α2 − 1) log n + α
󰁳

2 log(1/p) log n.

Now log(1/p) ≪ log n, since p ≫ n−δ for every δ > 0. Thus, lim
n→∞

logE
󰀅
X
󰀆
= −∞.

Hence, E
󰀅
X
󰀆
≪ 1 and w.h.p. there are no increasing runs of length k in Cn,p.

Now suppose 0 < α < 1 and k = α
󰁳

2 log1/p n. Since E
󰀅
X
󰀆
≳ nqkpk

2/2, we have

logE
󰀅
X
󰀆
≳ log n + α log(1− p)

󰁴
2 log1/p n + α2 log p log1/p n

≳ (1− α2) log n − 2αp
󰁴

2 log1/p n ≫ 1.
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Distinct events Ai and Aj are correlated if t = |j − i| < k. Then,

P
󰀅
Ai ∧ Aj

󰀆
∼ qk+tp(k+t)(k+t−1)/2 < qk+1pk(k+1)/2.

So ∆ :=
󰁓
i∼j

P
󰀅
Ai ∧ Aj

󰀆
≲ nkqk+1pk(k+1)/2, and

R := ∆/E
󰀅
X
󰀆2 ≲ k

nqk−1pk(k−3)/2
<

k

nqkpk2/2
.

Thus,

logR ≲ log k − log n − α log(1− p)
󰁴

2 log1/p n − α2 log p log1/p n

≲ log k − (1− α2) log n + 2αp
󰁴

2 log1/p n.

So lim
n→∞

logR = −∞. Hence, R ≪ 1 and w.h.p. Cn,p contains an increasing run of

length k.

Thus, for example, when p ∼ 1/ log n, a.a.s. the longest increasing run in Cn,p has

length close to
󰁳

2 log n/ log log n. For the length of the longest increasing run when p is

constant or q ≪ 1, in which case the contribution from
󰁔k

j=1(1− pj) = (p; p)k in the de-

nominator of P (01 . . . (k − 1)) is nontrivial, see the work of Louchard and Prodinger [40].

4.3.2 Consecutive ordering patterns with repeated terms

Let us now move on to ordering patterns, such as 12201, in which at least one term is
repeated. Since P (π) is independent of the order of the terms in π, when calculating
P (π) we may assume that the terms of π are weakly increasing and that π has the form
0ℓ01ℓ1 . . . rℓr , in which the exponents record the number of occurrences of each distinct
term (for example, 031122 = 000122).

Proposition 38. Suppose π = 0ℓ01ℓ1 . . . rℓr . If π has length k, then, for each i ∈ [n+1−k],

P
󰀅
π occurs at position i in Cn,p

󰀆
= P (π) =

r󰁜

j=0

qℓjpsj+1

1− psj
= qk−(r+1) p|π|

r󰁜

j=0

q

1− psj
,

where sj =
r󰁛

i=j

ℓi for each j = 0, . . . , r + 1 (with sr+1 = 0).

Proof. The proof is by induction on r, and is very similar to that for Proposition 34. If
r = 0, then s0 = ℓ0 = k and

P (π) =
∞󰁛

h=0

(qph)k =
qℓ0

1− ps0
.
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Suppose now that r > 1. Let π1 = 0ℓ11ℓ2 . . . (r− 1)ℓr , and assume that P (π1) satisfies the
statement of the proposition. Then, using Proposition 33,

P (π) =
∞󰁛

h=0

P
󰀅
=hℓ0 occurs at position i in Cn,p and Eh+1

i+ℓ0
(π1)

󰀆

=
∞󰁛

h=0

(qph)ℓ0 p(h+1)s1P (π1) =
qℓ0ps1

1− ps0
P (π1),

as required.

If π is nonzero, then by Proposition 20, p ≍ n−1/|π| is the threshold in Cn,p for the
arrival of the exact pattern =π, with any other exact pattern order-isomorphic to π
arriving later. Thus p ≍ n−1/|π| is also the threshold in Cn,p for the appearance of the
ordering pattern π. However, unlike in the case of total ordering patterns, an ordering
pattern with a repeated term also exhibits a threshold for its disappearance:

Proposition 39. Suppose the multiset of terms in π is {0ℓ0 , 1ℓ1 , . . . , rℓr}, where ℓj > 1
for at least one term j. If π has length k and d = k − (r + 1), then for any positive
constant α,

P
󰀅
Cn,p contains π

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

1, if 1 ≫ q ≫ n−1/d,

1− e−αd/λ, if q ∼ αn−1/d,

0, if n−1/d ≫ q,

where λ =
r󰁜

j=0

r󰁛

i=j

ℓi.

Proof. For each i ∈ [n + 1 − k], let Ai be the event that π occurs at position i in Cn,p,
and let X be the number of occurrences of π in Cn,p. If q ≪ 1, then

P
󰀅
Ai

󰀆
∼ qd

r󰁜

j=0

1− p

1− psj
= qd

r󰁜

j=0

1

1 + p+ . . .+ psj−1
∼ qd

r󰁜

j=0

1

sj
=

qd

λ
,

where sj =
r󰁛

i=j

ℓi for each j = 0, . . . , r + 1. So E
󰀅
X
󰀆
∼ nqd/λ.

If q ≪ n−1/d, then E
󰀅
X
󰀆
≪ 1 and w.h.p. π doesn’t occur in Cn,p.

Distinct events Ai and Aj are correlated if t = |j − i| < k. There may be several
ways in which Ai and Aj may consistently overlap, corresponding to a variety of longer
ordering patterns. For example, if π = 010, then there are three possible arrangements:
01010, 01020 and 02010 (each with t = 2). However, for each t, there are certainly never
more than (k + t)t < (2k)k possibilities.
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Thus,

∆ :=
󰁛

i∼j

P
󰀅
Ai ∧ Aj

󰀆
󰃑 κnqd+1 and R := ∆/E

󰀅
X
󰀆2 ≲ κλ2

nqd−1
,

for some constant κ, dependent only on π.

Moreover, Λ :=
󰁓

i P
󰀅
Ai

󰀆2
+
󰁓

i∼j P
󰀅
Ai

󰀆
P
󰀅
Aj

󰀆
∼ nkq2d/λ2.

Suppose q = ωn−1/d ≪ 1 for some ω ≫ 1, then E
󰀅
X
󰀆
∼ ωd/λ ≫ 1 and R ≲

κλ2q/ωd ≪ 1. So w.h.p. π occurs in Cn,p.
Finally, suppose q = αn−1/d. Then E

󰀅
X
󰀆
∼ αd/λ and ∆ 󰃑 αdκq ≪ 1, and we have

Λ ∼ α2dk/λ2n ≪ 1, so the number of occurrences of π is asymptotically Poisson with
mean αd/λ.

Thus, for example, the threshold for the disappearance from Cn,p of balanced peaks 010
is at q ≍ n−1, as is the threshold for the disappearance of balanced valleys 101. However,
at this threshold, Cn,p is more likely to contain a balanced valley than it is to contain a
balanced peak.

A composition in which no pair of adjacent terms are equal (that is, avoiding the
ordering pattern 00) is called a Carlitz composition. These have been well-studied [21,
34, 37, 39]. More generally, the distribution of the lengths of runs of consecutive equal
terms in compositions has been investigated [23, 46]. From our evolutionary perspective,
we have the following threshold for the disappearance of runs of equal terms (a direct
consequence of Proposition 39):

Proposition 40. For any fixed k 󰃍 2 and positive constant α,

P
󰀅
Cn,p contains a run of k equal terms

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

1, if 1 ≫ q ≫ n−1/(k−1),

1− e−αk−1/k, if q ∼ αn−1/(k−1),

0, if n−1/(k−1) ≫ q.

Comparison with Proposition 22 shows that this threshold is the same as for the
disappearance of runs of equal nonzero terms. In particular, the threshold for Cn,p to
become a Carlitz composition is at q ≍ n−1.

4.4 Nonconsecutive patterns

In this concluding section we finally remove the restriction that the occurrence of a pattern
must be consecutive. Nonconsecutive patterns are represented without an overline. We
begin with exact patterns. The pattern =r1 . . . rk occurs in a composition C if there
exists a sequence of indices i1 < i2 < . . . < ik such that for each j ∈ [k], we have
C(ij) = rj. The threshold for the appearance of a nonconsecutive exact pattern depends
only on its maximum term. In contrast, all such patterns share the same threshold for
their disappearance.
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Proposition 41. If =π is a nonzero exact pattern whose largest term is r, then

P
󰀅
Cn,p contains =π

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

0, if p ≪ n−1/r,

1, if n−1/r ≪ p and q ≫ n−1,

0, if n−1 ≫ q.

Proof. If p ≪ n−1/r then, by Proposition 20, w.h.p. Cn,p has no term equal to r and
thus contains no occurrence of =π. Also, by Proposition 31, if q ≪ n−1 then w.h.p. the
smallest term of Cn,p exceeds any fixed value, so there is no occurrence of =π.

Suppose π has length k. For each j ∈ [k], let ij = ⌊jn/k⌋ and Cj be the sub-
composition

󰀃
Cn,p(ij−1 + 1), . . . ,Cn,p(ij)

󰀄
, so that C1, . . . ,Ck is a partition of the terms

of Cn,p. If n−1/r ≪ p and q ≫ n−1, then, for each j ∈ [k], by Proposition 20, w.h.p. Cj

has a term equal to π(j), so Cn,p contains an occurrence of =π.

Nonconsecutive upper and lower patterns exhibit analogous behaviour. The proofs
are very similar to that for Proposition 41, so are omitted.

Proposition 42. If 󰃍π is a nonzero upper pattern whose largest term is r, then

P
󰀅
Cn,p contains 󰃍π

󰀆
∼

󰀫
0, if p ≪ n−1/r,

1, if n−1/r ≪ p.

Proposition 43. If 󰃑π is a lower pattern, then

P
󰀅
Cn,p contains 󰃑π

󰀆
∼

󰀫
1, if q ≫ n−1,

0, if n−1 ≫ q.

We can generalise these results to exact vincular patterns, in which there are some
adjacency requirements, represented by an overline (or vinculum). For example, C con-
tains the exact vincular pattern =123 if there exist indices i and j > i + 1 such that
C(i) = 1, C(i + 1) = 2 and C(j) = 3. We consider a vincular pattern to consist of a
number of consecutive blocks, the terms of which must be adjacent in any occurrence. For
example, =1204003 consists of four blocks, of lengths 2, 1, 1 and 3, and sizes 3, 0, 4 and
3, respectively.

The threshold for the appearance of an exact vincular pattern depends on the size
of its largest block, whereas the threshold for its disappearance depends on the length
of its longest block. This is analogous to the situation for exact consecutive patterns
(Proposition 20). We omit the proof since it is exactly analogous to that for Proposition 41
(with one part in the partition of Cn,p for each block in the pattern).

Proposition 44. If =π is an exact vincular pattern whose largest block has size s and
whose longest block has length ℓ, then

P
󰀅
Cn,p contains =π

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

0, if p ≪ n−1/s,

1, if n−1/s ≪ p and q ≫ n−1/ℓ,

0, if n−1/ℓ ≫ q.
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Let’s now consider nonconsecutive total ordering patterns (ordering patterns with
distinct terms, such as 102 or 3120). The threshold for their appearance depends only on
their length (or equivalently on their largest term, which is one less than their length).
In the case of constant p, the distribution of the number of inversions (occurrences of 10)
has previously been investigated by Prodinger [44] and by Heubach, Knopfmacher, Mays
and Munagi [25].

Proposition 45. If π is a total ordering pattern of length k, then

P
󰀅
Cn,p contains π

󰀆
∼

󰀫
0, if p ≪ n−1/(k−1),

1, if n−1/(k−1) ≪ p.

Proof. By Proposition 41, p ≍ n−1/(k−1) is the threshold for the appearance of the exact
pattern =π, which doesn’t disappear until q ≍ n−1. And by Proposition 36, the consec-
utive total ordering pattern π a.a.s. appears when p ≍ n−2/k(k−1), and doesn’t disappear.
The result follows because an occurrence of =π is an occurrence of π, as is an occurrence
of π.

Our last result concerns equal terms in Cn,p. In particular, Proposition 46 gives a
threshold at q ≍ n−2 for the disappearance of (nonconsecutive) ordering pattern 00.
Thus, when q ≪ n−2 a.a.s. no two terms of Cn,p are equal, and so nonconsecutive total
ordering patterns satisfy the same asymptotic distribution in Cn,p as they do in a random
permutation. Hence, when q ≪ n−2 the distribution of the length of the longest increasing
subsequence in Cn,p is as described in the celebrated work of Baik, Deift and Johansson [4]
(see Romik [45] for an extended expository presentation).

Proposition 46. For any fixed k 󰃍 2 and positive constant α,

P
󰀅
Cn,p has at least k equal terms

󰀆
∼

󰀻
󰁁󰀿

󰁁󰀽

1, if q ≫ n−k/(k−1),

1− e−αk−1/(k×k!), if q ∼ αn−k/(k−1),

0, if n−k/(k−1) ≫ q.

Proof. By Proposition 14, if q ≫ n−1/k then Cn,p contains a gap of length at least k (an

occurrence of =0k) and thus has at least k equal (zero) terms. Suppose now that q ≪ 1.
Given a vector i := (i1, i2, . . . , ik) ∈ [n]k such that ij+1 󰃍 ij for each j ∈ [k− 1], let Ai

be the event that Cn,p(i1) = Cn,p(i2) = . . . = Cn,p(ik). Then

P
󰀅
Ai

󰀆
=

∞󰁛

r=0

qkpkr =
qk

1− pk
∼ qk−1

k
(q ≪ 1).

If X is the total number of k-tuples of equal-valued terms, then

E
󰀅
X
󰀆
=

󰀕
n

k

󰀖
P
󰀅
Ai

󰀆
∼ nkqk−1

k × k!
.
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So if q ≪ n−k/(k−1), then E
󰀅
X
󰀆
≪ 1 and w.h.p. there is no occurrence of 0k in Cn,p.

Distinct events Ai and Aj are correlated (i ∼ j) if the indices in i and j have nonempty
intersection. Thus,

∆ :=
󰁛

i∼j

P
󰀅
Ai ∧ Aj

󰀆
∼

2k−1󰁛

t=k+1

󰀕
n

t

󰀖󰀕
t

k

󰀖
qt−1

t
≲

2k−1󰁛

t=k+1

ntqt−1.

Hence,

R := ∆/E
󰀅
X
󰀆2 ≲

k−1󰁛

t=1

n−t q−(t−1).

Suppose q = ωn−k/(k−1) for some ω ≫ 1. Then E
󰀅
X
󰀆
≫ 1 and

R ≲
k−1󰁛

t=1

n
− t−k

t−1 ω−(t−1) ≪ 1.

Hence, a.a.s. there is an occurrence of 0k in Cn,p.
Finally,

Λ :=
󰁛

i

P
󰀅
Ai

󰀆2
+
󰁛

i∼j

P
󰀅
Ai

󰀆
P
󰀅
Aj

󰀆
∼

2k−1󰁛

t=k

󰀕
n

t

󰀖󰀕
t

k

󰀖󰀕
qk−1

k

󰀖2

≲ q2k−2

2k−1󰁛

t=k

nt.

Suppose q ∼ αn−k/(k−1). Then E
󰀅
X
󰀆
∼ αk−1/(k × k!), and

∆ ≲
k−1󰁛

t=1

n−t/(k−1) ≪ 1 and Λ ≲
k−1󰁛

t=1

n−t ≪ 1.

Thus the number of occurrences of 0k is seen to be asymptotically Poisson with mean
αk−1/(k × k!).
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editors, Combinatorial number theory, pages 243–264. de Gruyter, 2007.

[28] Silvia Heubach and Toufik Mansour. Combinatorics of compositions and words. CRC
Press, 2010.

[29] Lars Holst. A unified approach to limit theorems for urn models. J. Appl. Probab.,
16(1):154–162, 1979.

[30] Thierry E Huillet. A Bose–Einstein approach to the random partitioning of an integer.
J. Statistical Mechanics: Theory and Experiment, 2011(08): P08021, 2011.

[31] Svante Janson. Coupling and Poisson approximation. Acta Appl. Math., 34(1-2):7–
15, 1994.

[32] Svante Janson. Simply generated trees, conditioned Galton-Watson trees, random
allocations and condensation. Probab. Surv., 9:103–252, 2012.

[33] Svante Janson, Tomasz 󰀀Luczak, and Andrzej Ruciński. Random Graphs. Wiley, 2000.

[34] Boris L. Kheyfets. The number of part sizes of a given multiplicity in a random
Carlitz composition. Adv. in Appl. Math., 35(3):335–354, 2005.

[35] Sergey Kitaev. Patterns in Permutations and Words. Springer, 2011.

[36] Sergey Kitaev, Tyrrell B. McAllister, and T. Kyle Petersen. Enumerating segmented
patterns in compositions and encoding by restricted permutations. Integers, 6: A34,
2006.

[37] Arnold Knopfmacher and Helmut Prodinger. On Carlitz compositions. European J.
Combin., 19(5):579–589, 1998.

[38] Guy Louchard. Runs of geometrically distributed random variables: a probabilistic
analysis. J. Comput. Appl. Math., 142(1):137–153, 2002.

[39] Guy Louchard and Helmut Prodinger. Probabilistic analysis of Carlitz compositions.
Discrete Math. Theor. Comput. Sci., 5(1):71–95, 2002.

[40] Guy Louchard and Helmut Prodinger. Ascending runs of sequences of geometrically
distributed random variables: a probabilistic analysis. Theoret. Comput. Sci., 304(1–
3):59–86, 2003.

the electronic journal of combinatorics 32(1) (2025), #P1.21 39



[41] Guy Louchard, Helmut Prodinger, and Mark Daniel Ward. The number of distinct
values of some multiplicity in sequences of geometrically distributed random vari-
ables. In 2005 International Conference on Analysis of Algorithms, Discrete Math.
Theor. Comput. Sci. Proc., AD, pages 231–256. 2005.

[42] Frosso S. Makri and Zaharias M. Psillakis. On success runs of a fixed length in
Bernoulli sequences: exact and asymptotic results. Comput. Math. Appl., 61(4):761–
772, 2011.

[43] Jinyoung Park. Threshold phenomena for random discrete structures. Notices Amer.
Math. Soc., 70(10):1615–1625, 2023.

[44] Helmut Prodinger. Combinatorics of geometrically distributed random variables:
inversions and a parameter of Knuth. Ann. Comb., 5(2):241–250, 2001.

[45] Dan Romik. The surprising mathematics of longest increasing subsequences. Cam-
bridge University Press, 2015.

[46] Herbert S. Wilf. The distribution of run lengths in integer compositions. Electron.
J. Combin., 18(2):#P23, 2011.

the electronic journal of combinatorics 32(1) (2025), #P1.21 40


