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Abstract

An (n, k, t)-graph is a graph on n vertices in which every set of k vertices contains
a clique on t vertices. Turán’s Theorem, rephrased in terms of graph complements,
states that the unique minimum (n, k, 2)-graph is an equitable disjoint union of
cliques. We prove that minimum (n, k, t)-graphs are always disjoint unions of cliques
for any t (despite nonuniqueness of extremal examples), thereby generalizing Turán’s
Theorem and confirming two conjectures of Hoffman et al.

Mathematics Subject Classifications: 05C35

1 Introduction

The protagonists of this paper are (n, k, t)-graphs. Throughout this paper, it is assumed
n, k, t and r are positive integers and n 󰃍 k 󰃍 t.

Definition 1. A graph G is an (n, k, t)-graph if |V (G)| = n and every induced subgraph
on k vertices contains a clique on t vertices. Aminimum (n, k, t)-graph is an (n, k, t)-graph
with the minimum number of edges among all (n, k, t)-graphs.

The study of the minimum number of edges in an (n, k, t)-graph, and so implicitly the
structure of minimum (n, k, t)-graphs, is a natural extremal graph theory problem—as
we will see shortly, this setting generalizes the flagship theorems of Mantel and Turán.
Hoffman, Johnson, and McDonald [11] conjectured the following.

Conjecture 2 (The Weak (n, k, t)-Conjecture). For any positive integers n 󰃍 k 󰃍 t,
there exists a minimum (n, k, t)-graph that is a disjoint union of cliques.

Conjecture 3 (The Strong (n, k, t)-Conjecture). For any postive integers n 󰃍 k 󰃍 t,
every minimum (n, k, t)-graph is a disjoint union of cliques.
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Note that throughout this paper “disjoint union” refers to a vertex -disjoint union, and
a disjoint union of cliques allows isolated vertices (namely cliques of size 1).

Partial progress toward proving the conjectures can be found in [11, 14]. These results
will be discussed in more detail in Section 2. We prove the following theorem, confirming
the Strong (and therefore also the Weak) (n, k, t)-Conjecture.

Theorem 4. For any positive integers n 󰃍 k 󰃍 t, all minimum (n, k, t)-graphs are a
disjoint union of cliques.

We prove Theorem 4 by proving a stronger statement involving the independence
number of the graph (see Theorem 16).

Given the implicit equivalence relation on the vertex set arising from the adjacency
relation in a disjoint union of cliques, a natural approach to try to prove Conjecture
2 is to mimic the Zykov symmetrization proof [17] of Turán’s theorem, which (when
complemented) involves repeated applications of the following:

Observation 5. Let G be an (n, k, 2)-graph and x,y be adjacent vertices in G. Then
replacing y with a copy x′ of x, with x′ adjacent to x, also gives an (n, k, 2)-graph.

In contrast, there is no equivalent fact for (n, k, t)-graphs when t > 2. For example, a
K4 with a pendant edge xy (such that y is in the K4) is a (5, 4, 3)-graph, but replacing y
with a copy x′ of x gives a disjoint triangle and edge, which is not a (5, 4, 3)-graph.

2 Previous Results

Given graphs G and H, let G denote the complement of G, let G+H denote the disjoint
union of G and H, and for a positive integer s let sG = G + · · · + G (s times). The
authors in [11] discussed the following basic cases of the Strong (n, k, t)-Conjecture.

• t = 1. Every graph on n vertices is an (n, k, 1)-graph, so the unique minimum
(n, k, 1)-graph is nK1.

• k = t 󰃍 2. The unique minimum (n, k, k)-graph is Kn.

• n = k. The unique minimum (n, n, t)-graph is (n− t)K1 +Kt.

When t = 2, Turán’s Theorem, which we recall here, implies the Strong (n, k, t)-
conjecture. If r 󰃑 n are positive integers let Tn,r = Kp1 + · · ·+Kpr where p1 󰃑 p2 󰃑
. . . 󰃑 pr 󰃑 p1 + 1 and p1 + p2 · · · + pr = n (Tn,r is called the Turán Graph). That is to
say, T n,r is a disjoint union of r cliques where the number of vertices in each clique differs
by at most one. Turán’s Theorem will be used throughout this paper. The traditional
statement, when rephrased in terms of graph complements, is below.

Theorem 6 (Turán’s Theorem). The unique graph on n vertices without an independent
set of size r + 1 with the minimum number of edges is T n,r.
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By Turán’s Theorem, the unique minimum (n, k, 2)-graph is T n,k−1. Indeed, the fact
that Turán’s Theorem (this version) depends on the independence number of a graph
inspired the proof of the main theorem.

Arguably the most famous research direction in extremal graph theory is study of
Turán numbers, that is, for a fixed graph F and the class Forbn(F ) of n-vertex graphs
not containing a copy of F , what is the maximum number of edges? Turán’s Theorem gives
an exact answer when F is complete. Denoting χ(F ) for the chromatic number of F , the
classical Erdős-Stone Theorem [7] gives an asymptotic answer of (1 − 1/(χ(F ) − 1))

󰀃
n
2

󰀄

for nonbipartite F as n → ∞, and the bipartite F case is still a very active area of
research (see e.g. [2], [9]). A more general question considers a family F of graphs and
the collection Forbn(F) of all n-vertex graphs not containing any subgraph in F . In this
language, an (n, k, t)-graph is precisely the complement of a graph in Forbn(F), where
F is the family of k-vertex graphs F where F̄ does not contain Kt. Note that this F
almost always has maxF∈F{χ(F )} > 2, meaning the Erdős-Stone Theorem determines
the correct edge density for large n. But Theorem 16 is still interesting for 2 reasons:

• The values of k and t are arbitrary, not fixed (and may grow with n), and

• This result is exact, not asymptotic.

There has been some previous work towards the proof of the conjectures. In [14], the
Strong (n, k, t)-Conjecture was proved for n 󰃍 k 󰃍 t 󰃍 3 and k 󰃑 2t − 2, utilizing an
extremal result about vertex covers attributed by Hajnal [10] to Erdős and Gallai [6]. In
[11], for all n 󰃍 k 󰃍 t, the structure of minimum (n, k, t)-graphs that are disjoint unions
of cliques was described more precisely as follows.

Theorem 7 ([11]). Suppose t 󰃍 2 and G has the minimum number of edges of all (n, k, t)-
graphs that are a disjoint union of cliques. Then G = aK1+T n−a,b, for some a, b satisfying

a+ b(t− 1) = k − 1,

and

b 󰃑 min

󰀕󰀙
k − 1

t− 1

󰀚
, n− k + 1)

󰀖
.

The following example shows Theorem 4 cannot be strengthened to include uniqueness
(and in particular the choice of b above need not be unique).

Example 8. Theorem 7 tells us the graphs with the minimum number of edges of all
(10, 8, 3)-graphs that are a disjoint union of cliques are among 5K1 + T 5,1 = 5K1 + K5,
3K1+T 7,2 = 3K1+K3+K4, or K1+T 9,3 = K1+3K3 (as given by b = 1, 2, 3 in the above).
These graphs have 10, 9, and 9 edges respectively. So, 3K1 + T 7,2 = 3K1 +K3 +K4 and
K1 + T 9,3 = K1 + 3K3 both have the minimum number of edges of all (10, 8, 3)-graphs
among disjoint unions of cliques.
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Hoffman and Pavlis [12] have found for any positive integer N there exist some
n 󰃍 k 󰃍 3 with at least N non-isomorphic (n, k, 3)-graphs which are minimum (among
graphs which are disjoint unions of cliques, although Theorem 16 now removes this restric-
tion). Further, Allen et al. [1] determined precisely the values of b from Theorem 7 that
minimize the number of edges. The resulting growing families of nonisomorphic extremal
constructions may suggest the difficulty of Conjectures 2 and 3, but Observation 10 puts
such concerns to rest (and may be the reason why the problem still remains tractable).
Notice that the independence numbers of the graphs in Example 8 are 6, 5, and 4 respec-
tively. These lead to Observation 10, but first we state the following observation that will
be used in the proof of Observation 10 and frequently throughout the remainder of the
paper. Let c(G) denote the number of connected components of a graph G, and let α(G)
denote its independence number.

Observation 9. Suppose G is a disjoint union of cliques. Then α(G) = c(G).

The following observation inspired considering the independence number in the main
proof.

Observation 10. Suppose G1 and G2 are non-isomorphic graphs that are both disjoint
unions of cliques and are both minimum (n, k, t)-graphs. Then α(G1) ∕= α(G2).

Proof. If t = 2, then G1 = G2 by uniqueness in Turán’s Theorem. So assume t > 2.
For a contradiction, suppose α(G1) = α(G2). By Theorem 7, there exist positive integers
a1, b1, a2, b2, such that Gi = aiK1 + T n−ai,bi and ai + bi(t − 1) = k − 1 (for i = 1, 2).
Thus, a1 + b1(t − 1) = a2 + b2(t − 1). Also, by Observation 9, a1 + b1 = a2 + b2. Hence
b1 − b1(t − 1) = b2 − b2(t − 1). Combining these and noting t > 2 gives b1 = b2 and
a1 = a2.

3 The Proof

We collect together some preliminary lemmas. Firstly, because we will use induction
on t in Theorem 16, we observe that (n, k, t)-graphs contain (n′, k′, t′)-graphs for certain
smaller values of n′, k′, and t′. Given a set X ⊆ V (G), let G[X] denote the subgraph of
G induced by the vertices in X and let G−X = G[V (G) \X].

Lemma 11. If G is an (n, k, t)-graph and S ⊆ V (G) is an independent set, then G− S
is an (n− |S|, k − |S|, t− 1)-graph.

Proof. Clearly |V (G− S)| = n− |S|. Let X be a subset of V (G− S) with |X| = k− |S|.
Because G is an (n, k, t)-graph, G[S ∪X] contains a Kt. Because S is an independent set,
at most 1 vertex in this Kt was from S. Thus, (G− S)[X] must contain a Kt−1.

Because Theorem 16 considers the independence number of (n, k, t)-graphs, we now
enrich the (n, k, t) notation to include the independence number.
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Definition 12. A graph G is an (n, k, t, r)-graph if G is an (n, k, t)-graph, and α(G) = r.
A minimum (n, k, t, r)-graph is an (n, k, t, r)-graph with the minimum number of edges
among all (n, k, t, r)-graphs.

The following lemma determines an upper bound for the independence number of an
(n, k, t)-graph.

Lemma 13. If G is an (n, k, t)-graph, then α(G) < k − t+ 2.

Proof. For a contradiction, suppose G has an independent set, call it S, of size k− t+ 2.
Let X ′ be any t−2 vertices in G−S (this is possible because |V (G−S)| = n−(k−t+2) =
(n − k) + t − 2 󰃍 t − 2). Define X := S ∪ X ′, so |X| = k. Then there exists a Kt in
G[X] which necessarily contains 2 vertices in S. This is a contradiction because S is
independent. Thus α(G) < k − t+ 2.

But, subject to this bound, all independence numbers α(G) are attainable. Indeed,
for any 1 󰃑 r 󰃑 k − t + 1 the graph (r − 1)K1 +Kn−r+1 is an example of an (n, k, t, r)-
graph because every set of k vertices contains at most k − t isolated vertices and at least
t vertices of the clique.

Below is an observation about minimum (n, k, t)-graphs. It will be used in in the proof
of Theorem 16.

Lemma 14. Suppose k > t and let a 󰃑 n be a positive integer. Let H be an (n, k, t)-graph
with the minimum number of edges among (n, k, t)-graphs with independence number at
most a. If α(H) < a, then H is not an (n, k − 1, t)-graph.

Proof. Among all (n, k, t)-graphs with independence number at most a, suppose H has
the fewest edges. For a contradiction suppose α(H) < a and H is an (n, k − 1, t)-graph.
Because α(H) < a 󰃑 n, there exists an edge, e in H. Let H− be the graph formed
from H by deleting e and let v ∈ e. Let X be a subset of V (H−) with |X| = k. If X
does not contain v, then H−[X] = H[X] contains a Kt. So, suppose X contains v. Then
|X \{v}| = k−1. Because H is an (n, k−1, t)-graph, H[X \{v}] = H−[X \{v}] contains a
Kt. So H−[X] contains a Kt. Also, H

− has independence number at most 1 greater than
H. Thus, H− is an (n, k, t)-graph with fewer edges than H and α(H−) 󰃑 a, contradicting
minimality of H.

We caution that Lemma 14 is not necessarily true when α(H) = a. For example,
the minimum (8, 8, 4)-graph, H, with independence number α(H) 󰃑 a := 2 is K4 + K4

because the minimum graph with independence number 2 isK4+K4 by Mantel’s Theorem
(rephrased in terms of graph complements) and K4 +K4 is an (8, 8, 4)-graph (because it
contains K4). Despite this, K4 +K4 is also an (8, 7, 4)-graph by the pigeonhole principle.

Finally, since we will be using the (n, k, t) condition to build the desired disjoint union
of cliques, it is useful to keep track of the size of their largest Kt-free subgraph.

Lemma 15. Suppose Γ is a graph which is a disjoint union of cliques. Denote by AΓ the
subgraph consisting of components with < t vertices, and BΓ the subgraph of components
with 󰃍 t vertices (so that Γ = AΓ +BΓ). Then:
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a) the largest Kt-free subgraph of Γ has (t− 1)c(BΓ) + |V (AΓ)| vertices,

b) if also Γ is an (n, k, t)-graph, then

k − 1 󰃍 (t− 1)c(BΓ) + |V (AΓ)|, and

c) if furthermore Γ is not an (n, k − 1, t)-graph, the above inequality is an equality.

Proof. The largest subgraph F of Γ with noKt is obtained by starting with AΓ and adding
t − 1 vertices from each clique of BΓ. So |V (F )| = (t − 1)c(BΓ) + |V (AΓ)|. If Γ is an
(n, k, t)-graph, then F has at most k−1 vertices in total. If Γ is not an (n, k−1, t)-graph,
then there is some (k − 1)-set of vertices without a Kt, and as F is the largest, it follows
|V (F )| 󰃍 k − 1 so we have equality.

We now proceed with the proof of the main theorem.

Theorem 16. Every minimum (n, k, t, r)-graph is a disjoint union of cliques.

Proof. The proof proceeds by induction on t. If t = 1, then every graph on n vertices is
an (n, k, 1)-graph because all sets of k vertices contain a K1. Thus, the unique minimum
(n, k, 1, r)-graph is T n,r by Turán’s Theorem. Else, t 󰃍 2.

Suppose r 󰃍 k− t+2. By Lemma 13, there does not exist an (n, k, t, r)-graph. So the
theorem holds vacuously.

Next suppose r < k
t−1

. By Turán’s Theorem, T n,r is the unique graph with indepen-

dence number r and the minimum number of edges. So it suffices to check that T n,r is
genuinely an (n, k, t)-graph. Let X be a subset of V (T n,r) with |X| = k. By the pi-
geonhole principle, X contains at least k

r
> t− 1 vertices from one connected component

of T n,r. Because all connected components of T n,r are cliques, T n,r[X] contains a Kt.
Therefore T n,r is the unique minimum (n, k, t, r)-graph.

So suppose instead k
t−1

󰃑 r < k−t+2. Let G be an (n, k, t, r)-graph. We first construct
an (n, k, t, r)-graph G′ that is a disjoint union of cliques with E(G) 󰃍 E(G′). Let S be
an independent set in G with |S| = r. Then α(G−S) 󰃑 α(G) = r. By Lemma 11, G−S
must be an (n− r, k − r, t− 1)-graph. Let H be any minimum (n− r, k − r, t− 1)-graph
with α(H) 󰃑 r, so |E(G − S)| 󰃍 |E(H)|. By the induction hypothesis, H is a disjoint
union of cliques with α(H) 󰃑 r. So, by Observation 9, c(H) 󰃑 r. Let G′ be the graph
formed by increasing the size of each clique component of G by one and adding r− c(H)
new isolated vertices (see Figure 1). Thus, c(G′) = c(H) + (r − c(H)) = r. So, G′ is also
a disjoint union of cliques and, by Observation 9, α(G′) = r. Each vertex in V (G − S)
must be adjacent to at least one vertex in S, else there is an independent set in G with
more than r vertices. Also, by construction of G′, each vertex in H has exactly 1 edge to
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|S| = r

Some
(n− r, k − r, t− 1)-graph

c(H)r − c(H)

H

AH

AG′

BH

BG′

G G′

Figure 1

the vertices in G′ −H. So, if E(v,W ) denotes the set of edges between v and W , then

|E(G)| = |E(G− S)|+
󰁛

v∈V (G−S)

|E(v, S)|

󰃍 |E(H)|+
󰁛

v∈V (G−S)

1

= |E(H)|+
󰁛

v∈V (H)

|E(v, V (G′ −H))|

= |E(G′)|.

That is to say,
|E(G)| 󰃍 |E(G′)|. (1)

We now show G′ is an (n, k, t, r)-graph. First, let AH be the subgraph of H consisting
of connected components (necessarily cliques) with strictly fewer than t− 1 vertices and
BH be the subgraph of H consisting of components with at least t − 1 vertices. Lemma
15 (b) applied to the (n− r, k − r, t− 1)-graph H gives

k − r > (t− 2)c(BH) + |V (AH)|. (2)

Now let AG′ be the subgraph of G′ consisting of connected components (by construction
of G′, necessarily cliques) with strictly fewer than t vertices and BG′ be the subgraph of
G′ consisting of components (necessarily cliques) with at least t vertices. Then:

• c(BG′) = c(BH), as every clique of size 󰃍 t− 1 in H has become a clique of size 󰃍 t
in G′ (by construction of G′); and

• |V (AG′)| = |V (AH)|+ r− c(BH), as every clique of size < t− 1 in H has become a
clique of size < t in G′, and only c(BH) of the r vertices in G′ −H are added to the
larger BH components.
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Let X be a subset of V (G′) with |X| = k. By definition of G′, at most |V (AG′)| =
|V (AH)| + r − c(BH) vertices in X are in components with fewer than t vertices. Thus,

by the pigeonhole principle, some component of BG′ contains at least
k−|V (AG′ )|

c(BG′ )
vertices

from X. Plus, we can lower bound

k − |V (AG′)|
c(BG′)

=
k − (|V (AH)|+ r − c(BH))

c(BH)

=
k − |V (AH)|− r

c(BH)
+ 1

> (t− 2) + 1 (By (2))

= t− 1.

Thus, G′[X] contains a Kt. This proves G′ is an (n, k, t, r)-graph. So, we have found an
(n, k, t, r)-graph G′ which is a disjoint union of cliques and with |E(G)| 󰃍 |E(G′)| (as
needed for the Weak (n, k, t)-conjecture).

Now, suppose G is also a minimum (n, k, t, r)-graph. So the inequality in (1) is ac-
tually an equality. Thus, each vertex v ∈ G − S is adjacent to exactly one vertex in
S. Also, |E(G − S)| = |E(H)|, so G − S is a minimum (n − r, k − r, t − 1)-graph with
independence number at most r and is therefore also a disjoint union of cliques by the
induction hypothesis.

We show G must also be a disjoint union of cliques. This is implied by the following
two additional facts.

(♦) If u,v are two vertices in different components of G−S, then they cannot be adjacent
to the same vertex w ∈ S.

(♥) If u,v are two vertices in the same components of G− S, then they are adjacent to
the same vertex in S.

To prove (♦), suppose for a contradiction that u and v are two vertices in the different
components of G − S that are adjacent to the same vertex w ∈ S. Recall that u and v
are not adjacent to any other vertices in S. So, S \ {w} ∪ {u, v} is an independent set in
G with r + 1 vertices. This is a contradiction.

We now prove (♥). Similarly to before, define AG−S to be the subgraph of G − S
consisting of connected components with strictly fewer than t− 1 vertices and BG−S the
subgraph of G−S consisting of components with at least t−1 vertices. For a contradiction,
suppose u and v are two vertices in the same component, F , of G−S and they are adjacent
to two distinct vertices in S. Because of (♦) and because the vertices in component F
are adjacent to at least 2 distinct vertices in S, c(G − S) < |S| = r. This leads to two
important facts:

(i) Because G− S is a disjoint union of cliques, by Observation 9, α(G− S) < r.

(ii) AG−S contains only isolated vertices (else choose a vertex in AG−S with at least
one incident edge and delete all such. This is still an (n − r, k − r, t − 1)-graph
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with independence number at most r by (i), and strictly fewer edges than G − S,
contradicting minimality). In particular, as |F | 󰃍 2, F must be a component of
BG−S.

Let Y be a set of (t− 2)(c(BG−S)− 1) vertices, containing exactly t− 2 vertices from
each connected component of BG−S−V (F ). Let Z be a set of t−3 vertices in V (F )−{u, v}
(this is possible because of (ii)). Define

X ′ = S ⊔ V (AG−S) ⊔ Y ⊔ Z ⊔ {u, v}.

We now show |X ′| = k. Consider two cases. Suppose k − r > t− 1. Because G− S is an
(n−r, k−r, t−1)-graph, using (i) and Lemma 14 showsG−S is not an (n−r, k−r−1, t−1)-
graph. So Lemma 15 (c) gives

k − r − 1 = |V (AG−S)|+ (t− 2)c(BG−S). (3)

Now, suppose k − r = t − 1. Then, G − S = Kn−r, so |V (AG−S)| = 0 and c(BG−S) = 1.
Therefore, Equation (3) holds for all k−r 󰃍 t−1. Thus, in either case, because the union
in the definition of X ′ is necessarily a disjoint union,

|X ′| = r + |V (AG−S)|+ (t− 2)(c(BG−S)− 1) + (t− 3) + 2
= r + (k − r − 1) + 1 (By (3))
= k.

Any clique of size t in G[X ′] contains at most 1 vertex from S since S is an independent
set. Thus, if G[X ′] contains a Kt, then at least t− 1 vertices in X ′ must be in the same
connected component of G[V (AG−S)∪ Y ∪Z ∪ {u, v}]. The set X ′ does not contain t− 1
vertices from the same connected components in AG−S or Y . The set X ′ contains t − 1
vertices from V (F ) (namely, Z ∪ {u, v}), but because each vertex in V (F ) is adjacent to
exactly 1 vertex in S and u and v are adjacent to two distinct vertices in S, u and v are
not in a clique on t vertices in G[X ′]. Thus, G[X ′] does not contain a clique on t vertices,
contradicting G being an (n, k, t)-graph.

Theorem 16 implies Theorem 4 proving the (n, k, t)-conjectures. Indeed, a minimum
(n, k, t)-graph is one with the minimum number of edges among all minimum (n, k, t, r)-
graphs for 1 󰃑 r < k − t+ 2.

Note, even if we relax the definition of an (n, k, t, r)-graph and let n, k, and t be any
positive integers, Theorem 16 still holds. If k > n then there does not exist a set of k
vertices, so all graphs on n vertices are (n, k, t, r)-graphs. Thus, the unique minimum
(n, k, t, r)-graph is T n,r by Turán’s Theorem. Also, if n 󰃍 k and t > k, then an induced
subgraph on k vertices cannot contain a clique on t vertices, so no graphs are (n, k, t, r)-
graphs. So, the theorem holds vacuously.

In light of Observation 10, one might be led to believe for every positive integer r,
there exists a unique minimum (n, k, t, r)-graph. However, this is not the case.

Observation 17. There exist n, k, t, and r for which the minimum (n, k, t, r)-graph is
not unique.
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For example, 2K2 + K5 and K1 + 2K4 are both minimum (9, 8, 4, 3)-graphs. These
can each be formed as described in the proof of Theorem 16 by letting G − S be the
minimum (6, 5, 3)-graphs, 2K1 +K4 or K3 +K3, respectively. However, by Observation
10 each minimum (n, k, t)-graph has a unique independence number. In this example,
by Theorem 7 and Theorem 4, the minimum (9, 8, 4)-graph is 4K1 +K5 and this is the
unique minimum (9, 8, 4, 5)-graph.

4 Future Directions

Our main result and [1] together solve the extremal problem of finding the minimum
number of edges in an (n, k, t)-graph. Viewing edges as cliques on 2 vertices leads to one
possible generalization of this problem.

Question 18. Let s be a positive integer. What is the minimum number of cliques on s
vertices in an (n, k, t)-graph?

A logical first step may be to ask: What is the minimum number of cliques on s
vertices in an (n, k, 2)-graph? Recall, when s = 2, this is equivalent to Turán’s Theorem.
For general s, it turns out this is a special case of a question asked by Erdős [4]. He
conjectured that a disjoint union of cliques would always be best. However, Nikiforov [13]
disproved this conjecture, observing that a clique-blowup of C5 has independence number
2 (so is an (n, 3, 2)-graph), but has fewer cliques on 4 vertices than 2Kn

2
—the graph which

has fewest K4’s among all (n, 3, 2)-graphs that are a disjoint union of cliques. Das et al.
[3] and Pikhurko and Vaughan [15] independently found the minimum number of cliques
on 4 vertices in an (n, 3, 2)-graph for n sufficiently large and Pikhurko and Vaughan [15]
found the minimum number of cliques on 5 vertices, cliques on 6 vertices, and cliques
on 7 vertices in an (n, 3, 2)-graph for n sufficiently large. But their approaches are non-
elementary and rely heavily on Razborov’s flag algebra method. A summary on related
results can be found in Razborov’s survey [16].

In [14], Noble et al. showed for n 󰃍 k 󰃍 t 󰃍 3 and k 󰃑 2t − 2 every (n, k, t)-graph
must contain a Kn−k+t. Because (k − t)K1 +Kn−k+t is an (n, k, t)-graph, this shows for
n 󰃍 k 󰃍 t 󰃍 3 and k 󰃑 2t − 2 the minimum number of s-cliques an (n, k, t)-graph must
contain is

󰀃
n−k+t

s

󰀄
(noting

󰀃
n−k+t

s

󰀄
= 0 if s > n− k + t).

Thus, the smallest interesting open question of this form is as follows:

Question 19. What is the minimum possible number of triangles in an (n, 5, 3)-graph?

We can also consider the other end of the spectrum. What is the minimum number
of cliques on t vertices in an (n, k, t)-graph? Also, for what values of n, k, and t does an
(n, k, t)-graph necessarily contain at least one clique of t+ 1 vertices?

Similar to Question 18, one could ask: What is the minimum number n that an
(n, k, t)-graph must contain a clique on s vertices? However, if t = 2, this is exactly the
Ramsey number R(k, s). Thus, this question seems very hard in general.

One other common direction to take known results in extremal graph theory where
extremal structures have been identified, is to ask whether every near-optimal example
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can be modified to make the optimal example using relatively few edits. For example,
a result of Füredi [8], when complemented, gives the following strengthening of Turán’s
Theorem:

Theorem 20. Let G be an n-vertex graph without an independent set of size r + 1 with
|E(G)| 󰃑 |E(T n,r)| + q. Then, upon adding at most q additional edges, G contains a
spanning vertex-disjoint union of at most r cliques.

Fixing an independence number r and writing G′ for a minimum (n, k, t, r)-graph (as
in Theorem 16), this leads us to the following question:

Question 21. Suppose G is an (n, k, t)-graph with independence number r, satisfying
|E(G)| 󰃑 |E(G′)| + q. Does there exist a function f(q) such that only f(q) edges need
adding to make G contain a spanning disjoint union of 󰃑 r cliques?

One would need the function f(q) to be independent of n in order for the above to be
interesting. Does f need to depend on k? Or on t? Theorem 20 suggests that the answer
to the first question may actually be no.

Finally, in light of the constructive nature of the proof of Theorem 16, one may ask
whether every inclusion-minimal (n, k, t)-graph (that is, an (n, k, t)-graph which is no
longer (n, k, t) upon the removal of any edge) is necessarily a disjoint union of cliques.
But, there are counterexamples to this even in the original setting of Turán’s theorem
(t = 2). For example, C5 is an inclusion-minimal (5, 3, 2)-graph, but contains neither of
the inclusion-minimal (5, 3, 2)-graphs which are disjoint unions of cliques (K2 + K3 and
K1 +K4).

Since there are inclusion-minimal (n, k, t)-graphs which are not disjoint unions of
cliques, this suggests the saturation problem for (n, k, t)-graphs is interesting:

Question 22. Among all inclusion-minimal (n, k, t)-graphs, what is the maximum pos-
sible number of edges?

The classical saturation result of Zykov [17] and Erdős-Hajnal-Moon [5] (when stated
for graph complements) says that when t = 2, the answer is given by (k−2)K1+Kn−k+2.
The example above shows there are instances of inclusion-minimal (n, k, t)-graphs that
are not disjoint unions of cliques, but K1 +K4 still has more edges than C5. In general,
we conjecture that the maximum is still always attained by a disjoint union of cliques.
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