A note on uncountably chromatic graphs

Nathan Bowler Max Pitz

Submitted: Sep 3, 2024; Accepted: Jan 10, 2025; Published: Feb 14, 2025 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We present an elementary construction of an uncountably chromatic graph without uncountable, infinitely connected subgraphs.

Mathematics Subject Classifications: 05C63

1 Introduction

Erdős and Hajnal asked in 1985 whether every graph of uncountable chromatic number has an infinitely connected, uncountably chromatic subgraph [2]. In 1988 and 2013, P. Komjáth gave consistent negative answers [3, 4]: He first constructed an uncountably chromatic graph without infinitely connected, uncountably chromatic subgraphs; and later an uncountably chromatic graph without any uncountable, infinitely connected subgraph. In 2015, D. Soukup gave the first ZFC construction of such a graph [6]. Soukup even produces an uncountably chromatic graph G in which every uncountable set of vertices contains two points that are connected by only finitely many independent paths in G(to see that this is a stronger failure of connectivity consider an uncountable clique in which every edge has been subdivided once). In this note we present a short, elementary example for Soukup's result.

2 The example

Let $\mathbb{N} = \{1, 2, 3, \ldots\}$. For a countable ordinal α , write T^{α} for the set of all injective sequences $t: \alpha \to \mathbb{N}$ that are *co-infinite*, i.e. such that $|\mathbb{N}\setminus \operatorname{im}(t)| = \infty$. Then $T = \bigcup_{\alpha < \omega_1} T^{\alpha}$ is a well-founded tree when ordered by *extension*, i.e. $t \leq t'$ if $t = t' \upharpoonright \operatorname{dom}(t)$. For a sequence $s \in T^{\alpha+1}$ of successor length, let $\operatorname{last}(s) := s(\alpha) \in \mathbb{N}$ be the last value of s; and $s^* := s \upharpoonright \alpha \in T^{\alpha}$ its immediate predecessor. Put $\Sigma(T) = \bigcup_{\alpha < \omega_1} T^{\alpha+1}$. For any $t \in T$, let

 $A_t := \{ s \leqslant t \colon s \in \Sigma(T), \ \operatorname{last}(s) = \min\left(\operatorname{im}(t) \setminus \operatorname{im}(s^*)\right) \},\$

The electronic journal of combinatorics 32(1) (2025), #P1.23

Universität Hamburg, Department of Mathematics, Bundesstrasse 55, 20146 Hamburg, Germany (nathan.bowler@uni-hamburg.de, max.pitz@uni-hamburg.de).

and let $A_t^{\star} = \{s^{\star} \colon s \in A_t\}.$

Let **G** be the graph with vertex set $V(\mathbf{G}) = T$ and edge set $E(\mathbf{G}) = \{t't : t' \in A_t^*\}$.

Theorem 1. The graph \mathbf{G} is uncountably chromatic yet every uncountable set of vertices in \mathbf{G} has two vertices that are connected by only finitely many independent paths in \mathbf{G} .

3 The proof

We first show that every uncountable set of vertices $A \subseteq V(\mathbf{G})$ contains two points which are connected by only finitely many independent paths in \mathbf{G} . For $s \in T$ we write $s \downarrow := \{t \in T : t < s\}$, and note that the definition of A_s implies that for all $s \leq u \in T$ we have

$$A_u \cap s \downarrow \subseteq A_s \text{ and } A_u^* \cap s \downarrow \subseteq A_s^*.$$
 (*)

Since T contains no uncountable chains, the set A contains two vertices t and t' that are incomparable in T. Let $\alpha \in \text{dom}(t)$ be minimal such that $t(\alpha) \neq t'(\alpha)$, and consider $s = t \upharpoonright (\alpha + 1)$. Then (\star) implies that every t - t' path meets A_s^{\star} , and since $|A_s^{\star}| = |A_s| \leq \text{last}(s)$ is finite, there are only finitely many independent t - t' paths in **G**.

It remains to show that **G** has chromatic number $\chi(\mathbf{G}) = \aleph_1$. Colouring the elements of each T^{α} with a new colour shows $\chi(\mathbf{G}) \leq \aleph_1$. To see $\chi(\mathbf{G}) \geq \aleph_1$, suppose for a contradiction that $c: V(\mathbf{G}) \to \mathbb{N}$ is a proper colouring.

For $t \in \Sigma(T)$, we say $t' \in T$ is an extension of t if $t' \ge t$ and $\operatorname{im}(t') \setminus \operatorname{im}(t) \subseteq \{n \in \mathbb{N} : n > \operatorname{last}(t)\}$. We say $t' \in T$ is a 1-extension of t if it has the stronger property that t' > t and, letting a_1 be the minimal element of $\mathbb{N} \setminus \operatorname{im}(t)$ with $a_1 > \operatorname{last}(t)$, we have $\operatorname{im}(t') \setminus \operatorname{im}(t) \subseteq \{n \in \mathbb{N} : n > a_1\}$. In this case we also say that the 1-extension t' skips a_1 .

Claim 2. Every t in $\Sigma(T)$ has an extension t' in $\Sigma(T)$ such that every 1-extension t'' of t' satisfies $c(t'') > c(t^*)$.

Suppose for a contradiction that the claim is false. Then there exists $t_0 \in \Sigma(T)$ such that all its extensions $t' \in \Sigma(T)$ have a 1-extension t'' such that $c(t'') \leq c(t_0^*)$. Then for the extension $t'_0 = t_0$ of t_0 , there is a 1-extension t''_0 of t'_0 skipping $a_1 \in \mathbb{N}$ with $c(t''_0) \leq c(t_0^*)$. Let $t'_1 := t''_0 \cap a_1$. Then $t'_1 \in \Sigma(T)$ is itself an extension of t_0 , so it has a 1-extension t''_1 skipping a_2 with $c(t''_1) \leq c(t_0^*)$. Let $t'_2 := t''_1 \cap a_2$. And so on. Now a_{m+1} witnesses that $t'_{m+1} \in A_{t''_n}$, and so $t''_m \in A^*_{t''_n}$ whenever $m < n \in \mathbb{N}$. Hence, the vertices $\{t''_n : n \in \mathbb{N}\}$ induce a complete subgraph of \mathbf{G} , contradicting that they have been coloured using only colours $\leq c(t_0^*)$. This proves the claim.

We now complete the proof as follows: Fix an arbitrary $t_0 \in \Sigma(T)$. Let $t'_0 \in \Sigma(T)$ be an extension of t_0 as in the claim. Let $a_1 < a_2$ be the two smallest elements of $\mathbb{N} \setminus \operatorname{im}(t'_0)$ above $\operatorname{last}(t'_0)$. Let $t_1 := t'_0 \cap a_2$. Let t'_1 be an extension of t_1 as in the claim. Let $a_3 < a_4$ be the two smallest elements of $\mathbb{N} \setminus \operatorname{im}(t'_1)$ above $\operatorname{last}(t'_1)$. Let $t_2 := t'_1 \cap a_4$. And so on. Then $\hat{t} = \bigcup_{n \in \mathbb{N}} t_n$ is an injective sequence. Moreover, a_1, a_3, a_5, \ldots witness that \hat{t} is co-infinite, giving $\hat{t} \in T$. But for each $n \in \mathbb{N}$, the sequence \hat{t} is a 1-extension (skipping a_{2n+1}) of the extension t'_n of t_n , so $c(t^*_n) \leq c(\hat{t})$ according to the claim. However, a_2, a_4, a_6, \ldots witness that the vertices $\{t^*_n : n \in \mathbb{N}\}$ induce a complete subgraph of \mathbf{G} , a contradiction.

4 Remarks

(1) In the terminology of [5], the graph **G** is a *T*-graph of finite adhesion. The construction of the sets A_t is inspired by an argument from [1].

(2) The graph with vertex set T but edge set $\{t't: t' < t, t' \in A_t\}$ has countable chromatic number by colouring all $s \in \Sigma(T)$ by colour last(s), and noticing that $A_t \subset \Sigma(T)$ for all $t \in T$ implies that $T \setminus \Sigma(T)$ is independent.

(3) The following version of the Erdős-Hajnal problem remains open: Does every uncountably chromatic graph have a countably infinite, infinitely connected subgraph?

References

- [1] Reinhard Diestel and Imre Leader. Normal spanning trees, Aronszajn trees and excluded minors. *Journal of the London Mathematical Society*, 63(1):16–32, 2001.
- [2] Paul Erdős and Andras Hajnal. Chromatic number of finite and infinite graphs and hypergraphs. *Discrete Mathematics*, 53:281–285, 1985. Ordered Sets And Their Applications.
- [3] Péter Komjáth. Consistency results on infinite graphs. Israel Journal of Mathematics, 61:285–294, 1988.
- [4] Péter Komjáth. A note on chromatic number and connectivity of infinite graphs. Israel Journal of Mathematics, 196(1):499–506, 2013.
- [5] Jan Kurkofka and Max Pitz. A representation theorem for end spaces of infinite graphs. arXiv:2111.12670, 2021.
- [6] Dániel T Soukup. Trees, ladders and graphs. Journal of Combinatorial Theory, Series B, 115:96–116, 2015.