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Abstract

In 1974, Erdős and Rothschild initiated the study of the maximum possible
number, known as F (n, r, k), of distinct edge-colorings of a graph on n vertices with
r colors which contain no monochromatic copy of Kk. The number F (n, r, k) is
not well understood except for a few of non-trivial cases. Recently, Balogh, Liu and
Sharifzadeh (2017) introduced an extension of such Erdős-Rothschild problem: given
a function f(n) and a graph H, let RF (n, r,H, f(n)) be the maximum number of
distinct r-edge-colorings that an n-vertex graph with independence number at most
f(n) can have without a monochromatic copy of H. In particular, they determined
the values of RF (n, 2,Kk, o(n)) for k  3 and RF (n, 3,K3, o(n)).

Define the forest arboricity of H, denoted arbf (H), as the minimum integer p
such that V (H) can be partitioned into ⌈p2⌉ sets V1, . . . , V⌈ p

2
⌉ such that Vi spans a

forest for each 1  i  ⌊p2⌋, and the last class V⌈ p
2
⌉ spans an independent set if p

is odd. In this paper, we mainly obtain the asymptotic values of RF (n, r,H, o(n))
for r ∈ {3, 4, 5}, where H is any graph with arbf (H) = 3 and chromatic number
χ(H)  3. As a corollary, we have the asymptotic values of RF (n, r,H, o(n)) for
r ∈ {3, 4, 5} when H is an odd cycle, or a book (fan) graph.

Keywords: Erdős-Rothschild problem; Ramsey-Turán number; Regularity lemma

Mathematics Subject Classifications: 05C35

1 Introduction

Ramsey theorem [25] states that for any integers p1, p2, there exists a minimum integer,
now called Ramsey number r = r(p1, p2), such that any red/blue edge-coloring the com-
plete graph Kr contains a red Kp1 or a blue Kp2 . Motivated by this theorem, Turán
[30, 31] proved that the balanced complete (k − 1)-partite graph on n vertices, so-called
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Turán graph Tn,k−1, is the unique extremal graph which attains the maximum number of
edges among all n-vertex Kk-free graphs.

Given graphs G and H, denote by F (G, r,H) the number of distinct edge colorings
of G with r colors which contain no monochromatic copy of H. If H = Kk is a complete
graph with k-vertices, then F (G, r,Kk) is written as F (G, r, k). Let

F (n, r,H) = max{F (G, r,H)| G is a graph on n vertices}.

Let tn,k be the number of edges in Tn,k. Note that every r-edge-coloring of the Turán
graph Tn,k−1 contains no monochromatic k-clique, we immediately have

F (n, r, k)  rtn,k−1 . (1)

Erdős and Rothschild [9] conjectured that for sufficiently large n, the above obvious lower
bound is optimal for 2-edge-colorings. This was verified for k = 3 by Yuster [32]. In 2004,
Alon, Balogh, Keevash, and Sudakov [2] settled this conjecture showing that, for all k  3
and sufficiently large n, the Turán graph Tn,k−1 maximizes the number of 2-edge-colorings
and 3-edge-colorings with no monochromatic copy of Kk among all graphs:

F (n, 2, k) = 2tn,k−1 and F (n, 3, k) = 3tn,k−1 . (2)

Furthermore, they showed that (2) can not be extended to more than three colors, and
indeed for r  4, k  3 and all sufficiently large n, there exists a graph G on n vertices
for which F (G, r, k) is larger than rtn,k−1 by a factor that is exponential in n2.

For 4-edge-colorings, we only know that F (n, 4, 3) and F (n, 4, 4); Alon, Balogh,
Keevash, and Sudakov [2] obtained an asymptotic result; Pikhurko and Yilma [24] ob-
tained the exact result by showing that Tn,4 and Tn,9 maximize the number of 4-edge-
colorings with no monochromatic K3 and K4, respectively. For 5-edge-colorings and 6-
edge-colorings, Botler et al. [6] announced the determination of F (n, 5, 3) and F (n, 6, 3).
For r = 6 they proved that Tn,8 is the unique extremal graph, and also proved a stability
result. For r = 5, they uncovered new behaviour: for large n there are two infinite families
{Sn,α,β : 0  α + β  1

4
} and {Tn,α,β : 0  α, β  1

4
} of asymptotically optimal graphs

with either 4, 6 or 8 parts, where Sn,α,β denotes the complete partite graph with parts of
size n

4
, n

4
, αn, αn, βn, βn, (1/4−α−β)n, (1/4−α−β)n and Tn,α,β denotes the complete

partite graph with parts of size αn, αn, (1/4 − α)n, (1/4 − α)n, βn, βn, (1/4 − β)n,
(1/4 − β)n. For 7-edge-colorings, Pikhurko and Staden [22] showed that Tn,8 is also the
unique extremal graph, with colorings coming from Hadamard matrices of order 8. We
refer the reader to [21, 23] for more recent developments.

As we know, Turán graphs have large independent sets of size linear in n, so it is
natural to ask for the maximum number of edges of an n-vertex Kk+1-free graph without
large independent set. Erdős and Sós [14] initiated the study of such Ramsey-Turán type
problems, which have attracted a great deal of attention.

Denote by RT (n, k,m) the Ramsey-Turán function for Kk, i.e., the maximum size of
an n-vertex Kk-free graph with independence number at most m. We mainly concern the
case when m = o(n), which means that the ratio of the independence number and n tends
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to 0 as n → ∞. The Ramsey number r(k,m) is the minimum integer N such that any
red/blue edge coloring of the complete graph KN contains either a red Kk or a blue Km.
Clearly, there is no graph G of order N which is Kk-free and α(G) < m if N  r(k,m),
and in this case we let RT (n, k,m) = 0. For odd cliques, Erdős and Sós [14] proved that
RT (n, 2p+1, o(n)) = 1

2
(1− 1

p
)n2+o(n2) for all p  1. The problem for even cliques is much

harder apart from the trivial case K2. Erdős and Sós [14] showed that RT (n, 4, o(n)) 
1
6
n2 + o(n2). As an early application of the regularity lemma, Szemerédi [28] showed

that RT (n, 4, o(n))  1
8
n2 + o(n2). No non-trivial lower bound on RT (n, 4, o(n)) was

known until Bollobás and Erdős [5] provided a matching lower bound using an ingenious
geometric construction, now calledBE-graph, showing that RT (n, 4, o(n)) = 1

8
n2+o(n2),

i.e., BE-graph is a n-vertexK4-free graph with independence number o(n) and 1
8
n2+o(n2)

edges. Finally, Erdős, Hajnal, Sós and Szemerédi [12] proved RT (n, 2p, o(n)) = 1
2
(1 −

3
3p−2

)n2+o(n2) for all p  2. We refer the reader to the nice survey [26] and its references.
Let us turn our attention to the Ramsey-Turán number for non-complete graphs.

Given a forbidden graph H, the Ramsey-Turán number RT (n,H, o(n)) for H is defined
similarly. An important open problem is to prove a generalization of Erdős-Stone Theorem
[16], i.e., RT (n,H, o(n)) = RT (n, p, o(n)) for some parameter p that depends only on H.
Define the forest arboricity of H, denoted by arbf (H), as the minimum integer p such
that V (H) can be partitioned into ⌈p

2
⌉ sets V1, . . . , V⌈ p

2
⌉ such that Vi spans a forest for

each 1  i  ⌊p
2
⌋, and V⌈ p

2
⌉ spans an independent set if p is odd. Erdős et al. [11] proved

that RT (n,H, o(n))  RT (n, arbf (H), o(n)), and the inequality is sharp for odd arbf (H).
Denote χ(H) by the chromatic number of H. Then we have

χ(H)  arbf (H)  2χ(H)− 1, (3)

where the upper bound holds because a k-partite graph has forest arboricity at most
2k − 1.

Since the Turán graph is extremal in the Erdős-Rothschild problem for r = 2, 3, it
is natural to consider its Ramsey-Turán extension, firstly introduced by Balogh, Liu and
Sharifzadeh [4].

Definition 1 (Balogh, Liu and Sharifzadeh [4]). Given a function f(n) and a graph H,
we define

RF (n, r,H, f(n))

to be the maximum number of r-edge-colorings that an n-vertex graph with independence
number at most f(n) can have without a monochromatic copy of H. If H = Kk is a com-
plete graph with k-vertices, then RF (n, r,Kk, f(n)) will be rewritten by RF (n, r, k, f(n)).

Clearly, we have that

RF (n, r,H, f(n))  F (n, r,H). (4)

We mainly concern the case when f(n) = o(n). Similarly, since there exists an n-
vertex H-free graph with RT (n,H, o(n)) edges and independence number o(n), we have
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that

RF (n, r,H, o(n))  rRT (n,H,o(n)). (5)

Unlike (2), RF (n, r, k, o(n)) exhibits rather different behavior than F (n, r, k), even in
the 2-edge-coloring case whenK4 is forbidden, as observed by Balogh, Liu and Sharifzadeh
[4] as follows. Let G be a graph obtained by putting a copy of n/2-vertex K3-free graph
with independence number o(n) in each part of Tn,2. We can color the edges inside one
part red, the edges inside the other part blue, and color all the remaining crossing-edges
either red or blue. Clearly, none of these colorings contain monochromatic K4’s, hence

RF (n, 2, 4, o(n))  2
n2

4 , which is much larger than that obtained from (5) by noting
RT (n, 4, o(n)) = (1

8
+ o(1))n2.

In [4], Balogh et al. obtained the values of RF (n, 2, k, o(n)) for k  3 and
RF (n, 3, 3, o(n)).

Theorem 2 (Balogh, Liu and Sharifzadeh [4]). RF (n, 2, 3, o(n)) = 2o(n
2). For t  1 and

i ∈ [3],

RF (n, 2, 3t+ i, o(n)) = 2RT (n,4t+i,o(n))+o(n2).

Moreover, RF (n, 3, 3, o(n)) = 2
n2

4
+o(n2).

In this paper, we first determine the asymptotic behavior of RF (n, r,H, o(n)) for
r = 3, 4, 5, where H is a graph with arbf (H) = 3 and χ(H) = 3.

Theorem 3. Let H be a graph with arbf (H) = 3. Then

RF (n, r,H, o(n)) 






(2
1
2 )(

n
2)+o(n2) if r=3,

(3
1
2 )(

n
2)+o(n2) if r=4,

(2
1
43

1
2 )(

n
2)+o(n2) if r=5.

Furthermore, all inequalities are asymptotically best possible if χ(H) = 3.

Let Bk (Fk) be a book (fan) graph, which consists of k copies of K3 all sharing
a common edge (vertex). For H ∈ {C2k+1, Bk, Fk}, since arbf (H) = χ(H) = 3, the
following corollary is immediate.

Corollary 4. For any fixed integer k  1 and H ∈ {C2k+1, Bk, Fk}, we have that

RF (n, r,H, o(n)) =






(2
1
2 )(

n
2)+o(n2) if r=3,

(3
1
2 )(

n
2)+o(n2) if r=4,

(2
1
43

1
2 )(

n
2)+o(n2) if r=5.

We also have the following bounds of RF (n, r, 3, o(n)) for every fixed r  6.
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Proposition 5. For every fixed r  6,


r − 1

2
− 2


(r − 1) log(r − 1)

(1− 1
r−1

)((n2)+o(n2))
 RF (n, r, 3, o(n))

 min

r
2

(n2)+o(n2)

, (3
r−1
6 )(

n
2)+o(n2)


.

In particular, if n ≫ r → ∞, then RF (n, r, 3, o(n)) =

r
2
+ o(1)

(n2)+o(n2)
.

Notation: Let G = (V,E) be a graph with vertex set V and edge set E. We use uv
to denote an edge of G. For X ⊆ V , G[X] denotes the subgraph of G induced by X.
For disjoint X1, . . . , Xt ⊂ V , G[X1, . . . , Xt] denotes the subgraph induced by all edges
between them. Let X ⊔ Y denote the disjoint union of X and Y . A complete k-partite
graph with vertex set ⊔k

i=1Vi, where |Vi| = ni, is denoted by Kk(n1, . . . , nk). For each n
and k, Tn,k denotes the n-vertex Turán graph, which is the n-vertex complete k-partite
graph such that each part has size either ⌊n/k⌋ or ⌈n/k⌉. Let [n] = {1, 2, . . . , n}, and
[m,n] = {m,m + 1, . . . , n}. We always omit the subscripts if there is no confusion from
the context.

2 Preliminaries

Let X, Y ⊆ V (G) be disjoint nonempty sets of vertices in a graph G. The density

of (X, Y ) is dG(X, Y ) = eG(X,Y )
|X||Y | . For ε > 0, the pair (X, Y ) is ε-regular in G if for

every pair of subsets X ′ ⊆ X and Y ′ ⊆ Y with |X ′|  ε|X| and |Y ′|  ε|Y | we have
|dG(X, Y )− dG(X

′, Y ′)|  ε. Additionally, we say that ε-regular pair (X, Y ) is (ε, ξ)-
regular if dG(X, Y )  ξ for some ξ > 0. We say a partition V (G) = ⊔m

i=0Vi of G is
equitable with exceptional set V0 if |Vi| = |Vj| for all distinct i and j in [m]. A partition
V (G) = ⊔m

i=0Vi is ε-regular if the following two conditions hold: (i) |V1| = |V2| = · · · = |Vm|
and |V0|  ε|V (G)|. (ii) all but at most εm2 pairs (Vi, Vj) with 1  i < j  m are ε-
regular. For every A ⊆ V (G) and an r-coloring of E(G) with colors [r], let Gk[A] be the
k-colored subgraph of G induced by the vertex set A.

Szemerédi regularity lemma [29] is a powerful tool in extremal graph theory. In order
to show Theorem 3 and Proposition 5, we will use the following multicolor regularity
lemma. See also [20, Theorem 11.9].

Lemma 6 (Komlós and Simonovits [18]). For every ε > 0 and integer r, there exists an
M such that for every n > M and every r-coloring of the edges of an n-vertex graph G
with colors [r], all monochromatic graphs have a same partition V (G) = ⊔m

i=0Vi that is
ε-regular with exceptional set V0 and 1

ε
< m < M .

Remark. As we know, the regularity lemma is quite flexible. For example, we can
start with an arbitrary partition of V (G) instead of the trivial partition in the proof of
Lemma 6, in order to obtain a partition that is a refinement of a given partition.

the electronic journal of combinatorics 32(1) (2025), #P1.25 5



We will also use the following lemma by Balogh, Liu and Sharifzadeh [4, Lemma 3.1]
which refines a result of Erdős, Hajnal, Simonovits, Sós and Szemerédi [10, Lemma 2].

Lemma 7 (Balogh, Liu and Sharifzadeh [4]). For every 0 < c < 1, r  2, and µ 
c3·2

r−2−1 the following holds. Let G be an n-vertex graph with α(G)  µn and an r-edge-
coloring ϕ : E(G) → [r]. Then there exists a partition V (G) = ⊔r

i=1Vi such that for every
k ∈ [r], α(Gk[Vk])  cn.

A useful notion associated with a regular partition is a cluster graph. For every ε > 0,
positive integer t, and an n-vertex graph G = (V,E), let V (G) = ⊔m

i=1Vi be an ε-regular
equitable partition of V (G) with m  t, and ξ > 0 is some fixed constant (to be thought
of as small, but much large than ε). Let V = {v1, . . . , vm}, where the vertex vi represents
the vertex set Vi for all i ∈ [m]. Denote by R the cluster graph (with respect to ε and ξ)
with vertex set V , and vi and vj are adjacent if the pair (Vi, Vj) is (ε, ξ)-regular.

We now define the weighted cluster graph, R = (V ,ω) (with respect to ε and ξ), on
the vertex set V as follows. For an ε-regular pair (Vi, Vj), we will define the following:

ω(vi, vj) =






0 if d(Vi, Vj)  ξ or (Vi, Vj) is an irregular pair,
1
2

if ξ < d(Vi, Vj)  1
2
+ ξ,

1 if 1
2
+ ξ < d(Vi, Vj).

Definition 8. A weighted graph G is an ordered triple (V,E,ω), where E =

V
2


, set of

all unordered pairs of vertices, and ω : E → {0, 1/2, 1}. Define G1/2 = (V,E1/2), where
E1/2 = {e ∈ E : ω(e)  1/2}, and G1 = (V,E1), where E1 = {e ∈ E : ω(e) = 1}. Denote
by e(G) = Σe∈E(G)ω(e). For Y ⊆ X ⊆ V (Y = ∅ is possible), we call (Y,X) a weighted

(|Y |, |X|)-clique or weighted complete subgraph of size ℓ if

Y
2


⊆ E1 and


X
2


⊆ E1/2

and |X| + |Y | = ℓ. Also, let the weighted clique number of G be the size of the largest
weighted complete subgraph of G.

The following Lemma is very important for our results, which is due to Erdős, Hajnal,
Sós and Szemerédi [12].

Lemma 9 (Erdős, Hajnal, Sós and Szemerédi [12]). Let H be a fixed graph with arbf (H) =
ℓ  3. For every ξ > 0, there exist δ, ε > 0 and n0 such that for every n-vertex graph G
with n  n0, if its weighted cluster graph R = (V ,ω) with respect to ε and ξ contains a
weighted clique (Y,X) of size ℓ such that α(G[UY ])  δn where UY = ⊔{Vi ⊆ V (G) : vi ∈
Y ⊆ V}, then G contains a copy of H.

Remark. The above lemma provides an approach for embedding a given graph H to the
host graph G. To this end, we usually find a weighted clique (Y,X) of size ℓ = arbf (H)
in the weighted cluster graph R of the host graph such that α(G[UY ])  δn.
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3 Proof of Theorem 3

3.1 Lower bounds

RF (n, 3, H, o(n)): Let G be a graph obtained from the Turán graph Tn,2 by putting
an extremal graph for RT (n

2
, H, o(n)) in each part. Consider the following set of 3-

edge-colorings of G. Color the edges inside each part red, and color all the remaining
crossing-edges green, or blue. Clearly, there are no monochromatic H since χ(H) = 3.

Thus RF (n, 3, H, o(n))  2⌈n/2⌉⌊n/2⌋ 
√
2
(n2)+(n−1)/2

.
RF (n, 4, H, o(n)): Let G be a graph obtained from the Turán graph Tn,2 by putting

an extremal graph for RT (n
2
, H, o(n)) in each part. Consider the following set of 4-edge-

colorings of G. Color the edges inside each part red, and color all the remaining crossing-
edges, black, green, or blue. Clearly, there are no monochromatic H since χ(H) = 3.

Thus RF (n, 4, H, o(n))  3⌈n/2⌉⌊n/2⌋ 
√
3
(n2)+(n−1)/2

.
RF (n, 5, H, o(n)): Let G be a graph obtained from the Turán graph Tn,4 by putting

an extremal graph for RT (n
4
, H, o(n)) in each part. Let V1, . . . , V4 be the classes of the

partition and let {a, b, c, d, f} be the set of colors. Let c(1, 2) = c(3, 4) = {a, b, c}, c(1, 3) =
c(2, 4) = {a, b, d}, c(1, 4) = c(2, 3) = {c, d}. Consider the set of colorings as follows: for
i, j ∈ [4], all edges inside Vi are colored by color f , and every edge between Vi and Vj must
have one of the colors belonging to the set c(i, j). Clearly, there are no monochromatic
H in any of these colorings since the graph of edges which could be colored a, b, c, d are

all bipartite, and χ(H) = 3. Therefore, RF (n, 5, H, o(n))  (2
1
43

1
2 )(

n
2)+

n
2
−2 from a simple

calculation. It should be noted that the coloring of the crossing edges of V1, . . . , V4 of this
construction was first used by Alon, Balogh, Keevash, and Sudakov [2] to prove the lower
bound of F (n, 4, 3). Pikhurko and Yilma [24] showed that the coloring of the crossing
edges of V1, . . . , V4 of this construction is the unique extremal graph of F (n, 4, 3).

3.2 Upper bounds

The proofs of the following upper bounds involves the idea of Alon, Balogh, Keevash, and
Sudakov in [2].

Let H be a graph with arbf (H) = 3. We separate the proof into three parts.

Part (I): RF (n, 3,H, o(n))  (2
1
2 )(

n
2)+o(n2)

Denote by |V (H)| = h. We shall prove that for any η > 0, there exist γ > 0 and
n0 > 0 such that for any n  n0 the following holds. If G is an n-vertex graph with
α(G)  γ5n, then the number of 3-edge-colorings of G without a monochromatic H is at

most (2
1
2 )(

n
2)+ηn2

.
For any sufficiently small ξ > 0, let δ, ε and M be the constants chosen from Lemma 9

and Lemma 6, respectively. Throughout the proof, we may assume that 0 < 1/n0 ≪ γ ≪
δ ≪ 1/M ≪ ε ≪ ξ ≪ η < 1. Let G be an n-vertex graph with n  n0 and α(G)  γ5n.
For any fixed 3-edge-coloring of G, ϕ : E(G) → [3], we apply Lemma 7 with r = 3, c = γ.
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Let {A1, A2, A3} be the partition such that for r ∈ [3],

α(Gr[Ar])  γn. (6)

We then apply Lemma 6 to the graph G with coloring ϕ to obtain a partition V (G) =
⊔m

i=1Vi by refining the {A1, A2, A3}-partition which is ε-regular with respect to Gr for
every r ∈ [3], where M > m  1/ε. We may assume that |V0| = 0 and |Vi| = n

m
for

i ∈ [m] since it does not affect the result. Let R1, R2, R3 be the weighted cluster graphs
for colors 1, 2, 3, respectively, on the vertex set V = {v1, . . . , vm}, where the vertex vi
represents the vertex set Vi for all i ∈ [m]. Denote AR

ℓ = {vi ∈ V : Vi ⊆ Aℓ} for each
ℓ ∈ [3], then

3
ℓ=1 |AR

ℓ | = m.
First we bound the number of 3-edge-colorings of G that could give rise to this par-

ticular partition and these weighted cluster graphs. By definition, there are at most

m

n
m

2
+ εm2


n
m

2  2εn2 edges that either lie within some class of the partition or join
a pair of classes that is not regular with respect to some color. Also there are at most

ξ ·m2 ·

n
m

2
edges that join a pair of classes in which their color has density smaller than

ξ. Altogether, this gives no more than 2ξn2 edges. There are at most

n2/2
2ξn2


ways to

choose this set of edges and they can be colored in at most 32ξn
2
different ways. Now, for

any pair 1  i ∕= j  m consider the remaining edges between Vi and Vj. If vivj is an
edge in exactly ℓ of the weighted cluster graphs, where ℓ ∈ [3], then every remaining edge

between Vi and Vj has only ℓ possible colors. Clearly e(Vi, Vj) 

n
m

2
, so there are at

most ℓ(
n
m)

2

ways of coloring these edges. Let eℓ denote the number of edges vivj that lie
in exactly ℓ of the weighted cluster graphs. Then, by the above discussion, the number of
potential 3-edge-colorings of G that could give this vertex partition and these weighted
cluster graphs is at most

λ :=


n2/2

2ξn2


32ξn

2

(2e23e3)(
n
m)

2

. (7)

Let Γ(x) = −x log2 x − (1 − x) log2(1 − x) be the entropy function, then we may use
the well-known estimate


y
xy


 2Γ(x)y for x ∈ (0, 1). Thus,

λ  2
Γ(4ξ)·n2/2

32ξn
2

(2e23e3)n
2/m2  3

(Γ(4ξ)+4ξ)·n2/2

(2e23e3)n
2/m2

.

Clearly, Γ(4ξ) tends to zero as ξ → 0.

Claim 10. e3 = 0.

Proof. Suppose to the contrary that v1v2 ∈ ∩i∈[3]E(Ri) ⊆ E(R1). Without loss of
generality, we may assume that v1 ∈ AR

1 , then ({v1}, {v1, v2}) is a weighted clique in R1

of size 3 by noting the weight of edge v1v2 in R1 is bigger than 1/2, which together with
α(G1[A1])  γn from (6). Since H is a graph with arbf (H) = 3, it follows that G contains
H as a subgraph of color 1 from Lemma 9, a contradiction. □

Now consider the graph F on {v1, . . . , vm} where vivj is an edge of F if it is an edge
in exactly 2 of the weighted cluster graphs. Clearly, e(F ) = e2.
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Claim 11. e2 = e(F ) 
3

ℓ=1

|AR
ℓ |2
4

.

Proof. For any vivj ∈ e(F ), vivj must lie in F [AR
ℓ ] for some ℓ ∈ [3]; otherwise, we

may assume that vivj ∈ F [AR
1 , A

R
2 ] and vi ∈ AR

1 , vj ∈ AR
2 without loss of generality, it

follows from Lemma 9 that vivj /∈ Rℓ by noting α(Gℓ[Aℓ])  γn from (6) for ℓ ∈ [2], a
contradiction since vivj ∈ E(F ).

Clearly, for each ℓ ∈ [3], F [AR
ℓ ] is triangle-free. Thus e(F ) =

3
ℓ=1 e(F [AR

ℓ ]) 
3

ℓ=1

|AR
ℓ |2
4

, as claimed. □

Claim 12. For each ℓ ∈ [3], e(Rℓ)  (m−|AR
ℓ |)2

4
.

Proof. We only show e(R1)  (m− |AR
1 |)2/4. Since G contains no H of color 1, each

edge of R1 is not incident to any vertices in AR
1 by noting Lemma 9 and (6). Thus, all

edges of color 1 must be contained in R1[∪3
ℓ=2A

R
ℓ ]. Moreover, R1[∪3

ℓ=2A
R
ℓ ] is triangle-free;

otherwise, suppose that {v1, v2, v3} forms a triangle in R1[∪3
ℓ=2A

R
ℓ ], then (∅, {v1, v2, v3})

is a weighted clique in R1 of size 3 by noting the weight of edges v1v2, v1v3, v2v3 in R1 are
bigger than 1/2, which together with α(G1[UY ]) = 0  γn by noting Y = ∅ and UY = ∅.
Thus, G contains H as a subgraph of color 1 from Lemma 9, a contradiction. Recall3

ℓ=1 |AR
ℓ | = m, so we have e(R1)  (m−|AR

1 |)2
4

as desired. □
By the definition of eℓ and

3
ℓ=1 |AR

ℓ | = m, we have that

3

ℓ=1

ℓ · eℓ =
3

ℓ=1

e(Rℓ)
Claim 12


3

ℓ=1

(m− |AR
ℓ |)2

4
=

1

4
m2 +

1

4

3

ℓ=1

|AR
ℓ |2. (8)

We now determine the maximum value of 2e23e3 subject to
3

ℓ=1 ℓ · eℓ  1
4
m2 +

1
4

3
ℓ=1 |AR

ℓ |2 from (8), and e2 = e(F ) 
3

ℓ=1

|AR
ℓ |2
4

from Claim 11, and e3 = 0 from

Claim 10, and
3

ℓ=1 |AR
ℓ | = m. Indeed, the maximum occurs at e1 = e3 = 0 and e2 =

m2

4
.

Hence, there are at most 3
(Γ(4ξ)+4ξ)(n2/2)

2n
2/4 H-free 3-edge-colorings of G under this vertex

partition and the corresponding weighted cluster graphs. Note that M is a constant and
there are at most Mn partitions of the vertex set of G into at most M parts, and the
number of ways to fix an {A1, . . . , A3}-partition of V (G) at most 3n. Also, for every such
partition there are at most 23(M

2/2) choices for weighted cluster graphs R1, R2, R3. Thus
for sufficiently large n,

RF (n, 3, H, γ11n)  3n ·Mn · 23(M2/2) · 3(Γ(4ξ)+4ξ)(n2/2)

3n
2/4  (3

1
2 )(

n
2)+ηn2

,

as desired. □
Part (II): RF (n, 4,H, o(n))  (3

1
2 )(

n
2)+o(n2)

Denote by V (H) = h. We shall prove that for any η > 0, there exist γ > 0 and
n0 > 0 such that for any n  n0 the following holds. If G is an n-vertex graph with
α(G)  γ11n, then the number of 4-edge-colorings of G without a monochromatic H is at

most (3
1
2 )(

n
2)+ηn2

.
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For any sufficiently small ξ > 0, let δ, ε and M be the constants chosen from Lemma 9
and Lemma 6, respectively. Throughout the proof, we may assume that 0 < 1/n0 ≪ γ ≪
δ ≪ 1/M ≪ ε ≪ ξ ≪ η < 1. Let G be an n-vertex graph with n  n0 and α(G)  γ11n.
For any fixed 4-edge-coloring of G, ϕ : E(G) → [4], we apply Lemma 7 with r = 4, c = γ.
Let {A1, . . . , A4} be the partition such that for r ∈ [4],

α(Gr[Ar])  γn. (9)

We then apply Lemma 6 to graph G with coloring ϕ to obtain a partition V (G) = ⊔m
i=1Vi

which is ε-regular with respect to Gr for every r ∈ [4], where M > m  1/ε. We
may assume that |V0| = 0 and |Vi| = n

m
for i ∈ [m] since it does not affect the result.

Note that we may assume the regularity partition {V1, . . . , Vm} refines the {A1, . . . , A4}-
partition. Let Ri (i ∈ [4]) be the weighted cluster graphs for colors 1, . . . , 4, respectively,
on the vertex set V = {v1, . . . , vm}, where the vertex vi represents the vertex set Vi for
all i ∈ [m]. Denote AR

ℓ = {vi ∈ V : Vi ⊆ Aℓ} for each ℓ ∈ [4], then
4

ℓ=1 |AR
ℓ | = m. For

ℓ ∈ [4], let eℓ denote the number of edges vivj that lie in exactly ℓ of the weighted cluster
graphs. By a similar argument as Part (I), we obtain the number of potential 4-edge-
colorings of G that could give this vertex partition and these weighted cluster graphs is
at most

λ :=


n2/2

2ξn2


42ξn

2

(2e23e34e4)(
n
m)

2

. (10)

Let Γ(x) = −x log2 x− (1− x) log2(1− x) be the entropy function. Similarly, we have

λ  2
Γ(4ξ)·n2/2

42ξn
2

(2e23e34e4)n
2/m2  4

(Γ(4ξ)+4ξ)·n2/2

(2e23e34e4)n
2/m2

.

By a similar argument as Claim 10, we have the following claim.

Claim 13. e4 = 0.

Now consider the graph F on {v1, . . . , vm} where vivj is an edge of F if it is an edge
in exactly 3 of the weighted cluster graphs. Clearly, e(F ) = e3.

Claim 14. e3 = e(F ) 
4

ℓ=1

|AR
ℓ |2
4

.

Proof. For any vivj ∈ e(F ), vivj must lie in F [AR
ℓ ] for some ℓ ∈ [4]; otherwise, we

may assume that vivj ∈ F [AR
1 , A

R
2 ] and vi ∈ AR

1 , vj ∈ AR
2 without loss of generality, it

follows from Lemma 9 that vivj /∈ Rℓ by noting α(Gℓ[Aℓ])  γn from (9) for ℓ ∈ [2], a
contradiction since vivj ∈ E(F ).

Clearly, for each ℓ ∈ [4], F [AR
ℓ ] is triangle-free. Thus e(F [AR

ℓ ])  |AR
ℓ |2
4

. Therefore,

e(F ) =
4

ℓ=1 e(F [AR
ℓ ]) 

4
ℓ=1

|AR
ℓ |2
4

, as desired. □
From a similar proof as Claim 12, we have the following.

Claim 15. For each ℓ ∈ [4], e(Rℓ)  (m−|AR
ℓ |)2

4
.
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By the definition of eℓ and
4

ℓ=1 |AR
ℓ | = m, we have that

4

ℓ=1

ℓ · eℓ =
4

ℓ=1

e(Rℓ)
Claim 15


4

ℓ=1

(m− |AR
ℓ |)2

4
=

1

2
m2 +

1

4

4

ℓ=1

|AR
ℓ |2. (11)

We now determine the maximum value of 2e23e34e4 subject to
4

ℓ=1 ℓ · eℓ  1
2
m2 +

1
4

4
ℓ=1 |AR

ℓ |2 from (11), and e4 = 0 from Claim 13, and e3 = e(F ) 
4

ℓ=1

|AR
ℓ |2
4

from

Claim 14, and
4

ℓ=1 |AR
ℓ | = m. Indeed, the maximum occurs at e1 = e2 = 0 and e3 =

m2

4
.

Hence, there are at most 4
(Γ(4ξ)+4ξ)(n2/2)

3n
2/4 H-free 4-edge-colorings of G under this vertex

partition and the corresponding weighted cluster graphs. Note that M is a constant and
there are at most Mn partitions of the vertex set of G into at most M parts, and the
number of ways to fix an {A1, . . . , A4}-partition of V (G) at most 4n. Also, for every such
partition there are at most 24(M

2/2) choices for weighted cluster graphs R1, . . . , R4. Thus
for sufficiently large n,

RF (n, 4, H, γ11n)  4n ·Mn · 24(M2/2) · 4(Γ(4ξ)+4ξ)(n2/2)

3n
2/4  (3

1
2 )(

n
2)+ηn2

,

as desired. □

Part (III): RF (n, 5,H, o(n))  (2
1
43

1
2 )(

n
2)+o(n2)

Denote by V (H) = h. We shall prove that for any η > 0, there exist γ > 0 and
n0 > 0 such that for any n  n0 the following holds. If G is an n-vertex graph with
α(G)  γ23n, then the number of 5-edge-colorings of G without a monochromatic H is at

most (2
1
43

1
2 )(

n
2)+ηn2

.
For any sufficiently small ξ > 0, let δ, ε and M be the constants chosen from Lemma 9

and Lemma 6, respectively. Throughout the proof, we may assume that 0 < 1/n0 ≪ γ ≪
δ ≪ 1/M ≪ ε ≪ ξ ≪ η < 1. Let G be an n-vertex graph with n  n0 and α(G)  γ23n.
For any fixed 5-edge-coloring of G, ϕ : E(G) → [5], we apply Lemma 7 with r = 5, c = γ.
Let {A1, . . . , A5} be the partition such that for r ∈ [5],

α(Gr[Ar])  γn. (12)

We then apply Lemma 6 to graph G with coloring ϕ to obtain a partition V (G) = ⊔m
i=1Vi

which is ε-regular with respect to Gr for every r ∈ [5], where M > m  1/ε. We
may assume that |V0| = 0 and |Vi| = n

m
for i ∈ [m] since it does not affect the result.

Note that we may assume the regularity partition {V1, . . . , Vm} refines the {A1, . . . , A5}-
partition. Let R1, . . . , R5 be the corresponding weighted cluster graphs on the vertex set
V = {v1, . . . , vm}, where the vertex vi represents the vertex set Vi for all i ∈ [m]. Denote
AR

ℓ = {vi ∈ V : Vi ⊆ Aℓ} for each ℓ ∈ [5], then
5

ℓ=1 |AR
ℓ | = m. For ℓ ∈ [5], let eℓ

denote the number of edges vivj that lie in exactly ℓ weighted cluster graphs. By a similar
argument as Part (I), we obtain the number of potential 5-edge-colorings of G that could
give this vertex partition and these weighted cluster graphs is at most


n2/2

2ξn2


52ξn

2

(2e23e34e45e5)(
n
m)

2

 5
(Γ(4ξ)+4ξ)(n2/2)

(2e23e34e45e5)n
2/m2

. (13)

Similar to Claim 10, we have the following claim.
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Claim 16. e5 = 0.

Let the graph F be defined on {v1, . . . , vm} where vivj is an edge of F if it lies in 3 or
4 weighted cluster graphs. Clearly, e(F ) = e3 + e4.

The following fact is clear.

Fact 17. If we choose three sets of size at least 3 from a 4-element set of colors, then
there is a common color in all three.

Claim 18. e3 + e4 = e(F )  m2

4
.

Proof. We only need to show that F is triangle-free. On contrary, we may assume that
{v1, v2, v3} forms a K3 without loss of generality. Then, there exist i, j, k ∈ [5] such that
v1 ∈ AR

i , v2 ∈ AR
j and v3 ∈ AR

k . We have three cases.

Case 1: i, j and k are all distinct.

By symmetry, we may assume that i = 1, j = 2 and k = 3. Then, v1v2, v1v3, v2v3 are in
exactly three of the weighted cluster graphs; otherwise, by a similar argument as the proof
of Claim 14, there exists a monochromatic weighted clique of size 3, and so G contains a
monochromatic H from Lemma 9, a contradiction. Furthermore, v1v2 ∈ ∩ℓ∈[5]\{1,2}E(Rℓ),
v1v3 ∈ ∩ℓ∈[5]\{1,3}E(Rℓ), and v2v3 ∈ ∩ℓ∈[5]\{2,3}E(Rℓ). Thus, (∅, {v1, v2, v3}) forms a
weighted clique in R4 of size 3, and so G contains a H of color 4 from Lemma 9, a
contradiction.

Case 2: i = j ∕= k.

By symmetry, we may assume that i = j = 1, k = 2. Then, v1v3, v2v3 are in exactly
three of the weighted cluster graphs, and v1v2 lies in at least three (3 or 4) weighted cluster
graphs. Since v1, v2 ∈ AR

1 and v3 ∈ AR
2 , v1v2 /∈ E(R1) and v1v3, v2v3 ∈ ∩ℓ∈[5]\{1,2}E(Rℓ).

Thus, we can use Fact 17 to obtain a monochromatic K3 in weighted cluster graph, and
so G contains a monochromatic H from Lemma 9, a contradiction.

Case 3: i = j = k.

By symmetry, we may assume i = j = k = 1. Then, v1v2, v1v3, v2v3 lie in at least three
(3 or 4) weighted cluster graphs, and v1v2, v1v3, v2v3 /∈ E(R1). Similar to case 2, this will
lead to a contradiction.

Therefore, F is triangle-free, and so e3 + e4 = e(F )  m2

4
, as desired. □

From a similar proof as Claim 12, we have the following.

Claim 19. For each ℓ ∈ [5], e(Rℓ)  (m−|AR
ℓ |)2

4
.

By the definition of eℓ and
5

ℓ=1 |AR
ℓ | = m, we have that

5

ℓ=1

ℓ · eℓ =
5

ℓ=1

e(Rℓ)
Claim 19


5

ℓ=1

(m− |AR
ℓ |)2

4
=

3

4
m2 +

1

4

5

ℓ=1

|AR
ℓ |2. (14)
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We now determine the maximum value of 2e23e34e45e5 subject to
5

ℓ=1 ℓ · eℓ  3
4
m2 +

1
4

5
ℓ=1 |AR

ℓ |2 from (14), and e5 = 0 from Claim 16, and e3 + e4 = e(F )  m2

4
from Claim

18, and
5

ℓ=1 |AR
ℓ | = m. Clearly, we should choose e1 = 0. Setting x = e2 + 2e4, we only

need to maximize x log 2 + e3 log 3 subject to 2x + 3e3  m2 and e3 + e4  m2

4
. Note

that (log 3)/3 > (log 2)/2, the maximum occurs at e3 =
m2

4
, e4 = 0 and e2 =

m2

8
. Hence,

there are at most 5
(Γ(4ξ)+4ξ)(n2/2)

2n
2/83n

2/4 H-free 5-edge-colorings of G under this vertex
partition and the corresponding weighted cluster graphs. Note that M is a constant and
there are at most Mn partitions of the vertex set of G into at most M parts, and the
number of ways to fix an {A1, . . . , A5}-partition of V (G) at most 5n. Also, for every
such partition there are at most 25(M

2/2) choices for weighted cluster graphs R1, . . . , R5.
Therefore, for sufficiently large n,

RF (n, 5, H, γ23n)  5n ·Mn · 25(M2/2) · 5(Γ(4ξ)+4ξ)(n2/2)

2n
2/83n

2/4  (2
1
43

1
2 )(

n
2)+ηn2

,

as desired. □

4 Proof of Proposition 5

Let us begin with a geometric construction by Erdős and Rogers [13].

Erdős graph (or the Erdős-Rogers graph): There are a constant c > 0 and n0 such that
for every n > n0 there exists an n-vertex graph Gn satisfying K3 ⊈ Gn, and α(Gn)  n1−c.

Remark. There are many constructions on K3-free n-vertex graphs with independence
number o(n). In [1], Alon constructed an n-vertex graph Gn that is K3-free and α(Gn) =
O(n2/3). For more constructions, see [3, 19] and the related references therein. Indeed, we
can take Gn such that it is K3-free and α(Gn) = O(

√
n log n) from the celebrated result

of Kim [15]. However, Erdős graph suffices for us.

Recall that F (G, r, k) is the number of the distinct edge-colorings of G with r colors
which contains no monochromatic copy of Kk, and

F (n, r, k) = max{F (G, r, k)| G is a graph on n vertices}.

In 2004, Alon et al. [2] obtained a bound of F (n, r, 3) for all r  6.

Theorem 20 (Alon, Balogh, Keevash, and Sudakov [2]). For every fixed r  6, the
following holds.

r
2
− 2


r log r

(1− 1
r
)((n2)+o(n2))

 F (n, r, 3) 
r
2

(n2)+o(n2)

.

For every fixed r  6, we can obtain a lower bound of RF (n, r, 3, o(n)) from Theorem
20. Furthermore, applying a similar idea as the proof of Theorem 3, we can also obtain
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a non-trivial upper bound of RF (n, r, 3, o(n)). We only sketch the proof of Proposition 5
as follows.

Proof sketch of Proposition 5. We apply the construction of [2]. Let H be a graph satisfies
the following properties: H is a Turán graph Tn,r−1 with (r − 1)-parts V1, . . . , Vr−1; for
each p ∈ [r − 1], let Hp be a copy of the Turán graph Tr−1,2 on the set of r − 1 vertices
R = {1, . . . , r − 1}, placed randomly on R; for each fixed pair i, j of distinct members
of R, let Sij = {p : ij ∈ E(Hp)} denote the set of all graphs Hp containing the edge ij;
all colorings of H in which every edge between Vi and Vj is colored by a color from Sij.
From the proof of Theorem 20, such a random coloring on H attains a lower bound of
F (n, r − 1, 3). Let G be a graph obtained from H by putting a copy of Erdős-Rogers
graph in each partite set, and all edges inside each partite set are colored by a new color.
Since H contains no monochromatic triangle (in any of the r−1 colors) and Erdős-Rogers
graph is triangle-free, we have that G contains no monochromatic triangle in any of the
r colors. Therefore,

RF (n, r, 3, o(n)) 

r − 1

2
− 2


(r − 1) log(r − 1)

(1− 1
r−1

)((n2)+o(n2))

.

Now we focus on the upper bound. Let G be an extremal graph, ϕ : E(G) →
[r] be a r-edge-coloring with no monochromatic triangle, and let {A1, . . . , Ar} be the
partition obtained from Lemma 7 such that α(Gk[Ak]) = o(n) for all k ∈ [r]. Using a
similar argument as in Section 3.2, we apply Lemma 6 to G and let R1, . . . , Rr be the
corresponding weighted cluster graphs on the vertex set V = {v1, . . . , vm}, where the
vertex vi represents the vertex set Vi for all i ∈ [m]. Denote AR

ℓ = {vi ∈ V : Vi ⊆ Aℓ} for
each ℓ ∈ [r], then

r
ℓ=1 |AR

ℓ | = m. For ℓ ∈ [r], let eℓ denote the number of pairs (vi, vj),
i < j that are edges in exactly ℓ of the weighted cluster graphs. Then, the number of the
potential r-edge-colorings of G that could give this vertex partition and these weighted
cluster graphs is at most


n2/2

2ξn2


r2ξn

2

 r

ℓ=2

ℓeℓ
( n

m)
2

 r
(Γ(4ξ)+4ξ)(n2/2)

 r

ℓ=2

ℓeℓ
n2/m2

. (15)

From a similar proof as Claim 16, Claim 18, and Claim 19, we have er = 0, er−2 + er−1 
1
4
m2, and e(Rℓ)  (m−|AR

ℓ |)2
4

for each ℓ ∈ [r].

We now determine the maximum value of
r

ℓ=2 ℓ
eℓ subject to

r
ℓ=1 ℓ · eℓ 

(r−2)m2

4
+

1
4

r
ℓ=1 |AR

ℓ |2, and er = 0, and er−2 + er−1  m2

4
, and

r
ℓ=1 |AR

ℓ | = m. Using a similar

argument as in Part (II) in Section 3.2, the maximum occurs at e3 =
(r−1)m2

12
and eℓ = 0 for

each ℓ ∈ [r] \ {3} by noting (log 3)/3 > (log 2)/2 = (log 4)/4 > · · · > (log(r− 1))/(r− 1).

Hence, there are at most r
(Γ(4ξ)+4ξ)(n2/2)

3
(r−1)n2

12 triangle-free r-edge-colorings of G under
this vertex partition and the corresponding weighted cluster graphs. Note that M is a
constant and there are at most Mn partitions of the vertex set of G into at most M parts,
and the number of ways to fix an {A1, . . . , Ar}-partition of V (G) is at most rn. Also,
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for every such partition there are at most 2r(M
2/2) choices for weighted cluster graphs

R1, . . . , Rr. Thus for sufficiently large n,

RF (n, r, 3, o(n))  rn ·Mn · 2r(M2/2) · r(Γ(4ξ)+4ξ)(n2/2)

3
(r−1)n2

12  (3
r−1
6 )(

n
2)+o(n2),

which together with RF (n, r, k, o(n))  F (n, r, k) from (4) and F (n, r, 3) 

r
2

(n2)+o(n2)

from Theorem 20. The proof of Proposition 5 is complete. □

5 Concluding remarks and problems

Pikhurko, Staden and Yilma [23] showed that for every integer r  2 and k  3, at least
one extremal graph of F (n, r, k) (i.e., n vertices graphs with F (n, r, k) monochromatic
Kk-free r-colorings) is complete multipartite. They also made the following conjecture.

Conjecture 21 (Pikhurko, Staden and Yilma [23]). For every integer r  2 and k  3,
every extremal graph of F (n, r, k) is complete multipartite.

It is not easy to construct the extremal graph of F (n, r, k) even for k = 3. However,
similar to the proof of Proposition 5, we can use an extremal graph of F (n, r, 3) which is
a complete multipartite graph to construct a graph with independence number o(n) and
F (n, r, 3) (r+1)-edge-colorings without a monochromatic copy of Kk, in which each part
of the extremal graph is embedded by an Erdős-Rogers graph with the (r + 1)th color.
Together with (4) and Proposition 5, we have

F (n, r, 3)  RF (n, r + 1, 3, o(n))  min{F (n, r + 1, 3), (3
r
6 )(

n
2)+o(n2)}.

Clearly, when r  8, then F (n, r + 1, 3) 

r+1
2

(n2)+o(n2)
< (3

r
6 )(

n
2)+o(n2).

Note that F (n, 5, 3) = (6
1
2 )(

n
2)+o(n2) and F (n, 6, 3) = (2

3
43

1
2 )(

n
2)+o(n2) from [6], and

F (n, 7, 3) = 2
7
4(

n
2)+o(n2) from [22]. Together with Proposition 5 we have (6

1
2 )(

n
2)+o(n2) 

RF (n, 6, 3, o(n))  (3
5
6 )(

n
2)+o(n2), and (2

3
43

1
2 )(

n
2)+o(n2)  RF (n, 7, 3, o(n))  3(

n
2)+o(n2) since

(3
5
6 )(

n
2)+o(n2) < F (n, 6, 3) and 3(

n
2)+o(n2) < F (n, 7, 3). Note that 6

1
2 ≈ 2.449 and 3

5
6 ≈

2.498, and 2
3
43

1
2 ≈ 2.913.

Let us conclude with the following problem.

Problem 22. Determine the value of RF (n, r, 3, o(n)) for r  6.
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[13] P. Erdős and C. A. Rogers, The construction of certain graphs, Canadian J. Math.,
14 (1962), 702–707.
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Holland, Amsterdam, (1970), 395–404.

[15] J. H. Kim, The Ramsey number R(3, t) has order of magnitude t2/ log t, Random
Structures Algorithms 7 (1995), 173–207.
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