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Abstract

In their classical paper, Erdős, Goodman and Pósa studied the representation
of a graph with vertex set [n] by a family of subsets S1, . . . , Sn with the property
that {i, j} is an edge if and only if Si ∩ Sj 6= ∅. In this note, we consider a similar
representation of bounded degree r-uniform hypergraphs and establish some bounds
for a corresponding problem.

Mathematics Subject Classifications: 05C62, 05C65, 05D40

1 Introduction

A set S represents an r-uniform hypergraph G if there is a family (Sv)v∈V (G) of subsets of
S such that for any {v1, . . . , vr} ⊆ V (G),

{v1, . . . , vr} ∈ E(G) ⇐⇒

∣∣∣∣∣
r⋂

i=1

Svi

∣∣∣∣∣ > 1.

One can observe that any r-uniform hypergraph can be represented by a finite set and
similar to [6], we define the representation number of an r-uniform hypergraph G denoted
by θ(G) as the cardinality of the smallest set S that represents G.

The study of representing graphs (the case where r = 2) can be traced back to the work
of Szpilrajn-Marczewski in [9]. In [6], Erdős, Goodman, and Pósa introduced the parameter
θ(G) for 2-graphs, and proved that θ(G) 6 bn2/4c for any graph G on n vertices.

For graphs G on n vertices whose complement G has bounded maximum degree, i.e.,
∆(G) 6 ∆, Alon [1] proved that θ(G) 6 c1∆

2 log n. On the other hand, in [5] it was
shown that for every ∆ > 1 there are graphs G on n vertices with ∆(G) 6 ∆ such that
θ(G) > c2

∆2

log ∆
log n, showing that the upper bound is sharp up to a factor of log ∆. In [8],

these results were extended to r-uniform hypergraphs.
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The related concept of k-representation where k is a positive integer has been studied by
a number of authors (for example see [2–4,7]). For any integer k > 0, a set S k-represents
an r-uniform graph G if there is a family (Sv)v∈V (G) of subsets of S such that for any
{v1, . . . , vr} ⊆ V (G),

{v1, . . . , vr} ∈ E(G) ⇐⇒

∣∣∣∣∣
r⋂

i=1

Svi

∣∣∣∣∣ > k.

The k-representation number of an r-uniform hypergraph G, denoted by θk(G), is the
cardinality of the smallest set S that k-represents G. Note that for k = 1, θ1(G) = θ(G)
holds.

It may be natural to ask the following question: given a graph G, what is the smallest
cardinality of a set S for which there exists a positive integer k such that S k-represents
G? In [5] the authors studied this question by defining the parameter

θ̃(G) := min
k∈N

θk(G),

for 2-graphs. In particular, they proved that θ̃(G) 6 c3∆
2 log n for any graph G on n

vertices with ∆(G) 6 ∆ and that, on the other hand, there exist graphs on n vertices with
∆(G) 6 ∆ and θ̃(G) > c4∆ log( n

2∆
). Here we consider the parameter θ̃(G) where G is a

bounded degree r-uniform hypergraph.
For a vertex v in V (G) in an r-uniform graph G, let the degree of v, denoted by d(v),

be the number of edges that contain v, and further let ∆(G) be the maximum degree of
G. An r-uniform hypergraph G is linear if the intersection of any two edges has size at
most 1. We will prove the following theorems.

Theorem 1 (Upper Bound). For every r > 3, there exists a constant Cr > 0 and integers
∆0 = ∆0(r), n0 = n0(r) such that if G is an r-uniform hypergraph on n > n0 vertices with
∆(G) = ∆ > ∆0, then

θ̃(G) 6 Cr∆
3 log n. (1)

Further, if G is linear, then

θ̃(G) 6 Cr∆
2+ 1

r−1 log n. (2)

Theorem 2 (Lower Bound). For every r > 3, there exists an integer n0 = n0(r) such
that for every n > n0 and ∆, there exists an r-uniform hypergraph G on n vertices with
∆(G) 6 ∆ such that,

θ̃(G) >
∆

4
log n. (3)
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2 Proof of Upper Bound

To prove Theorem 1, we will first decompose the edges of the r-uniform hypergraph G into
matchings M1, . . . ,ML for some integer L using Lemma 3. We will represent G by a union
of L disjoint subsets S1, . . . , SL and a family (Re)e∈E(G) such that Re is a subset of Si

whenever e is in Mi. Lemma 4 asserts the existence of such families. We will then assign
to each v in V (G), the set Sv which will be the disjoint union of all Re such that v ∈ e
and show that this forms a k-representation for some k ∈ N. This is done in Lemma 5.
Given an r-uniform graph G, let χ′(G) denote the chromatic index of G, defined as the
smallest integer L such that E(G) can be decomposed into L matchings.

Lemma 3 (Matching Decomposition). If G is an r-uniform hypergraph on n vertices and
∆(G) 6 ∆, then χ′(G) 6 L = ∆ · r.

Proof. Let L be the 2-graph such that V (L) = E(G) and,

E(L) = {{e, f} ⊆ E(G) : e 6= f and e ∩ f 6= ∅}.

Then for any e in E(G), there are at most (∆−1) ·r edges f such that f 6= e and f ∩e 6= ∅.
Thus the maximum degree of L is (∆ − 1)r and so χ(L) 6 (∆ − 1)r + 1 6 ∆r. For a
proper coloring of L, with L = ∆r colors, each color class is an independent set in L and
thus a matching in G. Thus E(G) can be decomposed into matchings M1, . . . ,ML, each
corresponding to a color class.

In the following lemma, we will use x = (a±b) to denote the inequality, a−b 6 x 6 a+b.

Lemma 4. Let m, ε, p such that 2 6 m 6 r, 0 < ε < 1, 0 6 p 6 1. There exists an
integer n0 = n0(r) such that if n and t are integers satisfying n > n0, and

t >
3(m+ 1) log n

ε2pm
,

then there exists a family of subsets (Ri)i∈[n] of a set S of size t, such that∣∣∣∣∣⋂
j∈I

Rj

∣∣∣∣∣ = (1± ε)plt for every I ∈ [n](l), (4)

whenever 1 6 l 6 m.

Proof. Let n0 = n0(r) be an integer. Wherever necessary, we will assume n0 is large
enough. Let n, p, ε, t be as given above. Let S be a set of size t and Ri for i ∈ [n] be
random subsets of S with elements chosen independently, each with probability p. Fix
1 6 l 6 m and let J ⊆ [n](l), then

E

[∣∣∣∣∣⋂
j∈J

Rj

∣∣∣∣∣
]

= plt.
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Since the above random variable has a binomial distribution, we have:

P

(∣∣∣∣∣⋂
j∈J

Rj

∣∣∣∣∣ 6= (1± ε)plt

)
< 2 exp

(
−ε

2plt

3

)
6 2 exp

(
−m+ 1

pm−l
log n

)
< 2n−(m+1).

Thus, the probability that∣∣∣∣∣⋂
j∈I

Rj

∣∣∣∣∣ = (1± ε)plt for every J ⊆ [n](l),

whenever 1 6 l 6 m, is at least

1−
m∑
l=1

(
n

l

)
2n−(m+1) > 0,

for n > n0 provided n0 is large enough.

Lemma 5. There exists a constant A > 0 such that for every integer r > 3, there are
positive integers n0 = n0(r), and L0 = L0(r), such that for every n > n0 and L > L0, if G
is an r-uniform graph on n vertices with χ′(G) 6 L,

θ̃(G) 6 AL3 log n.

Moreover, if G is linear, then

θ̃(G) 6 A(r + 1)L2+ 1
r−1 log n.

Proof. Fix r > 3. Let n0(r), L0(r) be integers that are assumed to be large enough
wherever necessary. Let G be any r-uniform hypergraph on n vertices with χ′(G) 6 L.
Let E(G) be decomposed into matchings M1, . . . ,ML with L > L0, that is

E(G) = M1 t · · · tML.

In what follows, we will give two separate upper bounds for general r-uniform hypergraphs
and linear r-uniform hypergraphs. In each of these cases, we will fix parameters m, p and
consider pairwise disjoint subsets {Si : i ∈ [L]}, each of size t = 12(m+ 1)p−m log n, along
with families of subsets (Re)e∈Mi

satisfying Eq. (4). The parameter m will allow us to
control the size of m-wise intersections for the families (Re)e∈Mi

. When G is any r-uniform
hypergraph (not necessarily linear), we will choose m = 2, p = 1

4L
, while when G is a linear

r-uniform hypergraph, we choose m = r, p = ( 1
4L

)
1

r−1 . However, since the analysis for
the two cases follow the same steps, we will prove Proposition 6 for a general parameter
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2 6 m 6 r. We will then use it to prove the bounds, considering the cases when G is a
general r-uniform hypergraph (not necessarily linear) and when G is linear.

Construction of Representation: Fix an integer m such that 2 6 m 6 r. Let G be
an r-uniform hypergraph with the matching decomposition E(G) = M1 t · · · tML. Let
{Si}Li=1 be a collection of pairwise disjoint sets of size t and for each i ∈ [L], let (Re)e∈Mi

be a family of subsets of Si satisfying Eq. (4). For any v ∈ V (G) and i ∈ [L], let

R(v, i) =

{
Re if there exists an e ∈Mi such that v ∈ e,
∅ otherwise.

(5)

We construct the representation of G as follows. For every v ∈ V (G), define

Sv :=
L⋃
i=1

R(v, i). (6)

Observe that, for any {v1, . . . , vr} ⊆ V (G),∣∣∣∣∣
r⋂

j=1

Svj

∣∣∣∣∣ =
L∑
i=1

∣∣∣∣∣
r⋂

j=1

R(vj, i)

∣∣∣∣∣ . (7)

Mi

v1

v2

v3

vr

e

f

g
v4 · · ·

Si, (Re)e∈Mi

Re Rf

Rg

Figure 1: Pairwise disjoint sets Si with the families (Re)e∈Mi
. The shaded area

corresponds to Re ∩Rf ∩Rg = R(v1, i) ∩R(v2, i) ∩ · · · ∩R(vr, i).
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If there exists a k ∈ N such that

L∑
i=1

∣∣∣∣∣
r⋂

j=1

R(vj, i)

∣∣∣∣∣ > k ⇐⇒ {v1, . . . , vr} ∈ E(G), (8)

then S1 t · · · t SL k-represents G and θ̃(G) 6 θk(G) 6 |S1|+ · · · |SL| = Lt. We will now
find such a k by giving a lower and upper bound on |R(v1, i) ∩ · · · ∩ R(vr, i)| for each
i ∈ [L] when {v1, . . . , vr} is an edge and non-edge respectively.

Bounding the size of intersections |R(v1, i) ∩ · · · ∩ R(vr, i)|: Note that given a
fixed i ∈ [L], the sets R(vj, i) are not necessarily distinct for distinct j. For example, Fig. 1
depicts the situation when R(v1, i) = R(v3, i) = Re. Further, for a fixed i ∈ [L], since the
families (Re)e∈Mi

satisfy Eq. (4), |R(v1, i) ∩ · · · ∩ R(vr, i)| “shrinks” with the number of
distinct R(vj, i) for j ∈ {1, . . . , r}.
In particular, if e = {v1, . . . , vr} is an edge, then it is in some matching Mi, and the sets
R(vj, i) = Re and the size of the intersection, |R(v1, i) ∩ · · · ∩R(vr, i)|, is roughly pt. On
the other hand, if {v1, . . . , vr} is not an edge, then for every matching Mi, there are at
least two distinct R(vj, i) for j ∈ {1, . . . , r} and |R(v1, i) ∩ · · · ∩ R(vr, i)| is at most p2t.
Proposition 6 below states a slightly stronger version of this observation. Before we state
it, it will be convenient to introduce some notation.
Let {v1, . . . , vr} be an r-tuple. Given a matching Mi, let

ai = ai({v1, . . . , vr}) :=
∣∣∣{e ∈Mi : e ∩ {v1, . . . , vr} 6= ∅}

∣∣∣, (9)

i.e, ai is the number of edges in the matching Mi that intersect {v1, . . . , vr}. Further, let,

I1 = I1({v1, . . . , vr}) = {i ∈ [L] : {v1, . . . , vr} * ∪e∈Mi
e} and,

I2 = I2({v1, . . . , vr}) = {i ∈ [L] : {v1, . . . , vr} ⊆ ∪e∈Mi
e},

i.e., I1 and I2 are the sets of those i ∈ [L] such that the union of the edges in Mi do not
and do cover the sets {v1, . . . , vr}, respectively.

Proposition 6. For every i ∈ [L], let (Re)e∈Mi
be a family that satisfies Eq. (4) with a

fixed integer m such that 2 6 m 6 r and for every v ∈ V (G), let R(v, i) be as given in
Eq. (5). Then, for every {v1, . . . , vr} ∈ E(G), there exists i ∈ [L] such that∣∣∣∣∣

r⋂
j=1

R(vj, i)

∣∣∣∣∣ > (1− ε)pt, (10)

and for every {v1, . . . , vr} /∈ E(G),

• If i ∈ I1, then ∣∣∣∣∣
r⋂

j=1

R(vj, i)

∣∣∣∣∣ = 0. (11)
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Mi

vji

v1 · · · vji−1

vji+1 · · · vr

(a) Case I: i ∈ I1

Mi

v1

v2

v3

vrv4 · · ·

(b) Case II: i ∈ I2

Figure 2

• If i ∈ I2, and ai 6 m, then ∣∣∣∣∣
r⋂

j=1

R(vj, i)

∣∣∣∣∣ 6 (1 + ε)pait. (12)

Further, ai > 2.

Proof. If {v1, . . . , vr} ∈ E(G), then there is an i ∈ [L] such that {v1, . . . , vr} ∈ Mi and
hence for all 1 6 j 6 r, R(vj, i) are identical. Consequently, ai = 1 and∣∣∣∣∣

r⋂
j=1

R(vj, i)

∣∣∣∣∣ > (1− ε)pt.

Next, we fix {v1, . . . , vr} /∈ E(G), and consider the following cases. Case I (Fig. 2a)
considers matchings with isolated vertices, and implies Eq. (11), while Case II (Fig. 2b)
considers matchings with no isolated vertices, and implies Eq. (12).

Case I Let i ∈ I1, i.e., {v1, . . . , vr} * ∪e∈Mi
e. Then there is a vji that is not in any edge

in Mi (Fig. 2a) and thus R(vji , i) = ∅. Consequently,∣∣∣∣∣
r⋂

j=1

R(vj, i)

∣∣∣∣∣ = 0.

Case II Let i ∈ I2, i.e., {v1, . . . , vr} ⊆ ∪e∈Mi
e. Then every vj ∈ {v1, . . . , vr} is contained

in some edge in Mi (Fig. 2b). Since {v1, . . . , vr} is not an edge, there are at least two
such edges in Mi, and thus ai > 2. Further, since (Re)e∈Mi

satisfy Eq. (4), whenever
l = ai 6 m, we have, ∣∣∣∣∣

r⋂
j=1

R(vj, i)

∣∣∣∣∣ 6 (1 + ε)pait.
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Having described our construction of the representation and computed the bounds on
|R(v1, i)∩· · ·∩R(vr, i)| in Proposition 6, we use Lemma 4 to show that such a construction
exists and k-represents G for some k ∈ N.

General Case: First consider the case where G is any r-uniform hypergraph with
E(G) = M1t· · ·tML. Let t = d576L2 log ne, m = 2, p = 1

4L
, ε = 1/2 and k = b(1− ε)ptc.

By Lemma 4, there exists pairwise disjoint sets {Si : i ∈ [L]}, each of size t, and families
of subsets (Re)e∈Mi

of Si, satisfying Eq. (4) with m = 2. For every v ∈ V (G), let Sv be as
in Eq. (6), in our construction of the representation.
For every {v1, . . . , vr} ∈ E(G), Proposition 6, Eq. (10) implies that,∣∣∣∣∣

r⋂
j=1

Svj

∣∣∣∣∣ =
L∑
i=1

∣∣∣∣∣
r⋂

j=1

R(vj, i)

∣∣∣∣∣ > (1− ε)pt > k.

On the other hand, since,

L(1 + ε)p2t =
3

2
· 1

16L
t < k.

For every {v1, . . . , vr} /∈ E(G), by Eq. (12), we have the upper bound,∣∣∣∣∣
r⋂

j=1

Svj

∣∣∣∣∣ =
L∑
i=1

∣∣∣∣∣
r⋂

j=1

R(vj, i)

∣∣∣∣∣ 6
L∑
i=1

(1 + ε)pait 6 L(1 + ε)p2t < k.

Consequently, G can be k-represented by the set S1 ∪ S2 ∪ · · · ∪ SL. This implies that, for
A = 577, we have

θ̃(G) 6 θk(G) 6 Lt 6 AL3 log n.

Linear Case: Let G be a linear r-uniform hypergraph with E(G) = M1 t · · · tML.

Let t = d384(r + 1)L
r

r−1 log ne, m = r, p =
(

1
4L

) 1
r−1 , ε = 1

2
and k = b(1 − ε)ptc. By

Lemma 4, there exists pairwise disjoint sets {Si : i ∈ [L]}, each of size t, and families of
subsets (Re)e∈Mi

of Si, satisfying Eq. (4) with m = r. For every v ∈ V (G), let Sv be as in
Eq. (6), in our construction of the representation.
For every {v1, · · · , vr} ∈ E(G), in view of Eq. (10),∣∣∣∣∣

r⋂
j=1

Svj

∣∣∣∣∣ =
L∑
i=1

∣∣∣∣∣
r⋂

j=1

R(vj, i)

∣∣∣∣∣ > (1− ε)pt > k.

Now we consider the case where {v1, . . . , vr} /∈ E(G). Note that, if i ∈ I2 = I2({v1, . . . , vr}),
i.e. the edges of Mi cover {v1, . . . , vr}, then ai = r if and only if each edge e of Mi satisfies
|e ∩ {v1, . . . , vr}| 6 1. By linearity of G, there are at most

(
r
2

)
edges that share a pair of

vertices with {v1, . . . , vr} and, consequently, at most
(
r
2

)
matchings Mi with some edge of

Mi intersecting {v1, . . . , vr} in a set of size at least two. Thus, ai = r for all but at most
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(
r
2

)
matchings in I2 and, by Proposition 6, ai > 2 for the remaining matchings.

Consequently, for every {v1, . . . , vr} /∈ E(G),∣∣∣∣∣
r⋂

j=1

Svj

∣∣∣∣∣ =
L∑
i=1

∣∣∣∣∣
r⋂

j=1

R(vj, i)

∣∣∣∣∣ < (1 + ε)
((
L−

(
r
2

))
prt+

(
r
2

)
p2t
)
. (13)

It remains to show
∣∣∩r

j=1Svj

∣∣ < k. Indeed, for large enough k and large enough L, the

ratio of
∣∣∩rj=1Svj

∣∣ for a non-edge to an edge is,(
1 + ε

1− ε

)
(L−

(
r
2

)
)prt+

(
r
2

)
p2t

pt
< 3

(
L · 1

4L
+

(
r
2

)
(4L)

1
r−1

)
<

5

6
.

Thus, for every {v1, . . . , vr} /∈ E(G), in view of Eq. (13),∣∣∣∣∣
r⋂

j=1

Svj

∣∣∣∣∣ =
L∑
i=1

∣∣∣∣∣
r⋂

j=1

R(vj, i)

∣∣∣∣∣ < (1 + ε)
((
L−

(
r
2

))
prt+

(
r
2

)
p2t
)
<

5

6
(1− ε)pt < k.

Thus, G can be k-represented by the set S1 ∪ S2 ∪ · · · ∪ SL and for A = 577, we have

θ̃(G) 6 θk(G) 6 Lt 6 A(r + 1)L1+ r
r−1 log n = A(r + 1)L2+ 1

r−1 log n.

Proof of Theorem 1. Given r > 3 and let Cr = r3(r + 1)A, n0, L0 be as in Lemma 5.
Let ∆0 = dL0/re. For a graph G on n > n0 vertices with maximum degree ∆ > ∆0, by
Lemma 3 χ′(G) 6 L = ∆r. Then by Lemma 5,

θ̃(G) 6 Ar3∆3 log n < Cr∆
3 log n,

and if G is linear,

θ̃(G) 6 A(r + 1)r2+ 1
r−1 ∆2+ 1

r−1 log n 6 Cr∆
2+ 1

r−1 log n.

3 Proof of Lower Bound

The proof of the lower bound extends the approach used in [5] for the case where r = 2.
Fix r > 3. Whenever necessary, we will assume that n0 is a large enough integer. Assume
that n > n0. Let H(r)(n,∆) be the collection of r-uniform graphs on the vertex set [n] with
bounded degree ∆, and let M(r)(n) be the collection of all almost perfect matchings of
r-tuples on [n]. Each union of ∆ matchings fromM(r)(n) is a graph on [n] with maximum
degree ∆ 6 n, and consequently,

|H(r)(n,∆)| >
(
|M(r)(n)|

∆

)
>

(
|M(r)(n)|

∆

)∆

>

(
|M(r)(n)|

n

)∆

. (14)

Claim 7. For r > 3 and n > n0,

|M(r)(n)| >
( n
er

)n/2

the electronic journal of combinatorics 32(1) (2025), #P1.27 9



Proof. Let n = qr + s where 0 6 s < r and q = bn/rc. We have that |M(r)(n)| is at least

1

q!

(
n

r

)(
n− r
r

)
· · ·
(
r + s

r

)
=

1

q!

n!

(r!)qs!
>

n!

(n/r)!(rr)n/rr!
.

We use that n! >
√

2πn(n/e)n and consequently, we have, for n > n0(r)

n!

(n/r)!(rr)n/rr!
>
( n
er

)n √2πn

rr
1

(n/r)!
>
( n
er

)n
.

1

(n/r)!
>
( n
er

)n/2

.

Proof of Theorem 2. Given any integer t, there are at most (2t)n distinct r-uniform hy-
pergraphs on the vertex set [n] that can be k-represented on the set [t]. Consequently, if t
is such that |H(r)(n,∆)| > 2tn, then there must exist some G ∈ H(r)(n,∆) that cannot be
k-represented by a set of size t for any k, and hence θ̃(G) > t.
In view of Eq. (14) and Claim 7,

log |H(r)(n,∆)| > ∆ log

(
|M(r)(n)|

n

)
> ∆ log

((
n
er

)n/2

n

)
= ∆ · n

2

(
log
( n

n2/n

)
− log(er)

)
> ∆ · n

4
log n,

for large enough n > n0(r). Consequently, for t = 1
4
∆ log n, we have that,

|H(r)(n,∆)| > 2tn.

4 Concluding Remarks

In this note we established upper and lower bounds on θ̃(G) that differ by a factor of
O(∆2), i.e. Ω(∆ log n) 6 θ̃(G) 6 O(∆3 log n). Closing the gap between these bounds is a
problem of interest. Further, since the lower bound in Theorem 2 is nonconstructive it
would be interesting to find an explicit construction that matches or improves our lower
bound.
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