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Abstract

For a given graph H, a graph G is H-saturated if G does not contain H as a
subgraph, but for e ∈ E(G), G+e contains H as a subgraph; the spectral saturation
number of H, written satρ(n,H), is the minimum value of ρ(G) in an n-vertex H-
saturated graph G.

For a vertex v ∈ V (G), let l2(v) be the number of 2-walks starting from v. In this
paper, when G is an n-vertex tP3- or K5-saturated connected graph, for each vertex
v ∈ V (G), we prove the best lower bounds for l2(v) in terms of n and d(v), implying
that satρ(n, tP3) = ρ(F ) and satρ(n,K5) = ρ(Sn,4), where F is the 6-vertex graph
obtained from K3 by attaching a pendant vertex to each vertex in K3 and Sn,4 is
the join of K3 and (n− 3)K1.

Mathematics Subject Classifications: 05C15, 05C50, 15A18

1 Introduction

For undefined terms of graph theory, see West [31]. For basic properties of spectral graph
theory, see Brouwer and Haemers [3] or Godsil and Royle [16].

Given a graph H, determining the maximum number of edges in an n-vertex H-free
graph, written ex(n,H), has a long history. (See K3 [22], Kr [30], Ks,t [21, 20], C2k+1 [26],
C2k [2, 25], Pk [8], Tk [7], C4 [10, 4], K2,t [13], K3,3 [4, 14], Q8 [11], consecutive cycles [8]
and three surveys [15, 17, 27].) Thus if an n-vertex graph G has more than ex(n,H)
edges, then G must contain H as a subgraph. If we create a copy of H by adding any
additional edge to an H-free graph, then it would be an interesting property. Even if
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an n-vertex H-free graph G has less than ex(n,H) edges and if we add any additional
edge to G, then the resulting graph may contain a copy of H. In this case, G is called
H-saturated. More precisely, if G does not contain H as a subgraph but for any edge
e ∈ E(G), G + e contains H as a subgraph, then we call G H-saturated. Then we may
be interested in the minimum number of edges in an n-vertex H-saturated graph, which
is called the saturation number of H, written sat(n,H).

Erdős, Hajnal, and Moon [9] proved sat(n,Kr+1) = |E(Sn,r)|, which was the first
result on saturation number. The graph Sn,r is the join of Kr−1 and (n− r + 1)K1.

For a graph G with given number of vertices, the average degree 2|E(G)|
|V (G)| and the

number of edges give the same information, and we note that the spectral radius of G,
written ρ(G), is at least the average degree, where A(G) is the adjacency matrix of G and
ρ(G) = max{λ:A(G)x=λx} |λ|. Thus it may be natural to ask what will happen if we replace
the average degree with the spectral radius.

Like sat(n,H), we can define the spectral saturation number of a graph H, written
satρ(n,H), to be the minimum value of ρ(G) in an n-vertex H-saturated graph G.

Nikiforov [24] proved that if G is an n-vertex Kr+1-saturated graph, then ρ(G) 6
ρ(Tn,r), where Tn,r is the n-vertex r-partite Turán graph; equality holds only when G is
Tn,r. Kim, Kim, Kostochka, and O [18] proved that if G is an n-vertex Kr+1-saturated
graph, then

ρ(G) >

√
(n− 1)2(r − 1) + (r − 1)2(n− r + 1)

n
(1)

by using the fact ρ2(G) > 1
n

∑
v∈V (G) d

2(v) and by determining the best lower bound for∑
v∈V (G) d

2(v). Note that for r = 2, equality in (1) holds only when G is Sn,2 or a Moore
graph with diameter 2. However, for r > 3, equality does not hold for any graphs, which

means that satρ(Kr+1) >
√

(n−1)2(r−1)+(r−1)2(n−r+1)
n

. For r = 3, Kim, Kostochka, O, Shi,

and Wang [19] proved the sharp lower bound for ρ(G) in an n-vertex Kr+1-saturated
graph; equality holds only when G is Sn,3. For r > 4, determining satρ(n,Kr+1) is still
open. In this paper, we determine satρ(n,Kr+1) when r = 4.

Note that
∑

v∈V (G) d
2(v) =

∑
v∈V (G)

∑
w∈V (G)(A

2(G))vw =
∑

v∈V (G)

∑
w∈N(v) d(w). For

a vertex v ∈ V (G), let l2(v) be the number of 2-walks starting at v in a graph G, where
a t-walk is a walk of length t.

Let P = {V1, . . . , Vs} be a partition of V (G) into s non-empty subsets. The quotient
matrix Q corresponding to P is the s× s matrix whose (i, j)-entry is the average number

of incident edges in Vj of the vertices in Vi. More precisely, Qi,j =
|[Vi,Vj ]|
|Vi| if i 6= j, and

Qi,i = 2|E(G[Vi])|
|Vi| . A partition P is equitable if for each 1 6 i, j 6 s, any vertex v ∈ Vi

has exactly Qi,j neighbors in Vj. In this case, the eigenvalues of the quotient matrix are
eigenvalues of G and the spectral radius of the quotient matrix equals the spectral radius
of G (see [3, 16] for more details).

Observation 1. Let Q be a 2× 2 equitable quotient matrix of a graph H, and let pQ(x)
be the characteristic polynomial of Q. If G is an n-vertex graph with the spectral radius
ρ(G) and pQ(ρ(G)) > 0, then we have ρ(G) > ρ(H).
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Since {V (K3), V ((n−3)K1)} and {{v2, v3, v5}, {v1, v4, v6}} (see Figure 2) are equitable
partitions of Sn,4 and F , respectively, the corresponding quotient matrices are

Q1 =

(
2 n− 3
3 0

)
and Q2 =

(
2 1
1 0

)
.

Thus the characteristic polynomials are pQ1(x) = x2−2x−3(n−3) and pQ2(x) = x2−2x−1,
respectively. If A(G)x = ρ(G)x, where

∑
v∈V (G) xv = 1, then for i = 1, 2, we have

pQi
(A(G))x = pQi

(ρ(G))x.

Thus we have

pQi
(ρ(G)) = pQi

(ρ(G))
∑

v∈V (G)

xv =

∑
v∈V (G)

pQi
(ρ(G))xv

=
∑

v∈V (G)

∑
w∈V (G)

pQi
(A(G))vwxw

=
∑

v∈V (G)

xv
∑

u∈V (G)

pQi
(A(G))uv

> min
v∈V (G)

∑
u∈V (G)

pQi
(A(G))uv.

Note that
∑

u∈V (G)A
2(G)uv = l2(v) and

∑
u∈V (G)A(G)uv = d(v). Thus for each vertex

v ∈ V (G), if l2(v) > 2d(v) + 3(n− 3) for i = 1, or if l2(v) > 2d(v) + 1 for i = 2, then we
have pQi

(ρ(G)) > 0, which implies that by Observation 1, ρ(G) > ρ(Sn,r) or ρ(G) > ρ(F ),
respectively.

In Section 4, we prove that if G is an n-vertex K5-saturated graph, then for each
vertex v ∈ V (G), we have l2(v) > 2d(v) + 3(n− 3).

Theorem 2. If G is an n-vertex K5-saturated graph, then for each vertex v ∈ V (H), we
have ∑

w∈N(v)

d(w) > 2d(v) + 3(n− 3).

Thus, Theorem 2 implies Theorem 3.

Theorem 3. If G is an n-vertex K5-saturated graph, then we have

ρ(G) > ρ(Sn,4);

equality holds only when G is Sn,4.
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Similarly, we also want to prove that if G is an n-vertex tP3-saturated graph, then
for every vertex v ∈ V (G), we have l2(v) > 2d(v) + 1. However, depending on n and t,
n-vertex tP3-saturated graphs may be disconnected or just a complete graph. If t = 1,
then each component of G is at most 2 vertices, which implies that satρ(n, tP3) = 1. If
2 6 n < 3t, then satρ(n, tP3) = n − 1. We may assume that t > 2 and n > 3t. By
Lemma 10, we replace G with a component G0 of G in the argument above Theorem 3
such that ρ(G) = ρ(G0) and for each vertex v ∈ V (G0), we have l2(v) > 2d(v) + 1.
How can we guarantee the existence of such a component in an n-vertex tP3-saturated
graph? In fact, there are some exceptional graphs. For k > 2, let Fk = K1 ∨ (kK2) and
F+
k = K1∨(kK2∪K1). See Figure 1 for F2 and F+

2 . LetH = {H : H is isomorphic to Fk or
F+
k for some k > 2}. If an n-vertex tP3-saturated graph G contains a component G′ in H

such that ρ(G) = ρ(G′), then there exists a vertex v ∈ V (G′) such that l2(v) < 2d(v) + 1.
(For all vertices v in any graph in H, we have l2(v) > 2d(v).) However, note that
ρ(G) = ρ(G′) > ρ(F2) > ρ(F ). Thus we consider n-vertex tP3-saturated graphs G whose
components do not belong to H. Since t > 2 and G is tP3-saturated, the graph (t− 1)P3

is a subgraph of G, which means that some component G0 on n0 vertices of G contains
P3 as a subgraph and so n0 > 3.

Theorem 4. If any component of an n-vertex tP3-saturated graph G does not belong to
H, then there exists a component G0 of G such that ρ(G) = ρ(G0) and for each vertex
v ∈ V (G0), we have ∑

w∈N(v)

d(w) > 2d(v) + 1;

equality holds only when G0 is isomorphic to F , where F is the 6-vertex graph obtained
from K3 by attaching a pendent vertex at each vertex of V (K3) (see Figure 2).

Thus Theorem 4 implies Theorem 5.

F2 F+
2

Figure 1: Two graphs F2 and F+
2

Theorem 5. If G is an n-vertex tP3-saturated graph with t > 2 and n > 3t, then we have

ρ(G) > ρ(F );

equality holds only when G is the union of (t− 1)F and b (n−6t+6)
2
cK2 ∪ ηK1, where η = 0

if n is even or η = 1 if n is odd.
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Figure 2: The graph F

Interestingly, the graphs holding equality in the bound of Theorem 5 are from the
following conjecture.

Conjecture 6 ([6]). Let t > 2 be an integer. For sufficiently large n, sat(n, tP3) =

bn+6t−6
2
c and (t− 1)F ∪

⌊ (n−6t+6)
2

⌋
K2∪ ηK1 is a tP3-saturated graph with size sat(n, tP3).

The conjecture was confirmed for t = 2 and n > 12, t = 3 and n > 9, t = 4 and
n > 3t+ 2, and t = 5, n > 3t+ 1 [6, 29, 5]. For t > 6, Conjecture 6 is still open. However,
we determine the exact value of satρ(n, tP3) in this paper (See Theorem 5).

2 Tools

Given a graph G, we denote the minimum degree by δ(G), the maximum degree by ∆(G),
and the average degree by d(G), respectively. Let G denote the complement of a graph
G. For a vertex v ∈ V (G), let d(v) and N(v) denote the degree and neighborhood of v in
G, respectively.

For A ⊆ V (G), letG[A] denote the subgraph ofG induced by A. For an edge e ∈ E(G),
G + e is the graph obtained from G by adding e. For a subset S ⊆ V (G), G − S is the
graph induced by V (G)\S. For a positive integer k, let [k] = {1, 2, . . . , k}.

Lemma 7 ([6]). For positive integers n, η, and t > 2, the graph (t− 1)F ∪
⌊ (n−6t+6)

2

⌋
K2∪

ηK1 is tP3-saturated.

Lemma 8 ([1], Theorem 6.8). If G is a connected graph and H is a proper subgraph of
G, then ρ(H) < ρ(G).

Lemma 9 ([1], Theorem 6.3 (i)). If G is an n-vertex connected graph with n > 2, then
ρ(G) > 0 and there is an eigenvector x > 0 corresponding to the eigenvalue ρ(G).

Lemma 10 ([3], Proposition 1.3.6). If G =
⋃s
i=1Gi, where Gi is a component of G, then

the spectrum of G is the union of the spectrum of Gi (and multiplicities are added).

Lemma 11 ([6]). For an integer t > 2, let G be a tP3-saturated graph.
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(1) If w ∈ V (G) with d(w) = 2, then w lies in a triangle.

(2) No vertex is adjacent to two vertices of degree 1.

(3) G is not a tree.

Lemma 12 ([5]). For an integer t > 2, let G be a tP3-saturated graph and u ∈ V (G).

(1) If d(u) = 1 and v ∈ N(u) with d(v) = 3, then v lies in a triangle.

(2) If d(u) = 2 and v ∈ V (G) with d(v) = 2, then |N(u) ∩ N(v)| 6 1. Additionally, if
there exists a vertex w ∈ N(u) ∩N(v), then d(w) > 5. Furthermore, if uv ∈ E(G),
then d(w) = n− 1.

(3) If N(u) = {v, w}, then d(v) 6= 3 and d(w) 6= 3.

3 Proof of Theorem 4

Suppose that G is an n-vertex tP3-saturated graph whose components do not belong to
H. To prove Theorem 4, it suffices to show that G contains a component G0 such that
ρ(G) = ρ(G0) and for each vertex v ∈ V (G0), we have

∑
w∈N(v) d(w) > 2d(v) + 1. Since

(t − 1)P3 is a subgraph of G, there exists a component G0 in G containing P3 as a sub-
graph. Let |V (G0)| = n0. Then n0 > 3.

Proof of Theorem 4. First, note that equality in the bound holds when G = F .
Suppose n0 = 3. Since n > 3t > 6, there is a vertex x ∈ V (G)\V (G0). Let y ∈ V (G0).

Note that G+ xy contains a copy of tP3, say T . Since n0 = 3, G− V (G0)− {x} contains
a copy of (t − 1)P3 as a subgraph. Thus G contains a copy of tP3 as a subgraph, which
is a contradiction. If 4 6 n0 6 5, then G0 = Kn0 . Otherwise, for an edge uv ∈ E(G0),
G+ uv must contain a copy of tP3. Thus there is a copy of (t− 1)P3 in G− V (G0) since
n0 6 5, which implies that G contains a copy of tP3, a contradiction.

Now, we may assume that n0 > 6. For u ∈ V (G0), we will prove
∑

w∈N(u) d(w) >
2d(u) + 1 in the following three cases.

Case 1. d(u) = 1.

Let N(u) = {w}. By Lemma 11 (1), we have d(w) 6= 2, which implies d(w) > 3 since
n0 > 6. Then

∑
w∈N(u) d(w) > 2d(u) + 1.

Case 2. d(u) = 2.

Let N(u) = {u1, u2}. By Lemma 11 (1), we have u1u2 ∈ E(G0). Since n0 > 6, we
have d(u1) > 3 or d(u2) > 3. Then

∑
w∈N(u) d(w) = d(u1) + d(u2) > 5 = 2d(u) + 1.

Case 3. d(u) > 3.
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By Lemma 11 (2), there is at most one vertex with degree 1 in N(u), say x (if it
exists). If there exists a vertex z ∈ N(u) with d(z) > 4, then∑

w∈N(u)

d(w) > 2|N(u) \ {x, z}|+ d(z) + d(x) > 2(d(u)− 2) + 5 = 2d(u) + 1.

Now, we may assume that for any w ∈ N(u), we have

d(w) 6 3. (2)

If d(v) > 3 for any vertex v ∈ N(u) \ {x}, then
∑

w∈N(u) d(w) > 3|N(u) \ {x}| + d(x) >
3(d(u) − 1) + 1 > 2d(u) + 1 since d(u) > 3. Thus we may assume that there is a vertex
in N(u) with degree 2.

We claim that for any vertex y ∈ V (G0) with |N(y)| = 2, say N(y) = {u, y1}, we have
d(y1) = 2. By Lemma 11 (1), y1 lies in a triangle and y1 ∈ N(u). Then by Lemma 12 (3)
and Inequality (2), we have d(y1) = 2. Thus by Lemma 12 (2), we have d(u) = n0 − 1.
Since G0 /∈ H, there exists a vertex z ∈ N(u) with d(z) = 3 by Inequality (2). Thus
we have |N(z) ∩ N(u)| = 2. Let N(z) ∩ N(u) = {z1, z2}. By Lemma 12 (3), we have
d(z1) > 3 and d(z2) > 3. Thus∑

w∈N(u)

d(w) > 2|N(u) \ {z, z1, z2, x}|+ d(z) + d(z1) + d(z2) + d(x)

> 2(d(u)− 4) + 3 + 3 + 3 + 1

= 2d(u) + 1.

To have equality in the bound means that
∑

w∈N(u) d(w) = 2d(u) + 1, we have the

following cases: In Case 1, we must have d(w) = 3, where N(u) = {w}. In Case 2, we
must have d(u1) = 2 and d(u2) = 3 (or the other way). Then by Lemma 12 (2), we have
d(u2) = n0 − 1, which follows that n0 = 4, a contradiction. Thus there is no vertex of
degree 2 in G0. In Case 3, since there is at most one vertex of degree 1 in N(u) and there
is no vertex of degree 2 in G0, we have

2d(u) + 1 =
∑

w∈N(u)

d(w) > 1 + 3(d(u)− 1) = 3d(u)− 2,

which yields d(u) = 3. Thus there is a vertex w1 ∈ N(u) of degree 1 and d(w) = 3 for
any w ∈ N(u) \ {w1}.

By Lemma 12 (1), u lies in a triangle. Let N(u) = {w1, w2, w3}. Thus w2w3 ∈ E(G0)
and d(w2) = d(w3) = 3. Let N(w2) = {u,w3, w

′
2} and N(w3) = {u,w2, w

′
3}. By applying

u = wi for any i ∈ {2, 3}, we have d(w′i) = 1, which gives G0 = F .

4 Proof of Theorem 3

To prove Theorem 3, we recall the result of Erdős, Hajnal, and Moon [9].
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Theorem 13. (Erdős et al. [9]) If 2 6 r < n, then sat(n,Kr+1) = (r−1)(n−r+1)+
(
r−1
2

)
.

The only n-vertex Kr+1-saturated graph with sat(n,Kr+1) edges is the graph Sn,r.

Proof of Theorem 3: By Lemma 2, it suffices to show that for each vertex v ∈ V (G),∑
w∈N(v)

d(w) > 2d(v) + 3(n− 3). (3)

We consider two cases depending on the property of the closed neighborhood of a vertex.

Case 1. For a vertex v ∈ V (G), the graph G[N [v]] is K5-saturated.

Since G[N [v]] is K5-saturated, G[N(v)] is K4-saturated. Then we have |E(G[N(v)])| >
2d(v)−3 by Theorem 13. Note that for each x /∈ N [v], G+vx contains a copy of K5 since
G is K5-saturated. Thus we may assume that |N(x) ∩N(v)| > 3, which implies that∑

w∈N(v)

d(w) > d(v) + 2|E(G[N(v)])|+ 3(n− d(v)− 1) (4)

> d(v) + 2(2d(v)− 3) + 3(n− d(v)− 1) (5)

= 2d(v) + 3(n− 3). (6)

Equalities in (3) and (5) hold when |E(G[N(v)])| = 2d(v) − 3 and |N(x) ∩ N(v)| = 3
for any x ∈ V (G) \ N [v]. Equality in (4) holds when G[N(v)] is isomorphic to Sd(v),3
by Theorem 13. Note that all triangles of Sd(v),3 have two common vertices, say y and
z. Thus, for any vertex x ∈ V (G) \ N [v], we have {y, z} ⊆ N(x), which follows that
d(y) = d(z) = n − 1 and G[N [y]] = G is K5-saturated. Thus G[N(y)] is isomorphic to
Sn−1,3, which implies that G is isomorphic to Sn,4.

Case 2. The graph induced by the closed neighborhood N [v] is not K5-saturated.

We may assume that G contains at most one vertex of degree n− 1. Otherwise, there
are two vertices u and w with d(u) = d(w) = n− 1. Then v /∈ {u,w} and {u,w} ⊆ N(v)
since G[N [u]](= G[N [w]] = G) is K5-saturated. Note that G[N(v)] = Sd(v),3 since G
is K5-free. Thus G = G[N [v]] = Sd(v)+1,4, which contradicts that G[N [v]] is not K5-
saturated.

Claim 14. δ(G) > 5.

Proof. If there exists a vertex w with d(w) = 3, then every vertex in V (G) − N [w] is
adjacent to the three neighbors of w and G[N(w)] = K3 since G is K5-saturated. Thus
each vertex in N(w) has degree n − 1, which contradicts that G contains at most one
vertex of degree n− 1.

If there exists a vertex w with d(w) = 4, then there are two non-adjacent vertices
u, u′ ∈ N(w) and G[N(w)] contains a copy of K3 as a subgraph since G is K5-saturated.
Also note that the copy of K3 contains the two vertices x, y ∈ N(w) \ {u, u′} since
uu′ /∈ E(G). Thus every vertex in V (G) − N [w] must be adjacent to the vertices x
and y. If {u, u′} ⊆ N(x) ∩ N(y), then d(x) = d(y) = n − 1, a contradiction. Thus
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{u, u′} * N(x) ∩N(y). We may assume that there is exactly one copy of K3 in G[N(w)]
and it contains u. Then u is adjacent to all the vertices in V (G)−N [w], which implies that
V (G)−N [w] is an independent set. Since {u, u′} * N(x)∩N(y) and G is K5-saturated,
G[N(w)] does not contain a copy of K4 as a subgraph and by adding the edge between u
and u′, we must have a copy of K5, which implies that V (G)−N [w] is not independent,
a contradiction.

Now, we partition the vertex set V (G)− v into the following three sets:

N1 = {x ∈ N(v) : x lies in a triangle in G[N(v)]}, N2 = N(v)−N1, and N3 = V (G)−N [v].

Note that N(v) = N1 ∪ N2 and N3 6= ∅. For any u ∈ N1, we have |N(u) ∩ N1| > 2 by
the definition of N1. Suppose that R′(u) is a subset of N(u) ∩ N1 with |R′(u)| = 2 and
R(u) = R′(u) ∪ {v}. Then R(u) ⊆ N(u) and |R(u)| = 3 for any u ∈ N1. For any vertex
w ∈ N3, G + wv contains a copy of K5 since G is K5-saturated. We may assume that
the vertices in this K5 are x1, x2, x3, w, v. Thus {x1, x2, x3} ⊆ N1 and G[{x1, x2, x3, w}]
is isomorphic to K4. For each w ∈ N3, we choose exactly three such edges xiw for
i ∈ {1, 2, 3} and put them in M . Then M ⊆ E(G[N1, N3]) and |M | = 3|N3|. For u ∈ N1,
let M(u) = {u′ ∈ N(u) ∩ N3 : u′u ∈ M} and S(u) = N(u) − R(u) − M(u). Thus∑

u∈N1
|M(u)| = |M | = 3|N3|. Since δ(G) > 5, we have∑

u∈N2

d(u) >
∑
u∈N2

5 = 5|N2|.

Note that |N1|+ |N2|+ |N3| = n− 1. Now we have∑
u∈N(v)

d(u) =
∑
u∈N1

(|R(u)|+ |M(u)|+ |S(u)|) +
∑
u∈N2

d(u)

>
∑
u∈N1

|R(u)|+
∑
u∈N1

|M(u)|+
∑
u∈N1

|S(u)|+ 5|N2|

= 3|N1|+ 3|N3|+
∑
u∈N1

|S(u)|+ 5|N2|

= 3(|N1|+ |N2|+ |N3|) + 2|N2|+
∑
u∈N1

|S(u)|

= 3n− 3 + 2|N2|+
∑
u∈N1

|S(u)|. (7)

One of our goal is to prove that ∑
u∈N1

|S(u)| > 2|N1| − 6. (8)

Then Inequalities (7) and (8) yield∑
u∈N(v)

d(u) > 3n− 3 + 2|N2|+ 2|N1| − 6 = 2d(v) + 3(n− 3), (9)
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as we desired. Another goal is to characterize the structure of the graph when equality
in Inequality (9) holds.

Furthermore, we partition the vertex set N1 into the three subsets A,B1 and B0, where

A = {x ∈ N1 : |S(x)| > 2}, B1 = {x ∈ N1 : |S(x)| = 1}, and B0 = {x ∈ N1 : |S(x)| = 0}.

Then we have
∑
u∈N1

|S(u)| > 2|A| + |B1| = 2|N1| − |B1| − 2|B0|. If |B1| + 2|B0| 6 5,

then
∑
u∈N1

|S(u)| < 2|N1| − 6, as we desired. Thus we may assume that |B1| + 2|B0| > 6.

If |B0| = 2 and |B1| = 2, or |B0| = 3 and |B1| = 0, then |B1| + 2|B0| = 6 and so∑
u∈N1

|S(u)|=2|N1| − 6. We will complete the proof of Inequality (8) by demonstrating

that
∑
u∈N1

|S(u)| < 2|N1| − 6 in the following three cases.

Case 2.1. |B0| > 4 and |B1| = 0.

For any vertex x ∈ B0, we have |N(x) ∩ N1| = 2 by the definition of S(x). Since
|B0| > 4, there are two nonadjacent vertices x1, x2 ∈ B0. Then G+ x1x2 contains a copy
of K5. Assume to the contrary that the copy contains a vertex y in N3. Then x1 and x2 are
adjacent to y. By the definition of M , we have xiy /∈M for some i ∈ {1, 2}, which means
that |S(xi)| 6= 0, a contradiction. Thus we have V (K5) ⊆ N [v]. If the copy of K5 does
not contain v, then there is a copy of K4 in G[N(v)], which implies that there is a copy
of K5 in G[N [v]], a contradiction. Thus the copy contains v and the other two vertices
in N(v), say a and b. Then {x1, x2} ⊆ N(a) ∩ N(b) and ab ∈ E(G), as shown in Figure
3. We can see |N(a) ∩ N1| > |{b, x1, x2}| = 3 and |N(b) ∩ N1| > |{a, x1, x2}| = 3, which
means that {a, b} ∩ B0 = ∅. Since |B0| > 4 and |N(xi) ∩N1| = 2 for any xi ∈ B0 \ {x1},
x1xi /∈ E(G). Similarly, G + x1xi contains a copy of K5 with all five vertices belonging
to N [v] as a subgraph. Since {x1, xi} ⊆ B0, we have N(xi) ∩ N1 = {a, b}, as shown in
Figure 3. Thus we have B0 ⊆ N(a) ∩N(b). Now we have

S(a) > |N(a) ∩N(v)| − 2 > |B0|+ 1− 2 = |B0| − 1

and
S(b) > |N(b) ∩N(v)| − 2 > |B0|+ 1− 2 = |B0| − 1.

Thus we have ∑
u∈N1

|S(u)| =
∑
u∈A

|S(u)|+
∑
u∈B1

|S(u)|+
∑
u∈B0

|S(u)|

=
∑
u∈A

|S(u)|

> |S(a)|+ |S(b)|+ 2(|A| − 2)

> 2(|B0| − 1) + 2(|A| − 2)

> 2|N1| − 6,
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Figure 3: The book graph

saying that Inequality (8) holds. If equality in Inequality (8) holds, then we have

N(a) ∩N(v) = B0 ∪ {b}, N(b) ∩N(v) = B0 ∪ {a}, |S(u)| = 2 for any u ∈ A \ {a, b},

and d(u) = 5 for any u ∈ N2.

In fact, we have N(v) 6= B0 ∪ {a, b}, all triangles in G[N(v)] have two common vertices
a, b, and for any vertex w ∈ V (G) \ N [v], we have w ∈ N(a) ∩ N(b). Those yield that
d(a) = d(b) = n − 1, which contradicts the fact that there is at most one vertex with
degree n − 1. Thus there is a vertex w ∈ N(v) \ B0 such that wxi /∈ E(G) for any
xi ∈ B0. Then G+wxi contains a copy of K5 as a subgraph. If the copy contains at least
three vertices in N(v), say xi, w, c, then we have c ∈ {a, b} since N(xi) ∩ N(v) = {a, b}.
Thus we have w ∈ N(a) ∪ N(b), which contradicts N(a) ∪ N(b) = B0 ∪ {a, b}. If the
copy contains at most two vertices in N(v), say xi, w, then it contains three vertices in
N3, say yi1, y

i
2, y

i
3. Then we have {yi1, yi2, yi3} ⊆ N(xi), G[{yi1, yi2, yi3}] is isomorphic to K3,

and yijxi ∈ M for any j ∈ {1, 2, 3} since xi ∈ B0. By the definition of M , we have
{a, b} ⊆ N(yi1) ∩ N(yi2) ∩ N(yi3) since there is exactly one triangle containing xi, xiab.
Thus G[{a, b, y11, y12, y13}] is isomorphic to K5, a contradiction. Thus equality in Inequality
(8) does not hold.

Case 2.2. |B0| = 0 and |B1| > 6.

By the definition of B1, for any u ∈ B1, we have |N(u) ∩N1| 6 3. Since |B1| > 6, for
any x1 ∈ B1, there is xi ∈ B1 with i 6= 1 such that x1xi /∈ E(G).

Claim 15. For any x1, x2 ∈ B1 with x1x2 /∈ E(G), there are two triangles x1f1g1 and
x2f2g2 such that |{f1, g1} ∩ {f2, g2}| > 1 and f1, g1, f2, g2 ∈ N1. Furthermore, if for
any two triangles x1f1g1 and x2f2g2, we have |{f1, g1} ∩ {f2, g2}| 6 1, then we have
|N(xi) ∩N(v)| = 2 for any i ∈ {1, 2}.

Proof. Since G is K5-saturated, G + x1x2 contains a copy of K5 as a subgraph. If the
copy contains at least four vertices in N(v), say {x1, x2, x′1, x′2}, then G[{xi, x′1, x′2}] is
isomorphic to a triangle for each i ∈ {1, 2}, and the two triangles have two common
vertices. If the copy contains at most three vertices in N(v), then there are at least two
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vertices in N3, say y1 and y2. For any vertex y in the copy, if y ∈ N3, then we have
y ∈ N(x1) ∩ N(x2). Since x1x2 /∈ E(G), we have yxi /∈ M for some i ∈ [2], and there
is at most one vertex y such that yxi /∈ M since |S(xi)| = 1. Thus the copy contains at
most two vertices in N3, that is, y1 and y2, and three vertices in N(v), say x1, x2, w. Then
y1xj /∈ M for some j ∈ {1, 2} and y2xi /∈ M for some i ∈ {1, 2} by the definition of M .
Since x1, x2 ∈ B1, we have i 6= j. We may assume that xtyt /∈M for any t ∈ {1, 2}. Thus
|N(xt) ∩ N(v)| = 2 for any t ∈ {1, 2}. There are two triangles containing {x1, w} and
{x2, w}, respectively, as claimed.

If there is a vertex w in N1 with B1 ⊆ N(w), then we have |S(w)| > |N(w)∩N1|−2 >
|B1| − 2. Thus we have∑

u∈N1

|S(u)| =
∑
u∈A

|S(u)|+
∑
u∈B1

|S(u)|+
∑
u∈B0

|S(u)|

=
∑
u∈A

|S(u)|+ |B1|

> |S(w)|+ 2(|A| − 1) + |B1|
> |B1| − 2 + 2|A| − 2 + |B1|
= 2|N1| − 4

> 2|N1| − 6,

saying that Inequality (8) holds.
In the remaining case, we may assume that there is no vertex w with B1 ⊆ N(w). For

any x1 ∈ B1, we have 2 6 |N(x1)∩N(v)| 6 3. Since G is K5-free, G[N(v)] is K4-free and
so there are at most two triangles in G[N(v)] containing x1. If there are two triangles
containing x1, then we have |N(x1)∩N(v)| = 3. By letting N(x1)∩N(v) = {y1, y2, y3}, we
have |E(G[{y1, y2, y3}])| = 2. We may assume that y1y2 ∈ E(G) and y1y3 ∈ E(G). For any
vertex x2 ∈ B1 with x1x2 /∈ E(G), Claim 15 guarantees that there is a triangle containing
x2 and one or two vertices of {y1, y2, y3}. If the triangle contains two vertices in {y1, y2, y3},
then the two vertices must be {y1, y2} or {y1, y3}. Note that there is no vertex w ∈ N1

with B1 ⊆ N(w). We claim that there exists a vertex x3 such that there is no triangle
containing x3 and two vertices of {y1, y2, y3}. Assume to the contrary that for any vertex
x ∈ B1 \N(x1), there is a triangle containing x such that the triangle contains {y1, y2} or
{y1, y3}. Then the vertex y1 is the vertex in N1 such that B1 ⊆ N(y1), a contradiction.
By Claim 15, we have |N(x1) ∩N(v)| = 2, which contradicts |N(x1) ∩N(v)| = 3. Thus,
for any x1 ∈ B1, there is exactly one triangle containing x1, say {x1, u, w}. Since there
is no vertex z ∈ N1 such that B1 ⊆ N(z), there are two vertices x2 and x3 in B1 such
that there is no triangle containing xj having two common vertices in {x1, u, w} for any
j ∈ {2, 3}. By Claim 15, we have |N(x2) ∩ N(v)| = |N(x3) ∩ N(v)| = 2 and there are
two triangles containing {x2, u} and {x3, w}, respectively, and the first triangle does not
contain w and the second does not contain u. Assume that the third vertex in the triangle
containing xj is x′j for any j ∈ {2, 3}. Then we have x′2u ∈ E(G), which implies that
x′2 6= x3 and x2x3 /∈ E(G). Since for any vertex b ∈ B1, there is exactly one triangle
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containing b, by Claim 15, we have x′2 = x′3. For any vertex b ∈ B1, we assert that
b ∈ N(u) ∪ N(w) ∪ N(x′2). Since |N(x2) ∩ N(v)| = 2, we have bx2 /∈ E(G) for any
b ∈ B1 \ {x1, x2, x3}. By Claim 15, there is a triangle containing b and at least one vertex
in {u, x′2}, as asserted. Thus we have

|S(u)|+ |S(w)|+ |S(x′2)| > |B1 \ {x1, x2, x3}|+ 4 ∗ 3− 2 ∗ 3 = |B1|+ 3,

which gives ∑
z∈N1

|S(z)| =
∑
z∈A

|S(z)|+
∑
z∈B1

|S(z)|+
∑
z∈B0

|S(z)|

=
∑
z∈A

|S(z)|+ |B1|

> |S(u)|+ |S(w)|+ |S(x′2)|+ 2(|A| − 3) + |B1|
> |B1|+ 3 + 2|A| − 6 + |B1|
= 2|N1| − 3

> 2|N1| − 6,

saying Inequality (8) holds.

Case 2.3. |B0| > 1, |B1| > 1, and 2|B0|+ |B1| > 7, or |B0| = 1 and |B1| = 4.

Note that for any x ∈ B0, we have |N(x)∩N(v)| = 2 and there is exactly one triangle
containing x; for any y ∈ B1, we have |N(y) ∩ N(v)| 6 3. We assert that there are
two vertices x1 ∈ B0 and y1 ∈ B1 such that x1y1 /∈ E(G). Assume to the contrary
that G[B0, B1] is a complete bipartite graph. Then we have |B1| 6 2, |B0| 6 3, and
2|B0|+ |B1| > 7. Since |N(x) ∩N(v)| = 2 and there is exactly one triangle containing x
for any x ∈ B0, we have |B0| = |N(y1)∩B0| 6 2. Thus 2|B0|+ |B1| 6 6, a contradiction.
Thus x1y1 /∈ E(G). Suppose thatN(x1)∩N(v) = {u,w}. ThenG[{x1, u, w}] is isomorphic
to a triangle.

Claim 16. For any y ∈ B0 ∪B1 with x1y /∈ E(G), we have y ∈ N(u) ∩N(w).

Proof. G + x1y contains a copy of K5 as a subgraph. If the copy contains at least four
vertices in N(v), then the four vertices must be {x1, y, u, w} and y ∈ N(u) ∩ N(w), as
claimed. If the copy contains at most three vertices in N(v), then the other two vertices
must be in N3, say z1 and z2. Then we have {x1, y} ⊆ N(z1)∩N(z2). Since x1y /∈ E(G),
we have zix1 /∈ M or ziy /∈ M for any i ∈ {1, 2} by the definition of M . Then we have
x1zi ∈M and ziy /∈M for any i ∈ {1, 2} and |S(y)| > 2 since x1 ∈ B0, which contradicts
y ∈ B0 ∪B1.

Since x1y1 /∈ E(G), by Claim 16, we have y1 ∈ N(u) ∩ N(w). Thus there is another
vertex y2 ∈ B0 ∪ B1 such that y2x1 /∈ E(G), else B1 ⊆ {y1, u, w}, B0 = {x1}, and
2|B0| + |B1| 6 5, a contradiction. By Claim 16, we have y2 ∈ N(u) ∩ N(w) and so
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{u,w} ⊆ A. For any vertex b ∈ (B0 ∪ B1) \ {x1}, we have bx1 /∈ E(G) and so b ∈
N(u) ∩N(w) by Claim 16. Thus we have

|S(u)| > |B0|+ |B1|+ 1− 2 = |B0|+ |B1| − 1

and
|S(w)| > |B0|+ |B1|+ 1− 2 = |B0|+ |B1| − 1.

Observe that ∑
z∈N1

|S(z)| =
∑
z∈A

|S(z)|+
∑
z∈B1

|S(z)|+
∑
z∈B0

|S(z)|

=
∑
z∈A

|S(z)|+ |B1|

> |S(u)|+ |S(w)|+ 2(|A| − 2) + |B1|
> 2|B0|+ 2|B1| − 2 + 2|A| − 4 + |B1|
= 2|N1| − 6 + |B1|
> 2|N1| − 6,

saying Inequality (8) holds.
Now we characterize the structure of the graph when equality in Inequality (9) holds

in Case 2. In fact, equality holds only when |B1| + 2|B0| = 6, |B0| > 2, |S(x)| = 2
for any x ∈ A, and d(u) = 5 for any u ∈ N2. If there are two nonadjacent vertices
x1, x2 in B0 then G + x1x2 contains a copy of K5, and the copy does not contain any
vertex in N3. Also there is a vertex y ∈ N3 such that y ∈ N(x1) ∩ N(x2). Then we
have yxi /∈ M for some i ∈ {1, 2} since x1x2 /∈ E(G), which contradicts x1, x2 ∈ B0.
Thus the copy must contain four vertices in N(v), say x1, x2, z1, z2 such that z1z2 ∈ E(G)
and {x1, x2} ⊆ N(z1) ∩ N(z2). Assume to the contrary that N2 6= ∅. Then there is a
vertex w ∈ N2. Since there is no triangle in G[N(v)] containing w, the copy of K5 in the
graph G + xiw must contain at least two vertices in N3, say yi1, y

i
2. Then yi1y

i
2 ∈ E(G).

Since xi ∈ B0, we have yi1xi ∈ M and yi2xi ∈ M . Note that there is exactly one triangle
containing xi. We have {yi1, yi2} ⊆ N(z1) ∩ N(z2) and G[{xi, yi1, yi2, z1, z2}] is isomorphic
to K5, a contradiction. Now assume that N2 = ∅. Then G[N1] is not isomorphic to
a book with the two spine vertices z1, z2. Otherwise, by the definition of M , we have
d(z1) = d(z2) = n− 1, a contradiction. Since |S(zi)| 6 2 for any i ∈ [2] and G[N1] is not
isomorphic to a book with the two spine vertices z1, z2, there is a vertex w ∈ N1 such that
wzi /∈ E(G) for some i ∈ {1, 2}. We may assume that wz1 /∈ E(G). Since wz1 /∈ E(G)
and N(xi) ∩N1 = {z1, z2}, for any i ∈ [2], G + wxi contains a copy of K5, and the copy
contains at most three vertices in N1 and at least two vertices in N3, saying yi1, y

i
2. Since

xi ∈ B0, we have yi1xi ∈ M and yi2xi ∈ M . Also we have {y11, y12} ∩ {y21, y22} = ∅ since
x1x2 /∈ E(G). Thus we have |N(w) ∩N3| > 4 and |S(w)| > 4, a contradiction.

Now we may assume that G[B0] is a complete graph. Assume that G[B0] is a triangle
with three vertices x1, x2, x3. For any vertex w ∈ N(v) \ B0 (such a vertex exists since
δ(G) > 5), we have wxi /∈ E(G) for any i ∈ {1, 2, 3}. Since |N(xi)∩N(v)| = 2, the G+wxi
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contains at least three vertices in N3, say yi1, y
i
2, y

i
3. Thus G[{yi1, yi2, yi3}] is a triangle. Since

there is exactly one triangle containing x1, we have {y11, y12, y13} ⊆ N(x2) ∩ N(x3), which
yields that G[{y11, y12, y13, x1, x2}] is isomorphic to K5, a contradiction. Now assume that
B0 has exactly two vertices x1, x2. Suppose that the triangle containing x1, x2 is x1x2u.
Since δ(G) > 5, there is a vertex w ∈ N(v) such that wxi /∈ E(G) for any i ∈ {1, 2}.
Note that a copy of K5 in G + wxi must contain at most three vertices in N(v) and at
least two vertices in N3, say yi1, y

i
2, since |N(xi) ∩ N(v)| = 2. Thus we have yi1xi ∈ M ,

yi2xi ∈ M , and yi1y
i
2 ∈ E(G). Since there is exactly one triangle containing xi, we have

{y11, y12} ⊆ N(x1) ∩ N(x2) ∩ N(u) by the definition of M . Thus G[{x1, x2, u, y11, y12}] is
isomorphic to K5, a contradiction. This completes the proof of Theorem 3.
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[12] H. Finck, G. Grohmann, Vollständiges Produkt, chromatische Zahl und charakter-
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[20] J. Kollár, L. Rónyai, T. Szabó, Norm graphs and bipartite Turán numbers, Combi-
natorica, 16 (1996), 399–406.
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