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Abstract

For a given graph H, a graph G is H-saturated if G does not contain H as a
subgraph, but for e € E(G), G +e contains H as a subgraph; the spectral saturation
number of H, written sat,(n, H), is the minimum value of p(G) in an n-vertex H-
saturated graph G.

For a vertex v € V(G), let l2(v) be the number of 2-walks starting from v. In this
paper, when G is an n-vertex t Ps3- or K5-saturated connected graph, for each vertex
v € V(G), we prove the best lower bounds for l(v) in terms of n and d(v), implying
that sat,(n,tPs) = p(F') and sat,(n, K5) = p(Sn.4), where F is the 6-vertex graph
obtained from K3 by attaching a pendant vertex to each vertex in K3 and Sy 4 is
the join of K3 and (n — 3)Kj.

Mathematics Subject Classifications: 05C15, 05C50, 15A18

1 Introduction

For undefined terms of graph theory, see West [31]. For basic properties of spectral graph
theory, see Brouwer and Haemers [3] or Godsil and Royle [16].

Given a graph H, determining the maximum number of edges in an n-vertex H-free
graph, written ex(n, H), has a long history. (See K3 [22], K, [30], K, [21, 20], Cory1 [26],
Cor [2, 25], Py, [8], Ty [7], C4 [10, 4], Ka, [13], K33 [4, 14], Qs [11], consecutive cycles [§]
and three surveys [15, 17, 27].) Thus if an n-vertex graph G has more than ex(n, H)
edges, then G must contain H as a subgraph. If we create a copy of H by adding any
additional edge to an H-free graph, then it would be an interesting property. Even if
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an n-vertex H-free graph G has less than ex(n, H) edges and if we add any additional
edge to GG, then the resulting graph may contain a copy of H. In this case, GG is called
H-saturated. More precisely, if G does not contain H as a subgraph but for any edge
e € B(G), G + e contains H as a subgraph, then we call G H-saturated. Then we may
be interested in the minimum number of edges in an n-vertex H-saturated graph, which
is called the saturation number of H, written sat(n, H).

Erdés, Hajnal, and Moon [9] proved sat(n, K,+1) = |E(S,,)|, which was the first
result on saturation number. The graph S, is the join of K,_; and (n —r + 1)Kj;.

For a graph G with given number of vertices, the average degree 2|“;E((GG;)‘| and the
number of edges give the same information, and we note that the spectral radius of G,
written p(G), is at least the average degree, where A(G) is the adjacency matrix of G and
p(G) = MaX (. A(G)z=Az} |A|. Thus it may be natural to ask what will happen if we replace
the average degree with the spectral radius.

Like sat(n, H), we can define the spectral saturation number of a graph H, written
sat,(n, H), to be the minimum value of p(G) in an n-vertex H-saturated graph G.

Nikiforov [24] proved that if G is an n-vertex K, i-saturated graph, then p(G) <
p(T,,,), where T, , is the n-vertex r-partite Turan graph; equality holds only when G is
T, Kim, Kim, Kostochka, and O [18] proved that if G is an n-vertex K,i-saturated
graph, then

\/(n— D2(r—1)+(r—12(n—r+1)

n

p(G) = (1)

by using the fact p?(G) > L > eV (G) d*(v) and by determining the best lower bound for

n

D vev(@) d*(v). Note that for r = 2, equality in (1) holds only when G is S, » or a Moore
graph with diameter 2. However, for r > 3, equality does not hold for any graphs, which

means that sat,(K,41) > \/(n_1)2(r_1)+(r_1)2(n_T+1). For r = 3, Kim, Kostochka, O, Shi,

n

and Wang [19] proved the sharp lower bound for p(G) in an n-vertex K, i-saturated
graph; equality holds only when G is S, 3. For r > 4, determining sat,(n, K,1,) is still
open. In this paper, we determine sat,(n, K,;1) when r = 4.

Note that ZHGV(G) d*(v) = ZUGV(G) ZweV(G) (A%2(Q))pw = ZHGV(G) ZMGN(U) d(w). For
a vertex v € V(G), let l(v) be the number of 2-walks starting at v in a graph G, where
a t-walk is a walk of length ¢.

Let P = {Vi,...,Vi} be a partition of V(G) into s non-empty subsets. The quotient
matriz () corresponding to P is the s X s matrix whose (i, j)-entry is the average number

of incident edges in V; of the vertices in V;. More precisely, Q;; = % if ¢ # 7, and
Qii = AB@GIVAL - A partition P is equitable if for each 1 < 7,5 < s, any vertex v € Vj

Vil
has exactly @);; neighbors in V;. In this case, the eigenvalues of the quotient matrix are

eigenvalues of G and the spectral radius of the quotient matrix equals the spectral radius
of G (see [3, 16] for more details).

Observation 1. Let () be a 2 x 2 equitable quotient matriz of a graph H, and let pgo(x)
be the characteristic polynomial of Q). If G is an n-vertex graph with the spectral radius
p(G) and po(p(G)) = 0, then we have p(G) = p(H).

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(1) (2025), #P1.30 2



Since {V(K3),V((n—3)K1)} and {{ve, vs, v5}, {v1,v4,v6}} (see Figure 2) are equitable
partitions of S, 4 and F’, respectively, the corresponding quotient matrices are

Q1:<§ n83> and QQ:G é)

Thus the characteristic polynomials are pg, (z) = 2*—2x—3(n—3) and pg, (z) = 2*—2x—1,

respectively. If A(G)x = p(G)x, where Y i) @» = 1, then for i = 1,2, we have

P, (A(G))x = po, (p(G))x.

Thus we have

pa.(p(@) = pa.(p(GQ)) Y =

veV(Q)

Y palp(@))z,

veV(G)

Z Z PQ;(A(G))vwTuw

veV(GQ) weV(G)

= > Z pa.(A

veV(G) ueV(G

> (A(G))wo-
nin > pczl( (@)
ueV(G)

Note that 37,y @) A (G)w = l2(v) and 37,y g A(G)uw = d(v). Thus for each vertex
v e V(Q), if ly(v) = 2d(v) + 3(n — 3) for i = 1, or if ly(v) > 2d(v) + 1 for i = 2, then we
have pg,(p(G)) = 0, which implies that by Observation 1, p(G) > p(S,,-) or p(G) > p(F),
respectively.

In Section 4, we prove that if G is an n-vertex Kjs-saturated graph, then for each
vertex v € V(G), we have ly(v) > 2d(v) 4+ 3(n — 3).

Theorem 2. If G is an n-vertex Ky-saturated graph, then for each vertex v € V(H), we

have
> d(w) > 2d(v) + 3(n — 3).

weN (v)
Thus, Theorem 2 implies Theorem 3.

Theorem 3. If G is an n-vertex Ks5-saturated graph, then we have

p(G) = p(Sna);

equality holds only when G is S, 4.
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Similarly, we also want to prove that if G is an n-vertex tPs-saturated graph, then
for every vertex v € V(G), we have l(v) > 2d(v) + 1. However, depending on n and t,
n-vertex tPs-saturated graphs may be disconnected or just a complete graph. If ¢ = 1,
then each component of G is at most 2 vertices, which implies that sat,(n,tP;) = 1. If
2 < n < 3t, then sat,(n,tP;) = n — 1. We may assume that ¢ > 2 and n > 3t. By
Lemma 10, we replace G with a component G of GG in the argument above Theorem 3
such that p(G) = p(Gy) and for each vertex v € V(Gy), we have lr(v) > 2d(v) + 1.
How can we guarantee the existence of such a component in an n-vertex tPs-saturated
graph? In fact, there are some exceptional graphs. For k > 2, let F}, = K; V (kK3) and
Ff = K1 V(kKyUK;). See Figure 1 for I, and Fy'. Let H = {H : H is isomorphic to Fj or
F}f for some k > 2}. If an n-vertex ¢t Py-saturated graph G contains a component G’ in H
such that p(G) = p(G’), then there exists a vertex v € V(G’) such that ly(v) < 2d(v) + 1.
(For all vertices v in any graph in H, we have ly(v) > 2d(v).) However, note that
p(G) = p(G") = p(Fy) > p(F). Thus we consider n-vertex tPs-saturated graphs G whose
components do not belong to H. Since ¢t > 2 and G is t Ps-saturated, the graph (¢t — 1)P;
is a subgraph of G, which means that some component GGy on ng vertices of G contains
Ps as a subgraph and so ng > 3.

Theorem 4. If any component of an n-vertex t Ps3-saturated graph G does not belong to
H, then there exists a component Gy of G such that p(G) = p(Gy) and for each vertex
v € V(Gy), we have

> d(w) > 2d(v) + 1;
)

wEN (v

equality holds only when Gy is isomorphic to F', where F' is the 6-vertex graph obtained
from K3 by attaching a pendent vertex at each vertex of V(K3) (see Figure 2).

Thus Theorem 4 implies Theorem 5.

F Fy

Figure 1: Two graphs F5 and F,

Theorem 5. If G is an n-vertex t P3-saturated graph with t > 2 and n > 3t, then we have
p(G) = p(F);

equality holds only when G is the union of (t —1)F and LWJ KyUnKy, wheren =0
if nis even orp =1 if n is odd.
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Figure 2: The graph F'

Interestingly, the graphs holding equality in the bound of Theorem 5 are from the
following conjecture.

Conjecture 6 ([6]). Let ¢ > 2 be an integer. For sufficiently large n, sat(n,tP;) =

2480 and (t—1)F U L(Wﬁzﬂj KyUnK; is a tPs-saturated graph with size sat(n,tPs).

The conjecture was confirmed for t = 2 and n > 12, t =3 and n > 9, t = 4 and
n>3t+2,andt =5 n>3t+1 16,29, 5]. For t > 6, Conjecture 6 is still open. However,
we determine the exact value of sat,(n,tPs) in this paper (See Theorem 5).

2 Tools

Given a graph GG, we denote the minimum degree by §(G), the maximum degree by A(G),
and the average degree by d(G), respectively. Let G denote the complement of a graph
G. For a vertex v € V(G), let d(v) and N(v) denote the degree and neighborhood of v in
G, respectively.

For A C V(G), let G[A] denote the subgraph of G induced by A. For an edge e € E(G),
G + e is the graph obtained from G by adding e. For a subset S C V(G), G — S is the
graph induced by V(G)\S. For a positive integer k, let [k] = {1,2,...,k}.

Lemma 7 ([6]). For positive integers n,n, and t > 2, the graph (t —1)F'U L("ﬁﬂj KyU
nKy s t P3-saturated.

Lemma 8 ([1], Theorem 6.8). If G is a connected graph and H is a proper subgraph of
G, then p(H) < p(G).

Lemma 9 ([1], Theorem 6.3 (i)). If G is an n-vertex connected graph with n > 2, then
p(G) > 0 and there is an eigenvector x > 0 corresponding to the eigenvalue p(G).

Lemma 10 ([3], Proposition 1.3.6). If G = |J;_, G;, where G; is a component of G, then
the spectrum of G is the union of the spectrum of G; (and multiplicities are added).

Lemma 11 ([6]). For an integert > 2, let G be a tPs-saturated graph.

ot
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(1) If w e V(G) with d(w) = 2, then w lies in a triangle.

(2) No vertex is adjacent to two vertices of degree 1.

(3) G is not a tree.

Lemma 12 ([5]). For an integer t > 2, let G be a tPs-saturated graph and u € V(G).
(1) Ifd(u) =1 and v € N(u) with d(v) = 3, then v lies in a triangle.

(2) Ifd(u) = 2 and v € V(G) with d(v) = 2, then |[N(u) N N(v)| < 1. Additionally, if
there exists a vertex w € N(u) N N(v), then d(w) = 5. Furthermore, if wv € E(G),
then d(w) =n — 1.

(3) If N(u) = {v,w}, then d(v) # 3 and d(w) # 3.

3 Proof of Theorem 4

Suppose that G is an n-vertex tP3-saturated graph whose components do not belong to
‘H. To prove Theorem 4, it suffices to show that G contains a component G such that
p(G) = p(Go) and for each vertex v € V(Gy), we have 3 v, d(w) = 2d(v) + 1. Since
(t — 1)Ps is a subgraph of G, there exists a component Gy in G containing Pj as a sub-
graph. Let |V(Gp)| = ng. Then ng > 3.

Proof of Theorem 4. First, note that equality in the bound holds when G = F.

Suppose ng = 3. Since n > 3t > 6, there is a vertex x € V(G)\V(Gy). Let y € V(Gy).
Note that G + zy contains a copy of tPs, say T Since ng = 3, G — V(Go) — {z} contains
a copy of (t — 1)P; as a subgraph. Thus G contains a copy of tP; as a subgraph, which
is a contradiction. If 4 < ng < 5, then Gy = K,,,. Otherwise, for an edge uv € E(Gy),
G + wv must contain a copy of tP3. Thus there is a copy of (t — 1)P3 in G — V(G)) since
ng < b, which implies that G' contains a copy of tP3, a contradiction.

Now, we may assume that ng > 6. For u € V(Gp), we will prove > v, d(w) >
2d(u) + 1 in the following three cases.

Case 1. d(u) = 1.

Let N(u) = {w}. By Lemma 11 (1), we have d(w) # 2, which implies d(w) > 3 since
ng = 6. Then >° y,) d(w) = 2d(u) + 1.

Case 2. d(u) = 2.

Let N(u) = {uj,us}. By Lemma 11 (1), we have ujus € E(Gyp). Since ng = 6, we
have d(u1) 2 3 or d(u2) 2 3. Then v, d(w) = d(u1) + d(uz) = 5 = 2d(u) + 1.
Case 3. d(u) > 3.
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By Lemma 11 (2), there is at most one vertex with degree 1 in N(u), say z (if it
exists). If there exists a vertex z € N(u) with d(z) > 4, then

> d(w) = 2[N(u)\ {z, 2} + d(2) + d(z) > 2(d(u) — 2) + 5 = 2d(u) + 1.

wEN (u)
Now, we may assume that for any w € N(u), we have
d(w) < 3. (2)

If d(v) > 3 for any vertex v € N(u) \ {z}, then 3° y(,) d(w) = 3IN(u) \ {z} +d(z) >
3(d(u) — 1) +1 > 2d(u) + 1 since d(u) > 3. Thus we may assume that there is a vertex
in N(u) with degree 2.

We claim that for any vertex y € V(Gy) with [N (y)| = 2, say N(y) = {u,y1}, we have
d(y;) = 2. By Lemma 11 (1), y; lies in a triangle and y; € N(u). Then by Lemma 12 (3)
and Inequality (2), we have d(y;) = 2. Thus by Lemma 12 (2), we have d(u) = ny — 1.
Since Gy ¢ H, there exists a vertex z € N(u) with d(z) = 3 by Inequality (2). Thus
we have |N(z) N N(u)| = 2. Let N(z) N N(u) = {z1,22}. By Lemma 12 (3), we have
d(z1) = 3 and d(z2) > 3. Thus

Z d(w) = 2|N(u) \ {2, 21, 22, x}| + d(2) + d(z1) + d(22) + d(x)

weN (u)

WV

2d(u) —4) +3+3+3+1
2d(u) + 1.

To have equality in the bound means that ¢y, d(w) = 2d(u) + 1, we have the
following cases: In Case 1, we must have d(w) = 3, where N(u) = {w}. In Case 2, we
must have d(u;) = 2 and d(ug) = 3 (or the other Way). Then by Lemma 12 (2), we have
d(uz) = ng — 1, which follows that ny = 4, a contradiction. Thus there is no vertex of
degree 2 in G. In Case 3, since there is at most one vertex of degree 1 in N(u) and there
is no vertex of degree 2 in GGy, we have

Z d(w) =1+ 3(d(u) — 1) = 3d(u) —

weEN (u

which yields d(u) = 3. Thus there is a vertex w; € N(u) of degree 1 and d(w) = 3 for
any w € N(u) \ {w}.

By Lemma 12 (1), u lies in a triangle. Let N(u) = {w1, wq, w3}. Thus wows € E(Gy)
and d(ws) = d(wz) = 3. Let N(wq) = {u,ws, w)y} and N(ws) = {u, wq, ws}. By applying
u = w; for any ¢ € {2,3}, we have d(w}) = 1, which gives Gy = F. ]

4 Proof of Theorem 3

To prove Theorem 3, we recall the result of Erdés, Hajnal, and Moon [9].
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Theorem 13. (Erdéset al. [9]) If2 < r < n, then sat(n, K,41) = (r—1)(n—r+1)+(",").
The only n-vertex K, 1-saturated graph with sat(n, K,41) edges is the graph S, .

Proof of Theorem 3: By Lemma 2, it suffices to show that for each vertex v € V(G),

> d(w) > 2d(v) + 3(n - 3). (3)
weN (v)
We consider two cases depending on the property of the closed neighborhood of a vertex.

Case 1. For a vertex v € V(G), the graph G[N[v]] is Ks-saturated.

Since G[N|v]] is Kj-saturated, G[N(v)] is K4-saturated. Then we have |E(G[N (v)])| >
2d(v) — 3 by Theorem 13. Note that for each = ¢ N[v], G+ vz contains a copy of Kj since
G is Ks-saturated. Thus we may assume that |N(z) N N(v)| > 3, which implies that

> d(w) > d(v) + 2|E(G[N(v)])] + 3(n — d(v) — 1) (4)
weN (v)

> d(v) + 2(2d(v) — 3) + 3(n — d(v) — 1) (5)

= 2d(v) + 3(n — 3). (6)

Equalities in (3) and (5) hold when |E(G[N(v)])| = 2d(v) — 3 and |N(z) N N(v)| = 3
for any # € V(G) \ N[v]. Equality in (4) holds when G[N(v)] is isomorphic to Sy 3
by Theorem 13. Note that all triangles of Sy, 3 have two common vertices, say y and
z. Thus, for any vertex z € V(G) \ N[v], we have {y,z} C N(z), which follows that
d(y) = d(z) = n — 1 and G[N[y]] = G is Ks-saturated. Thus G[N(y)] is isomorphic to
Sh—13, which implies that G is isomorphic to S,, 4.

Case 2. The graph induced by the closed neighborhood N [v] is not Ks-saturated.

We may assume that G contains at most one vertex of degree n — 1. Otherwise, there
are two vertices u and w with d(u) = d(w) =n — 1. Then v ¢ {u,w} and {u,w} C N(v)
since G[Null(= G[N[w]] = G) is Kj-saturated. Note that G[N(v)] = Sy since G
is Ks-free. Thus G = G[N[v]] = S4w)+1,4, which contradicts that G[N[v]] is not Ks-
saturated.

Claim 14. §(G) > 5.

Proof. 1f there exists a vertex w with d(w) = 3, then every vertex in V(G) — N[w] is
adjacent to the three neighbors of w and G[N(w)] = K3 since G is Kj-saturated. Thus
each vertex in N(w) has degree n — 1, which contradicts that G' contains at most one
vertex of degree n — 1.

If there exists a vertex w with d(w) = 4, then there are two non-adjacent vertices
u,u’ € N(w) and G[N(w)] contains a copy of K3 as a subgraph since G is K;5-saturated.
Also note that the copy of K3 contains the two vertices z,y € N(w) \ {u,u'} since
wu' ¢ E(G). Thus every vertex in V(G) — N[w| must be adjacent to the vertices x
and y. If {u,u'} € N(z) N N(y), then d(z) = d(y) = n — 1, a contradiction. Thus
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{u, '} € N(z) N N(y). We may assume that there is exactly one copy of K3 in G[N(w)]
and it contains u. Then u is adjacent to all the vertices in V(G) — N[w], which implies that
V(G) — N[w] is an independent set. Since {u,u'} € N(z) N N(y) and G is Kj-saturated,
G[N(w)] does not contain a copy of K, as a subgraph and by adding the edge between u
and v/, we must have a copy of Ky, which implies that V(G) — N|w] is not independent,
a contradiction. ]

Now, we partition the vertex set V(G) — v into the following three sets:

Ny = {x € N(v) : z lies in a triangle in G[N(v)]}, No = N(v)—Ny, and N3 = V(G)—N]|v].

Note that N(v) = Ny U Ny and N3 # @. For any u € Ny, we have |[N(u) N Ny| > 2 by
the definition of N;. Suppose that R'(u) is a subset of N(u) N Ny with |R'(u)| = 2 and
R(u) = R'(u) U {v}. Then R(u) C N(u) and |R(u)| = 3 for any u € N;. For any vertex
w € N3, G + wv contains a copy of K5 since GG is Kx-saturated. We may assume that
the vertices in this K5 are xy, z9, x5, w,v. Thus {z1, 29,23} C Ny and G[{z1, xe, x3, w}]
is isomorphic to K,. For each w &€ Nj, we choose exactly three such edges z;w for
i € {1,2,3} and put them in M. Then M C E(G[Ny, Ns]) and |M| = 3|N3|. For u € Ny,
let M(u) = {u/ € N(u) N N3 : v'u € M} and S(u) = N(u) — R(u) — M(u). Thus
> uen, |[M(u)| = [M| = 3|Ns|. Since 6(G) > 5, we have

D dw) =Y 5=5|N,|.
u€E N u€ N2
Note that |Ny| + |Na| + | N3] = n — 1. Now we have

Zd =Y (R + [Mu)]+[S@)]) + ) d(u)

u€N (v u€EN] u€ENo

> > IR+ Y M)+ Y [S()] + 5|V

uEN1 uEN uEN1

= 3|Ni| + 3|Ns| + > [S(u)| + 5| Vo]

ueNy

= 3(|N1| + | Na| + [Ns[) + 2[No| + Z |5(w)

ueEN7

=3n—3+2[No| + > [S(u)]. (7)

u€EN7
One of our goal is to prove that

> 1S(w)] > 2N —6. (8)

u€eN,

Then Inequalities (7) and (8) yield

Z d(u) = 3n — 34 2|Ny| + 2|Ny| — 6 = 2d(v) 4 3(n — 3), (9)

u€N (v
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as we desired. Another goal is to characterize the structure of the graph when equality
in Inequality (9) holds.
Furthermore, we partition the vertex set N; into the three subsets A, B; and By, where

A={x e Ny :|S(z)| 22}, Bi={x € N, :|S(x)| =1}, and By = {z € N; : |S(x)| = 0}.

Then we have 3 |S(u)| = 2|A| + |Bi| = 2|Ny| — |By| — 2|Bo|. If |By] + 2|Bo| < 5,
ueEN,

then > [S(u)| < 2|N1| — 6, as we desired. Thus we may assume that |B;| + 2|By| > 6.
ue N1

If |By] = 2 and |By| = 2, or |By| = 3 and |B;| = 0, then |By| 4+ 2|By| = 6 and so

> 1S (u)|=2|Ny| — 6. We will complete the proof of Inequality (8) by demonstrating
u€eN

that > |S(u)| < 2|NV;1| — 6 in the following three cases.
ueN,

Case 2.1. |By| = 4 and |B| = 0.

For any vertex x € By, we have |[N(x) N Ni| = 2 by the definition of S(x). Since
|Bo| > 4, there are two nonadjacent vertices x1, x5 € By. Then G + x5 contains a copy
of K5. Assume to the contrary that the copy contains a vertex y in N3. Then x; and x5 are
adjacent to y. By the definition of M, we have xz;y ¢ M for some i € {1, 2}, which means
that |S(z;)| # 0, a contradiction. Thus we have V(K5) C Nlv]. If the copy of K5 does
not contain v, then there is a copy of Ky in G[N(v)], which implies that there is a copy
of K5 in G[N]v]], a contradiction. Thus the copy contains v and the other two vertices
in N(v), say a and b. Then {x1,z2} C N(a) N N(b) and ab € E(G), as shown in Figure
3. We can see |N(a) N Ny| = [{b,x1,22}| = 3 and |N(b) N Ny| = |{a, x1,z2}| = 3, which
means that {a,b} N By = 0. Since |By| > 4 and |N(z;) N Ny| = 2 for any x; € By \ {21},
r1x; ¢ E(G). Similarly, G + z1x; contains a copy of K5 with all five vertices belonging
to N[v] as a subgraph. Since {z1,z;} C By, we have N(z;) N Ny = {a,b}, as shown in
Figure 3. Thus we have By C N(a) N N(b). Now we have

S(a) =2 IN(a)NN(@)| =22 |Bo| +1—-2=|By| — 1
and

S) = |INO)NNw)|—2>=|By|+1—-2=|By| — 1.
Thus we have

Do IS =Y IS+ Y IS+ Y [S(w)

u€EN] u€EA u€ By u€Bg

=> 15w

u€A
> [S(a)] +|S(0) +2(]A] - 2)
2 2(|Bo| = 1) +2(]4] - 2)
=
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T3
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Figure 3: The book graph

saying that Inequality (8) holds. If equality in Inequality (8) holds, then we have
N(a)NN(v) = ByU{b}, N(b) " N(v) = By U {a},|S(u)| = 2 for any u € A\ {a,b},

and d(u) =5 for any u € Nj.

In fact, we have N(v) # By U {a, b}, all triangles in G[N(v)] have two common vertices
a,b, and for any vertex w € V(G) \ N[v], we have w € N(a) N N(b). Those yield that
d(a) = d(b) = n — 1, which contradicts the fact that there is at most one vertex with
degree n — 1. Thus there is a vertex w € N(v) \ By such that wx; ¢ E(G) for any
x; € By. Then G 4+ wx; contains a copy of K5 as a subgraph. If the copy contains at least
three vertices in N(v), say x;, w, ¢, then we have ¢ € {a,b} since N(z;) N N(v) = {a, b}.
Thus we have w € N(a) U N(b), which contradicts N(a) U N(b) = By U {a,b}. If the
copy contains at most two vertices in N(v), say z;, w, then it contains three vertices in
N3, say yi, v, ys. Then we have {yi, v, vi} C N(z;), G[{yt, v5, 35} is isomorphic to K3,
and y'x; € M for any j € {1,2,3} since 2; € By. By the definition of M, we have
{a,b} € N(yi) N N(yi) N N(ys) since there is exactly one triangle containing wx;, x;ab.
Thus G[{a,b,yi,ys,ys}] is isomorphic to K5, a contradiction. Thus equality in Inequality
(8) does not hold.

Case 2.2. |By| =0 and |B;| > 6.

By the definition of By, for any u € By, we have |N(u) N N;| < 3. Since |B;| > 6, for
any x, € By, there is x; € By with ¢ # 1 such that z12; ¢ E(G).

Claim 15. For any z1,x9 € By with x1x9 ¢ E(G), there are two triangles 1 f1g1 and
xofage such that |{fi,1} N {f2, 92} = 1 and f1,91, f2,92 € Ny1. Furthermore, if for
any two triangles x1 fig1 and x3fog2, we have |{fi,g1} N {fe,92}| < 1, then we have
|N(z;) N N(v)| =2 for any i € {1,2}.

Proof. Since G is Kj-saturated, G + x1z5 contains a copy of Kj as a subgraph. If the
copy contains at least four vertices in N(v), say {x1,xe, 2], 25}, then G[{z;, 2,24} is
isomorphic to a triangle for each i € {1,2}, and the two triangles have two common
vertices. If the copy contains at most three vertices in N(v), then there are at least two
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vertices in N3, say y; and y,. For any vertex y in the copy, if y € N3, then we have
y € N(x1) N N(x2). Since x120 ¢ E(G), we have yx; ¢ M for some i € [2], and there
is at most one vertex y such that yz; ¢ M since |S(z;)| = 1. Thus the copy contains at
most two vertices in N3, that is, y; and ys, and three vertices in N(v), say z1, 9, w. Then
yiz; ¢ M for some j € {1,2} and yox; ¢ M for some ¢ € {1,2} by the definition of M.
Since x1,x9 € By, we have i # j. We may assume that z,y; ¢ M for any ¢t € {1,2}. Thus
|IN(xz;) N N(v)| = 2 for any t € {1,2}. There are two triangles containing {z;,w} and
{2, w}, respectively, as claimed. ]

If there is a vertex w in Ny with B; C N(w), then we have |S(w)| > |[N(w)NNy|—2 >
|B1| — 2. Thus we have

Do IS =Y IS+ Y IS+ Y 1S(w)l

ue N1 u€A u€ By u€ By
= S|+ |Bi]
u€eA

> |S(w)| 4+ 2(|A| — 1) + | By |
> |Bi| — 2+ 2|A| — 2+ |B|
= 2|Ny| — 4
> 2|Ny| — 6,

saying that Inequality (8) holds.

In the remaining case, we may assume that there is no vertex w with B; C N(w). For
any z; € By, we have 2 < |N(z1) N N(v)| < 3. Since G is Ks-free, G[N(v)] is K4-free and
so there are at most two triangles in G[N(v)] containing x;. If there are two triangles
containing x1, then we have |N(x1)NN(v)| = 3. By letting N(z1)NN(v) = {y1,y2,ys}, we
have |E(G[{y1,y2, y3}])| = 2. We may assume that y,y2 € E(G) and y1y3 € E(G). For any
vertex xo € By with x1z9 ¢ E(G), Claim 15 guarantees that there is a triangle containing
x9 and one or two vertices of {y;,y2, y3}. If the triangle contains two vertices in {y1, y2, ys},
then the two vertices must be {y;,y2} or {y1,y3}. Note that there is no vertex w € N;
with By € N(w). We claim that there exists a vertex x3 such that there is no triangle
containing z3 and two vertices of {y1,¥y2,ys}. Assume to the contrary that for any vertex
x € By \ N(z1), there is a triangle containing = such that the triangle contains {y, 32} or
{y1,y3}. Then the vertex y; is the vertex in N; such that B; C N(y;), a contradiction.
By Claim 15, we have |N(x;) N N(v)| = 2, which contradicts |N(z1) N N(v)| = 3. Thus,
for any z; € By, there is exactly one triangle containing xy, say {z1,u,w}. Since there
is no vertex z € Nj such that B; C N(z), there are two vertices x5 and z3 in By such
that there is no triangle containing x; having two common vertices in {z;,u, w} for any
Jj € {2,3}. By Claim 15, we have |N(z3) N N(v)| = |N(z3) N N(v)| = 2 and there are
two triangles containing {zy,u} and {x3,w}, respectively, and the first triangle does not
contain w and the second does not contain u. Assume that the third vertex in the triangle
containing x; is x; for any j € {2,3}. Then we have zyu € E(G), which implies that
xh, # x3 and xews ¢ F(G). Since for any vertex b € By, there is exactly one triangle
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containing b, by Claim 15, we have z5, = 4. For any vertex b € B;, we assert that
b € N(u)UN(w)U N(z)). Since |N(x2) N N(v)| = 2, we have bxry ¢ E(G) for any
b€ By \ {x1, 22, 23}. By Claim 15, there is a triangle containing b and at least one vertex
in {u, 24}, as asserted. Thus we have

[S(u)| + [S(w)] + [S(x5)| 2 [Bi\ {z1, 22,23} + 4 %3 = 2% 3 =|Bi| + 3,

which gives

D ISEI=Y 18I+ Y 1SR+ Y 18(2)

z€Ny 2€A 2€B1 2€Bo
=Y 1S()] + B
z€A
> [S(u)] + [S(w)] + [S(x5)| + 2(JA] = 3) + | Bi]
> |By| 43 +2|A| — 6+ | By
=2|N,| -3
> 2|Ny| — 6,

saying Inequality (8) holds.
Case 2.3. |By| = 1, |B1| 2 1, and 2|Bo| + |B1| 2 7, or |By| = 1 and |B;| = 4.

Note that for any = € By, we have |N(z) N N(v)| = 2 and there is exactly one triangle
containing x; for any y € Bj, we have |[N(y) N N(v)| < 3. We assert that there are
two vertices 1 € By and y; € Bj such that z1y; ¢ E(G). Assume to the contrary
that G[By, B;] is a complete bipartite graph. Then we have |By| < 2, |By| < 3, and
2|By| + |B1| = 7. Since |N(x) N N(v)| = 2 and there is exactly one triangle containing x
for any « € By, we have |By| = |N(y1) N By| < 2. Thus 2|By| + | B:1| < 6, a contradiction.
Thus 111 ¢ E(G). Suppose that N(z1)NN(v) = {u,w}. Then G[{z1,u, w}] is isomorphic
to a triangle.

Claim 16. For any y € By U By with 1y ¢ E(G), we have y € N(u) N N(w).

Proof. G 4 x1y contains a copy of K5 as a subgraph. If the copy contains at least four
vertices in N (v), then the four vertices must be {x1,y,u,w} and y € N(u) N N(w), as
claimed. If the copy contains at most three vertices in N (v), then the other two vertices
must be in N3, say z; and 2. Then we have {z1,y} C N(z1) N N(z2). Since 21y ¢ E(G),
we have z;z1 ¢ M or z;y ¢ M for any ¢ € {1,2} by the definition of M. Then we have
x12; € M and z;y ¢ M for any ¢ € {1,2} and |S(y)| > 2 since z; € By, which contradicts
Yy < BO U Bl. ]

Since z1y; ¢ E(G), by Claim 16, we have y; € N(u) N N(w). Thus there is another
vertex ys € By U By such that yoxy ¢ E(G), else By C {yi,u,w}, By = {x1}, and
2|By| + |B1| < 5, a contradiction. By Claim 16, we have yo € N(u) N N(w) and so
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{u,w} C A. For any vertex b € (By U By) \ {1}, we have bx; ¢ E(G) and so b €
N(u) N N(w) by Claim 16. Thus we have

[S(u)| = |Bol + [B1| +1 =2 = |Bo| + [By| = 1

and
|S(w)| = |Bo| + [Bi| +1—=2=|Bo| + |B1| — 1.

Observe that

dDoISEI=) ISE+ Y 1SR+ Y IS(2)]

z€N1 z€A z€EB1 2€Bg
= IS(2)| + 1By
z€A

2 |S(u)| + [S(w)| + 2(|A] = 2) + [Bi]
> 2|By| + 2|By| — 2+ 2|A| — 4+ | By
=2|N,| — 6+ | B

> 2|Ny| — 6,

saying Inequality (8) holds.

Now we characterize the structure of the graph when equality in Inequality (9) holds
in Case 2. In fact, equality holds only when |By| + 2|By| = 6, |By| = 2, |S(z)| = 2
for any x € A, and d(u) = 5 for any u € Ny. If there are two nonadjacent vertices
x1,To in By then G + xyxy contains a copy of K5, and the copy does not contain any
vertex in Ns. Also there is a vertex y € N3 such that y € N(z1) N N(z2). Then we
have yz; ¢ M for some i € {1,2} since xyzy ¢ E(G), which contradicts z1,z2 € By.
Thus the copy must contain four vertices in N(v), say x1, Ts, 21, 2o such that 212, € E(G)
and {z1,x2} C N(z1) N N(z2). Assume to the contrary that Ny # (). Then there is a
vertex w € Ny. Since there is no triangle in G[N(v)] containing w, the copy of Kj in the
graph G + z;w must contain at least two vertices in N3, say yi,y5. Then yiyi € E(G).
Since z; € By, we have yix; € M and yiz; € M. Note that there is exactly one triangle
containing z;. We have {y},y4} C N(z1) N N(29) and G[{z;, yt, ys, 21, 22}] is isomorphic
to K5, a contradiction. Now assume that Ny = (). Then G[N;] is not isomorphic to
a book with the two spine vertices 21, z5. Otherwise, by the definition of M, we have
d(z1) = d(z2) = n — 1, a contradiction. Since |S(z;)| < 2 for any i € [2] and G[V;] is not
isomorphic to a book with the two spine vertices z1, 25, there is a vertex w € N; such that
wz; ¢ E(Q) for some i € {1,2}. We may assume that wz; ¢ F(G). Since wz; ¢ E(G)
and N(z;) N Ny = {z1, 22}, for any i € [2], G + wz; contains a copy of K3, and the copy
contains at most three vertices in N1 and at least two vertices in N3, saying yl, 4. Since
r; € By, we have yiz; € M and yix; € M. Also we have {yl,ys} N {y?, 3} = 0 since
r129 ¢ E(G). Thus we have |N(w) N N3| > 4 and |S(w)| > 4, a contradiction.

Now we may assume that G[By] is a complete graph. Assume that G[By] is a triangle
with three vertices z1, x2, r3. For any vertex w € N(v) \ By (such a vertex exists since
d(G) = 5), we have wz; ¢ E(G) for any i € {1,2,3}. Since |N(z;)NN(v)| = 2, the G+wx;
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contains at least three vertices in N3, say v}, y5, yi. Thus G[{y!, v, v4}] is a triangle. Since
there is exactly one triangle containing x1, we have {y{,ys,y:} C N(z2) N N(x3), which
vields that G[{y},vs, vy, x1,T2}] is isomorphic to Kj, a contradiction. Now assume that
By has exactly two vertices z1, xs. Suppose that the triangle containing 1, xs is T122u.
Since 0(G) > 5, there is a vertex w € N(v) such that wx; ¢ E(G) for any ¢ € {1,2}.
Note that a copy of K5 in G + wx; must contain at most three vertices in N(v) and at
least two vertices in N3, say !, ys, since |N(z;) N N(v)| = 2. Thus we have yiz; € M,
ysr; € M, and yiys € E(G). Since there is exactly one triangle containing z;, we have
{yi,ya} € N(z1) N N(x3) N N(u) by the definition of M. Thus G[{x1,z2,u,yi,ys}] is
isomorphic to K35, a contradiction. This completes the proof of Theorem 3.
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