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Abstract

A graph G on n vertices is a threshold graph if there exist real numbers a1, a2, . . . ,
an and b such that the zero-one solutions of the linear inequality

n∑
i=1

aixi 6 b

are exactly the characteristic vectors of the cliques of G.
The threshold dimension of a graph G is the minimum number of threshold

graphs whose intersection yields G. We give tight or nearly tight upper bounds for
the threshold dimension of a graph in terms of various graph parameters including
treewidth, maximum degree, degeneracy, number of vertices, and vertex cover num-
ber. We also study threshold dimension of random graphs and graphs with high
girth.

Mathematics Subject Classifications: 05C70, 05C62

1 Introduction

All graphs mentioned in this paper are finite, simple, and undirected. Given a graph
G = (V,E), we shall use V (G) and E(G) to denote the vertex set and edge set of G,
respectively. For any v ∈ V (G), we use NG(v) to denote the neighborhood of v in G,
i.e., NG(v) = {u ∈ V (G) : vu ∈ E(G)}. We use NG[v] to denote NG(v) ∪ {v}. For any
S ⊆ V (G), we shall use G[S] to denote the subgraph induced by the vertex set S in G.
We use G − S to denote the graph G[V (G) \ S]. A subset of vertices in a graph forms
a clique if each pair of vertices in this subset has an edge between them; if no pair of
vertices have an edge between them, then the subset is called an independent set.
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A graph G on n vertices is a threshold graph if there exist real numbers a1, a2, . . . , an

and b such that the zero-one solutions of the linear inequality
n∑
i=1

aixi 6 b are the char-

acteristic vectors of the cliques of G. Chvátal and Hammer [7] showed that threshold
graphs are exactly the graphs that contain no induced subgraph isomorphic to 2K2, P4

or C4 (the graph with four vertices and two disjoint edges, the path on four vertices, and
the cycle on four vertices, respectively). Thus, the complement of a threshold graph is
also a threshold graph, implying that one can replace ‘cliques’ with ‘independent sets’
in the definition of a threshold graph. The complete graph on n vertices is a threshold

graph with the corresponding linear inequality being
n∑
i=1

xi 6 n. Similarly, the star graph

K1,n−1 is a threshold graph, as shown by the linear inequality x1 +
n∑
i=2

(n− 1)xi 6 n. For

a graph G, the characteristic vectors of the subsets of V (G) correspond to the corners of
the n-dimensional hypercube. Thus, a graph G is threshold if and only if there is a hyper-
plane in Rn that separates the corners of the n-dimensional hypercube that correspond
to the cliques of G from the other corners of the hypercube. Threshold graphs, which
find applications in integer programming and set packing problems, were introduced by
Chvátal and Hammer [7]. Refer to the book [14] by Golumbic to know more about the
different properties of threshold graphs. A more comprehensive study of threshold graphs
can be found in the book [19] by Mahadev and Peled.

The following equivalent characterization of threshold graphs (Corollary 1B in [7]) will
be useful for us.

Proposition 1 (Chvátal and Hammer [7]). G is a threshold graph if and only if there is a
partition of V (G) into an independent set A and a clique B, and an ordering u1, u2, . . . , uk
of A such that NG(uk) ⊆ NG(uk−1) ⊆ · · · ⊆ NG(u1).

If G1, G2, . . . , Gk are graphs on the same vertex set as G such that E(G) = E(G1) ∩
E(G2)∩· · ·∩E(Gk), then we say that G is the intersection of G1∩G2∩· · ·∩Gk and denote
this by G = G1∩G2∩ · · · ∩Gk. In a similar way, if E(G) = E(G1)∪E(G2)∪ · · · ∪E(Gk),
then we say that G = G1 ∪ G2 ∪ · · · ∪ Gk. Given a class A of graphs, Kratochv́ıl and
Tuza [18] defined the A-dimension of a graph G, denoted as dimA(G), to be the minimum
integer k such that there exist k graphs in A whose intersection is G. Let TH denote the
class of threshold graphs. Chacko and Francis [4] studied the parameter dimTH(G) of a
graph G, which in the language of [18], can be called the threshold dimension of G.

Definition 2 (Threshold dimension). The threshold dimension of a graph G, denoted by
dimTH(G), is the smallest integer k for which there exist threshold graphs G1, G2, . . . , Gk

such that G = G1 ∩G2 ∩ · · · ∩Gk.

Note that Chvátal and Hammer [7] use the term “threshold dimension” of a graph G
with a slightly different meaning: they define it to be the minimum integer k for which
there exist threshold graphs G1, G2, . . . , Gk such that G = G1 ∪ G2 ∪ · · · ∪ Gk. We call
this the threshold cover number of G and denote it by covTH(G). Since the complement
of a threshold graph is also a threshold graph, we have the following.
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Observation 3. For a graph G, covTH(G) = dimTH(G).

Threshold dimension of graphs has close connections to the circuit complexity of cer-
tain kinds of Boolean functions (see [7, 12,15] for more details).

For a graph G, let α(G), ω(G), and χ(G) denote the maximum size of an independent
set, the maximum size of a clique, and the chromatic number of G, respectively. It
was shown in [7] that for every graph G on n vertices, covTH(G) 6 n − α(G). In the
same paper, the authors also showed that for every positive ε, there is a graph G on n
vertices such that covTH(G) > (1 − ε)n. Yannakakis [26] showed that it is NP-complete
to recognize graphs having threshold cover number at most k, for all fixed k > 3. Raschle
and Simon [20] showed that there is a polynomial time algorithm that recognizes graphs
having threshold cover number at most 2. Combining Observation 3 with the results
from [7,20,26] mentioned above directly yields the following.

Corollary 4.

(a) For a graph G on n vertices, dimTH(G) 6 n− ω(G).

(b) For every positive ε, there is a graph G on n vertices such that dimTH(G) > (1−ε)n.

(c) For all fixed k > 3, it is NP-complete to recognize graphs having threshold dimension
at most k.

(d) There is a polynomial-time algorithm that recognizes graphs having threshold dimen-
sion at most 2.

We now give a lower bound on the threshold dimension of a graph.

Proposition 5. For a graph G, dimTH(G) > min{χ(G− C) : C is a clique of G}.

Proof. Suppose that G is a graph and G1, G2, . . . , Gk are threshold graphs such that
G = G1 ∩ G2 ∩ · · · ∩ Gk. By Proposition 1, we have that for each i ∈ [k], there is a
partition of V (Gi) into an independent set Ai and a clique Bi. It is not difficult to see
that B = B1 ∩ B2 ∩ · · · ∩ Bk is a clique of G, and each Ai, for i ∈ [k], is an independent
set of G. Since V (G) \ B = A1 ∪ A2 ∪ · · · ∪ Ak, we have that V (G) \ B is the union of k
independent sets of G. Therefore, χ(G− B) 6 k. Thus there always exists a clique B in
G such that k > χ(G−B). This completes the proof.

Note that the above proposition actually gives a lower bound on dimSPLIT(G), where
SPLIT is the class of “split graphs” — the graphs whose vertex set can be partitioned into
an independent set and a clique — of which the class of threshold graphs is a subclass.

A graph is an interval graph if there is a mapping from the set of vertices of the
graph to a set of closed intervals on the real line such that two vertices in the graph are
adjacent to each other if and only if the intervals they are mapped to have a non-empty
intersection. Let INT denote the class of interval graphs. The parameter dimINT(G) is
more commonly known as the boxicity of the graph G and denoted as box(G). It is known
that threshold graphs form a subclass of the class of interval graphs. This implies the
following.
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Observation 6. For a graph G, box(G) 6 dimTH(G).

The graph parameter ‘boxicity’ was introduced by Roberts [21] in 1969 and has been
extensively studied in the literature (see [1, 2, 5, 6, 11, 17]). Observation 6 will help us get
tight examples to various bounds we prove for threshold dimension in this paper. Chacko
and Francis [4] gave the following upper bound for the threshold dimension of a graph G
in terms of its boxicity and chromatic number.

Theorem 7 (Theorem 19 in [4]). For a graph G, dimTH(G) 6 box(G) · χ(G).

We note here that the above upper bound is tight, as shown by the following obser-
vation, which also shows that the threshold dimension of a graph cannot be bounded by
any function of its boxicity.

Proposition 8. There is an interval graph G for which dimTH(G) = χ(G) = |V (G)|/2.

Proof. Consider the graph 2Kn. This graph is clearly an interval graph, and remov-
ing any clique from this graph results in a graph that contains a clique of n vertices.
Thus by Proposition 5, we have that dimTH(2Kn) > n = χ(2Kn). Theorem 7 implies
dimTH(2Kn) 6 n.

In this paper, we prove tighter upper bounds for the threshold dimension of a graph
that cannot be obtained from Theorem 7 by plugging in known upper bounds for boxicity.

1.1 Our results

For a graph G, we let ∆(G) denote the maximum degree of a vertex in G. When the
graph G under consideration is clear from the context, we sometimes abbreviate ∆(G) to
just ∆. Let tw(G) denote the treewidth of a graph G. We prove the following results.

1. Chandran and Sivadasan [6] showed that for any graph G, box(G) 6 tw(G) + 2.
Using the folklore result that χ(G) 6 tw(G) + 1 (see for example, Lemma 8 in [6])
and Theorem 7, it follows that for any graph G, dimTH(G) 6 (tw(G)+1)(tw(G)+2).
Chacko and Francis [4] ask if the threshold dimension of every graph can be bounded
by a linear function of its treewidth. In Section 2, we answer this question in the
affirmative by showing that dimTH(G) 6 2(tw(G) + 1). We show that this bound is
tight up to a multiplicative factor of 2. Co-comparability graphs, AT-free graphs,
and chordal graphs are known to have O(∆) upper bounds on their treewidth. We
thus get an O(∆) upper bound to the threshold dimension of such graphs.

2. From Theorem 7, the result of Scott and Wood [23] that the boxicity of any graph
is upper bounded by ∆ ln1+o(1) ∆, and the fact that the chromatic number of any
graph is at most ∆+1, we have that for any graph G, dimTH(G) 6 box(G)·(∆+1) 6
∆(∆ + 1) ln1+o(1) ∆. Thus, it is clear that dimTH(G) is bounded in terms of ∆(G).
Let dimTH(∆) := max{dimTH(G) : G is a graph having maximum degree ∆}. From
the discussion above, it is clear that dimTH(∆) = O(∆2 ln1+o(1) ∆). We improve this
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in Section 3 by showing that dimTH(∆) = O(∆ ln2+o(1) ∆). It was shown by Erdős,
Kierstead, and Trotter in [9] that there exist graphs G having boxicity Ω(∆ ln ∆).
Using Observation 6, we get dimTH(∆) = Ω(∆ ln ∆). Bridging the gap between the
upper and lower bounds for dimTH(∆) would be interesting.

3. Let G be k-degenerate. We show in Section 4 that dimTH(G) 6 10k lnn. It was
shown in Section 3.1 in [2] that there exist k-degenerate graphs on n vertices with
boxicity Ω(k lnn). Together with Observation 6, this implies that the upper bound
for dimTH(G) we prove in Section 4 is tight up to a constant factor. This bound
gives some interesting corollaries.

(a) Let G be a graph that is drawn uniformly at random from the collection of all
graphs on n vertices and m edges (this is usually denoted as G ∈ G(n,m)). If
m > n/2 then asymptotically almost surely, dimTH(G) = O(dav log n), where
dav = 2m

n
denotes the average degree of G.

(b) If G has girth at least g + 1, then dimTH(G) = O(n
1
bg/2c lnn).

4. In Section 5, we show that the threshold dimension of any graph is upper bounded
by its vertex cover number, which implies that for any graph G, dimTH(G) 6 n −
max{α(G), ω(G)}. We show that this bound is tight. As a corollary we show that
for every graph G on n vertices, dimTH(G) 6 n− b0.72 lnnc − 1.

1.2 Preliminaries

The definition and proposition below help us define many different threshold supergraphs
of a given graph. This shall be our main tool for proving the upper bounds in this paper.

Definition 9. Given a graph G, an independent set A = {u1, u2, . . . , ut} in G, and a
total ordering σ : u1, u2, . . . , ut of the vertices of A, we define the threshold supergraph
τ(G,A, σ) ofG as follows. Let B = V (G)\A and for v ∈ B, let s(v) = max{i : ui ∈ NG(v)}
if NG(v) ∩ A 6= ∅ and s(v) = 0 otherwise. In τ(G,A, σ), the vertices of A form an
independent set and those of B form a clique and each vertex v ∈ B is adjacent to exactly
the vertices u1, u2, . . . , us(v). Formally,

V (τ(G,A, σ)) = V (G)

E(τ(G,A, σ)) = E(G) ∪ {xy : x, y ∈ B and x 6= y} ∪
⋃
v∈B

{vu1, vu2, . . . , vus(v)}

The following proposition follows directly from the above definition and Proposition 1.

Proposition 10. Given a graph G, an independent set A of G, and an ordering σ of A,
the graph τ(G,A, σ) is a threshold graph and G is its subgraph.
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2 Threshold dimension and treewidth

In this section, we show that, for a graph G, dimTH(G) 6 2(tw(G) + 1), where tw(G)
denotes the treewidth of G. We set up some notations and discuss some necessary existing
results before going into the proof of the main result.

The notion of treewidth was first introduced by Robertson and Seymour in [22].

Definition 11 (Tree decomposition). A tree decomposition of a graph G = (V,E) is a
pair (T, {Xi : i ∈ V (T )}) where T is a tree and for each i ∈ V (T ), Xi is a subset of V (G)
(called a “bag”), such that the following conditions are satisfied:

•
⋃
i∈V (T ) Xi = V (G).

• For all uv ∈ E(G), there exists i ∈ V (T ) such that u, v ∈ Xi.

• For all i, j, k ∈ V (T ): if j is on the path in T from i to k, then Xi ∩Xk ⊆ Xj.

The width of a tree-decomposition (T, {Xi : i ∈ V (T )}) is maxi∈V (T ) |Xi| − 1.

Definition 12 (Treewidth). The treewidth of a graph G, denoted by tw(G), is the mini-
mum width over all possible tree decompositions of G.

A tree decomposition (T, {Xi : i ∈ V (T )}) of a graph G is said to be a path decomposi-
tion of G if T is a path. The pathwidth of G, denoted by pw(G), is defined as the minimum
width over all possible path decompositions of G. The following result by Chacko and
Francis connects threshold dimension of a graph with its pathwidth.

Theorem 13 (Theorem 30 in [4]). For every graph G, dimTH(G) 6 pw(G) + 1.

Since path decompositions are special cases of tree decompositions, it can be seen
that tw(G) 6 pw(G). Korach and Solel showed that pw(G) = O(log n · tw(G)), where
n = |V (G)| (Theorem 6 in [16]). We thus have dimTH(G) = O(log n · tw(G)). Chacko
and Francis note that for any graph G, dimTH(G) 6 (tw(G) + 1)(tw(G) + 2) and ask if
there is a linear bound on the threshold dimension of a graph in terms of its treewidth.
We give an affirmative answer to this question.

Given an ordering σ of the vertices of a graph G and u, v ∈ V (G), we denote by u <σ v
the fact that u appears before v in the ordering.

Let T be a rooted tree. For any u, v ∈ V (T ), u is an ancestor of v, and v a descendant
of u, if u lies on the path from v to the root of T . It follows from this definition that every
vertex of T is both an ancestor and descendant of itself. For a rooted tree T , a preorder
traversal of T is an ordering of V (T ) in the order in which a depth-first search algorithm
starting from the root may visit the vertices of T . The following is not difficult to see.

Proposition 14. If π is a preorder traversal of a rooted tree T , then:

(i) for u, v ∈ V (T ) such that v is a descendant of u, we have u <π v, and

(ii) for u, v, w ∈ V (T ) such that u <π v <π w, if w is a descendant of u, then v is also
a descendant of u.
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Let G be a graph and T = (T, {Xi : i ∈ V (T )}) be a tree decomposition of G having
width k. We choose an arbitrary vertex r to be the root of T and henceforth consider T
to be a rooted tree. Then a function b : V (G)→ V (T ) is defined as follows: for a vertex
v ∈ V (G), b(v) is the bag containing v in the tree decomposition that is closest to r.
Formally, b(v) is the vertex of T such that v ∈ Xb(v) and v /∈ Xi for any i ∈ V (T ) that is
an ancestor of b(v).

Lemma 15 (Lemma 10 in [6]). If uv ∈ E(G), then b(u) is either an ancestor or descen-
dant of b(v) in T .

Lemma 16 (Lemma 8 in [6]). There exists a function θ : V (G)→ {0, 1, . . . , k}, such that
for any i ∈ V (T ) and for any two distinct nodes u, v ∈ Xi, θ(u) 6= θ(v).

Remark. To obtain such a function θ, consider for example an optimal proper vertex
coloring of the chordal graph G′ that one obtains from G by adding edges between every
pair of vertices that appear together in some bag of the tree decomposition. Clearly, T
is a tree decomposition of G′ as well. From the fact that every clique in G′ has to be
contained in some bag of T , and the fact that chordal graphs are perfect, it follows that
θ needs to use only max{|Xi| : i ∈ V (T )} different colors.

In the following, we denote by θ a function of the type that is guaranteed to exist by
Lemma 16. The following lemmas from [6] describe some properties of the functions θ
and b that we will use later. These are direct corollaries of the definition of θ and that of
tree decompositions.

Lemma 17 (Lemma 9 in [6]). If uv ∈ E(G) then θ(u) 6= θ(v).

Lemma 18 (Lemma 11 in [6]). Let uv ∈ E(G) and let b(u) be an ancestor of b(v). For
any vertex w ∈ V (G) \ {u}, θ(w) 6= θ(u) if b(w) is in the path from b(v) to b(u) in T .

Let π be a preorder traversal of T . Let σ be an ordering of V (G) such that for any
two vertices u, v ∈ V (G), u <σ v if b(u) <π b(v). (In σ, we let the ordering between
two vertices u, v ∈ V (G) such that b(u) = b(v) be arbitrary. Thus, if u <σ v, then
b(u) 6π b(v).) Let σ−1 denote the ordering of V (G) obtained by reversing the ordering
σ. Given a set A ⊆ V (G), we denote by σ|A the ordering of vertices of A in the order in
which they appear in σ.

For i ∈ {0, 1, . . . , k}, we define Ci = {v ∈ V (G) : θ(v) = i}. From Lemma 17, we know
that θ is a proper coloring of G, which implies that Ci is an independent set of G. For
each i ∈ {0, 1, . . . , k}, we define two graphs G1

i = τ(G,Ci, σ|Ci) and G2
i = τ(G,Ci, σ

−1|Ci).

Lemma 19. Let u, v be distinct vertices in G. Then there do not exist xu, yu ∈ NG(u) and
xv, yv ∈ NG(v) such that xu <σ v <σ yu, xv <σ u <σ yv, θ(u) = θ(xv), and θ(v) = θ(xu).

Proof. Suppose that there exist xu, yu ∈ NG(u) and xv, yv ∈ NG(v) such that xu <σ

v <σ yu, xv <σ u <σ yv, θ(u) = θ(xv), and θ(v) = θ(xu). Clearly, we have either
u <σ v or v <σ u. Let us assume without loss of generality that u <σ v. Then we
have u <σ v <σ yu, which implies that b(u) 6π b(v) 6π b(yu). Since uyu ∈ E(G), we
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have from Lemma 15 that b(u) is either an ancestor or descendant of b(yu). As π is a
preorder traversal of T , Proposition 14(i) implies that b(u) is an ancestor of b(yu) in T .
As b(u) 6π b(v) 6π b(yu), it now follows from Proposition 14(ii) that b(v) is a descendant
of b(u). Similarly, xv <σ u <σ v implies that b(xv) 6π b(u) 6π b(v), and vxv ∈ E(G) then
implies by Lemma 15, Proposition 14(i) and (ii) that b(u) is a descendant of b(xv). Now
applying Lemma 18 to xv, u and v, we have that θ(xv) 6= θ(u), which is a contradiction.

Lemma 20. G =
⋂

06i6k
(G1

i ∩G2
i )

Proof. Consider any two distinct vertices u and v of G. Since G1
i and G2

i , for 1 6 i 6 k,
are both supergraphs of G by definition, we have that if uv ∈ E(G), then uv is an edge
of both G1

i and G2
i . So in order to prove the lemma, we only need to prove that whenever

uv /∈ E(G), there exists i ∈ {0, 1, . . . , k} and j ∈ {1, 2} such that uv /∈ E(Gj
i ).

Suppose that uv /∈ E(G). First, let us consider the case when θ(u) = θ(v) = i. Since
the class Ci is an independent set in G1

i and G2
i , uv is an edge in neither G1

i nor G2
i ,

and we are done. So let us assume that θ(u) 6= θ(v). Let θ(u) = i and θ(v) = j. We
claim that uv is not an edge in one of the graphs G1

i , G
2
i , G

1
j , or G2

j . Suppose for the
sake of contradiction that uv ∈ E(G1

i ) ∩ E(G2
i ) ∩ E(G1

j) ∩ E(G2
j). Then uv is an edge in

each of the graphs τ(G,Ci, σ|Ci), τ(G,Ci, σ
−1|Ci), τ(G,Cj, σ|Cj), τ(G,Cj, σ

−1|Cj). Since
uv ∈ E(τ(G,Ci, σ|Ci)), by Definition 9, we have that there exists yv ∈ Ci ∩ NG(v) such
that u <σ yv. Further, since uv ∈ E(τ(G,Ci, σ

−1|Ci)), there exists xv ∈ Ci ∩ NG(v)
such that u <σ−1 xv, or in other words, xv <σ u. As uv ∈ E(τ(G,Cj, σ|Cj)) and uv ∈
E(τ(G,Cj, σ

−1|Cj)), we can similarly conclude that there exist xu, yu ∈ Cj ∩NG(u) such
that xu <σ v <σ yu. Since θ(xu) = θ(v) = j and θ(xv) = θ(u) = i, we now have a
contradiction to Lemma 19.

From Proposition 10 and Definition 9, it follows that G1
i and G2

i are both threshold
graphs for each i ∈ {0, 1, 2, . . . , k}. Thus by Lemma 20, we get that dimTH(G) 6 2(k+1),
which leads to the following theorem.

Theorem 21. For any graph G, dimTH(G) 6 2(tw(G) + 1).

Tightness of the bound

Note that from Proposition 8, we know that the graph 2Kn has threshold dimension n
and it is easy to see that the treewidth of this graph is n− 1. Thus the upper bound on
threshold dimension given by Theorem 21 is tight up to a multiplicative factor of 2. We
give below another example showing the same tightness result.

Example 22. Let A = {a1, . . . , an} and B = {b1, . . . , bn}. Let G be a graph defined as
V (G) = A ∪ B and E(G) = {aiaj : 1 6 i < j 6 n} ∪ {aibi : 1 6 i 6 n}. Let H be the
complement of the graph G.

We claim that dimTH(H) = n. To show that dimTH(H) 6 n, it is easy to see that
the edges of G can be covered using n threshold graphs (for each ` ∈ {1, 2, . . . , n}, we
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can construct a threshold graph having vertex set V (G) and edge set {aiaj : 1 6 i <
j 6 n} ∪ {a`b`}; the union of these graphs is G). In order to prove that dimTH(H) > n,
assume that there is a collection C of fewer than n threshold graphs whose intersection
gives H. Then, for each i ∈ [n] there must exist a threshold graph in C in which ai is
non-adjacent to bi. As |C| < n, this means that there exists a threshold graph in C in
which ai is non-adjacent to bi and aj is non-adjacent to bj, for some distinct i, j ∈ [n].
This implies the existence of an induced P4 (the path aibjbiaj) in this threshold graph,
which is a contradiction.

Next, we show that tw(H) = n−1. Since H contains a clique of size n, tw(H) > n−1.
Let X0 = {b1, . . . , bn}, Xi = {ai} ∪ (B \ {bi}), for all i ∈ [n]. Let T be the tree having
vertex set {0, 1, . . . , n} in which the vertex 0 has degree n and all other vertices have
degree 1. Observe that the pair (T, {Xi}i∈{0,1,...,n}) is a tree decomposition of H having
width n−1. Thus, tw(H) 6 n−1. Hence, this example also demonstrates that the bound
in Theorem 21 is tight up to a multiplicative factor of 2.

3 Threshold dimension and maximum degree

Let dimTH(∆) := max{dimTH(G) : G is a graph having maximum degree ∆}. In this
section, we show that dimTH(∆) = O(∆ ln2+o(1) ∆).

3.1 Definitions, notations, and auxiliary results

Given a graph G and an S ⊆ V (G), recall that we use G[S] to denote the subgraph induced
by the vertex set S in G. For any disjoint pair of sets S, T ⊆ V (G), we use G[S, T ] to
denote the bipartite subgraph of G such that V (G[S, T ]) = S ∪ T and E(G[S, T ]) =
{uv : u ∈ S, v ∈ T, uv ∈ E(G)}. Let G∗[S, T ] denote the graph constructed from G[S, T ]
by making T a clique. That is, V (G∗[S, T ]) = S ∪ T and E(G∗[S, T ]) = E(G[S, T ]) ∪
{uv : u, v ∈ T, u 6= v}.

We state below the definition of a k-suitable family of permutations that was intro-
duced by Dushnik in [8].

Definition 23 (k -suitable family of permutations). Let n, k be integers such that n >
k > 1. A family of permutations (or linear orders), σ := {σ1, σ2, . . . , σr} of [n], is called a
k-suitable family of permutations of [n] if for all k-sized subsets A of [n] and an element
x ∈ A there exists a permutation σi ∈ σ such that x succeeds all the elements y ∈ A\{x}
in σi; i.e., y <σi x for all y ∈ A \ {x}.

The following lemma is due to Spencer [24] though the exact value of k and n are
worked out by Scott and Wood in Lemma 5 of [23]. We shall use the same values in our
calculations too.

Lemma 24 (Spencer [24]). For every k > 2 and n > 104 there is a k-suitable family of
permutations of size at most k2k ln lnn.
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Lemma 25 (Lemma 12 in [23]). Let G be a bipartite graph with bipartition {A,B}, where
vertices in A have degree at most ∆ and vertices in B have degree at most d. Let r, t, `
be positive integers such that

` > e

(
ed

r + 1

)1+1/r

and t > ln(4d∆).

Then there exist t colorings c1, . . . , ct of A, each with ` colors, such that for each vertex
v ∈ B, for some coloring ci, each color is assigned to at most r neighbors of v under ci.

We use Lemmas 24 and 25 to prove the following lemma which is a prerequisite to our
proof of Theorem 29.

Lemma 26. Let G be a bipartite graph with bipartition {A,B}, where vertices in A have
degree at most ∆ and vertices in B have degree at most d, for some 2 6 d 6 ∆. Then,

dimTH(G∗[A,B]) 6 (81 + o(1))d ln (d∆) ln ln ∆(2e)
√

ln d,

when d→∞.

Proof. We follow the proof idea of Lemma 13 in [23]. Let r =
⌈√

ln d
⌉
, ` =

⌈
e
(
ed
r+1

)1+1/r
⌉
,

and t = dln(4d∆)e. Hence, we know from Lemma 25 that there exist t colorings c1, c2, . . . ,
ct of A, each with ` colors, such that for each vertex v ∈ B, for some coloring cj, each
color is assigned to at most r neighbors of v under cj. To obtain the threshold dimension
of G∗[A,B] we further partition B sequentially into t parts, namely B1, B2, . . . , Bt, based
on the t colorings of A. A vertex v ∈ B is in Bj if and only if j is the smallest integer such
that each color appears on at most r neighbors of v under cj. For a particular coloring
cj and 1 6 k 6 `, we define Aj,k as the set containing all the vertices v ∈ A such that
cj(v) = k. Let Gj,k be the supergraph of G∗[A,B] obtained from G∗[Aj,k, Bj] by adding
as universal vertices all the vertices of G that are not in Aj,k∪Bj. Let H be the threshold
supergraph of G∗[A,B] defined as: V (H) = A∪B, E(H) = {uv : u ∈ B, v ∈ V (H)\{u}}.
Then we have the following:

G∗[A,B] = H ∩

( ⋂
16j6t

⋂
16k6`

Gj,k

)
. (1)

Now we are going to calculate dimTH(Gj,k). In order to use the kind of threshold super-
graphs defined in Definition 9, we need an ordering of the vertices in Aj,k, which is an
independent set in Gj,k. Let G′ denote the graph with V (G′) = Aj,k and two vertices
x, y ∈ Aj,k are adjacent in G′ if and only if they have a common neighbor in Bj. We
properly color G′ using r∆ + 1 colors as the maximum degree of a vertex in G′ is at
most r∆. Let the color classes be C1, C2, . . . , Cr∆+1. Then Aj,k = C1 ] C2 ] · · · ] Cr∆+1

and in Gj,k, every vertex in Bj has at most one neighbor in each color class Ci. We
determine the ordering of the vertices in Aj,k based on an (r + 1)-suitable family of per-
mutations, σ1, σ2, . . . , σp, of C1, C2, . . . , Cr∆+1. From Lemma 24, we can assume that
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p 6 (r + 1)2(r+1) ln ln (r∆ + 1). From each σa, where 1 6 a 6 p, we construct two linear
orderings σ1

a and σ2
a of Aj,k as described below:

σ1
a := ψσa(1), ψσa(2), . . . , ψσa(r∆+1) ,

σ2
a := ψ−1

σa(1), ψ
−1
σa(2), . . . , ψ

−1
σa(r∆+1) .

In the above, for 1 6 i 6 r∆ + 1, ψi denotes an arbitrary ordering of the vertices of Ci
and ψ−1

i denotes the reverse of ψi. Now that we have total orderings σ1
a and σ2

a of Aj,k,
we consider the two threshold supergraphs τ(Gj,k, Aj,k, σ

1
a) and τ(Gj,k, Aj,k, σ

2
a) of Gj,k.

Claim 27. Gj,k =
⋂

16a6p
(τ(Gj,k, Aj,k, σ

1
a) ∩ τ(Gj,k, Aj,k, σ

2
a)).

Proof. From Definition 9, we know that if uv ∈ E(Gj,k), then uv is present in both
τ(Gj,k, Aj,k, σ

1
a) and τ(Gj,k, Aj,k, σ

2
a), for all a ∈ [p]. Hence we only need to show that

if uv /∈ E(Gj,k) then there exists at least one threshold supergraph in the collection
where u and v are non-adjacent. If u, v ∈ Aj,k then uv /∈ E(τ(Gj,k, Aj,k, σ

1
a)) and uv /∈

E(τ(Gj,k, Aj,k, σ
2
a)), for all a ∈ [p]. Without loss of generality, assume u ∈ Aj,k and

v ∈ Bj. Let C ∈ {C1, C2, . . . , Cr∆+1} be the color class containing u. We know from
the property of the color classes Ci that v has at most one neighbor in every Ci (in
particular, in C). Suppose |NGj,k(v) ∩ C| = 0. We know that a vertex v ∈ Bj has at
most r neighbors in Aj,k. Since we have performed (r+ 1)-suitability on the color classes
C1, C2, . . . , Cr∆+1, there exists a permutation σ ∈ {σ1, σ2, . . . , σp} where C succeeds all
the color classes that contain a neighbor of v. Thus, u succeeds all the neighbors of v
in Aj,k in both σ1 and σ2. Hence, u and v are non-adjacent in both τ(Gj,k, Aj,k, σ

1) and
τ(Gj,k, Aj,k, σ

2). Suppose |NGj,k(v) ∩ C| = 1. Let {w} = NGj,k(v) ∩ C. There exists a
permutation σ ∈ {σ1, σ2, . . . , σp} such that C succeeds all the other color classes that
contain a neighbor of v in σ. Then, w succeeds all the other neighbors of v in Aj,k in both
σ1 and σ2. Since u succeeds w in one of σ1 or σ2, it follows that u and v are non-adjacent
in either τ(Gj,k, Aj,k, σ

1) or τ(Gj,k, Aj,k, σ
2).

Therefore, dimTH(Gj,k) 6 2p. Now from (1) we can write:

dimTH(G∗[A,B]) 6 1 + 2pt`

Before substituting the values of p, `, and t in the above inequality, we simplify them
below.

p 6 (r + 1)2r+1 ln ln(r∆ + 1) 6 (r + 1)2r+1 ln ln

(
r∆

(
1 +

1

r∆

))
6 (r + 1)2r+1 ln ln

(
r∆ · e

1
r∆

)
= (r + 1)2r+1 ln

(
ln r∆ +

1

r∆

)
6 (r + 1)2r+1 ln

(
ln ∆

(
1 +

r∆ ln r + 1

r∆ ln ∆

))
= (r + 1)2r+1 ln (ln ∆(1 + o(1)))

= (1 + o(1))(r + 1)2r+1 ln ln ∆
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t = dln (4d∆)e 6 ln 4 + ln (d∆) + 1 =

(
1 +

1 + ln 4

ln (d∆)

)
ln (d∆) 6 (1 + o(1)) ln (d∆)

` =

⌈
e

(
ed

r + 1

)1+ 1
r

⌉
6 e2+ 1

r ·
( d

r + 1

)1+ 1
r + 1 6 e3 ·

(
d

r + 1

)1+ 1
r

+ 1

= (1 + o(1))e3

(
d

r + 1

)1+ 1
r

Therefore,

dimTH(G∗[A,B]) 6 1 +

(
2 · (1 + o(1))(r + 1)2r+1 ln ln ∆

· (1 + o(1)) ln (d∆) · (1 + o(1))e3

(
d

r + 1

)1+ 1
r
)

6 1 +

(
4e3(1 + o(1))d ln (d∆) ln ln ∆(2rd

1
r )

1

(r + 1)
1
r

)
6 1 +

(
(4e3 + o(1))d ln (d∆) ln ln ∆(2e)

√
ln d
)

6 (81 + o(1))d ln (d∆) ln ln ∆(2e)
√

ln d.

3.2 Proof of the main theorem

We need the following partitioning lemma by Scott and Wood.

Corollary 28 (Corollary 11 in [23]). For every graph G with maximum degree ∆ > 2 and
for all integers d > 100 ln ∆ and k > 3∆

d
, there is a partition V1, . . . , Vk of V (G), such

that |NG(v) ∩ Vi| 6 d for each v ∈ V (G) and i ∈ [k].

Theorem 29. For a graph G with maximum degree ∆,

dimTH(G) 6 (24300 + o(1))∆ ln2 ∆ ln ln ∆(2e)
√

(1+o(1)) ln ln ∆,

when ∆→∞.

Proof. Let d = d100 ln ∆e and k =
⌈

3∆
d

⌉
. Using Corollary 28, we get a partition of V (G)

into k parts, V1, V2, . . . , Vk, such that for any vertex v ∈ V (G), |NG(v) ∩ Vi| 6 d, where
1 6 i 6 k. Since the maximum degree of G[Vi] is at most d, we can properly color G[Vi]
using d + 1 colors. Therefore, for all i ∈ [k], each part Vi can further be partitioned into
d+ 1 parts, namely V 1

i , V
2
i , . . . , V

d+1
i , where each part is an independent set in G.

Claim 30.
G =

⋂
16i6k

⋂
16j6d+1

G∗[V j
i , V (G) \ V j

i ].
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Proof. From the fact that V j
i is an independent set in G and from the construction of

G∗[V j
i , V (G)\V j

i ], it is clear that G∗[V j
i , V (G)\V j

i ], for i ∈ [k], j ∈ [d+1], is a supergraph
of G. Suppose that uv /∈ E(G). If u, v ∈ V j

i for some i ∈ [k] and j ∈ [d+ 1], then u and v
are non-adjacent in G∗[V j

i , V (G)\V j
i ]. Otherwise, u ∈ V j

i for some i ∈ [k] and j ∈ [d+1],
and v ∈ V (G) \ V j

i , in which case u and v are non-adjacent in G∗[V j
i , V (G) \ V j

i ].

Applying Lemma 26 we can write,

dimTH(G) 6 k · (1 + o(1))d · (81 + o(1))d ln (d∆) ln ln ∆(2e)
√

ln d

6 (243 + o(1))∆d ln ∆ ln ln ∆(2e)
√

ln d

(
since k =

⌈
3∆

d

⌉
and

ln (d∆) 6 (1 + o(1)) ln ∆

)
6 (24300 + o(1))∆ ln2 ∆ ln ln ∆(2e)

√
(1+o(1)) ln ln ∆

(since d = d100 ln ∆e) .

Since

(2e)
√

(1 + o(1)) ln ln ∆ ln ln ∆ = (ln ∆)
ln(2e)
√

(1+o(1)) ln ln ∆

ln ln ∆
+ ln ln ln ∆

ln ln ∆ = lno(1) ∆

we get the following corollary.

Corollary 31.
dimTH(∆) ∈ O(∆ ln2+o(1) ∆).

4 Threshold dimension and degeneracy

Given a graph G and a positive integer k, an ordering of the vertices of G such that no
vertex has more than k neighbors after it is called a k-degenerate ordering of G. We
say a graph is k-degenerate if it has a k-degenerate ordering. The minimum k such that
G is k-degenerate is called the degeneracy of G. From its definition, it is clear that the
degeneracy of a graph is at most its maximum degree. In this section, we derive upper
bounds on the threshold dimension of a graph in terms of its degeneracy. The techniques
we adopt are mostly inspired by those in [2].

Throughout this section, we shall assume that G is a k-degenerate graph on n vertices
with vertex set {v1, v2, . . . , vn} and that v1, v2, . . . , vn is a k-degenerate ordering of G.
Thus, for each i ∈ {1, 2, . . . , n}, |NG(vi) ∩ {vi+1, vi+2, . . . , vn}| 6 k. The vertices in
NG(vi) ∩ {vi+1, vi+2, . . . , vn} are called the forward neighbors of vi. Let i < j and vivj /∈
E(G). A coloring f of the vertices of G is desirable for the non-adjacent pair (vi, vj) if (i)
f is a proper coloring, and (ii) f(vj) 6= f(vt), for all neighbors vt of vi such that t > j.
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Lemma 32. Let G be a k-degenerate graph on n vertices and let v1, v2, . . . , vn be a k-
degenerate ordering of G. Let r = dlnne. Then there is a collection {f1, . . . , fr}, where
each fi : V (G)→ [10k] is a proper coloring of the vertices of G, such that for every non-
adjacent pair (vi, vj), where i < j, there exists an ` ∈ [r] such that f` is a desirable coloring
for the pair (vi, vj).

Proof. We explain a randomized procedure for constructing the coloring f1 below. Start
coloring the vertices from vn and color them all the way down to v1 in the following way.
Assume we have colored the vertices vn to vi+1 and are about to color vi. From the set of
10k colors, remove the colors that have been assigned to the forward neighbors of vi. This
leaves us with a set of at least 9k colors. Uniformly at random, choose one color from this
set and assign it to vi. This completes our description of the construction of the coloring
f1. The procedure ensures that f1 is a proper coloring. Independently, repeat the above
procedure to construct the colorings f2, f3, . . . , fr.

Consider a non-adjacent pair (vi, vj), where i < j. The probability that f1 is not
a desirable coloring for this pair is equal to the probability that a forward neighbor of
vi that is after vj in the k-degenerate ordering gets the same color as that of vj. This
probability is at most k/9k = 1/9. Let Ai,j denote the bad event that none of the colorings
f1, f2, . . . , fr is a desirable coloring for the pair (vi, vj). Then, Pr[Ai,j] 6 1/9r < 1/n2.
Applying the union bound, Pr[

⋃
vivj /∈E(G), i<j Ai,j] 6

∑
vivj /∈E(G), i<j

Pr[Ai,j] <
(
n
2

)
1
n2 < 1.

Thus, the statement of the lemma holds with non-zero probability.

Theorem 33. Let G be a k-degenerate graph on n vertices. Then, dimTH(G) 6 10k lnn.

Proof. Let V (G) = {v1, . . . , vn} and let σ : v1, v2, . . . , vn be a k-degenerate ordering of
G. Let {f1, . . . , fdlnne} be the collection of proper colorings of V (G), where each coloring
uses at most 10k colors, given by Lemma 32. For each coloring fa, a ∈ [dlnne], and
each color b ∈ [10k], we construct a threshold supergraph Ta,b of G as follows. Let
Ca
b = {v ∈ V (G) : fa(v) = b}. Since fa is a proper coloring, Ca

b is an independent set. We
define Ta,b := τ(G,Ca

b , σ|Cab ) (see Definition 9 and Proposition 10).
We claim that G =

⋂
a∈[dlnne], b∈[10k] Ta,b. Since each Ta,b is a supergraph of G, all we

need to do is show that for every non-adjacent pair (vi, vj) in G, where i < j, there is a
threshold supergraph in our collection that does not contain the edge vivj. Assume fa is
a desirable coloring for (vi, vj) and fa(vj) = b (Lemma 32 guarantees that such a coloring
exists). Then, we claim that vivj /∈ E(Ta,b). If fa(vi) = b, then vivj /∈ E(Ta,b) as Ca

b is an
independent set in Ta,b. Suppose fa(vi) 6= b. Since no neighbor u of vi that is after vj in
the k-degenerate ordering has fa(u) = b, all the neighbors of vi in Ca

b appear before vj in
the ordering σ|Cab . Thus, vivj /∈ E(Ta,b). This completes the proof of the theorem.

4.1 Random graphs

By a random graph, we mean a graph that is chosen from some probability distribution
on graphs. Please refer [3] for more details on random graphs. The two random graph
models that are extensively used in the literature are (i) G(n,m): where a graph is drawn

the electronic journal of combinatorics 32(1) (2025), #P1.33 14



uniformly at random from the collection of all graphs on n vertices and m edges, and
(ii) G(n, p): where a graph on n vertices is obtained by selecting each possible edge
independently with probability p. The following lemma was proved in [2].

Lemma 34 (Lemma 12 in [2]). For a random graph G ∈ G(n, p), where p = c
n−1

and

1 6 c 6 n− 1, Pr[G is 4ec-degenerate] > 1− 1
Ω(n2)

.

Applying Lemma 34 and Theorem 33, we get the following lemma.

Lemma 35. For a random graph G ∈ G(n, p), where p = c
n−1

and 1 6 c 6 n − 1,

Pr[dimTH(G) ∈ O(c lnn)] > 1− 1
Ω(n2)

.

It is known that (see page 35 of [3])

Pm(Q) 6 3
√
mPp(Q) (2)

where (i) Q is a property of graphs of order n, (ii) Pm(Q) is the probability that Property
Q is satisfied by a graph G ∈ G(n,m), and (iii) Pp(Q) is the probability that Property Q

is satisfied by a graph G ∈ G(n, p) with p = m

(n2)
= 2m/n

n−1
. Assume m > n/2. Then, p =

2m/n
n−1

> 1
n−1

and by Lemma 35, Pr[dimTH(G) /∈ O(2m
n

lnn)] 6 1
Ω(n2)

. Applying Equation

2, for a random graph G ∈ G(n,m), m > n/2, Pr[dimTH(G) /∈ O(2m
n

lnn)] 6 3
√
m

Ω(n2)
6 1

Ω(n)
.

We thus have the following theorem.

Theorem 36. For a random graph G ∈ G(n,m), m > n/2, Pr[dimTH(G) ∈ O(2m
n

lnn)] >
1 − 1

Ω(n)
. In other words, Pr[dimTH(G) ∈ O(dav lnn)] > 1 − 1

Ω(n)
, where dav denotes the

average degree of G.

4.2 Graphs of high girth

The girth of a graph is the length of a smallest cycle in it. We assume that if the graph
is acyclic, then its girth is ∞. We apply Theorem 33 to prove an upper bound for the
threshold dimension of a graph in terms of its girth and the number of vertices. It is
known that for any graph G on n vertices having girth at least g+1, the average degree is

less than n
1
g/2 +1 when g is even and less than n

1
(g+1)/2−1 +1 when g is odd (see Section 4.1

of [13]). Thus, any graph G on n vertices having girth at least g + 1 has average degree

less than n
1
bg/2c + 1.

Let G be any graph on n vertices having girth at least g + 1. Let H be any subgraph
of G on s vertices. Clearly, H has girth at least g+ 1. By the observation above, we have

that the average degree of H is less than s
1
bg/2c +1 6 n

1
bg/2c +1. Since the minimum degree

of a graph is an integer and is at most the average degree, we have that the minimum

degree of H is at most k =
⌈
n

1
bg/2c

⌉
. Thus G is k-degenerate. Hence, we get the following

corollary to Theorem 33.

Corollary 37. Let G be a graph on n vertices with girth at least g+1. Then, dimTH(G) 6

10
⌈
n

1
bg/2c

⌉
lnn.
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The bipartite graph G obtained by removing a perfect matching from the complete
bipartite graph Kn,n is known to have boxicity equal to

⌈
n
2

⌉
(see [25]). From Observation 6

and by applying Corollary 37 with g = 3, we have n
2
6 dimTH(G) = O(n lnn). This graph

shows that the bound given by Corollary 37 is asympotically tight upto a multiplicative

factor of lnn; i.e. we cannot expect to get an upper bound of the form O
(
n

1−ε
bg/2c

)
, for

any ε > 0, for the threshold dimension of a graph with girth at least g + 1.

5 Threshold dimension and vertex cover number

A vertex cover of G is a set of vertices S ⊆ V (G) such that for all e ∈ E(G), at least one
endpoint of e is in S. A minimum vertex cover of G is a vertex cover of G of the smallest
cardinality. We use β(G) to denote the cardinality of a minimum vertex cover of G, more
commonly referred to as the vertex cover number of G. In this section, we prove a tight
upper bound for the threshold dimension of a graph in terms of its vertex cover number.

Proposition 38. For a graph G, dimTH(G) 6 β(G).

Proof. Let B denote a minimum vertex cover of G, and b := |B| = β(G). Then, A :=
V (G) \ B is a maximum independent set in G. Let B = {v1, v2, . . . , vb}. For each
i ∈ [b − 1], we construct threshold supergraph Gi := τ(G, {vi}, σi), where σi denotes the
trivial ordering of the vertex inside the singleton set {vi}. To construct the last threshold
supergraph Gb, let πb be an ordering of the vertices of A where every vertex in NG(vb)∩A
appear before every vertex in A \ NG(vb). We define Gb := τ(G,A, πb). We claim that
G =

⋂b
i=1Gi. We know from our construction that every Gi is a supergraph of G. Suppose

xy /∈ E(G), for some x, y ∈ V (G). If x, y ∈ A, then xy /∈ E(Gb). Assume at least one of
x or y belongs to B. If x = vi or y = vi, for some i < b, then xy /∈ E(Gi). We are left
with the case when x = vb and y ∈ A (or vice versa). In this case, it can be verified that
xy /∈ E(Gb).

Since α(G) = |V (G)| − β(G), by combining Corollary 4(a) with Proposition 38, we
get the following theorem.

Theorem 39. For a graph G on n vertices, dimTH(G) 6 n−max{α(G), ω(G)}.

In Ramsey theory, R(k, k) denotes the smallest positive integer n such that every
graph on n vertices has either an independent set of size k or a clique of size k. A classical
result due to Erdős and Szekeres [10] states that R(k+ 1, k+ 1) 6

(
2k
k

)
6 4k. This implies

that if n > 4k, every graph on n vertices has either an independent set or a clique (or
both) of size at least k + 1. In other words, every graph on n vertices has a clique or an
independent set on k + 1 vertices for every k 6 blog4(n)c. As log4(n) = lnn

ln 4
> 0.72 lnn,

we have that every graph on n vertices contains a clique or independent set containing at
least b0.72 lnnc+ 1 vertices. This gives us the following corollary.

Corollary 40. Every graph G on n vertices satisfies dimTH(G) 6 n− b0.72 lnnc − 1.
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Tightness of the bound in Theorem 39

It can be verified that the graph H on 2n vertices having threshold dimension n con-
structed in Example 22 satisfies α(H) = ω(H) = β(H) = n. Hence, the bounds in
Theorem 39 and Proposition 38 are tight.
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[10] Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio
Mathematica, 2:463–470, 1935.

[11] Louis Esperet and Veit Wiechert. Boxicity, poset dimension, and excluded minors.
The Electronic Journal of Combinatorics, 25(4):#P4.51, 2018.

[12] Mathew C. Francis, Atrayee Majumder, and Rogers Mathew. Bounding threshold
dimension: Realizing graphic boolean functions as the AND of majority gates. In
Graph-Theoretic Concepts in Computer Science - 48th International Workshop, WG

the electronic journal of combinatorics 32(1) (2025), #P1.33 17



2022, volume 13453 of Lecture Notes in Computer Science, pages 244–256. Springer,
2022.
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