
The Degree Threshold for Covering

with Connected 3-Graphs with 3 Edges

Yue Maa Xinmin Houb,c Zhi Yinb

Submitted: Aug 19, 2023; Accepted: Oct 31, 2024; Published: Feb 28, 2025

©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Given two r-uniform hypergraphs F and H, we say that H has an F -covering
if every vertex in H is contained in a copy of F . Let ci(n, F ) be the least inte-
ger such that every n-vertex r-graph H with δi(H) > ci(n, F ) has an F -covering.
Falgas-Ravry, Markström and Zhao (Combin. Probab. Comput., 2021) asymptoti-

cally determined c1(n,K
(3)−
4 ), where K

(3)−
4 is obtained by deleting an edge from the

complete 3-graph on 4 vertices. Later, Tang, Ma and Hou (Electron. J. Combin.,

2023) asymptotically determined c1(n,C
(3)
6 ), where C

(3)
6 is the linear triangle, i.e.

C
(3)
6 = ([6], {123, 345, 561}). In this paper, we determine c1(n, F5) asymptotically,

where F5 is the generalized triangle, i.e. F5 = ([5], {123, 124, 345}). We also deter-
mine the exact values of c1(n, F ), where F is any connected 3-graph with 3 edges

and F /∈ {K(3)−
4 , C

(3)
6 , F5}.

Mathematics Subject Classifications: 05C35, 05C07, 05C65

1 Introduction

Given a positive integer k > 2, a k-uniform hypergraph (or a k-graph) H = (V,E)
consists of a vertex set V = V (H) and an edge set E = E(H) ⊂

(
V
k

)
, where

(
V
k

)
denotes

the set of all k-element subsets of V . For simplicity, we write graph for 2-graph. Let
H = (V,E) be a simple k-graph (with no multiple edges). For any S ⊆ V (H), let
NH(S) = {T ⊆ V (H)\S : T ∪ S ∈ E(H)} and the degree dH(S) = |NH(S)|. For
1 6 i 6 k − 1, the minimum i-degree of H, denoted by δi(H), is the minimum of dH(S)
over all S ∈

(
V (H)
i

)
. We also call δ1(G) the minimum degree of G. The link graph of a

vertex x in V , denoted by Hx, is a (k − 1)-graph Hx = (V (G)\{x}, NH(x)).
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For r > 2, a complete r-graph on n vertices, denoted by K
(r)
n , is an r-graph on [n] with

the edge set
(
[n]
r

)
. For a vertex set V , we also write K(r)[V ] for the complete r-graph on V .

We write Kn for K
(2)
n and K[V ] for K(2)[V ] for short. For an r-graph G with U ⊂ V (G),

let G[U ] = (U,E(G)∩E(K(r)[U ])) and G−U = G[V (G)\U ]. Also, given two r-graphs G
and H, let G ∪H be the vertex-disjoint union of G and H. Let tH :=

⋃t
i=1Gi for some

t > 2 and r-graphs H,G1, . . . , Gt if Gi
∼= H for i ∈ [t].

Given a k-graph F , we say a k-graph H has an F -covering if each vertex of H is
contained in some copy of F . For 1 6 i 6 k − 1, the i-degree threshold for F -covering is
defined as

ci(n, F ) := max{δi(G) : G is a k-graph on n vertices with no F -covering}.

We further let the i-degree F -covering density be the limit

ci(F ) := lim
n→∞

ci(n, F )(
n−i
k−i

) .

There are two types of extremal problems related to the covering problem. Given a
k-graph F , a k-graph H is F -free if H does not contain a copy of F as a subgraph. For
0 6 i 6 k − 1, define

exi(n, F ) := max{δi(G) : G is F -free and |V (G)| = n}, and πi(F ) :=
exi(n, F )(

n−i
k−i

) ,

where δ0(G) := |E(G)|. The quantities ex0(n, F ) and π0(F ) are known as the Turán
number and the Turán density of F respectively. For Turán problem on hypergraphs, one
can refer to a survey given by Keevash [9].

Given two k-graphs F and H, an F -tiling in H is a spanning subgraph of H which
consists of vertex-disjoint copies of F . For 1 6 i 6 k − 1 and n ≡ 0 mod |V (F )|, define

ti(n, F ) := max{δi(G) : G is a k-graph on n vertices with no F -tiling}.

The tiling problem in hypergraphs is also widely studied. We recommend a survey given
by Zhao [15].

Trivially, for 1 6 i 6 k − 1,

exi(n, F ) 6 ci(n, F ) 6 ti(n, F ),

which makes the covering problem an interesting but different extremal problem from
Turán problem and the tiling problem.

For a graph F , the F -covering problem was solved asymptotically in [14] by showing

that c1(F ) = χ(F )−2
χ(F )−1 , where χ(F ) is the chromatic number of F .

For r-uniform hypergraphs with r > 3, there are also some works related, most of
them focus on r = 3. Here are some exact results for c2(n, F ) and c2(F ) in 3-graphs.

• (Falgas-Ravry, Zhao [6]) For n > 98, c2(n,K
(3)
4 ) = b2n−5

3
c.
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• (Yu, Hou, Ma, Liu [13]) c2(n,K
(3)−
4 ) = bn

3
c and c2(n,K

(3)−
5 ) = b2n−2

3
c, where

K
(r)−
k (k > r > 2) is an r-graph obtained from K

(r)
k by deleting an edge.

• (Falgas-Ravry, Zhao [6]) c2(C
(3)
5 ) = 1

2
, where C

(3)
5 = ([5], {123, 234, 345, 451, 512}).

For c1(n, F ) and c1(F ) in 3-graphs, some know results are listed as follows.

• (Falgas-Ravry, Markström, Zhao [5]) c1(K
(3)−
4 ) =

√
13−1
6

.

• (Tang, Ma, Hou [12]) c1(C
(3)
6 ) = 3−2

√
2

2
, where C

(3)
6 = ([6], {123, 345, 561}).

• (Falgas-Ravry, Markström, Zhao [5]) 19
27

6 c1(K
(3)
4 ) 6 19

27
+ 7.4× 10−9.

• (Falgas-Ravry, Markström, Zhao [5]) 5
9
6 c1(C

(3)
5 ) 6 2−

√
2.

• (Gu, Wang [8]) For n > 5, n2

9
6 c1(n, F5) 6 n2

6
+ 5

6
n− 3, where F5 = ([5], {123, 124,

345}).

• (Gu, Wang [8]) For n > 8, n− 2 6 c1(n, LP3) 6 n+ 4, where LP3 = ([7], {123, 345,
567}).

In this article, we focus on 3-graphs with 3 edges. Let H be a hypergraph. We say H
is connected if for any pair of vertices {u, v} ⊂

(
V (H)

2

)
, we can find a sequence of edges,

say e1, e2, . . . , et ∈ E(H), with u ∈ e1, v ∈ et and ei ∩ ei+1 6= ∅ for any i ∈ [t − 1]. A
maximal connected subgraph for any hypergraph H is called a component. Note that a
connected hypergraph consists of a unique component.

By a simple enumeration, one can check that there are only 9 kinds of connected
3-graphs with 3 edges. We list all of them in Figure 1.

In particular, K
(3)−
4 and C

(3)
6 are two examples for connected 3-graphs with 3 edges,

whose 1-degree covering densities are already know as mentioned above. Another impor-
tant example is called a generalized triangle, denoted by F5, which is a 3-graph on the
vertex set [5] with the edge set {123, 124, 345}. In 1983, Frankl and Füredi [7] gave the
Turán number for F5.

Theorem 1 ((Frankl, Füredi [7])). For n > 3000, ex0(n, F5) = bn
3
cbn+1

3
cbn+2

3
c. In

particular, π0(F5) = 2
9
.

Note that the condition for n in Theorem 1 was later improved to n > 33 by Keevash
and Mubayi [10]. There are also some other extremal results related to F5, we refer to
[1, 2, 3] for example.

To give the extremal construction for Theorem 1, we need some definitions. For two
families of sets A and B, define A ∨ B = {A ∪ B : A ∈ A and B ∈ B}. For r > 2, a
complete r-partite r-graph with partition set V1, V2, . . . , Vr, denoted by K[V1, V2, . . . , Vr],
is an r-graph on

⋃r
i=1 Vi with the edge set

E(K[V1, V2, . . . , Vr]) =

(
V1
1

)
∨
(
V2
1

)
∨ · · · ∨

(
Vr
1

)
.
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(a) K
(3)−
4 (b) C

(3)
6 (c) F5

(d) LP3 (e) TP3 (f) GP3

(g) K1,1,3 (h) S3 (i) GS3

Figure 1: All possible connected 3-graphs with 3 edges

For an r-graph H with
⋃r
i=1 Vi ⊂ V (H), let G[V1, . . . , Vr] = (

⋃r
i=1 Vi, E(H) ∩ E(K[V1,

. . . , Vr])). If |Vi| = ni for i ∈ [r], we write Kn1,...,nr for K[V1, . . . , Vr]. In particular,
K1,1 = K2 and K1,1,3 = ([5], {123, 124, 125}).

One can check that Kbn
3
c,bn+1

3
c,bn+2

3
c on n vertices contains no copy of F5 as its subgraph,

which is an extremal construction for Theorem 1. Hence we can easily deduce from
Theorem 1 that π1(F5) = 2

9
. This leads to c1(F5) > 2

9
. In fact, the result of Gu and

Wang [8] about F5 implies that 2
9
6 c1(F5) 6 1

3
.

1.1 Results

In this paper, we verify the exact value that c1(F5) = 1
4
.

Theorem 2. For n > 5, 1
8
n2 −

√
2n < c1(n, F5) <

1
8
n2 + 5

4
n. In particular, c1(F5) = 1

4
.

For k > 1, a linear star with k edges, denoted by Sk, is a 3-graph on [2k + 1] with
edge set {123, 145, 167, . . . , 1(2k)(2k + 1)}. In particular, S3 = ([7], {123, 145, 167}).

A path of length k − 1 for some k > 2, denoted by Pk, is a graph on [k] whose
edge set is {12, 23, 34, . . . , (k − 1)k}. A cycle of length k is a graph on [k] with edge set
{12, 23, . . . , (k − 1)k, k1}. In 3-graph, however, we have several different definitions for a
path. For k > 1, a linear k-path, denoted by LPk, is a 3-graph on [2k + 1] with the edge
set {123, 345, 567, . . . , (2k − 1)2k(2k + 1)}. In particular, LP3 = ([7], {123, 345, 567}).
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For k > 1, a tight k-path, denoted by TPk, is a 3-graph on [k + 2] with the edge set
{123, 234, 345, . . . , k(k + 1)(k + 2)}. In particular, TP3 = ([5], {123, 234, 345}).

There are only two kinds of connected 3-graphs with 3 edges other than K
(3)−
4 , C

(3)
6 ,

F5, LP3, TP3, K1,1,3 and S3. We use GP3 and GS3 to denote them:

GP3 = ([6], {123, 234, 456}) and GS3 = ([6], {123, 124, 156}).

We determine the exact values of c1(n, F ), where F ∈ {LP3, TP3, GP3, K1,1,3, S3,
GS3} in this paper.

Theorem 3. (1) For n > 13, c1(n, LP3) = n− 2.
(2) For n > 8,

c1(n, TP3) =

{
n− 1 n ≡ 1 mod 3;

n− 2 n ≡ 0, 2 mod 3.

(3) For n > 17, c1(n,GP3) = n− 2.
(4) For n > 9, c1(n,K1,1,3) = n− 1.
(5) For n > 11, c1(n, S3) = n− 1.
(6) For n > 13, c1(n,GS3) = bn−1

2
c.

The rest of the paper is arranged as follows. In Section 2, we prove Theorem 2. In
Section 3, we show the other cases in turn and finish the proof of Theorem 3. We give
some concluding remarks in Section 4.

2 F5: proof of Theorem 2

2.1 Lower bound

Construction 1: Let H1 = (V1, E1) be a 3-graph with V1 = {u} tX t Y t Z, and

E1 =

(
{{u}} ∨

(
X

1

)
∨
(
Y

1

))
∪
((

Z

1

)
∨
(
X

1

)
∨
(
Y

1

))
∪
((

X

1

)
∨ EX

)
∪
((

Y

1

)
∨ EY

)
∪
(
Z

3

)
,

where |X| = |Y | = b
√
2
4
nc − 1, EX t EY =

(
Z
2

)
and ||EX | − |EY || 6 1.

Observation 4. δ1(H1) >
1
8
n2 −

√
2n and H1 has no F5 covering u.

Proof. It is easy to check that H1 has no F5 covering u. Let a = |X| = |Y | = b
√
2
4
nc − 1

and b = |Z| = n − 1 − 2a. Since EX t EY =
(
Z
2

)
and ||EX | − |EY || 6 1, |EX |, |EY | >

b1
2

(
b
2

)
c > b(b−1)

4
− 1

2
. Note that the case of n = 5 is apparently true. For n > 6, we have

a > 1 and b > 3. Choose v ∈ V (H1).
If v = u, then

dH1(v) = a2 > (

√
2

4
n− 2)2 =

1

8
n2 −

√
2n+ 4 >

1

8
n2 −

√
2n.
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Figure 2: Construction 1

If v ∈ X ∪ Y , then

dH1(v) > a+ ab+
b(b− 1)

4
− 1

2
=
n2 − 3n

4
− (a− 3

2
)a

>
n2 − 3n

4
− (

√
2

4
n− 5

2
)(

√
2

4
n− 1)

=
1

8
n2 +

7
√

2− 6

8
n− 5

2
>

1

8
n2 −

√
2n

If v ∈ Z, then

dH1(v) > a2 +

(
b− 1

2

)
> a2 = dH(u) >

1

8
n2 −

√
2n.

Therefore, δ1(H1) >
1
8
n2 −

√
2n.

2.2 Upper bound

For any graph G, let E(G) = {uv ∈
(
V (G)
2

)
: NG(v) ∩ NG(u) 6= ∅} be the graph on V (G)

whose edges are all pairs of vertices sharing at least one common neighbor. We have the
following result about the number of edges in E(G).

Lemma 5. For any graph G on n vertices, |E(E(G))| > |E(G)| − n
2
.

Proof. We prove by induction on n. Firstly, for 1 6 n 6 3, the inequality is apparently
true. Now let G be a graph on n > 4 vertices and suppose the inequality holds for any
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graph on less than n vertices. If G is an empty graph, we are done. Otherwise, pick an
edge uv ∈ E(G). By deleting the vertices u, v and all the incidence edges, we get

|E(G− {u, v})| = |E(G)| − dG(u)− dG(v) + 1.

On the other hand, the deletion must destroy all the edges incident with one of u and
v in E(G). Note that u (resp. v) is incident with all the vertices in NG(v) − {u} (resp.
NG(u) = {v}) within E(G). In other words,

|E(E(G− {u, v}))| 6 |E(E(G))| − dG(u)− dG(v) + 2.

Therefore, by induction,

|E(E(G))| > |E(E(G− {u, v}))|+ dG(u) + dG(v)− 2

> |E(G− {u, v})| − n− 2

2
+ dG(u) + dG(v)− 2

= |E(G− {u, v})|+ dG(u) + dG(v)− 1− n

2

= |E(G)| − n

2
.

This completes the proof.

Proof of Theorem 2. It is sufficient to show that every 3-graph H on n vertices with
δ1(H) > 1

8
n2 + 5

4
n has an F5-covering.

Suppose on the contrary that there is a 3-graph H on n vertices with δ1(H) > 1
8
n2+ 5

4
n

and a vertex u ∈ V (H) which is not contained in any copy of F5 in H. By definition, the
link graph Hu contains at least δ1(H) edges, so it is not empty. We have the following
key claim.

Claim 6. Let xy ∈ E(Hu) be an edge in Hu, then the four sets E(Hu − {x, y}), E(Hx −
{u}), E(Hy − {u}) and E(E(Hu − {x, y})) are pairwise disjoint.

Proof. (i) If E(Hu − {x, y}) ∩ E(Hx − {u}) 6= ∅, we pick a pair ab in it. By definition,
abx, abu, uxy ∈ E(H), which form a copy of F5, a contradiction. The same thing holds
for E(Hu − {x, y}) and E(Hy − {u}).
(ii) If E(Hx − {u}) ∩ E(Hy − {u}) 6= ∅, we pick a pair ab in it. Then abx, aby, xyu form
a copy of F5, which is a contradiction.
(iii) If E(Hx−{u})∩E(E(Hu−{x, y})) 6= ∅, we pick a pair ab in it. By the definition of
E(Hu − {x, y}), there exists a vertex c with ac, bc ∈ E(Hu − {x, y}). Thus, uca, ucb, abx
form a copy of F5, a contradiction. The same thing holds for E(Hy−{u}) and E(E(Hu−
{x, y})).
(iv) To complete the proof of this claim, we only need to show that E(Hu − {x, y}) ∩
E(E(Hu − {x, y})) = ∅. It is enough to show that there is no triangle in Hu. By (i)
and (ii), E(Hu − {x, y}), E(Hx − {u}) and E(Hy − {u}) are pairwise disjoint for any
xy ∈ E(Hu). If there is a triangle {xy, xz, yz} ⊂ E(Hu), then it is easy to see that
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E(Hx−{u}), E(Hy−{u}), E(Hz−{u}) and E(Hu−{x, y, z}) are pairwise disjoint since
E(Hu − {x, y, z}) = E(Hu − {x, y}) ∩ E(Hu − {x, z}) ∩ E(Hu − {y, z}). This means

|E(Hu−{x, y, z})|+|E(Hx−{u})|+|E(Hy−{u})|+|E(Hz−{u})| 6 |
(
V (Hu)

2

)
| =

(
n− 1

2

)
.

Also, |E(Hu − {x, y, z})| > δ1(H) − (3n − 6) and |E(Hw − {u})| > δ1(H) − (n − 1) for
w ∈ {x, y, z}. This gives 4δ1(H) − ((3n − 6) + 3(n − 1)) 6

(
n−1
2

)
, a contradiction by

δ1(H) > 1
8
n2 + 5

4
n.

Pick an edge xy ∈ E(Hu). It is easy to check that |E(Hu−{x, y})| > δ1(H)− (2n−3)
and |E(Hx − {u})| > δ1(H)− (n− 1). By Lemma 5,

|E(E(Hu − {x, y}))| > |E(Hu − {x, y})| −
n− 3

2
> δ1(H)− (

5

2
n− 9

2
).

By Claim 6, E(Hu−{x, y}), E(Hx−{u}), E(Hy−{u}) and E(E(Hu−{x, y})) are pairwise
disjoint. This means

|E(Hu − {x, y})|+ |E(Hx − {u})|+ |E(Hy − {u})|+ |E(E(Hu − {x, y}))| 6 |
(
V (Hu)

2

)
|.

Thus,

4δ1(H)− (2n− 3)− 2(n− 1)− (
5

2
n− 9

2
) 6

(
n− 1

2

)
,

a contradiction by δ1(H) > 1
8
n2 + 5

4
n.

3 Other cases: proof of Theorem 3

3.1 LP3

Proof of (1). For the lower bound, we simply consider the following 3-graph G called a
trivial intersecting family on V (G) = {0} ∪ [n− 1] with edge set E(G) = {{0}} ∨

(
[n−1]

2

)
.

For the upper bound, suppose on the contrary that there is a 3-graph H on n > 13
vertices with δ1(H) > n− 1 while some vertex u ∈ V (H) is not contained in any copy of
LP3 in H.

Claim 7. We can find a copy of K1,2 ∪K1,1 in the graph Hu.

Proof. Note that Hu is a graph on n− 1 vertices with at least δ1(H) > n− 1 edges. Pick
v ∈ V (Hu) with the maximum degree d of Hu. By Handshaking Lemma, (n − 1)d >∑

x∈V (Hu)
dHu(x) = 2E(Hu) > 2(n − 1). Thus, d > 2, and if d = 2, then dHu(x) = 2 for

all the vertices x ∈ V (Hu). Now suppose d = 2 and NHu(v) = {x, y}. Since dHu(x) =
dHu(y) = 2, there are at most 2 + 2 = 4 edges incident with at least one of x and y in Hu.
Hence we can pick an edge ab ∈ E(Hu−{x, y}) since |E(Hu−{x, y})| > |E(Hu)|−4 > 0.
Clearly, v 6= a, b. This means the three edges vx, vy, ab form a K1,2∪K1,1 in Hu. Suppose
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d > 4. Pick 4 vertices w, x, y, z ∈ NHu(v). Since d 6 |V (Hu)| − 1 = n − 2, there exists
at least |E(Hu)| − (n − 2) > 1 edge ab ∈ E(Hu − {v}). Note that v 6= a, b and at
least two of w, x, y, z are not contained in {a, b}. Without loss of generality, suppose
w, x /∈ {a, b}, then the three edges vw, vx, ab together form a K1,2 ∪ K1,1 in Hu. Thus,
d = 3. Let NHu(v) = {x, y, z}. It is easy to see that there are at most

(
3
2

)
= 3 edges

contained in {x, y, z}. Note that |E(Hu − {v})| = |E(Hu)| − 3 > 3. We can pick an edge
ab ∈ E(Hu−{v}) which is not contained in {x, y, z}. In other words, |{a, b}∩{x, y, z}| 6 1,
so we can pick two vertices in {x, y, z}, say x and y, which are not in {a, b}. Hence, the
three edges vx, vy, ab form a K1,2 ∪K1,1 in Hu.

Claim 8. We can find a copy of K1,3 ∪K1,2 in the graph Hu.

Proof. By Claim 7, we choose a set of 5 vertices {a, a1, a2, b, b1} ⊂ V (Hu) with aa1, aa2, bb1 ∈
E(Hu). We claim that Ha1 − {u} ⊂

({a,a2,b,b1}
2

)
. Otherwise, there exists an edge xy ∈

E(Ha1 − {u}) with |{x, y} ∩ {a, a2, b, b1}| 6 1. If {x, y} ∩ {a, a2, b, b1} = ∅, then {xya1,
a1au, ubb1} is a copy of LP3 in H, a contradiction. Thus, exactly one of a, a2, b, b1
is contained in {x, y}. Without loss of generality, suppose that x is this vertex. If
x = a, then {a1ya, aa2u, ubb1} is a copy of LP3; If x = a2, then {a1ya2, a2au, ubb1}
is a copy of LP3; If x = b, then {a1yb, bb1u, uaa2} is a copy of LP3; If x = b1, then
{a1yb1, b1bu, uaa2} is a copy of LP3. Any of the four cases leads to a contradiction.
Therefore, Ha1 − {u} ⊂

({a,a2,b,b1}
2

)
. In particular, |E(Ha1 − {u})| 6

(
4
2

)
= 6 and

then dHu(a1) = dHa1
(u) = |E(Ha1)| − |E(Ha1 − {u})| > (n − 1) − 6 > 6. Simi-

larly, dHu(a2) > 6. Now, pick three vertices c1, c2, c3 ∈ NHu(a1)\{a2}, then we still
have at least 6 − 1 − 3 = 2 vertices c4, c5 ∈ NHu(a2)\{a1, c1, c2, c3}. This gives 5 edges
a1c1, a1c2, a1c3, a2c4, a2c5 ∈ E(H), which form a K1,3 ∪K1,2 in Hu.

Now by Claim 8, we can choose a set of 7 vertices {a, a1, a2, a3, b, b1, b2} ⊂ V (Hu) with
aa1, aa2, aa3, bb1, bb2 ∈ E(Hu). Similarly as the proof in Claim 8, one can check by simple
discussions that, for i = 1, 2, 3, E(Hai−{u}) ⊆ {ab}. This means |E(Hai−{u})| 6 1 and
then n − 2 > dHu(ai) = dHai

(u) = |E(Hai)| − |E(Hai − {u})| > (n − 1) − 1 > n − 2 for
any i ∈ [3]. This means all the equalities here hold. Hence for i ∈ [3], ab ∈ E(Hai − {u})
and aiv ∈ E(Hu) for any v ∈ V (Hu)\{ai}. In particular, a1ab, ua2a3 ∈ E(H). Together
with the edge ub1b ∈ E(H), we get a copy of LP3 in H covering u, a contradiction.

3.2 TP3

Proof of the lower bound of (2). For n ≡ 0, 2 mod 3, consider the 3-graph Fn−2,2 on [n]

with the edge set {{n − 1, n}} ∨
(
[n−2]

1

)
∪
(
[n−2]

3

)
. one can check that δ1(Fn−2,2) = n − 2

for n > 8 and there is no copy of TP3 containing the vertex n in Fn−2,2.
For n ≡ 1 mod 3, suppose n = 3k + 1 for some integer k > 2. Consider a 3-graph F on
the vertex set {u} ∪

⋃k
i=1Ai with |Ai| = 3 for any i ∈ [k]. The edge set of F is

E(F ) =
k⋃
i=1

(
{u} ∨

(
Ai
2

))
∪

⋃
{i,j,k}∈([k]

3 )

((
Ai
1

)
∨
(
Aj
1

)
∨
(
Ak
1

))
.
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One can also check that δ1(F ) = dF (u) = 3k = n−1 and F has no copy of TP3 containing
u.

Proof of the upper bound of (2). Let g(n) be a function with g(n) = n − 1 for n ≡ 0, 2
mod 3 and g(n) = n for n ≡ 1 mod 3. Suppose on the contrary that there is a 3-graph
H on n > 8 vertices with δ1(H) > g(n) and there is a vertex u ∈ V (H) which is not
contained in any copy of TP3 in H.

We claim that there is no copy of P4 contained in Hu. Otherwise, there must be 4 ver-
tices x1, x2, x3, x4 ∈ V (Hu) with x1x2, x2x3, x3x4 ∈ E(Hu), and we can pick {x1x2u, x2ux3,
ux3x4} as a copy of TP3 in H, a contradiction. This implies that any component of Hu

can only be a K1,t for some t > 0 or a K3. Let nt be the number of components isomorphic
to K1,t for any t > 0 and let m be the number of components isomorphic to K3 in H.
Then n− 1 = 3m+

∑
t>0(t+ 1)nt and

dH(u) = |E(Hu)| = 3m+
∑
t>0

tnt = n− 1−
∑
t>0

nt.

If there exists some i > 0 with ni 6= 0, then dH(u) 6 n− 2 < g(n), a contradiction. Thus,
ni = 0 for any i > 0 and n = 3m + 1 ≡ 1 mod 3. This means dH(u) = 3m = n − 1 <
n = g(n), a contradiction, too.

3.3 GP3

Proof of the lower bound of (3). We consider the same 3-graph as mentioned in the proof
of (1), i.e, consider a trivial intersecting family G on V (G) = {0} ∪ [n − 1] with edge
set E(G) = {{0}} ∨

(
[n−1]

2

)
. Apparently, δ1(G) = n − 2 and G contains no copy of GP3

covering 0.

Proof of the upper bound of (3). LetH be a 3-graph on n > 17 vertices and δ1(H) > n−1.
Let M ⊂ V (H) be the set of all vertices not covered by any copy of GP3 in H. Take
u ∈M with dH(u) 6 dH(v) for all v ∈M .

Claim 9. Hu does not contain K1,3 ∪ K1,1 as a subgraph. Moreover, Hu is a 2-regular
graph (dHu(x) = 2 for any x ∈ V (Hu)), i.e. Hu is the union of some vertex-disjoint cycles
on n− 1 vertices.

Proof. Suppose on the contrary that there exist a, a1, a2, a3, b1, b2 ∈ V (Hu) with aa1, aa2,
aa3, b1b2 ∈ E(Hu). Since dH(a1) > δ1(H) > n − 1 > n − 2 > dH({u, a1}), we can pick
e ∈ E(H − {u}) be an edge with a1 ∈ e.

If e 6= a1a2a3, then one of a2 and a3, say a2, has a2 /∈ e. Then if a /∈ e, a2ua, uaa1,
e form a copy of GP3, a contradiction. Now suppose e 6= a1a2a3, then a ∈ e. Then
if e ∩ {b1, b2} = ∅, e, aa1u, ub1b2 form a copy of GP3. Hence we can conclude that
e ∈ {a1a2a3, a1ab1, a1ab2} and dH−{u}(a1) 6 3. Similarly, dH−{u}(a2), dH−{u}(a3) 6 3.

Recall that dH(u) 6 dH(v) for all v ∈ M . If dH−{u}(a) = 0, then all edges containing
a must also contain u, which means a ∈ M . However, this also implies that dH(a) =
dHu(a) < |E(Hu)| = dH(u), where the strict inequality holds since a /∈ b1b2 ∈ E(Hu).
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This leads to a contradiction by the minimality of dH(u). Hence, dH−{u}(a) > 1. So we
can pick f ∈ E(H − {u}) with a ∈ f . Thus one of a1, a2, a3, say a1, has a1 /∈ f . If
dHu(a1) > 4, then we can pick c ∈ NHu(a1)\f . Then uca1, ua1a, f form a copy of GP3.
Thus, dHu(a1) 6 3. Therefore, dH(a1) = dH−{u}(a1) + dHu(a1) 6 3 + 3 = 6 < δ1(H), a
contradiction.

Now Hu is a K1,3∪K1,1-free graph on n−1 vertices with at least n−1 edges. If Hu does
not contain a vertex of degree at least 3, then it is easy to see that Hu must be 2-regular
and we are done. Otherwise, pick v ∈ V (Hu) with at least 3 vertices v1, v2, v3 ∈ NHu(v).
Clearly, the edges in Hu must incident with V0 := {v, v1, v2, v3} or we get a copy of
K1,3 ∪ K1,1. In other words, NHu(x) ⊂ V0 for any x ∈ V (Hu)\V0. Also note that
|E(Hu)| > n − 1 >

(
6
2

)
, we have at least 7 − 4 = 3 vertices, say x1, x2 and x3, other

than v, v1, v2 and v3 incident with at least one edge in Hu. If x1v ∈ E(Hu) and some
vertex in V0\{v0}, say v1, has x2v1 ∈ E(Hu), then x2v1, vv2, vv3, vx1 ∈ E(Hu) form a
copy of K1,3∪K1,1, a contradiction. Thus, if x1v ∈ E(Hu), then x2v ∈ E(Hu), which then
implies that NHu(x) ⊆ {v} for any x ∈ V (Hu)\{v}. This gives |E(Hu)| 6 n− 2 < n− 1,
a contradiction. Hence, NHu(x) ⊂ V1 = {v1, v2, v3} for any x ∈ V (Hu)\V0. If there
exists some i ∈ [3] with |NHu(vi) ∩ V0| = 3, then vix1, vix2, vix3 ∈ E(Hu). Thus vix1,
vix2, vix3 and vvj for some j 6= i form a copy of K1,3 ∪ K1,1 in Hu, a contradiction. If
|NHu(vi) ∩ V0| = 2, without loss of generality, suppose vix1, vix2 ∈ E(Hu). Since x3
incident with at least one edge in Hu, we have vjx3 ∈ E(Hu) for some j 6= i. Then vix1,
vix2, viv and vjx3 form a copy of K1,3∪K1,1 in Hu, a contradiction. Thus, |NHu(vi)\V0| 6 1
for i ∈ [3], which gives |E(Hu)| 6

(
4
2

)
+ 3 = 9 < n− 1, a contradiction.

Claim 10. For any cycle C ⊂ Hu and edge e ∈ E(H−{u}), we have |V (C)∩ e| ∈ {0, 3}.

Proof. Suppose |V (C)∩e| = 1 firstly. Let V (C) = {c1, c2, . . . , c`}, E(C) = {c1c2, c2c3, . . . ,
c`−1cl, c`c1} and let e = c1xy where x, y /∈ C. Then c1c2u, c2uc3, c1xy form a copy of GP3

covering u, a contradiction. So |V (C) ∩ e| 6= 1 for any cycle C ⊂ Hu. If |V (C) ∩ e| = 2,
then there must exist another cycle C ′ with |V (C ′) ∩ e| = 3− 2 = 1, a contradiction.

Pick a cycle C0 with V (C0) = {c1, c2, . . . , c`} and E(C0) = {c1c2, c2c3, . . . , c`−1c`, c`c1}.
If ` = |V (C0)| > 7, we pick an edge e with e ∩ V (C0) 6= ∅ (such an edge exists

since the degree of vertex in V (C0) should be more than 2 in H as δ1(H) > n − 1).
Then |e ∩ V (C0)| = 3 by Claim 10. Suppose e = {ci, cj, ck} with 1 6 i < j < k 6 `.
By Pigeonhole Principle, one of d1 = j − i, d2 = k − j, d3 = ` + i − k, say d1, has
d1 > d`/3e > 3. This means j − i > 3. Without loss of generality, suppose i = 1, so
k > j > 4. Then c3uc2, uc2c1, e form a copy of GP3 covering u.

Therefore, |V (C0)| 6 6. Pick v ∈ V (C0). Note that any edge e containing v must have
|e ∩ V (C0)| = 3, which implies that dH(v) 6 2 +

(|V (C0)|−1
2

)
6 12 < n − 1 6 δ1(H). This

is a contradiction.
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3.4 K1,1,3

Proof of the lower bound of (4). Let W be a 3-graph on [n] and let C = {12, 23, . . . ,
(n− 2)(n− 1), (n− 1)1}. The edge set of W is

E(W ) = ({{n}} ∨ C) ∪
{
{i, j, k} ∈

(
[n− 1]

3

)
:

(
{i, j, k}

2

)
∩ C = ∅

}
.

It is easy to see that dW (n) = n−1 and dW (i) =
(
n−4
2

)
− (n−5)+2 > n−1 for i ∈ [n−1]

since n > 9. Hence δ1(W ) = n − 1. Also, one can check that there is no copy of K1,1,3

covering the vertex n.

Proof of the upper bound of (4). Suppose on the contrary that there is a 3-graph H on
n > 9 vertices with δ1(H) > n and u ∈ V (H) is not contained in any copy of K1,1,3 in H.
Then the degree of any vertex in Hu must be at most 2. Otherwise, suppose dHu(v) >
3 for some v ∈ V (Hu). Pick x, y, z ∈ NHu(v), we get the three edges uvx, uvy, uvz in H
which form a K1,1,3 in H, a contradiction. Thus, dHu(v) 6 2 for any v ∈ V (Hu). Note
that V (Hu) = n − 1 and |E(Hu)| > δ1(H) > n. By Handshaking Lemma, 2(n − 1) >∑

v∈V (Hu)
dHu(v) = 2|E(Hu)| > 2n, a contradiction.

3.5 S3

Proof of the lower bound of (5). Let S be a 3-graph on [n] with the edge set

E(S) =

(
{{n− 1}} ∨

(
{n− 2, n− 3}

1

)
∨
(

[n− 4]

1

))
∪
(
{{n}} ∨

(
[n− 2]

2

))
.

Note that n > 11 > 7. It is easy to check that dS(n) =
(
n−2
2

)
> n−1, dS(n−1) = 2(n−4)

> n− 1, dS(n− 2) = dS(n− 3) = 2n− 7 > n− 1 and dS(i) = n− 1 for i ∈ [n− 4]. This
means δ1(S) = n− 1. Also, S has no copy of S3 covering the vertex n− 1.

Before the proof of the upper bound, we firstly put the famous Tutte-Berge Theorem
here.

Lemma 11 ([4], see also [11]). A graph G is (s + 1)K2-free if and only if there is a set
B ⊂ V (G), such that the vertex sets of all the connected components G1, · · · , Gm of G−B
have |V (Gi)| ≡ 1 mod 2 (i ∈ [m]), and we have,

|B|+
m∑
i=1

|V (Gi)| − 1

2
6 s and |B|+

m∑
i=1

|V (Gi)| = n.

Proof of the upper bound of (5). Suppose on the contrary that H is a 3-graph on n > 11
vertices with δ1(H) > n and u ∈ V (H) is not contained in any copy of S3 in H. Note
that there is no copy of 3K2 in Hu. Ohterwise, let {a1a2, b1b2, c1c2} ⊂ Hu be a copy of
3K2, then{ua1a2, ub1b2, uc1c2} is a copy of S3 in H, a contradiction. Hence, we can use
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Lemma 11 to obtain a set B ⊂ V (Hu). Then all the components G1, . . . Gm of Hu − B
have |V (Gi)| ≡ 1 mod 2 (i ∈ [m]), and

|B|+
m∑
i=1

|V (Gi)| − 1

2
6 2 and |B|+

m∑
i=1

|V (Gi)| = n− 1 > 10.

Without loss of generality, let |V (G1)| > |V (G2)| > · · · > |V (Gm)|. Thus |B| 6 2. Also,
Hu ⊂ K[B] ∪K[B, V (Hu)−B] ∪

∑m
i=1K[V (Gi)].

Claim 12. 1 6 |B| 6 2.

Proof. If |B| = 0, then E(Hu) ⊂
∑m

i=1E(K[V (Gi)]) and
∑m

i=1
|V (Gi)|−1

2
6 2. Note that

|V (Gi)|−1
2

is a non-negative integer for any i ∈ [m]. so it is easy to see that either |V (G1)| 6
5 and |V (Gj)| = 1 for j > 1 or |V (G1)|, |V (G2)| 6 3 and |V (Gj)| = 1 for j > 2. This
implies dH(u) = |E(Hu)| =

∑m
i=1 |E(K[V (Gi)])| 6 10 < n 6 δ1(H), a contradiction. This

gives 1 6 |B| 6 2.

Claim 13. For any edge xy ∈ E(Hu), there is no copy of 2K2 in Hx−{u, y}. Moreover,
|E(Hx − {u, y})| 6 n− 4.

Proof. If there exists a set of two disjoint edges {a1a2, b1b2} ⊂ E(Hx − {u, y}) as a 2K2

in Hx − {u, y}, then the three edges xyu, xa1a2, xb1b2 ∈ E(H) form a copy of S3, a
contradiction. Hence, the only non-empty component of Hx − {u, y} must be a K3 or a
K1,t for some 1 6 t 6 n− 4. This gives |E(Hx − {u, y})| 6 n− 4.

Claim 14. Let v ∈ V (Hu) and dHu(v) > 5. Pick any two vertices x, y ∈ NHu(v). If
dHx−{u}(v) > 1, then dHy−{u}(v) 6 1. Moreover, max{dHu(x), dHu(y)} > 3.

Proof. Otherwise, suppose dHx−{u}(v) > 1 and dHy−{u}(v) > 2. then we can pick an edge
va1 ∈ Hx − {u} and another edge va2 ∈ Hy − {u} with a2 6= a1. Since dHu(v) > 5,
we can also pick a vertex a3 ∈ NHu(v) with a3 6= a1, a2, x, y. Then the three edges
va1x, va2y, va3u ∈ E(H) form a copy of S3, a contradiction.

To prove max{dHu(x), dHu(y)} > 3, note that dH(z) = dHu(z) + dHz−{u}(v) + |E(Hz −
{u, v})| for z ∈ {x, y}. By Claim 13, |E(Hz − {u, v})| 6 n − 4 for z = x, y. Hence, for
z ∈ {x, y},

n 6 δ1(H) 6 dH(z) 6 n− 4 + dHu(z) + dHz−{u}(v).

Now if dHu(z) 6 2 for z = x, y, then n 6 n− 2 + dHz−{u}(v), which means dHz−{u}(v) > 2
for z = x, y. This is impossible by the proof above.

Now by Claim 12, 1 6 |B| 6 2.
If |B| = 1, let B = {v}. By E(Hu) ⊂ K[B, V (Hu) − B] ∪

∑m
i=1K[V (Gi)] and∑m

i=1
|V (Gi)|−1

2
6 1, we have |V (G1)| 6 3, |V (Gj)| = 1 for j > 1 and E(Hu) = E(Hu[B,

V (Hu) − B]) ∪E(G1). Since E(Hu) = dH(u) > δ1(H) > n, dHu(v) = |E(Hu[B, V (Hu) −
B])| > n − |K[V (G1)]| = n − 3 > 5 = 2 + 3. Thus, we can pick two vertices x, y ∈
NHu(v)\V (G1). Then dHu(x) = dHu(y) = 1, contradicts to max{dHu(x), dHu(y)} > 3 by
Claim 14.
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If |B| = 2, let B = {v1, v2}. Similarly, we get |V (Gj)| = 1 for any j ∈ [m] and E(Hu) =
E(Hu[B]) ∪ E(Hu[B, V (Hu) − B]). This means dHu(z) 6 2 for any x ∈ V (Hu)\{v1, v2}
and 11 6 n 6 δ1(H) 6 |E(Hu)| 6 dHu(v1) + dHu(v2). By Pigeonhole Principle, one of v1
and v2, say v1, has dHu(v1) > 11

2
> 5. So we can pick two vertices x, y ∈ NHu(v1)\{v2}

and get a contradiction similarly by Claim 14.

3.6 GS3

Proof of the lower bound of (6). Consider the graph F with vertex set {0} ∪ [n− 1]. Let
Bi = {2i− 1, 2i}∩ [n− 1], for i ∈ [dn−1

2
e] and B = {Bi : i ∈ [bn−1

2
c]}. The edge set of F is

E(F ) = ({{0}} ∨ B) ∪
⋃

{i,j,k}∈([dn−1
2 e]
3 )

((
Bi

1

)
∨
(
Bj

1

)
∨
(
Bk

1

))
.

Clearly, for n > 13 > 6, δ1(F ) = b(n− 1)/2c, and there is no copy of GS3 covering 0.

Proof of the upper bound of (6). Suppose that H is a 3-graph on n > 13 vertices with
δ1(H) > b(n − 1)/2c + 1 > 7 and u is a vertex in H not covered by GS3. By averaging,

Hu contains at least one vertex x such that dHu(x) > d2(b(n−1)/2c+1)
n−1 e = 2.

Claim 15. Hu contains no copy of K1,2 ∪K1,1.

Proof. Assume that {x1x2, x2x3, y1y2} is a copy of K1,2 ∪K1,1 in Hu, then ux1x2, ux2x3,
uy1y2 form a GS3 covering u.

Claim 16. The only non-empty component of Hu is a star.

Proof. Suppose not and let x be the vertex with maximum degree in Hu. Let NHu [x] =
NHu(x)∪{x}. Since dHu(x) > 2, we have |NHu [x]| > 3 and any edge in Hu shares at least
one vertex in NHu [x]. Otherwise, there would be a copy of K1,2 ∪ K1,1 in Hu, which is
a contradiction by Claim 15. So we can assume that all edges are incident with NHu [x].
Suppose NHu [x] = {x, y1, y2, . . . , yd} where d = dHu(x) > 2.

If |NHu [x]| > 4, pick an edge wv with x /∈ wv (since Hu is not a star), then wv, xyi, xyj
form a copy of K1,2 ∪K1,1, where we pick yi, yj ∈ NHu [x]\{w, v}. This is a contradiction.

If |NHu [x]| = 3, we have max{dHu(y1), dHu(y2)} > d1 + |E(Hu)|−2
2
e > 4. Without loss

of generality, suppose dHu(y1) > 4. We can pick two vertices z1and z2 with z1, z2 ∈
NHu(y1)\{x, y2}. Then y1z1, y1z2, xy2 form a copy of K1,2 ∪K1,1, a contradiction.

Now we can assume that the only non-empty component of Hu is K[{v}, V0] for some
v ∈ V (Hu) and V0 ⊂ V (Hu)\{v}. Note that |V0| = dH(u) > b(n− 1)/2c+ 1 > 7. If there
exists an edge e ∈ E(H − {u}) with v ∈ e, we can pick 2 vertices v1.v2 ∈ V0\e. Hence we
get a contradiction since e, uvv1, uvv2 form a copy of GS3 covering u.

If there is no edge e ∈ E(H − {u}) with v ∈ e, then dH({u, v}) = dH(u) = dH(v) > 0
and δ1(H − {u, v}) > δ1(H) − 1 > b(n − 1)/2c = b((n − 3)/2c + 1. We now pick
w ∈ NH({u, v}). Note that |E((H − {u, v})w)| > δ1(H − {u, v}) > b((n − 3)/2c + 1.
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So we can find a vertex x such that d(H−{u,v})w(x) > d2(b(n−3)/2c+1)
n−3 e = 2. Pick x1, x2 ∈

N(H−{u,v})w(x), we get a copy of GS3 in H with edge set {uvw,wxx1, wxx2} covering
u.

4 Concluding remarks

In this paper, we determine the exact values of c1(F5) and c1(n, F ) for F = LP3, TP3,
K1,1,3, S3, GP3, GS3. These results, together with some known ones, complete the 1-degree
thresholds for all possible coverings by a connected 3-graph with 3 edges.

For 3-graphs F with more than 3 edges, however, we have no non-trivial exact results
for c1(F ).

For the 2-degree thresholds, one can easily check that: c2(n, F ) is a small constant for

any mentioned connected 3-graph F with 3 edges (except for K
(3)−
4 done by [13]). For

example,

• (Tang, Ma and Hou [12]) For n > 6, c2(n,C
(3)
6 ) = 1;

• (Gu, Wang [8]) For n > 5, c2(n, F5) ∈ {1, 2} and c2(n, F5) = 2 if and only if n ≡ 1
mod 3 and n > 10; for n > 8, c2(n, LP3) = 1; for n > 7, c2(n, S3) 6 1.

Hence, it seems to be more interesting to consider c1(n, F ) and c1(F ) than c2(n, F ) and
c2(F ) for small 3-graphs F .
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ica, 3 (1983), 341-349.

[8] R. Gu, S. Wang, The degree and codegree threshold for generalized triangle and some
trees covering, arXiv:2307.01647.

[9] P. Keevash, Hypergraph Turán problems, London Mathematical Society Lecture Note,
392(1) (2011), 83-140.

[10] P. Keevash, D. Mubayi, Stability results for cancellative hypergraphs, J. Combin.
Theory Ser. B, 92 (2004), 163-175.

[11] L. Lovász, M.D. Plummer, Matching theory, Ann. Discrete Math., 29(1986).

[12] Y. Tang, Y. Ma, X. Hou, The degree and codegree threshold for linear triangle
covering in 3-graphs, The Electronic Journal of Combinatorics, 30(4) (2023), #P4.15.

[13] L. Yu, X. Hou, Y. Ma, B. Liu, Exact minimum codegree thresholds for K−4 -covering
and K−5 -covering, The Electronic Journal of Combinatorics, 27(3) (2020), #P3.22.

[14] C. Zhang, Matchings and tilings in hypergraphs, PhD thesis, Georgia State Univer-
sity, 2016.

[15] Y. Zhao, Recent advances on Dirac-type problems for hypergraphs, In: A. Beveridge,
J. Griggs, L. Hogben, G. Musiker, P. Tetali (eds) Recent Trends in Combinatorics,
The IMA Volumes in Mathematics and its Applications 159. Springer, New York,
2016.

the electronic journal of combinatorics 32(1) (2025), #P1.34 16

https://arxiv.org/abs/2307.01647

	Introduction
	Results

	F5: proof of Theorem 2
	Lower bound
	Upper bound

	Other cases: proof of Theorem 3
	LP3
	TP3
	GP3
	K1,1,3
	S3
	GS3

	Concluding remarks

