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Abstract

Given two r-uniform hypergraphs F' and H, we say that H has an F-covering
if every vertex in H is contained in a copy of F. Let ¢;j(n,F) be the least inte-
ger such that every n-vertex r-graph H with §;(H) > ¢;(n, F) has an F-covering.
Falgas-Ravry, Markstrom and Zhao (Combin. Probab. Comput., 2021) asymptoti-
cally determined ¢ (n, K. f’)f), where K f’)* is obtained by deleting an edge from the
complete 3-graph on 4 vertices. Later, Tang, Ma and Hou (FElectron. J. Combin.,

2023) asymptotically determined c¢;(n, Cé3)), where Cé3) is the linear triangle, i.e.

Cé3) = ([6],{123,345,561}). In this paper, we determine c;(n, F5) asymptotically,
where Fj is the generalized triangle, i.e. F5 = ([5],{123,124,345}). We also deter-
mine the exact values of ¢;(n, F'), where F' is any connected 3-graph with 3 edges
and F ¢ {K¥7,cl¥ ).

Mathematics Subject Classifications: 05C35, 05C07, 05C65

1 Introduction

Given a positive integer k > 2, a k-uniform hypergraph (or a k-graph) H = (V| E)
consists of a vertex set V = V(H) and an edge set £ = E(H) C (‘Ig), where (Z) denotes
the set of all k-element subsets of V. For simplicity, we write graph for 2-graph. Let
H = (V,E) be a simple k-graph (with no multiple edges). For any S C V(H), let
Ng(S) = {T C V(H)\S : TUS € E(H)} and the degree dy(S) = |Ny(S)|. For
1 <1 < k—1, the minimum i-degree of H, denoted by d;(H ), is the minimum of dg(.5)
over all S € (V(Z,H)). We also call 6;(G) the minimum degree of G. The link graph of a
vertex = in V', denoted by H,, is a (k — 1)-graph H, = (V(G)\{z}, Ng(z)).
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For r» > 2, a complete r-graph on n vertices, denoted by Kff), is an r-graph on [n] with
the edge set ([Z}). For a vertex set V, we also write K [V] for the complete r-graph on V.

We write K, for K\” and K[V] for K®[V] for short. For an r-graph G with U C V(G),
let G[U] = (U, E(G)NE(KM[U])) and G — U = G[V(G)\U]. Also, given two r-graphs G
and H, let G U H be the vertex-disjoint union of G and H. Let tH := U§:1 G, for some
t > 2 and r-graphs H, G4, ..., Gy if G; = H for i € [t].

Given a k-graph F', we say a k-graph H has an F-covering if each vertex of H is
contained in some copy of F. For 1 <1 < k — 1, the i-degree threshold for F-covering is
defined as

ci(n, F) := max{d;(G) : G is a k-graph on n vertices with no F-covering}.

We further let the i-degree F'-covering density be the limit

e(F) i= Tim S5
n—oo
(k—i)

There are two types of extremal problems related to the covering problem. Given a
k-graph F'| a k-graph H is F-free if H does not contain a copy of I’ as a subgraph. For
0 <1< k—1, define

ex;(n, F)

(=)
where do(G) := |E(G)|. The quantities exo(n, F') and m(F) are known as the Turdn
number and the Turdn density of F' respectively. For Turan problem on hypergraphs, one
can refer to a survey given by Keevash [9].

Given two k-graphs F' and H, an F-tiling in H is a spanning subgraph of H which
consists of vertex-disjoint copies of F'. For 1 <i<k—1and n=0 mod |V(F)|, define

ex;(n, F) := max{J;(G) : G is F-free and |V (G)| = n}, and m;(F) :=

ti(n, F) := max{0;(G) : G is a k-graph on n vertices with no F-tiling}.

The tiling problem in hypergraphs is also widely studied. We recommend a survey given
by Zhao [15].
Trivially, for 1 <t < k-1,

ex;(n, F) < ¢i(n, F) < t;(n, F),

which makes the covering problem an interesting but different extremal problem from
Turan problem and the tiling problem.

For a graph F, the F-covering problem was solved asymptotically in [14] by showing
that ¢ (F) = ig;:f, where x(F) is the chromatic number of F'.

For r-uniform hypergraphs with r > 3, there are also some works related, most of
them focus on r = 3. Here are some exact results for co(n, F') and co(F) in 3-graphs.

e (Falgas-Ravry, Zhao [6]) For n > 98, ¢3(n, Kf’)) = |22,

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(1) (2025), #P1.34 2



e (Yu, Hou, Ma, Liu [13]) c(n, K(?’)*) = 3] and ca(n, K(?’)*) = [#2], where

K, (r)= (k > r > 2) is an r-graph obtained from K by deleting an edge.
o (Falgas-Ravry, Zhao [6]) ¢o(CY) = L, where C8¥ = ([5], {123,234, 345, 451,512}).
For ¢;(n, F) and ¢, (F) in 3-graphs, some know results are listed as follows.

e (Falgas-Ravry, Markstrom, Zhao [5]) cl(Kf’)_) = %.

e (Tang, Ma, Hou [12]) ¢,(C{Y) = 222 where G = ([6], {123, 345, 561}).

e (Falgas-Ravry, Markstrom, Zhao [5]) 32 < cl(Kf’)) <2 +74%x1077.

e (Falgas-Ravry, Markstrom, Zhao [5]) 2 < a(C¥)y <2 - V2.

o (Gu, Wang [8]) Forn > 5, » < ¢1(n, F5) < % + 2n — 3, where F; = ([5], {123,124,
345}).

e (Gu, Wang [8]) For n > 8, n—2 < ¢1(n, LP;) < n+4, where LP; = ([7], {123, 345,

567}).

In this article, we focus on 3-graphs with 3 edges. Let H be a hypergraph. We say H
is connected if for any pair of vertices {u,v} C (V(QH)), we can find a sequence of edges,
say e1,ey,...,e; € E(H), with u € €1, v € ¢; and ¢; Ne;yq # (@ forany i € [t —1]. A
maximal connected subgraph for any hypergraph H is called a component. Note that a
connected hypergraph consists of a unique component.

By a simple enumeration, one can check that there are only 9 kinds of connected
3-graphs with 3 edges We hst all of them in Figure 1.

In particular, K ~and C’ are two examples for connected 3-graphs with 3 edges,
whose 1-degree covering densities are already know as mentioned above. Another impor-
tant example is called a generalized triangle, denoted by Fj, which is a 3-graph on the
vertex set [5] with the edge set {123,124,345}. In 1983, Frankl and Fiiredi [7] gave the
Turan number for Fy.

Theorem 1 ((Frankl, Fiiredi [7])). For n > 3000, exo(n, F5) = |2][™2][%2]. In
particular, mo(F5) = 2.

Note that the condition for n in Theorem 1 was later improved to n > 33 by Keevash
and Mubayi [10]. There are also some other extremal results related to Fy, we refer to
[1, 2, 3] for example.

To give the extremal construction for Theorem 1, we need some definitions. For two
families of sets A and B, define AVB = {AUB: A€ Aand B € B}. Forr > 2, a
complete r-partite r-graph with partition set Vi, Vs, ..., V., denoted by K[Vi,Va,...,V,],
is an r-graph on | J;_, V; with the edge set

1RKWL%P”JH)=(?)v(?)V~-v(?)
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N

(d) LPs (e) TPy

ICH

(g) Kia3 (h) S3 (i) GSs

Figure 1: All possible connected 3-graphs with 3 edges

For an r-graph H with J._, V; C V(H), let G[W1,....V;] = (U_, Vi, E(H) N E(K[V4,

L Vi) I |\Vi| = ny for i € [r], we write K,,, . for K[Vi,...,V,]. In particular,
Ky, =Ky and Ky, 5= ([5], {123,124, 125}).

One can check that KL%J’L%HJVL%&J on n vertices contains no copy of Fj as its subgraph,

77777

which is an extremal construction for Theorem 1. Hence we can easily deduce from
Theorem 1 that mi(F5) = 2. This leads to ¢;(F5) > 2. In fact, the result of Gu and
Wang [8] about F5 implies that 2 < ¢;(Fs) < 3.

1.1 Results

_1

In this paper, we verify the exact value that c;(F5) = 7.

Theorem 2. Forn > 5, in? —/2n < ¢i(n, F5) < in*+ 3n. In particular, c¢;(Fs) = 1.

For k > 1, a linear star with k edges, denoted by Sk, is a 3-graph on [2k + 1] with
edge set {123,145,167,...,1(2k)(2k + 1)}. In particular, S5 = ([7], {123, 145, 167}).

A path of length k — 1 for some k > 2, denoted by Py, is a graph on [k] whose
edge set is {12,23,34,...,(k — 1)k}. A cycle of length k is a graph on [k] with edge set
{12,23,...,(k — 1)k, k1}. In 3-graph, however, we have several different definitions for a
path. For k > 1, a linear k-path, denoted by LPy, is a 3-graph on [2k + 1] with the edge
set {123,345,567, ..., (2k — 1)2k(2k + 1)}. In particular, LP; = ([7], {123, 345, 567}).
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For k > 1, a tight k-path, denoted by TPy, is a 3-graph on [k + 2] with the edge set
{123,234, 345,...,k(k + 1)(k + 2)}. In particular, TPy = ([5], {123,234, 345}).
There are only two kinds of connected 3-graphs with 3 edges other than K f’)_, C’ég),

Fs, LP;, TPs, K ;3 and S5. We use GP3; and GS3 to denote them:
GP; = ([6],{123,234,456}) and GS3 = ([6], {123,124, 156}).

We determine the exact values of ¢i(n, F'), where F' € {LPs, TP;, GP5, K113, S3,
GGS3} in this paper.

Theorem 3. (1) Forn > 13, ¢;(n,LP;) =n — 2.
(2) Forn > 8,
n—1 n=1 mod 3;

c(n,TP;) =
i ) {n—Q n=0,2 mod 3.

(3) Forn > 17, ¢1(n,GP;) =n — 2.
(4) Forn =9, ¢1(n, Ky13) =n— 1.
(5) Forn > 11, ¢1(n,S;) =n — 1.

(6) Forn > 13, ¢;(n,GSs) = | 2.

2

The rest of the paper is arranged as follows. In Section 2, we prove Theorem 2. In
Section 3, we show the other cases in turn and finish the proof of Theorem 3. We give
some concluding remarks in Section 4.

2 F5: proof of Theorem 2

2.1 Lower bound

Construction 1: Let Hy = (V4, Ey) be a 3-graph with V; = {u} U X UY U Z, and
X Y A X Y
E pu—
e (e () () (G) () ()
X Y A
() ) (() ) ()
where |X| = |Y| = [%2n] — 1, Ex U By = (%) and ||Ex| — |Ey|| < 1.

Observation 4. §,(H,;) > %nQ —V/2n and H, has no Fs covering .

Proof. 1t is easy to check that H; has no F5 covering u. Let a = |X| = |Y| = L\/Tinj -1

and b = |Z| =n —1—2a. Since Ex UEy = () and ||Ex| — |Ey|| < 1, |Ex|, |Ey| >

2
L% (S)J > b(bil) — % Note that the case of n = 5 is apparently true. For n > 6, we have
a>1and b> 3. Choose v € V(Hy).

If v = u, then

2 1 1
dy, (v) = @’ > <§”—2>2 = o= Vo + 4> = Vo

ot
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Figure 2: Construction 1

Ifve XUY, then
b(b—1)

1
d > b+ ——L — — — _2
(V) a+ab+ 1 5 1 ( 2)a
23 2 5) 2
> Mot (252,
4 4 27 4
1 V2—6 5 1
= §n2+\/_Tn—§>§n2— 2n
If v e Z, then
2 b-1 2 1
dy, (v) > a* + , | >a :dH(u)>§n —V2n.
Therefore, &, (Hy) > sn? — V2n. O

2.2 Upper bound

For any graph G, let £(G) = {uv € (V(zG)) : Ne(v) N Ng(u) # 0} be the graph on V(G)
whose edges are all pairs of vertices sharing at least one common neighbor. We have the
following result about the number of edges in £(G).

Lemma 5. For any graph G on n vertices, |E(E(GQ))| = |E(G)| — 5.

Proof. We prove by induction on n. Firstly, for 1 < n < 3, the inequality is apparently
true. Now let G be a graph on n > 4 vertices and suppose the inequality holds for any
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graph on less than n vertices. If G is an empty graph, we are done. Otherwise, pick an
edge uv € F(G). By deleting the vertices u,v and all the incidence edges, we get

|E(G = {u,v})| = [E(G)] — da(u) — da(v) +1

On the other hand, the deletion must destroy all the edges incident with one of u and
v in £(G). Note that u (resp. v) is incident with all the vertices in Ng(v) — {u} (resp.
Ne(u) = {v}) within £(G). In other words,

[E(E(G = {u, 0}))| < [E(E(G))] = da(u) = da(v) +2

Therefore, by induction,

[EEG)] = [EEG —A{u, v}))|+dc( ) +dg(v) =2
> |B(G — {u.v})| = "= + da(u) + do(v) — 2
= |B(G — {u,0})| + da(w) + da(v) =1 = 5
= |B(@)| - 3.
This completes the proof. O

Proof of Theorem 2. 1t is sufficient to show that every 3-graph H on n vertices with
61(H) = in® + 2n has an Fs-covering.

Suppose on the contrary that there is a 3-graph H on n vertices with 6;(H) > %n2+ %n
and a vertex u € V(H) which is not contained in any copy of F5 in H. By definition, the
link graph H,, contains at least §;(H) edges, so it is not empty. We have the following
key claim.

Claim 6. Let xy € E(H,) be an edge in H,, then the four sets E(H, — {x,y}), E(H, —
{u}), E(H, — {u}) and E(E(H, — {x,y})) are pairwise disjoint.

Proof. (i) If E(H, — {z,y}) N E(H, — {u}) # 0, we pick a pair ab in it. By definition,

abzr,abu,uxy € E (H ), which form a copy of F5, a contradiction. The same thing holds

for E( —{z,y}) and E(H, — {u}).

(i) If E( —{u}) N E(H, — {u}) # 0, we pick a pair ab in it. Then abz, aby, zyu form

a copy of F5, which is a contradiction.

(i) If B(H, — {u})NE(E(H, —{x,y})) # 0, we pick a pair ab in it. By the definition of

E(H, — {x,y}), there exists a vertex ¢ with ac,bc € E(H, — {x,y}). Thus, uca, ucb, abx

form a copy of Fj, a contradiction. The same thing holds for E(H, —{u}) and E(E(H, —

{z.y})).

(iv) To complete the proof of this claim, we only need to show that E(H, — {z,y}) N
E(E(H, — {z,y})) = 0. It is enough to show that there is no triangle in H,. By (i)

and (ii), E(H, — {:c,y}), E(H, — {u}) and E(H, — {u}) are pairwise disjoint for any

xy € E(H,). If there is a triangle {zy,zz,yz} C E(H,), then it is easy to see that
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E(H,—A{u}), E(H,—{u}), E(H,—{u}) and E(H, —{x,y, z}) are pairwise disjoint since
E(H, —A{z,y,2}) = E(H, — {z,y}) N E(H, — {x,z}) N E(H, — {y, z}). This means

Bt~ (o D+ B ()l B ()l Bl < (V) 1= (5 1),

Also, |E(H, — {z,y,z})| = 61(H) — (3n — 6) and |E(H,, — {u})| = 6:(H) — (n — 1) for
w € {x,y,2}. This gives 461(H) — ((3n — 6) + 3(n — 1)) < (",'), a contradiction by
01 (H) = gn*+ 3n. O

Pick an edge xy € F(H,). It is easy to check that |E(H, —{z,y})| = 61(H) — (2n—3)
and |E(H, —{u})| > 61(H) — (n — 1). By Lemma 5,

n—3 ) 9
> —(=n—2).
5 = 0(H) = (Gn-73)

|E(E(Hu = {2,y}))| = [E(Hy — {z,y})] -

By Claim 6, E(H,—{x,vy}), E(H,—{u}), E(H,—{u}) and E(£(H,—{z,y})) are pairwise
disjoint. This means

B, = {0, y)| + |EG = (D] + B, ~ ()] + EEH ~ )l <151

Thus,

451(H)—(2n—3)—2(n—1)—(gn—g)< (";1>

a contradiction by 8;(H) > gn® + 3n. O

3 Other cases: proof of Theorem 3

3.1 LPs

Proof of (1). For the lower bound, we simply consider the following 3-graph G called a
trivial intersecting family on V(G) = {0} U [n — 1] with edge set E(G) = {{0}} Vv (["g”).

For the upper bound, suppose on the contrary that there is a 3-graph H on n > 13
vertices with 6;(H) > n — 1 while some vertex u € V(H) is not contained in any copy of
LP;in H.

Claim 7. We can find a copy of Ki2U K;; in the graph H,.

Proof. Note that H, is a graph on n — 1 vertices with at least d;(H) > n — 1 edges. Pick
v € V(H,) with the maximum degree d of H,. By Handshaking Lemma, (n — 1)d >
> vev(m,) du.(x) = 2E(H,) = 2(n — 1). Thus, d > 2, and if d = 2, then dp, () = 2 for
all the vertices z € V(H,). Now suppose d = 2 and Ny, (v) = {z,y}. Since dy, (r) =
dy, (y) = 2, there are at most 2+ 2 = 4 edges incident with at least one of x and y in H,.
Hence we can pick an edge ab € E(H, — {z,y}) since |E(H, —{z,y})| > |E(H,)|—4 > 0.
Clearly, v # a,b. This means the three edges vz, vy, ab form a K; U K, ; in H,. Suppose
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d > 4. Pick 4 vertices w,z,y,z € Ny, (v). Since d < |V(H,)| —1 = n — 2, there exists
at least |E(H,)| — (n —2) > 1 edge ab € E(H, — {v}). Note that v # a,b and at
least two of w,z,y,z are not contained in {a,b}. Without loss of generality, suppose
w,z ¢ {a,b}, then the three edges vw, vz, ab together form a Ky, U Ky, in H,. Thus,
d = 3. Let Ny, (v) = {z,y,z}. It is easy to see that there are at most (}) = 3 edges
contained in {z,y, z}. Note that |F(H, — {v})| = |E(H,)| — 3 > 3. We can pick an edge
ab € E(H,—{v}) which is not contained in {z, y, z}. In other words, |{a, b} {z,y, 2z}| < 1,
so we can pick two vertices in {z,y, 2}, say  and y, which are not in {a,b}. Hence, the
three edges vz, vy, ab form a K, U K; 1 in H,. O

Claim 8. We can find a copy of Ki3U K2 in the graph H,.

Proof. By Claim 7, we choose a set of 5 vertices {a, a1, as, b, b1} C V(H,) with aay, aas, bby €
E(H,). We claim that H,, — {u} C ({a’a22’b’b1}). Otherwise, there exists an edge zy €
E(H,, — {u}) with [{z,y} N {a,a,b,01}| < 1. If {z,y} N{a,as,b,b} = 0, then {xya,
ajau, ubbi} is a copy of LPs in H, a contradiction. Thus, exactly one of a,as,b,b;
is contained in {z,y}. Without loss of generality, suppose that z is this vertex. If
x = a, then {ajya, aasu, ubb } is a copy of LPs; If x = ag, then {ajyas, asau, ubb;}
is a copy of LPs; If x = b, then {ajyb,bbju,uaas} is a copy of LPs; If = by, then
{a1yby, bibu, uaas} is a copy of LP;. Any of the four cases leads to a contradiction.
Therefore, H,, — {u} C ({a’“22’b’b1}). In particular, |E(H,, — {u})] < (}) = 6 and
then dy,(a1) = du, (u) = |E(Hy)| — |[E(Hay — {u})] = (n —1) =6 > 6. Simi-
larly, dy,(a2) > 6. Now, pick three vertices c¢;,cqo,c5 € Np,(a1)\{az}, then we still
have at least 6 — 1 — 3 = 2 vertices ¢4, c5 € Np,(as)\{a1,c1,c2,c3}. This gives 5 edges
a1C1,Qa1C9, A1C3, A2Cy, A2Cs € E(H), which form a K173 U KLQ in Hu ]

Now by Claim 8, we can choose a set of 7 vertices {a, aj, as, ag, b, by, b2} C V(H,) with
aay, aay, aag, bby, bby € E(H,). Similarly as the proof in Claim 8, one can check by simple
discussions that, for i = 1,2,3, F(H,, —{u}) C {ab}. This means |E(H,, —{u})| < 1 and
then n — 2 > dp, (a;) = dp,, (u) = |E(H,,)| — |[E(Hy, — {u})| =2 (n —=1) =1 > n—2 for
any i € [3]. This means all the equalities here hold. Hence for i € [3], ab € E(H,, — {u})
and a;v € E(H,) for any v € V(H,)\{a;}. In particular, a;ab, uasas € E(H). Together
with the edge ubib € E(H), we get a copy of LP3 in H covering u, a contradiction.  [J

3.2 TP;s

Proof of the lower bound of (2). For n = 0,2 mod 3, consider the 3-graph F,,_55 on [n]
with the edge set {{n — 1,n}} Vv ([”IQ]) U (["§2]). one can check that §;(F,_22) =n — 2
for n > 8 and there is no copy of T'Ps containing the vertex n in F,_g .

For n =1 mod 3, suppose n = 3k + 1 for some integer k > 2. Consider a 3-graph F' on
the vertex set {u} U Ule A; with |A;| = 3 for any i € [k]. The edge set of F is

E(F) =CJ ({u} v (’3)) U B g({g}) ((fl‘) v (f‘i) v (fik)) |
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One can also check that §;(F) = dp(u) = 3k = n—1 and F has no copy of T'P5 containing
u. [

Proof of the upper bound of (2). Let g(n) be a function with g(n) = n — 1 for n = 0,2
mod 3 and g(n) = n for n =1 mod 3. Suppose on the contrary that there is a 3-graph
H on n > 8 vertices with §;(H) > g(n) and there is a vertex v € V(H) which is not
contained in any copy of TP3 in H.

We claim that there is no copy of P, contained in H,. Otherwise, there must be 4 ver-
tices x1, x9, x3, x4 € V(H,) with z129, 2ox3, 2324 € E(H,), and we can pick {x1zou, zouzs,
urszys} as a copy of TP3 in H, a contradiction. This implies that any component of H,
can only be a K ; for some ¢ > 0 or a K3. Let n, be the number of components isomorphic
to Ky, for any t > 0 and let m be the number of components isomorphic to K3 in H.
Thenn —1=3m+ >, ,(t+1)n; and

dy(u) = |E(H,)| =3m+ Ztnt =n—1- Znt.

t=0 t>0

If there exists some i > 0 with n; # 0, then dy(u) < n—2 < g(n), a contradiction. Thus,
n; =0 forany i > 0 and n =3m+ 1 =1 mod 3. This means dy(u) =3m =n—1<
n = g(n), a contradiction, too. O

3.3 GP;

Proof of the lower bound of (3). We consider the same 3-graph as mentioned in the proof
of (1), i.e, consider a trivial intersecting family G on V(G) = {0} U [n — 1] with edge
set E(G) ={{0}} Vv ([";1]). Apparently, 6;(G) = n — 2 and G contains no copy of GP;
covering 0. ]

Proof of the upper bound of (3). Let H be a 3-graph onn > 17 vertices and 6, (H) > n—1.
Let M C V(H) be the set of all vertices not covered by any copy of GPs in H. Take
u € M with dy(u) < dy(v) for all v € M.

Claim 9. H, does not contain K;3U K11 as a subgraph. Moreover, H, is a 2-regular
graph (dg,(x) = 2 for any x € V(H,)), i.e. H, is the union of some vertex-disjoint cycles
on n — 1 vertices.

Proof. Suppose on the contrary that there exist a, ay, as, as, by, by € V(H,) with aaq, aas,
aas, biby € E(H,). Since dy(ay) = 01(H) =2n—1>n—2 > dy({u,a1}), we can pick
e € E(H — {u}) be an edge with a; € e.

If e # ajasas, then one of ay and ag, say as, has ay ¢ e. Then if a ¢ e, asua, uaay,
e form a copy of GP;, a contradiction. Now suppose e # ajasas, then a € e. Then
if e N {b,b2} = 0, e, aayu, ubiby form a copy of GP;. Hence we can conclude that
e € {arazas, ajaby, ajabs} and dy_quy(a1) < 3. Similarly, dg_uy(a2), dg—quy(as) < 3.

Recall that dy(u) < dg(v) for all v € M. If dg_,)(a) = 0, then all edges containing
a must also contain u, which means a € M. However, this also implies that dy(a) =
dy,(a) < |E(H,)| = dy(u), where the strict inequality holds since a ¢ biby € E(H,).
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This leads to a contradiction by the minimality of dg(u). Hence, dy_,3(a) = 1. So we
can pick f € E(H — {u}) with a € f. Thus one of ay, as, as, say ai, has a; ¢ f. If
dpy,(a1) = 4, then we can pick ¢ € Ny, (a1)\f. Then ucay, uaya, f form a copy of GPs.
Thus, du,(a1) < 3. Therefore, dy(a1) = du—_quy(a1) + du,(a1) < 3+3 =6 < 6 (H), a
contradiction.

Now H, is a K; 3UK; ;-free graph on n—1 vertices with at least n—1 edges. If H, does
not contain a vertex of degree at least 3, then it is easy to see that H, must be 2-regular
and we are done. Otherwise, pick v € V(H,,) with at least 3 vertices vy, ve,v3 € Np, (v).
Clearly, the edges in H, must incident with Vy := {v,vy,ve,v3} or we get a copy of
Ky 53U Ky3. In other words, Ny, (z) C Vp for any x € V(H,)\Vo. Also note that
|E(H,)| > n—1> (5), we have at least 7 — 4 = 3 vertices, say 1, 7o and x3, other
than v, vy, vy and vz incident with at least one edge in H,. If xyv € F(H,) and some
vertex in Vo\{vo}, say vy, has zovy € E(H,), then zovy, vvy, vvs, vy € E(H,) form a
copy of K;3UK] 1, a contradiction. Thus, if ;v € E(H,), then zov € E(H,), which then
implies that Ny, (x) C {v} for any = € V(H,)\{v}. This gives |E(H,)|<n—-2<n—1,
a contradiction. Hence, Ny, (z) C Vi = {vi,vs,v3} for any z € V(H,)\Vo. If there
exists some 7 € [3] with |Ng,(v;) N Vy| = 3, then vz, vizg, vz € E(H,). Thus vz,
v;x2, v;xg and vv; for some j # ¢ form a copy of K;3U K1 in H,, a contradiction. If
|Ng, (v;) N Vo| = 2, without loss of generality, suppose v;x1, v;zo € E(H,). Since x3
incident with at least one edge in H,, we have v;jz3 € E(H,) for some j # i. Then v;z,
v;T2, v;v and vjzs form a copy of K 3UK 1 in H,,, a contradiction. Thus, [Ny, (v;)\Vo| < 1
for i € [3], which gives |E(H,)| < (3) +3 =9 < n — 1, a contradiction. O

Claim 10. For any cycle C C H, and edge e € E(H —{u}), we have |V (C)Ne| € {0,3}.

Proof. Suppose |V (C)Ne| = 1 firstly. Let V(C) = {c1,¢,...,ce}, E(C) = {c1c9, cacs, . . .,
co—101, cec1} and let e = cyzy where z,y ¢ C. Then cicou, caucs, cixy form a copy of GPs
covering u, a contradiction. So |V(C) Ne| # 1 for any cycle C C H,. If [V(C)Ne| =2,
then there must exist another cycle C’ with |[V(C") Ne| =3 —2 =1, a contradiction. [

Pick a cycle Cy with V/(Cy) = {c1,¢a,...,ce} and E(Cy) = {c1c2, cacs, ..., co_1¢q, Cocr }

If ¢ = |V(Cy)| = 7, we pick an edge e with e N V(Cy) # () (such an edge exists
since the degree of vertex in V(Cp) should be more than 2 in H as 6,(H) > n — 1).
Then |e N V(Cp)| = 3 by Claim 10. Suppose e = {¢;,¢j, ¢} with 1 < i < j <k < L
By Pigeonhole Principle, one of dy = j — i, do = k — j, d3 = { + i — k, say d;, has
dy > [€/3] > 3. This means j —i > 3. Without loss of generality, suppose i = 1, so
k > 7 > 4. Then c3ucy, ucscy, e form a copy of GP; covering u.

Therefore, |V(Cy)| < 6. Pick v € V(Cy). Note that any edge e containing v must have
le N V(Cy)| = 3, which implies that dy(v) < 2+ (VD7) <12 < n —1 < §i(H). This
is a contradiction. O
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3.4 K1,1,3

Proof of the lower bound of (4). Let W be a 3-graph on [n| and let C = {12,23,...,
(n—2)(n—1),(n—1)1}. The edge set of W is

BE(W) = ({{n}} VC) U {{z‘,j, k) e ([” N ”) : ({”2 k}) ne = @} |

It is easy to see that dy(n) = n—1and dy (i) = (";*) —(n—5)+2>n—1fori € [n—1]
since n > 9. Hence §;(W) = n — 1. Also, one can check that there is no copy of Kj ;3

covering the vertex n. O

Proof of the upper bound of (4). Suppose on the contrary that there is a 3-graph H on
n > 9 vertices with §;(H) > n and v € V(H) is not contained in any copy of K3 in H.
Then the degree of any vertex in H, must be at most 2. Otherwise, suppose dg,(v) >
3 for some v € V(H,). Pick x,y,z € Ng,(v), we get the three edges wvx, uvy, uvz in H
which form a K3 in H, a contradiction. Thus, dg,(v) < 2 for any v € V(H,). Note
that V(H,) = n — 1 and |E(H,)| > 0:(H) > n. By Handshaking Lemma, 2(n — 1) >
> vevi(m,) dm, (V) = 2| E(Hy)| = 2n, a contradiction. O

3.5 S3
Proof of the lower bound of (5). Let S be a 3-graph on [n] with the edge set

£ = (w-mv (7T (T o (v (M57).

Note that n > 11 > 7. It is easy to check that dg(n) = (";%) > n—1, ds(n—1) = 2(n—4)
>n—1,ds(n—2)=ds(n—3)=2n—T7>n—1and dg(i) =n — 1 for i € [n — 4]. This
means 0,(S) =n — 1. Also, S has no copy of S3 covering the vertex n — 1. O

Before the proof of the upper bound, we firstly put the famous Tutte-Berge Theorem
here.

Lemma 11 ([4], see also [11]). A graph G is (s + 1)Ks-free if and only if there is a set
B C V(G), such that the vertex sets of all the connected components Gy, - , Gy, of G—B
have |[V(G;)| =1 mod 2 (i € [m]), and we have,

V(G| -1 -
yg|+2% <s and |B|+)_|V(G)|=n.
i=1 i=1

Proof of the upper bound of (5). Suppose on the contrary that H is a 3-graph on n > 11
vertices with §;(H) > n and v € V(H) is not contained in any copy of S3 in H. Note
that there is no copy of 3K, in H,. Ohterwise, let {ajas, b1bs,c1c2} C H, be a copy of
3Ky, then{uajas, ubiby, ucico} is a copy of S3 in H, a contradiction. Hence, we can use
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Lemma 11 to obtain a set B C V(H,). Then all the components G, ...G,, of H, — B
have |V(G;)| =1 mod 2 (i € [m]), and

V(G| -1 —
B MO o B+ V@) =12 10
=1 =1

Without loss of generality, let |V/(G1)| > |V(Ga)| = -+ = |V(Gy,)|. Thus |B| < 2. Also,
H, c K[B]UK][B, V(H )~ BJUST K[V(G,)].

Claim 12. 1 < |B| <

Proof. 1t |B| = 0, then E(H,) C >.;", E(K[V(G;)]) and Y ", 5==24— < 2. Note that
% is a non-negative integer for any ¢ € [m]. so it is easy to see that elther V(G| <
5 and |V(G;)| = 1for j > 1 or |[V(Gy)|,|V(Gs)| < 3 and |V(G)| =1 for j > 2. This
implies dy (u) = |E(H,)| = > it |[E(K[V(G))])| <10 < n < 6,(H), a contradiction. This

gives 1 < |B| < 2. O

Claim 13. For any edge xy € E(H,), there is no copy of 2K5 in H, —{u,y}. Moreover,
|E(Hy —{u,y})| <n—4.

Proof. If there exists a set of two disjoint edges {ajas,b1bo} C E(H, — {u,y}) as a 2K,
in H, — {u,y}, then the three edges zyu,raay, xbiby € E(H) form a copy of Sz, a

contradiction. Hence, the only non-empty component of H, — {u,y} must be a K3 or a
Ky, for some 1 <t < n—4. This gives |E(H, — {u,y})| < n—4. O

Claim 14. Let v € V(H,) and dg,(v) > 5. Pick any two vertices x,y € Ng,(v). If
dp,—quy(v) = 1, then dy,—q(v) < 1. Moreover, max{dy, (z),dn,(y)} = 3.

Proof. Otherwise, suppose dg, {,3(v) = 1 and dp, _,3(v) = 2. then we can pick an edge
va; € H, — {u} and another edge va; € H, — {u} with ay # a;. Since dp,(v) > 5,
we can also pick a vertex ag € Ny, (v) with ag # aj1,as,2,y. Then the three edges
vay T, vagy,vazu € E(H) form a copy of S3, a contradiction.

To prove max{dgy,(x),dn,(y)} = 3, note that dy(2) = dp, (2) + du,—quy(v) + | E(H; —
{u,v})| for z € {x,y}. By Claim 13, |E(H, — {u,v})| < n—4 for z = z,y. Hence, for
z €{z,y},

n<6(H)<dg(z) <n—4+dy,(2)+dg,—quy(v).

Now if dg, (2) < 2 for z = ,y, then n <n — 2+ dp__uy(v), which means dy, g (v) > 2
for z = x,y. This is impossible by the proof above. O

Now by Claim 12, 1 < |B| <

If |Bl] =1, let B = {v}. By E(H,) C K[B,V(H,) — BJUY " K[V(G;)] and
S WHGIEL < 1, we have |[V(GY)| < 3, [V(Gy)| = 1 for j > 1 and E(H,) = E(H,[B,
V(H,) — B]) UE(Gl) Since E(H,) = dy(u) = 6(H) = n, dy,(v) = |E(H,[B,V(H,) —
B])] = n—|K[V(Gy)]] = n—3>5 =2+ 3. Thus, we can pick two vertices z,y €
Ny, (v)\V(G1). Then dy,(z) = dy,(y) = 1, contradicts to max{dg,(x),dn,(y)} = 3 by
Claim 14.
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If |B| =2, let B = {vy,v2}. Similarly, we get |V (G,)| = 1for any j € [m] and E(H,) =
E(H,[B])U E(H,|B,V(H,) — B]). This means dg,(z) < 2 for any x € V(H,)\{vi,v2}
and 11 <n < 0,(H) < |E(Hy)| < du, (v1) + dp, (v2). By Pigeonhole Principle, one of v;
and vy, say vy, has dy, (v1) = 5 > 5. So we can pick two vertices 2,y € Ny, (v1)\{v2}
and get a contradiction similarly by Claim 14. O

3.6 GS;

Proof of the lower bound of (6). Consider the graph F' with vertex set {0} U [n — 1]. Let
B; ={2i—1,2i}N[n—1], fori € [[21]] and B ={B; : i € [| %5 ]]}. The edge set of F is

E(F) = ({{0}}VvB)U U <<f) v (fiﬂ') vV (fi’“)) .

{i,j,k}e(”i%i”)
Clearly, for n > 13 > 6, 6;(F') = | (n — 1)/2], and there is no copy of GS;3 covering 0. [

Proof of the upper bound of (6). Suppose that H is a 3-graph on n > 13 vertices with
0(H) > |(n—1)/2] +1 > 7 and u is a vertex in H not covered by GS3;. By averaging,

H, contains at least one vertex = such that dg,(z) > [ww = 2.

Claim 15. H, contains no copy of K12 U Ky ;.

Proof. Assume that {x129, 2923, Y192} is a copy of K2 U K, in H,, then uz iz, uxqws,
uy1y2 form a G.S3 covering wu. n

Claim 16. The only non-empty component of H, is a star.

Proof. Suppose not and let x be the vertex with maximum degree in H,. Let Ny, [z] =
Ny, (x)U{z}. Since dg,(x) > 2, we have |Ng,[z]| > 3 and any edge in H, shares at least
one vertex in Ny, [z]. Otherwise, there would be a copy of K;2 U K;; in H,, which is
a contradiction by Claim 15. So we can assume that all edges are incident with Ny, [x].
Suppose Ny, [z] = {x,y1,92,...,ya} Where d = dy, (z) > 2.

If |Np,[z]] = 4, pick an edge wv with ¢ wv (since H,, is not a star), then wv, zy;, xy,
form a copy of K2 U K1, where we pick v;,y; € Ny, [x]\{w,v}. This is a contradiction.
If |Ng,[z]| = 3, we have max{dg, (y1),du,(y2)} = [1 + W] > 4. Without loss
of generality, suppose dp,(y1) = 4. We can pick two vertices zjand zo with 2,25 €
Ng, (y1)\{z, y2}. Then y;21,y122, zy> form a copy of KU K 1, a contradiction. O

Now we can assume that the only non-empty component of H, is K[{v}, V] for some
veV(H,) and Vo C V(H,)\{v}. Note that |Vo| = dg(u) > [(n —1)/2| +1 > 7. If there
exists an edge e € F(H — {u}) with v € e, we can pick 2 vertices v;.v9 € Vj\e. Hence we
get a contradiction since e, uvvy, uvv, form a copy of GS3 covering w.

If there is no edge e € E(H — {u}) with v € e, then dg({u,v}) = dy(u) = dy(v) >0
and 6;(H — {u,v}) > 6(H) -1 =2 |[(n—1)/2] = |[((n — 3)/2] + 1. We now pick
w € Ngp({u,v}). Note that |E((H — {u,v})y)| = 6:1(H — {u,v}) = |[((n — 3)/2] + 1.
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So we can find a vertex x such that dg_qu.), (z) > [ww = 2. Pick z1,29 €

N(H—{up}). (%), Wwe get a copy of GS3 in H with edge set {uvw,wzx,, wrxs} covering
U. O

4 Concluding remarks

In this paper, we determine the exact values of ¢;(F5) and c¢;(n, F') for F' = LP3, TP;,
K13, 53, GPs, GSs. These results, together with some known ones, complete the 1-degree
thresholds for all possible coverings by a connected 3-graph with 3 edges.

For 3-graphs F' with more than 3 edges, however, we have no non-trivial exact results
for ¢, (F).

For the 2-degree thresholds, one can easily check that: co(n, F) is a small constant for
any mentioned connected 3-graph F with 3 edges (except for K\~ done by [13]). For
example,

e (Tang, Ma and Hou [12]) For n > 6, c3(n, CY) = 1;

e (Gu, Wang [8]) For n > 5, co(n, F5) € {1,2} and cy(n, F5) = 2 if and only if n = 1
mod 3 and n > 10; for n > 8, co(n, LP;) = 1; for n > 7, c2(n, S3) < 1.

Hence, it seems to be more interesting to consider ¢;(n, F') and ¢;(F) than cy(n, F') and
co(F) for small 3-graphs F.
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