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Abstract

We show that for η > 0 and sufficiently large n, every 5-graph on n vertices
with δ2(H) > (91/216 +η)

(
n
3

)
contains a Hamilton 2-cycle. This minimum 2-degree

condition is asymptotically best possible. Moreover, we give some related results on
minimum d-degree conditions in k-graphs that guarantee the existence of a Hamilton
`-cycle when ` 6 d 6 k − 1 and 1 6 ` < k/2.

Mathematics Subject Classifications: 05C35, 05C65

1 Introduction

The study of Hamilton cycles is an important topic in graph theory and extremal com-
binatorics. Dirac’s classic result [5] states that every graph whose minimum degree is at
least as large as half the size of the vertex set contains a Hamiltonian cycle. In recent
years, extending Dirac’s theorem to hypergraphs has attracted a great deal of attention.
Given k > 2, a k-uniform hypergraph H (in short, k-graph) consists of a vertex set V
and an edge set E ⊆

(
V
k

)
, where every edge is a k-element subset of V . We denote by

e(H) := |E| the numbers of edges in H. Given a k-graph H = (V,E) and a vertex
set S ∈

(
V
d

)
, we define N(S) to be the family of T ∈

(
V
k−d

)
such that T ∪ S ∈ E and

degH(S) := |N(S)|. The minimum d-degree of H denoted by δd(H) is the minimum of
degH(S) over all d-element vertex sets S in H. For 1 6 ` < k, we say that a k-graph is
an `-cycle if there exists a cyclic ordering of its vertices such that every edge consists of
k consecutive vertices and two consecutive edges (in the natural order of the edges) share
exactly ` vertices. If the ordering is linear, we call it an `-path and we say the first and
last ` vertices are the ends of the path. By the length of an `-path, we mean the number
of edges contained in it. In k-graphs, a (k − 1)-cycle is often called a tight cycle and a
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(k − 1)-path is often called a tight path. A k-graph on n vertices contains a Hamilton `-
cycle if it contains an `-cycle as a spanning subhypergraph. Note that a Hamilton `-cycle
of a k-graph on n vertices contains exactly n/(k− `) edges, implying that (k− `) | n. For
(k − `) | n and 1 6 d 6 k − 1, we define the Dirac threshold h`d(k, n) to be the smallest
integer h such that every n-vertex k-graph H satisfying δd(H) > h contains a Hamilton
`-cycle. Let

h`d(k) := lim sup
n→∞

h`d(k, n)/

(
n

k − d

)
.

Dirac thresholds of hypergraphs were first investigated by Katona and Kierstead [16],
who showed that 1/2 6 hk−1k−1(k) 6 1 − 1/(2k) and conjectured hk−1k−1(k) = 1/2, which
was confirmed by Rödl, Ruciński, and Szemerédi [26, 27], that is, for ε > 0 and large n,
δk−1(H) > n/2 + εn guarantees a Hamilton tight cycle. When (k− `) | k, a tight cycle on
V trivially contains an `-cycle on V . So the asymptotic Dirac threshold h`k−1(k) = 1/2
follows as a consequence of hk−1k−1(k) = 1/2 and a construction of Markström and Ruciński
[22]. When (k − `) - k, there have been a series of works on the threshold h`k−1(k). We
collect these results in the following theorem.

Theorem 1. [9, 17, 18, 26, 27] For any k > ` > 1, we have

h`k−1(k) =

{
1/2 (k − `) | k

1
d k
k−`
e(k−`) (k − `) - k.

For sufficiently large n, some exact thresholds h`k−1(k, n) are known: for k = 3 and
` = 2 [28] and for k > 3 and 1 6 ` < k/2 [4, 13]. For d = k− 2, Buß, Hàn and Schacht [3]
showed that h12(3) = 7

16
. Han and Zhao [14] showed the exact result for h12(3, n). Bastos,

Mota, Schacht, Schnitzer and Schulenburg [1] determined h`k−2(k) = 1 −
(

1− 1
2(k−`)

)2
for k > 4, 1 6 ` < k/2 and got the exact result in [2], which generalizes the previous
results for 3-graphs. For tight cycles, which might be considered as the most difficult and
interesting case, Polcyn, Reiher, Rödl, Ruciński, Schacht and Szemerédi [23, 25] showed
the asymptotic Dirac threshold h21(3) = h32(4) = 5/9. Lang and Sanhueza-Matamala [19]
proved that hk−1k−2(k) = 5/9 for all k > 3 (the same result was also proved independently
by Polcyn, Reiher, Rödl and Schülke [24]) and also provided a general upper bound of
1− 1/(2(k − d)) for hk−1d (k), narrowing the gap to the lower bound of 1− 1/

√
k − d due

to Han and Zhao [15]. For d 6 k − 3, much less is known under d-degree conditions.

Recently, Hàn, Han and Zhao [8] determined the exact value of h
k/2
d (k, n) for any even

integer k > 6, integer d such that k/2 6 d 6 k− 1 and sufficiently n. Gan, Han, Sun and
Wang [7] determined the following Dirac thresholds for 1 6 ` < k/2.

Theorem 2 ([7]). Suppose that k > 3, k − ` 6 d < 2` 6 k − 1 such that 2k − 2` >
(2(2k − 2` − d)2 + 1)(k − d − 1) + 1 or suppose that k is odd, k > 7, ` = (k − 1)/2 and
d = k − 3, then

h`d(k) = 1−
(

1− 1

2(k − `)

)k−d
.
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The following “space-barrier” construction shows that the minimum degree conditions
in the aforementioned results in [1, 3, 7, 17, 18] are best possible, namely,

h`d(k) > 1−
(

1− 1

2(k − `)

)k−d
. (1)

Given k > 3, 1 6 ` < k/2, 1 6 d 6 k−1 with (k−`) | n, let Hk,` := (V,E) be an n-vertex
k-graph such that E consists of all k-sets that intersect A ⊆ V , where |A| = d n

2(k−`)e − 1.

Note that an `-cycle on n vertices contains n/(k − `) edges and each vertex is contained
in at most two edges of any `-cycle for ` < k/2. So Hk,` contains no Hamilton `-cycle and

δd(Hk,`) =

(
n− d
k − d

)
−
(
n− |A| − d

k − d

)
=

(
1−

(
1− 1

2(k − `)

)k−d
− o(1)

)(
n

k − d

)
.

Letting n tend to infinity, we obtain (1).
We expect more Dirac thresholds to take the value of the space-barrier (as in Theo-

rem 2) for all ` < k/2. However, this is not true for large `. Indeed, as noticed in [15], for
k − ` = o(

√
k − d)), we have h`d(k)→ 1 as (k − d)→∞ regardless of (k − `) | k or not.

1.1 Our results: h2
2(5)

In this paper we study more thresholds of Hamilton `-cycles and focus on the case ` < k/2.
The following theorem gives the Dirac threshold for k = 5, ` = (k − 1)/2 = 2 and
d = k − 3 = 2.

Theorem 3.

h22(5) =
91

216
.

Our proof in [7] fails for determining h22(5). The key reason is that in [7] we could
only prove Theorem 24 for α < 1/7 (and one can see later in Section 3 that we need
the case α = 1/6 in proving Theorem 3). Moreover, we also derive a connecting lemma
(Lemma 12) for d = ` from the Kruskal–Katona theorem – in [7] we use a connecting
lemma from [11] which works for d > ` only. At last, we also need a better absorbing
path lemma because the one we established in [7] only works for d > k − ` and ` < k/2.

Given two k-graphs F and H, an F -tiling in H is a subgraph of H consisting of vertex-
disjoint copies of F . The number of copies of F is called the size of the F -tiling. When
F is a single edge, an F -tiling is known as a matching. For k > b > 0, let Yk,b be the
k-graph consisting of two edges that intersect in exactly b vertices. For any 0 < ε < η,
k > 3, 1 6 ` < k/2 and 1 6 d 6 k − 1, let t`d(k, n, ε) denote the minimum t such that
every k-graph H on n vertices with δd(H) > t contains a Yk,2`-tiling covering all but at
most εn vertices of H. Let

t(k, d, `) := lim sup
ε→0

lim sup
n→∞

t`d(k, n, ε)(
n
k−d

) .
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The aforementioned space barrier construction indeed shows that

t(k, d, `) > 1−
(

1− 1

2(k − `)

)k−d
. (2)

Using the new connecting lemma and absorbing lemma mentioned above, we show the
following two results for general Dirac thresholds for `-cycles with ` < k/2.

Theorem 4. Suppose that k > 3, η > 0, ` < d 6 k−1 and 1 6 ` < k/2, then there exists
n0 such that every k-graph H on n > n0 vertices with (k − `) | n and

δd(H) > (max{t(k, d, `), 1/3}+ η)

(
n

k − d

)
contains a Hamilton `-cycle, that is, h`d(k) 6 max{t(k, d, `), 1/3}.

Theorem 5. Suppose that k > 3, η > 0 and 2 6 ` < k/2, then there exists n0 such that
every k-graph H on n > n0 vertices with (k − `) | n and

δ`(H) >
(

max
{

(1/2)
k−`
` , t(k, `, `)

}
+ η
)( n

k − `

)
contains a Hamilton `-cycle, that is, h``(k) 6 max

{
(1/2)

k−`
` , t(k, `, `)

}
.

We do need the minimum d-degree condition to be at least (1
3

+ o(1))
(
n
k−d

)
in both

theorems above. The reason that we do not see the constant 1/3 in Theorem 5 is that
t(k, `, `) > 1 − 1/

√
e > 0.39 by (2). Similarly, when d > ` and t(k, d, `) > 1/3, we

know that h`d(k) 6 t(k, d, `), that is, the value of h`d(k) is determined solely by the tiling
threshold.

Corollary 6. If k > 3, 1 6 ` < k/2 and 0.82(k−`) 6 k−d < k−`, then h`d(k) 6 t(k, d, `).

Proof. We have

t(k, d, `) > 1−
(

1− 1

2(k − `)

)k−d
> 1− e−

k−d
2(k−`) > 1− e−0.41 > 1/3,

where we used the inequality (1 − 1/n)n < 1/e for integer n > 0. Since 0.82(k − `) 6
k − d < k − `, we have ` < d 6 k − 1. So h`d(k) 6 t(k, d, `) by Theorem 4.

1.2 New proof ideas

Now we briefly talk about our proof ideas. Theorem 4 and Theorem 5 are proved by
using the absorbing method, popularized by Rödl, Ruciński, and Szemerédi in [26]. The
proof is divided into the following lemmas: the connecting lemma, the absorbing path
lemma, the path cover lemma and the reservoir lemma. Roughly speaking, the absorbing
path lemma reduces the task of finding a Hamilton `-cycle to the much easier problem of
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finding an `-cycle covering the majority of vertices. Furthermore, we compute the value
of t(5, 2, 2) (see Theorem 21), which together with Theorem 5 implies Theorem 3.

To prove our absorbing lemma Lemma 13, we combine the swapping-absorbing idea
of Reiher, Rödl, Ruciński, Schacht and Szemerédi [25] and the lattice-based absorbing
method of the first author [10]. Roughly speaking, by the swapping-absorbing idea, one
can build the absorbers in two steps. In the first step, we show that there are many
“end absorbers” from each of which we can “free” a (k − `)-set of vertices. In the second
step, it is shown that every (k − `)-set can be “swapped” with the free vertex set in the
end absorbers, namely, one can find two short `-paths that include either of the sets as
interior vertices (e.g., in the graph case, the pair (a, b) is a swapper for u and v if both
aub and avb form paths of length two). It is easy to see that one can “concatenate” the
swappers to form longer swapper chains, and we use the reachability arguments and the
lattice-based absorbing method to control the swappings.

The rest of this paper is organized as follows. In Section 2 we give some preparatory
results. We use the absorbing method to prove Theorem 4 and Theorem 5 in Section 3.
Finally, we give proofs of Theorem 3 in the Appendix.

2 Preliminaries

One important ingredient of our swapping-absorbing method is the following notion of
reachability introduced by Lo and Markström [20]. Given a constant β > 0, an integer
i > 1 and a k-graph H on n vertices, we say that two vertices u, v in H are (β, i)-reachable
if there are at least βn(2k−`)i−1 ((2k − `)i− 1)-sets T such that there exist vertex-disjoint
`-paths P1, . . . , Pi of length two with V (P1 ∪ · · · ∪ Pi) = T ∪ {u}, and vertex-disjoint
`-paths P ′1, . . . , P

′
i of length two with V (P ′1 ∪ · · · ∪ P ′i ) = T ∪ {v}, where Pj and P ′j have

the same ends for all j ∈ [i]. Moreover, we call T a reachable set for {u, v}. Given a vertex
set U ⊆ V (H), U is said to be (β, i)-closed if every two vertices in U are (β, i)-reachable
in H.

The following simple results will be useful.

Fact 7. Let 1 6 d′ 6 d < k and H be a k-graph on n vertices. If δd(H) > x
(
n−d
k−d

)
for

some 0 6 x 6 1, then δd′(H) > x
(
n−d′
k−d′
)
.

Proof. Since δd(H) > x
(
n−d
k−d

)
, we get δd′(H) >

(
n−d′
d−d′
)
x
(
n−d
k−d

)
/
(
k−d′
d−d′
)
> x

(
n−d′
k−d′
)
.

We use a, by now common, hierarchical notation, writing x � y to mean that there
exists a function f such that whenever x 6 f(y), the subsequent statement holds. When
multiple constants appear in a hierarchy, they are chosen from right to left.

Proposition 8. Let q > 2, 1/n � β � η, 1/q, 1 6 `, d < k and H be a k-graph on n
vertices with δd(H) > (1/q + η)

(
n
k−d

)
. Then every set of q vertices of V (H) contains two

vertices which are (β, 1)-reachable in H.

Proof. Take β � ε � η, 1/q. By δd(H) > (1/q + η)
(
n
k−d

)
and Fact 7, we get δ1(H) >

(1/q + η/2)
(
n
k−1

)
. For any q-tuple v1, v2, . . . , vq of V (H), we have

∑q
i=1 |NH(vi)| > (1 +
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qη/2)
(
n
k−1

)
. By the pigeonhole principle, there exist vi, vj such that |NH(vi) ∩NH(vj)| >

εnk−1. Let P ∗ be a k-graph which is an `-path of length two. Then the link (k− 1)-graph
P ∗∗ of a vertex of degree two in P ∗ is (k − 1)-partite. By the supersaturation result (see
[6]), we can find (2k − `− 1)!βn2k−`−1 copies of P ∗∗ in NH(vi) ∩NH(vj). Given any such
copy of P ∗∗ whose vertex set is denoted by T , we get that both T ∪ {vi} and T ∪ {vj}
form a copy of P ∗. Overall there are at least βn2k−`−1 choices of (2k − `− 1)-sets for T .
So vi and vj are (β, 1)-reachable in H.

3 Hamilton `-cycles

In this section, we prove Theorem 4 and Theorem 5

3.1 Connecting Lemmas

We first present two versions of the connecting lemma, both of which state that in any
sufficiently large k-graph with large minimum d-degree, we can connect any two disjoint
ordered `-sets of vertices by a short `-path. When d > `, we use the following connecting
lemma from [11]. The case d = k − 1 was proved earlier in [18].

Lemma 9 (Connecting lemma, [11], Lemma 4.1). Suppose that k > 3 and 1 6 ` < d 6
k− 1 such that (k− `) - k, and that 1/n� β � µ, 1/k. Let H be a k-graph on n vertices
satisfying δd(H) > µ

(
n
k−d

)
. Suppose S and T are two disjoint ordered `-sets of V (H),

then there exists an `-path P in H with S and T as ends such that P contains at most
8k5 vertices.

For ` < k/2, we derive the following connecting lemma for `-paths from the Kruskal-
Katona theorem. For this, we first introduce the notion of (robust) shadow.

Definition 10. Given ε > 0 and ` > 1, the ε-robust `-shadow of a k-graph H, denoted
by ∂`ε(H) ⊆

(
V (H)
k−`

)
, is the (k − `)-graph consisting of all (k − `)-sets lying in more than

εn` edges in H, that is, ∂`ε(H) =
{
F ∈

(
V (H)
k−`

)
: degH(F ) > εn`

}
.

Kruskal-Katona theorem studies the size of the (0-robust) shadow of a hypergraph.
We state the following handy version by Lovász [21]. The generalized binomial coefficient
is defined for any real number t and a positive integer k as:(

t

k

)
=
t(t− 1)(t− 2) · · · (t− k + 1)

k!
.

Theorem 11 (Kruskal–Katona theorem, [21]). For all integers 1 6 ` 6 k 6 n and t ∈ R,
let H be a k-graph with at least

(
t
k

)
edges. Then

|∂`0(H)| >
(

t

k − `

)
.
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Now we give a connecting lemma for minimum `-degree and `-cycles where 1 6 ` 6
k/2. The cases for k > 3, 1 6 ` < k/2 were proved by Buß, Hàn and Schacht [3] and
Bastos, Mota, Schacht, Schnitzer and Schulenburg [1].

Lemma 12 (Connecting lemma). Suppose that 1 6 ` 6 k/2 and η > 0. Let H be a

k-graph on n vertices satisfying δ`(H) >
(

(1/2)
k−`
` + η

) (
n
k−`

)
. Then for any two disjoint

ordered `-sets S and T of V (H), there exists an `-path of length two in H from S to T .

Proof. Let 1/n < ε� η. Fix two disjoint ordered `-sets S and T of V (H). In order to get
the desired `-path, it suffices to find two (k−`)-sets S1 and T1 with |S1∩T1| = ` such that
S∪S1 ∈ E(H) and T ∪T1 ∈ E(H). For ` = k/2, we have min{|N(S)|, |N(T )|} > δ`(H) >
(1/2 + η)

(
n
k−`

)
. So there exists an `-set S1 ∈ N(S) ∩N(T ) such that S ∪ S1 ∈ E(H) and

T ∪ S1 ∈ E(H). Now we suppose 1 6 ` < k/2. Consider NS and NT as two (k − `)-
graphs on V (H) with the edge sets N(S) and N(T ) respectively. So it suffices to show
∂k−2`ε (NS) ∩ ∂k−2`ε (NT ) 6= ∅. Indeed, suppose D ∈ ∂k−2`ε (NS) ∩ ∂k−2`ε (NT ), then it is easy
to find S1 ∈ NS and T1 ∈ NT with S1 ∩ T1 = D.

We apply the following procedure iteratively and get a spanning subgraph of NS,
denoted by G, which satisfies that for any `-set X in V (G), either degG(X) > εnk−2`

or degG(X) = 0. If there is an `-set B with degNS
(B) < εnk−2`, delete all the edges

containing B in NS. Note that when the process ends, the number of deleted edges
is at most εnk−2`

(
n
`

)
. By the minimum `-degree condition of H, e(NS) = |N(S)| >(

(1/2)
k−`
` + η

) (
n
k−`

)
. So as ε� η,

e(G) > e(NS)− εnk−2`
(
n

`

)
>

(
(1/2)

1
`n+ ε

1
k−`n

k − `

)
and ∂k−2`ε (G) = ∂k−2`0 (G). Using Theorem 11 to G, we get |∂k−2`0 (G)| >

(
(1/2)

1
` n+ε

1
k−` n

`

)
.

Thus

|∂k−2`ε (NS)| > |∂k−2`ε (G)| = |∂k−2`0 (G)| > 1

2

(
n

`

)
.

Similar arguments show that |∂k−2`ε (NT )| > 1
2

(
n
`

)
. Hence ∂k−2`ε (NS) ∩ ∂k−2`ε (NT ) 6= ∅.

3.2 Absorbing Path Lemma

Our main contribution of this paper is to prove the following absorbing path lemma, which
gives an absorbing `-path P which can absorb a small but arbitrary set of vertices.

Lemma 13 (Absorbing path lemma). Suppose that k > 3, 1 6 ` < k/2 and 1/n� θ �
γ � η, 1/k. Let H be a k-graph on n vertices satisfying

δ`(H) >
(

max{1/3, (1/2)
k−`
` }+ η

)( n

k − `

)
with ` > 2, or δ`+1(H) > (1/3+η)

(
n

k−`−1

)
. Then there exists an `-path P with |V (P )| 6 γn

such that P can absorb any set X ⊆ V (H) \ V (P ) with |X| 6 θn, (k − `) | |X|, that is,
there exists an `-path Q with the same ordered ends as P , where V (Q) = V (P ) ∪X.
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Definition 14. Let H be a k-graph. Given a set S of k − ` vertices of H, we call an
ordered set an S-absorber, if it is a sequence of `-paths Q = (P1, . . . , Ps), and there exists
another sequence Q′ = (P ′1, . . . , P

′
s) of `-paths such that V (Q) = V (Q′) ∪ S and Pi, P

′
i

have the same ends for each i ∈ [s].

It is known that if every (k− `)-set has many absorbers, then known probabilistic ar-
guments will produce an absorbing path. To establish a similar property, we use a variant
of the absorbing method originated from [25] and also developed in [10]. The following
example illustrates the idea of absorbers. Given a set of k − ` vertices {v1, . . . , vk−`},
consider a set of `-paths P1, . . . , Pk−` of length two (swappers) and a k-graph A (end-
absorber) containing a spanning `-path PA with S ′A = {w1, . . . , wk−`} ⊆ V (A). For
i ∈ [k − `], vi has degree two in Pi and V (Pi) \ {vi} ∪ {wi} also forms an `-path in which
both two edges contain wi and with the same ends as Pi. Moreover, we require that
A − S ′A also contains a spanning `-path with the same ends as PA. That is, when we
absorb {v1, . . . , vk−`}, vi will play the role of wi in Pi for i ∈ [k − `] and w1, . . . , wk−` will
be put inside A− {w1, . . . , wk−`}. (See Figure 1).

. . .
v1 v2 vk−`

wk−`

w2

w1

. . . . . .

A− S ′A

=⇒

vk−`

v2

v1

. . . . . .

A

. . .
w1w2 wk−`

Figure 1: a {v1, . . . , vk−`}-absorber, where S ′A = {w1, . . . , wk−`}.

Our actual absorbers are a little bit more complicated, namely, we allow swapper
chains of constant length and may concatenate them. The following absorbing path was
constructed and used in [18], which we will use as an end-absorber in our proof.

Proposition 15 ([18], Proposition 6.1). For all integers k > 3 and 1 6 ` 6 k − 1 such
that (k − `) - k, there is a k-partite k-graph A(k, `) with the following properties.

1. |V (A(k, `))| 6 k4.

2. V (A(k, `)) = S ′ ∪X, where S ′ and X are disjoint and |S ′| = k − `.

3. A(k, `) contains an `-path P with vertex set X and ordered ends P beg and P end.

4. A(k, `) contains an `-path Q with vertex set S ′∪X and ordered ends P beg and P end.

5. Each edge of A(k, `) contains at most one vertex of S ′.
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6. Each vertex class of A(k, `) contains at most one vertex of S ′.

The lattice-based absorbing method features a partition lemma, which gives a partition
of V (H) such that each part is closed. We need the following partition lemma in our
context.

Lemma 16 ([11], Lemma 5.4). Suppose that integers c, k > 2, 1 6 ` < k and 0 < 1/n�
β � β′ � δ � 1/c. Let H be a k-graph on n vertices and every set of c + 1 vertices in
V (H) contains two vertices that are (β′, 1)-reachable in H. Then there exists a partition
P of V (H) into V1, V2, . . . , Vr, U with r 6 c such that for any i ∈ [r], |Vi| > (δ− β′)n and
Vi is (β, 2c−1)-closed in H, and 0 6 |U | 6 cδn.

Let P = {V1, V2, . . . , Vr, U} be a vertex partition of H. The index vector iP(S) ∈ Zr
of a subset S ⊆ V with respect to P is the vector whose coordinates are the sizes of the
intersections of S with each Vi, i ∈ [r]. We call a vector i ∈ Zr an s-vector if all its
coordinates are non-negative and their sum equals s. Given µ > 0, a k-vector v is called
a µ-robust edge-vector if there are at least µnk edges e in H satisfying iP(e) = v. Let
IµP(H) be the set of all µ-robust edge-vectors.

Now we are ready to prove Lemma 13. The proof follows the scheme of the absorbing
method and uses Lemma 9 and Lemma 12 in the obvious way. The additional work comes
from the fact that not all the (k − `)-sets have many absorbers. To address this we use
Lemma 16 to find a partition of V (H) into at most three parts, and classify the (k−`)-sets
that do have many absorbers. Then we show that we can always partition the leftover
vertices together with a reserved set R1 into (k− `)-sets that have many absorbers in the
absorbing path.

Proof of Lemma 13. Suppose we have the constants satisfying the following hierarchy

1/n� θ � β � β′ � µ� δ � γ � η, 1/k.

Let H be a k-graph on n vertices such that

δ`+1(H) > (1/3 + η)

(
n

k − `− 1

)
or δ`(H) >

(
max

{
1/3, (1/2)

k−`
`

}
+ η
)( n

k − `

)
.

Applying Proposition 8 to H, we get that every triple of vertices in V (H) contains two
vertices which are (β, 1)-reachable in H. Without loss of generality, we suppose that
δd(H) > (1/3 + η)

(
n
k−d

)
with d > 2. So by Lemma 16, we get a partition P of V (H)

such that P = {V1, U} or P = {V1, V2, U}, where |Vi| > (δ − β′)n and Vi is (β, 2)-closed
in H for i ∈ [2], and 0 6 |U | 6 2δn. Note that the case P = {V1, U} is indeed simpler.
However, to unify the arguments, when P = {V1, U} we arbitrarily split V1 into two sets
of equal size and by abusing the notation we call the resulting partition P = {V1, V2, U}.
So we only need to deal with one case, where P = {V1, V2, U}, |Vi| > (δ − β′)n and Vi is
(β, 2)-closed in H for i ∈ [2]. Suppose P = {V1, V2, U} and let H ′ := H − U .

Fact 17. There exists 1 6 a 6 k − 1 such that (a, k − a) ∈ IµP(H ′).
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Proof. Let n′ := n−|U | and n1 := |V1|. Then n′ > (1− 2δ)n and min{n1, n
′−n1} > (δ−

β′)n. Suppose (a, k − a) /∈ IµP(H ′) for all 1 6 a 6 k − 1, that is, IµP(H ′) ⊆ {(0, k), (k, 0)}.
So by d > 2, we have

∑
S:iP (S)=(1,d−1) degH′(S) 6 kµ(n′)k · kd = kd+1µ(n′)k. On the other

hand, by the minimum degree condition of H, we have∑
S:iP (S)=(1,d−1)

degH′(S) > n1

(
n′ − n1

d− 1

)(
δd(H)− 2δn

(
n

k − d− 1

))

> (δ − β′)n
(

(δ − β′)n
d− 1

)(
(1/3 + η)

(
n

k − d

)
− 2δn

(
n

k − d− 1

))
> δd/3

(
n′

k

)
> kd+1µ(n′)k,

which is a contradiction. So there exists 1 6 a 6 k− 1 such that (a, k− a) ∈ IµP(H ′).

Suppose (a, k − a) ∈ IµP(H ′) as in Fact 17, where 1 6 a 6 k − 1. Let

m :=

{
a a 6 k/2

a− `+ 1 a > k/2.

Then 1 6 m 6 a and 0 6 k− `−m 6 k− a− 1. Let S be the family of all (k− `)-sets S
with iP(S) ∈ {(m, k − `−m), (m− 1, k − `−m+ 1)}. So for any S ∈ S, we have

|S ∩ V1| 6 a and |S ∩ V2| 6 k − a. (3)

The following claim says that every (k − `)-set S ∈ S has many absorbers. We postpone
its proof until later.

Claim 18. There exists b = (4k−2`−1)(k−`)+r for some r 6 k4 such that the following
holds. For any (k − `)-set S ∈ S, H contains βk−`+1nb/2 S-absorbers, each of which is a
b-tuple which spans a family of 2k − 2`+ 1 vertex-disjoint `-paths.

We select a family T of b-tuples at random independently from H by including each
ordered b-set T with probability βk−`+2n1−b. For a fixed S, let AS be the set of all members
of T which are S-absorbers. By Claim 18, E[|AS|] > β2k−2`+3n/2. Moreover,

E[|T |] = βk−`+2n1−b
(
n

b

)
b! 6 βk−`+2n,

E[|(T, T ′) : T, T ′ in T are intersecting|] 6 b2n2b−1(βk−`+2n1−b)2 = β2k−2`+4b2n

(the corresponding unordered sets intersect). By the Chernoff bound, Markov’s inequality
and the union bound, we can fix an outcome of our random selection of T satisfying the
following properties:

1. for every (k − `)-set S ∈ S, T contains at least β2k−2`+3n/4 S-absorbers;

2. |T | 6 2βk−`+2n;
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3. there are at most 2β2k−2`+4b2n overlapping members of T ,

We delete one set from each overlapping pairs of members of T . Also delete from T
every member of T which is not an S-absorber for any S ∈ S. Then we obtain a family
F of b-tuples such that |F| 6 2βk−`+2n, each b-tuple is an S-absorber for some S ∈ S
and for each S ∈ S, F contains at least β2k−2`+3n/4 − 2β2k−2`+4b2n > β2k−2`+4n S-
absorbers. By Claim 18, each S-absorber is a b-tuple which spans a family of 2k− 2`+ 1
vertex-disjoint `-paths. Denote all these `-paths in F by {P1, P2, . . . , Pq}, where q 6
2βk−`+2n(2k− 2`+ 1) 6 βk−`+1n. Let V (F) be the set of all vertices that are covered by
members in F .

Now we shall use the minimum d-degree condition of H to greedily construct disjoint
edges to cover all vertices in U \ V (F) while avoiding the vertices of the paths Pi, 1 6
i 6 q. Since δd(H) > (1/3 + η)

(
n
k−d

)
, we have δ1(H) > (1/3 + η)

(
n
k−1

)
. Note that

|U \ V (F)| 6 |U | 6 2δn and |V (F)| 6 2βk−`+2nb. For any set U ′ ⊆ V (H) with |U ′| 6
2βk−`+2nb+2kδn, δ1(H\U ′) > 1

3

(
n
k−1

)
. Thus, we find a matching M = {Pq+1, . . . , Pq+h} of

size h := |U \V (F)| 6 2δn such that V (M) does not intersect any of the paths P1, . . . , Pq
and each edge of M contains exactly one vertex of U \ V (F).

Let P beg
i and P end

i be the ordered ends of Pi for 1 6 i 6 q+h. We see that δ`(H \U ′) >(
(1/2)

k−`
` + η

2

) (
n−|U ′|
k−`

)
or δ`+1(H \ U ′) >

(
1/3 + η

2

) (
n−|U ′|
k−`−1

)
holds for any vertex set U ′

with |U ′| 6 γn/2. As (q + h)(b + 8k5) 6 (βk−`+1n + 2δn + 1)(b + 8k5) 6 γn/2, we
can use Lemma 12 or Lemma 9 to greedily connect each ordered `-set P end

i to P beg
i+1

by an `-path P ′i with |V (P ′i )| 6 8k5, such that P ′i intersects Pi and Pi+1 only in the
sets P end

i and P beg
i+1 and does not intersect any other Pj or any previously chosen P ′j .

Having found these `-paths, we obtain an `-path P ′ as P1P
′
1P2P

′
2 . . . Pq+h−1P

′
q+h−1Pq+h

with |V (P ′)| 6 γn/2. Note that for any S ∈ S, P ′ contains at least β2k−2`+4n mutually
disjoint S-absorbers. Thus P ′ can greedily absorb a vertex set W ∈ V (H) \ V (P ′), if
(k − `)||W |, |W | 6 (k − `)β2k−2`+4n and there exist nonnegative integers x, y such that
iP(W ) = x(m, k − `−m) + y(m− 1, k − `−m+ 1).

Let p := bθnc. Take 4p mutually disjoint vertex sets S1, S2, . . . , S2p, T1, T2, . . . , T2p
from V (H) \ V (P ′) with iP(Si) = (m, k− `−m) and iP(Ti) = (m− 1, k − `−m+ 1) for
i ∈ [2p]. We denote the union of these Si and Ti, i ∈ [2p] by R1. So R1 ⊆ V (H) \ V (P ′),
|R1| = 4(k − `)p and iP(R1) = 2p(m, k − ` − m) + 2p(m − 1, k − ` − m + 1). Thus P ′

can absorb R1, that is, there exists an `-path P with the same ordered ends as P ′, where
V (P ) = V (P ′) ∪ R1. Now we show that P is the desired absorbing `-path. Note that
|V (P )| 6 γn. Fix any set X ⊆ V (H)\V (P ) with |X| 6 p and (k− `) | |X| as required by
the lemma. Suppose further that iP(X) = (t, s) = x(m, k−`−m)+y(m−1, k−`−m+1).
Then we have {

x = t− (m−1)(t+s)
k−`

y = (t+s)m
k−` − t.

Since t + s = |X|, (k − `) | |X| and m/(k − `) 6 1, we get that x, y are integers and
|x|, |y| 6 |X| < 2p. Thus iP(X∪R1) = (x+2p)(m, k−`−m)+(y+2p)(m−1, k−`−m+1),
where x+ 2p > 0, y+ 2p > 0 and |X ∪R1| 6 4(k− `)p+ p 6 (k− `)β2k−2`+4n. So P ′ can
absorb X ∪R1, that is, P can absorb X.
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To complete the proof of Lemma 13, it remains to prove Claim 18.

Proof of Claim 18. Let S := {v1, v2, . . . , vk−`} be a (k − `)-set in S. Fix a k-partite k-
graph A(k, `) on [V A

1 , V
A
2 , . . . , V

A
k ] satisfying Proposition 15 with |A(k, `)| = r 6 k4 and

V (A(k, `)) = S ′∪X, where |S ′| = k− `. Without loss of generality, suppose |S ′∩V A
i | = 1

for i ∈ [k − `]. Let b := (4k − 2` − 1)(k − `) + r. Since (a, k − a) ∈ IµP(H ′), the number
of edges whose index vectors are (a, k − a) is at least µnk. Since S ∈ S, by (3), we have
t1 := |S ∩ V1| 6 a and |S ∩ V2| 6 k − a. Since A(k, `) is k-partite, by the supersaturation
result (see [6]) on the subgraph of H that consists of all edges of index vector (a, k − a),
H contains βnr copies of A(k, `) each with V A

1 , . . . , V
A
t1
⊆ V1 and V A

t1+1, . . . , V
A
k−` ⊆ V2.

For such a copy A of A(k, `), we denote by S ′A as the set of k − ` vertices given in the
second term of Proposition 15. So iP(S ′A) = iP(S) for each such A.

Consider a copy of A(k, `) in H which we denote by A. Note that each of V1, V2
is (β, 2)-closed in H. Without loss of generality, suppose S ′A = {w1, w2, . . . , wk−`} such
that vi, wi are (β, 2)-reachable for i ∈ [k − `] by iP(S ′A) = iP(S). By the definition of
reachability, for each i ∈ [k−`], there are at least βn4k−2`−1 (4k−2`−1)-sets Ti such that
there exist `-paths P 1

i , P
2
i , P

3
i , P

4
i with V (P 1

i ∪P 2
i ) = Ti∪{vi} and V (P 3

i ∪P 4
i ) = Ti∪{wi},

where P 1
i has the same ends as P 3

i , and P 2
i has the same ends as P 4

i . So there are at least
βk−`+1nb choices for A ∪ T1 ∪ T2 ∪ · · · ∪ Tk−` as an ordered set. Among them, at most
(k − `)nb−1 of them intersect S and at most b2nb−1 of them contain repeated vertices.
Thus there are at least βk−`+1nb/2 b-tuples avoiding S such that A, T1, T2, . . . , Tk−` are
pairwise vertex-disjoint.

Now it remains to show that the b-tuple corresponding to A ∪ T1 ∪ T2 ∪ · · · ∪ Tk−` is
an S-absorber. Firstly, Ti ∪ {wi}, i ∈ [k − `] spans two vertex-disjoint `-paths of length
two, which together with the spanning `-path in A \ {w1, w2, . . . , wk−`} form a family of
2k − 2`+ 1 `-paths which span V (A) ∪ T1 ∪ T2 ∪ · · · ∪ Tk−`. Secondly, H[Ti ∪ {vi}] forms
two vertex-disjoint `-paths of length two for i ∈ [k− `], which together with the spanning
`-path in A gives a family of 2k−2`+1 `-paths which span S∪V (A)∪T1∪T2∪· · ·∪Tk−`
and have the same ends as the family of `-paths above. So the b-tuple corresponding to
A ∪ T1 ∪ T2 ∪ · · · ∪ Tk−` is an S-absorber (cf. Figure 1).

3.3 Proofs of Theorem 4 and Theorem 5

We prove Theorem 4 by following the common approach of absorption (cf. [18, 27]). That
is, we decompose the proof in the usual way into the absorbing path lemma, the reservoir
lemma, the connecting lemma and the path cover lemma. We will use these lemmas to
find an absorbing path and a reservoir firstly, and then we cover the majority of vertices
by vertex-disjoint `-paths. We connect up all these `-paths to form an `-cycle. Finally,
we absorb the leftover vertices into the absorbing path, thereby completing a Hamilton
`-cycle.

We need the following path cover lemma, which states that the vertex set of any
sufficiently large k-graph satisfying the minimum degree condition can be covered by a
constant number of vertex-disjoint `-paths with a small leftover.
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Lemma 19 (Path cover lemma [7], Lemma 3.1). For all integers k > 3, 1 6 ` < k/2 and
1 6 d 6 k− 1, suppose 1/n� 1/D � ε� µ, 1/k. Let H be a k-graph on n vertices with
δd(H) > (t(k, d, `) + µ)

(
n
k−d

)
. Then there is a family of at most D vertex-disjoint `-paths

covering all but at most 4εn vertices of H.

We also need the reservoir lemma [18] which guarantees the subhypergraph satisfying
the degree condition of the connecting lemma.

Lemma 20 (Reservoir lemma [18], Lemma 8.1). Suppose that k > 2, 1 6 d 6 k − 1 and
1/n � α, µ, 1/k. Let H be a k-graph on n vertices with δd(H) > µ

(
n
k−d

)
, and let R be a

subset of V (H) of size αn chosen uniformly at random. Then with probability 1 − o(1),
|NH(S) ∩

(
R
k−d

)
| > µ

(
αn
k−d

)
− nk−d−1/3 holds for every S ∈

(
V (H)
d

)
.

Now we give the proof of Theorem 4 by combining the results as outlined above.

Proof of Theorem 4. Suppose we have the constants satisfying the following hierarchy

1/n� 1/D � ε� α� θ � β � γ � η � 1/k

and assume that n ∈ (k− `)N. Let t := max{t(k, d, `), 1/3}. Suppose that H is a k-graph
on n vertices such that δd(H) > (t + η)

(
n
k−d

)
. Applying Lemma 13, we obtain an `-path

P0 with |V (P0)| 6 γn, such that P0 can absorb any set S ⊆ V (H) \ V (P0) with |S| 6 θn,
(k − `) | |S|.

Next let R be a set of αn vertices of V (H) chosen uniformly at random. Applying
Lemma 20 to H, we obtain that with probability 1− o(1),∣∣∣∣NH(S) ∩

(
R

k − d

)∣∣∣∣ > (t+ η/2)

(
αn

k − d

)
for every S ∈

(
V (H)
d

)
. Since E[|R ∩ V (P0)|] = α|V (P0)|, by Markov’s inequality, with

probability at least 1/2, we have |R ∩ V (P0)| 6 2γαn. Then we fix a choice of R which
has the two properties above.

Let V ′ := V (H) \ (R ∪ V (P0)). Note that |R ∪ V (P0)| 6 γn + αn. The induced
subhypergraph H ′ := H[V ′] satisfies

δd(H
′) > (t+ η)

(
n

k − d

)
− (γn+ αn)

(
n

k − d− 1

)
> (t+ η/2)

(
|V ′|
k − d

)
.

Applying Lemma 19 to H ′, we obtain vertex-disjoint `-paths P1, . . . , Pq that together cover
all but at most εn vertices of H ′, where q 6 D. Denote by X the set of uncovered vertices.
Thus |X| 6 εn. We denote the ordered ends of Pi by P beg

i and P end
i , 0 6 i 6 q. Let P beg

q+1 :=

P beg
0 . For 0 6 i 6 q, we now find vertex-disjoint `-paths P ′i by Lemma 9 to connect P end

i

and P beg
i+1, which actually connects Pi and Pi+1 such that V (P ′i ) ⊆ (R\V (P0))∪P end

i ∪P beg
i+1

and |V (P ′i )| 6 8k5. More precisely, suppose that we have chosen such `-paths P ′0, . . . , P
′
i−1.

Let Ri =
(
P end
i ∪ P beg

i+1 ∪R \ V (P0)
)
\
⋃i−1
j=0 V (P ′j). Thus

δd(H[Ri]) > (t+ η/2)

(
αn

k − d

)
− (8k5D + 2γαn)

(
αn

k − d− 1

)
> t

(
|V (Ri)|
k − d

)
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and thus we may apply Lemma 9 with t in place of µ to find a desired `-path P ′i .
Let C := P0P

′
0P1P

′
1 · · ·PqP ′q be the `-cycle we have obtained so far and let R′′ :=

V (H) \ V (C). Then indeed R′′ = X ∪
(
R \

(
V (P0) ∪

⋃
06i6q V (P ′i )

))
and in particular,

|R′′| 6 (α + ε)n 6 θn. Since k − ` divides both n and |V (C)|, we have (k − `) | |R′′|. So
we can utilize the absorbing property of P0 to get an `-path Q0 with V (Q0) = V (P0)∪R′′
such that P0 and Q0 have the same ordered ends, obtaining a Hamilton `-cycle C ′ :=
Q0P

′
0P1P

′
1 · · ·PqP ′q in H.

Proof of Theorem 5 follows verbatim as the proof of Theorem 4, after replacing
Lemma 9 with Lemma 12. Thus we omit it.
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[8] H. Hàn, J. Han, and Y. Zhao. Minimum degree thresholds for Hamilton (k/2)-cycles
in k-uniform hypergraphs. Journal of Combinatorial Theory, Series B, 153:105–148,
2022.

the electronic journal of combinatorics 32(1) (2025), #P1.35 14



[9] H. Hàn and M. Schacht. Dirac-type results for loose Hamiltonian cycles in uniform
hypergraphs. Journal of Combinatorial Theory, Series B, 100(3):332–346, 2010.

[10] J. Han. Decision problem for perfect matchings in dense k-uniform hypergraphs.
Transactions of the American Mathematical Society, 369(7):5197–5218, 2017.

[11] J. Han, X. Shu, and G. Wang. Non-linear Hamilton cycles in linear quasi-random
hypergraphs. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 74–88, 2021.

[12] J. Han, L. Sun, and G. Wang. Large Y3,2-tilings in 3-uniform hypergraphs. European
Journal of Combinatorics, 120, 2024.

[13] J. Han and Y. Zhao. Minimum codegree threshold for Hamilton `-cycles in k-uniform
hypergraphs. Journal of Combinatorial Theory, Series A, 132:194–223, 2015.

[14] J. Han and Y. Zhao. Minimum vertex degree threshold for loose Hamiltonian cycles
in 3-uniform hypergraphs. Journal of Combinatorial Theory, Series B, 114:70–96,
2015.

[15] J. Han and Y. Zhao. Forbidding Hamiltonian cycles in uniform hypergraphs. Journal
of Combinatorial Theory, Series A, 143(6):107–115, 2016.

[16] G. Y. Katona. Hamiltonian chains in hypergraphs. Journal of Graph Theory,
30(2):205–212, 1999.
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A Proof of Theorem 3

In this section we prove Theorem 3. Considering the 5-graph H5,2 in Section 1 and
Theorem 5, we have

91

216
6 h22(5) 6 max

{
(1/2)

3
2 , t(5, 2, 2), 1/3

}
.

So it suffices to prove t(5, 2, 2) 6 91
216

. We will prove the following theorem to determine
t(5, 2, 2).

Theorem 21. Let 0 < 1/n� ε� η. Let H be a 5-graph on n vertices with

δ2(H) >

(
91

216
+ η

)(
n

3

)
.

Then H contains a Y5,4-tiling covering all but at most εn vertices. In particular, t(5, 2, 2) =
91
216

.

For p > 0, fix two k-graphs, F of order p, and H. Let FF,H ⊆
(
V (H)
p

)
be the family of

p-sets in V (H) that span a copy of F . A fractional F -tiling in H is a function ω : FF,H →
[0, 1] such that for each v ∈ V (H) we have

∑
v∈e∈FF,H

ω(e) 6 1. Then
∑

e∈FF,H
ω(e) is the

size of ω. Such a fractional F -tiling is called perfect if it has size n/p. Let 0 6 d 6 k − 1
and 0 6 s 6 n/p. We denote by f sd(F, n) the minimum m so that every n-vertex k-graph
H with δd(H) > m has a fractional F -tiling of size s. In particular, δ0(H) = e(H). Gan,
Han, Sun and Wang [7] proved the following two lemmas for fractional Yk,b-tilings.

Lemma 22 ([7], Lemma 7.2). Suppose 0 < 1/n � ε � η. Let H be a 5-graph on n

vertices with δ2(H) > f
n/6
2 (Y5,4, n) + η

(
n
3

)
. Then H contains a Y5,4-tiling covering all but

at most εn vertices.

Lemma 23 ([7], Lemma 7.1). For n > 5, we have f
n/6
2 (Y5,4, n) 6 f

n/6
0 (Y3,2, n− 2).

By Lemma 22, to prove Theorem 21, it suffices to find an almost perfect fractional
Y5,4-tiling under the minimum 2-degree condition. Then by Lemma 23, we transform this
problem to finding a large Y3,2-tiling under density condition, so that we can apply the
following theorem of Han, Sun and Wang [12].

Theorem 24. For every α, γ ∈ (0, 1/4) there exists an integer n0 such that the following
holds for every integer n > n0. Let H be a 3-graph on n vertices such that

e(H) > max

{(
4αn

3

)
,

(
n

3

)
−
(
n− αn

3

)}
+ γn3.

Then H contains a Y3,2-tiling covering more than 4αn vertices.
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Proof of Theorem 21. Suppose that we have constants such that 0 < 1/n � ε � η.
Let H be a 5-graph on n vertices such that δ2(H) > ( 91

216
+ η)

(
n
3

)
. By Lemma 23 and

Theorem 24 with ε in place of γ and α = n
6(n−2) , we have

f
n/6
2 (Y5,4, n) 6 f

n/6
0 (Y3,2, n− 2)

6 max


( 2n2

3(n−2)
3

)
,

(
n− 2

3

)
−
(

(n− 2)
(

1− n
6(n−2)

)
3

)+ ε(n− 2)3

6

(
91

216
+
η

2

)(
n

3

)
.

Thus we have δ2(H) > ( 91
216

+ η)
(
n
3

)
> f

n/6
2 (Y5,4, n) + η

2

(
n
3

)
. Applying Lemma 22 with η/2

in place of η, we obtain a Y5,4-tiling covering all but at most εn vertices.
In particular, by the definition of t(5, 2, 2), we get t(5, 2, 2) 6 91

216
. By considering

the 5-graph H5,2 in Section 1 and Theorem 5, we have 91
216

6 h22(5) 6 t(5, 2, 2). Thus
t(5, 2, 2) = 91

216
.
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